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Abstract—Minimum Error Rate Training (MERT) as an
effective parameters learning algorithm is widely applied in
machine translation and system combination area. However,
there exists an ambiguity problem in respect to the training
goal and it is hard for MERT to tackle, that is different
parameters may lead to the same minimum error rate in
training but greatly different performances in testing. We
propose a novel training objective as the unique goal for
training towards, namely partial references, and by use
of conditional random fields (CRF) to cast the decoding
procedure in system combination as a sequence labeling
problem. Experiments on Chinese-English translation test
sets show that our approach significantly outperforms the
MERT-based baselines with less training time.
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I. INTRODUCTION

The mechanism of combining outputs from multiple
machine translation systems has shown the great power in
machine translation (MT) area. Generally, the framework
consists of two independent steps, confusion network (CN)
construction [8], [10], [11], [4], [3], and decoding an
optimal path evaluated with a set of features. In Table I,
hypotheses are aligned to h0, and corresponding confusion
network refers to Figure 1.

h0 :He feels to apples
h1 :He prefer ε apples
h2 :He ε like apples
h3 :Him prefer to apples

Table I
SUPPOSE h0 IS SKELETON HYPOTHESIS, TO WHICH OTHERS BE

ALIGNED PAIR-WISELY.

He

Him

feels

prefer
ε

to

ε
like

apples

Y0 Y1 Y2 Y3

Y0 = {He,Him}
Y1 = {feels, prefer, ε}

Y2 = {to, ε, like}
Y3 = {apples}

Figure 1. The above graph is about a confusion network, and to be
casted as a sequence labeling problem shown in the below graph.

Training algorithm on confusion networks following
Minimum Error Rate Training (MERT) [9], [6] aims to
learn optimal parameters that could reach the minimum

error (or maximum BLEU metric in machine translation)
in a development set. Nevertheless, how to define the
better one if two completely different parameters cause
the same errors? We design an interesting experiment to
demonstrate this possibile case.

We train a hierarchical phrase-based translation system
for twice. The first time is to let MT02 data set for training
and MT05 for testing, and the second is vice verse. We
compare all the intermediate data and find two different set
of parameters, both are 8-dimension vector, those conduct
a similar performance in MT02, whose BLEU score is
0.292, but act obviously differently in MT05, 0.264 and
0.312 in case-sensitive BLEU.

It would be ideal for training parameters towards ref-
erence translations. One successful work [1], utilizes the
reachable references 1 for CRF training. However, it is
impossible to choose reachable confusion networks to
train, because most ones could not generate the reference
translations, and the available number of confusion net-
work is too poor to waste. Thus, we propose a novel
objective, partial reference, as the unique objective for
each confusion network to train. The partial reference is
defined as the longest sub-string of the reference transla-
tions, and in the meantime could be potentially decoded
from a confusion network.

In another view, shown in Figure 1, decoding a confu-
sion network is simply to choose for each span one edge to
construct a full translation. If we consider choice for every
span as a variable Y , whose values are edges in current
span, a simple graphical model is naturally generated.

We adopt conditional random fields (CRF) to train our
model on uni-CN due to an important reason, that is
CRF model could train a global optimal solution [13]. In
the first part experiments, we conduct several experiments
to compare the efficiency of parameters training between
CRF-based and MERT-based. In the second part, we will
make comparison on the task of multi-CN based system
combination. Our method is firstly collect the n-best lists
from CRF-based systems, and feed a common multi-
CN based system to complete a full system combination
procedure.

1The “Reachable” means reference translations could be potentially
generated by the model. In our example, reachable references should be
decoded from a confusion network.
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II. BACKGROUND

A. Confusion Network

Formally, confusion network (CN) is a directed, acyclic
graph, owing the unique source vertex and sink vertex,
with each edge attached to one alternative word. A special
place-holder ε denotes no concrete word on the arc.

The skeleton hypothesis (also called backbone hypothe-
sis) would determine the words order in final translations,
eg. h0 in Table I. To construct a CN, the remaining
hypotheses would be aligned to skeleton [10], [3], [8] or
to partially constructed CN [7], [12].

In order to reduce the risk of mischoosing skeleton
hypothesis, we will choose separate skeleton for each
candidate system to construct several CNs. Considering
the solutions from all the CNs to generate the optimal
translation. As a result, multi-CN based system combina-
tion may generate potential better-quality translations than
uni-CN based system combination.

B. Features in MERT

Features used in our work and baseline systems are
nearly the same to [10], [3], which are modeled in a log-
liner fashion. Four class features are defined as follows.

1) word posterior probabilities. p(w|sys, span). If the
word w comes from k-th hypothesis of sys-th sys-
tem, the raw score should be 1

k+1 , and then it should
be normalized by the sum from the same sys and
span.

2) logarithm of language model score, Lm.
3) number of ε edges, Numε.
4) number of words, Numw.

log(h) =
∑
span log(

∑
sys λsysp(w|sys, span))

+ w0Lm(h) + w1Numε + w2Numw

III. CRF-BASED TRAINING ON CONFUSION NETWORK

A. Partial References

We enumerate all the configurations of a CN to search
the longest sub-string of reference translations. The part of
a CN, capable of generating expected partial references,
would be kept for training, and the remnant are thrown
away. Note that, there are usually four reference transla-
tions for each source sentence, while our model only take
use of one partial reference as the training goal.

Since any variable Yi might be taken as ε, it is important
to decide whether it is encouraging to generate more ε or
less in partial references. Here, a tricky standard proves to
work best.

• making sub-string as longer as possible conditioned
on no value ε in two ends.

Table II describe several alternatives of partial references,
in which h3 seems to be longer than h2 while h2 is the
better objective.

h1 : ε ε A B ε ε ε ε ε
h2: A B ε C
h3: ε A B ε C ε ε

Table II
SUPPOSE BOTH “A B” AND “A B C” ARE THE SUB-STRING OF ONE OF

4 REFERENCE TRANSLATIONS, AND h1 ,h2 ,h3 ARE THE POSSIBLE
PARTIAL REFERENCES, IN WHICH h2 IS OUR CHOICE.

B. Feature Decomposition

Let Nj be the length of a CN, Ns be the number of
candidate translation systems, a full hypothesis is defined
as
−→
Y = y1 . . . yNj

. We define a single upper case letter
like Y as a variable, and define a lower case letter y as a
taken value of variable Y .

Any feature f worked on
−→
Y could be decomposed into

the summation of sub-features f i(
−→
Y ) on i-th variable.

word posterior probability

One value yi, namely one edge, may include a word w
coming from different candidate translation systems. We
assign an extra attribute to denote the word represented
by value yi from sys-th system as yi = {ysysi }.

We define Ns features of word posterior probability as
f1 . . . fNs, and their corresponding weights as λ1 . . . λNs

,
each of which could be computed as

f isys(
−→
Y ) =

{
log fsys(y

sys
i ) if ysysi exist

None otherwise

The fsys(y
sys
i ) is equivalent to word posterior proba-

bility p(w|sys, i) mentioned in the background section.

Language Model

Take a string
−→
Y = s0s1s2 for example, suppose the

language model order is 2, and there exist no value ε,
then the expected feature score is as follows.

flm(
−→
Y = s0s1s2) = logP (s0s1s2)

= logP (s0) + logP (s1|s0) + logP (s2|s1)
= f0lm(

−→
Y ) + f1lm(

−→
Y ) + f2lm(

−→
Y )

Then the feature fired on Yi is defined as

f ilm(
−→
Y ) =

{
logP (yi| . . . yi−1) if yi 6= ε

None otherwise

Where P (yi| . . . yi−1) means taking enough context
to compute language model score, where at most mc

windows including current position are considered.
Obviously, to ensure the accuracy of language model

score, the language model order ml is required no smaller
than mc, and in computing P (yi| . . . yi−1) there should be
efficient context. One trick is enlarging the mc.

Penalty for Loss of Language Model

Plenty of value ε would lead to errors in computing LM.
Suppose

−→
Y = a0 ε b2 c3 ε ε d6, the language model order

ml = 4, the windows size mc = 4. There are no losses
for a0,b2 and c3, but d6. On 6-th position, mere c3 can be
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available in mc windows, b2 being out of the scope, thus
the real score log(d6|a0b2c3) would be lost.

Since larger the mc is, more computing is required. We
simply add a penalty feature to supplement the losses.

is_losti(
−→
Y ) = |{y ∈ {yi−mc+1 . . . yi}|y 6= ε}| < ml

f iplm(
−−→
Ymc

) =

{
1 if is_losti(

−→
Y ) and yi 6= ε

0 otherwise

word number and ε number

Let fwc be the word count, namely none-ε value for any
yi, we have definition as follows.

f iwc(
−→
Y ) =

{
0 if yi = ε

1 otherwise

And let fnc denote the ε edge count, then fnc(
−→
Y ) =

Ns − fwc(
−→
Y ) = Ns −

∑
i f

i
wc(
−→
Y ).

IV. EVALUATION

The candidate systems participating in the system com-
bination are as listed in Table III: System A is a BTG-
based system using a MaxEnt-based reordering model;
System B is a hierarchical phrase-based system; System C
is a Moses decoder; System D is a syntax-based system.
10-best hypotheses from each candidate system on the
development and test sets are collected as the input of
the system combination.

In our experiments, two different data sets are used.
The first is to use NIST MT02 Chinese-to-English as the
development set, and to use NIST MT05 for a test. The
second is to use news portion in NIST MT06 Chinese-
to-English as development set, and to use news portion in
NIST MT2008 as a test. A 4-gram language model trained
on Xinhua portion of Gigaword corpus are used. On two
data sets, we used five baselines (four uni-CN based and
one multi-CN based) ,all re-implemented following [11],
[10], and be measured with case-sensitive BLEU score.

A. Comparison with MERT-based decoding

Our comparison consists of two parts, uni-CN based
and multi-CN based system combination. In the first part,
we choose skeleton from different candidate systems to
construct uni-CN in turn, on which four baseline systems
are trained, named as BA,B,C,D respectively. By contrast,
four CRF-based systems are named as CA,B,C,D. In the
second part, baseline Bmul is a multi-CN based system
[10], and our final system Cmul is to simply feed Bmul
with four n-best lists from CA,B,C,D systems to complete
a new system combination.

In the first data set, Table III, three CRF-based systems
outperform respective baseline systems significantly, and
one is a bit worse than BA. Especally, the MERT-based
BB don’t acquire a consistent result, but our CB does.
Our final system Cmul overpass a classic multi-CN based
baseline system by 0.63 points. Note C[ABCD] only utilize
the partial references instead of the full development

SYSTEM MT02(dev,%) MT05(test,%)
A 31.85 30.25
B 32.16 32.07
C 32.11 31.71
D 33.37 31.26

BA/CA 34.69/- 33.45/33.36−

BB/CB 34.57/- 33.19/33.68+
BC/CC 30.85/- 29.17/32.82++

BD/CD 34.00/- 32.34/33.26++

Bmul/Cmul 35.48/36.25 34.04/ 34.67+

Table III
EXPERIMENTS ON MT02 AND MT05. ALL B∗ ARE BASELINE

SYSTEMS, AND C∗ ARE OUR CRF-BASED SYSTEMS.
++SIGNIFICANCE AT 0.01 LEVEL, AND +SIGNIFICANCE AT 0.05

LEVEL.

SYSTEM MT06(news,dev,%) MT08(news, test,%)
A 31.83 29.13
B 31.82 29.55
C 31.55 27.69
D 32.41 30.16

BA/CA 33.98/- 31.70/32.07+
BB/CB 33.70/- 31.83/31.52−

BC/CC 33.60/- 30.02/29.57−

BD/CD 34.21/- 31.75/31.43−

Bmul/Cmul 34.70/34.61 32.25/32.37

Table IV
EXPERIMENTS ON NEWS PORTION OF MT06 AND MT08.

++SIGNIFICANCE AT 0.01 LEVEL, AND +SIGNIFICANCE AT 0.05
LEVEL.

set for training, thus we don’t compare the BLEU with
baselines in MT02.

In the second data set, Table IV, our CRF-based decoder
don’t go beyond the most results compared to baselines,
but it delivers the similar performance, and would cost less
training time shown in the next sub-section.

Our parameter settings are as follows, the minimal
partial references length is 10, window size mc = 6. The
following content would demonstrate more experiments
conducted on the first data set.

B. Effect of Minimal Partial References Length

We set the minimal length for partial references, because
too small would lead to too much scrap-like objectives,
and another extreme would not find efficient partial ref-
erences. We adjust the minimal length, and Table V lists
the different performances.

length sysA sysB sysC sysD
4 0.3303 0.3341 0.3259 0.3320
6 0.3314 0.3330 0.3285 0.3337
8 0.3310 0.3329 0.3293 0.3341

10 0.3336 0.3360 0.3282 0.3326
12 0.3304 0.3365 0.3249 0.3283

Table V
FLUCTUATION OF BLEU OF CRF-BASED DECODING WITH THE

DIFFERENT MINIMAL PARTIAL REFERENCES LENGTH.

We show that different minimal length limitation does
not cause to great fluctuation to the final quality measured
by BLEU score.
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C. Effect of Penalty for Language Model

As decomposing language model feature onto each
variable Yi would inevitably causes inaccuracy if there are
plenty of ε value in

−→
Y , we try to introduce the penalty

feature. This experiment is to test the influence brought
by this problem.

length −fplm +fplm(MT05, CA)
8 0.2913 0.3310
10 0.2940 0.3336
12 0.2900 0.3304

Table VI
−fplm MEANS USING FEATURES EXCEPT fplm , +fplm IS TO USE
FULL FEATURES. WE USE CRF-BASED SYSTEM CA AS OUR TEST

TOOL.

From the data, we can see that, without the feature
fplm, CRF greatly suffers from the losses of language
model caused by ε values. A step further, we conjecture
CRF model may work better in other fields of machine
translation in which circumstances there does not exist
such a problem.

D. Effect of Window Size mc

The language model feature flm relies on window size
of context, mc. Considering more context, there may be
more accurate in calculating language model, the same
time costing more. We tune this parameter to leverage
final quality and time for training parameters.

mc BLEU(MT05, sysA) time
baseline BA 0.3345 1.8 h

4 0.3010 1m 10s
5 0.3270 2m 23s
6 0.3336 4 m 21s
7 0.3340 ≥20m

Table VII
WHEN mc BE SET NO LESS THAN 5, OUR MODEL ACQUIRE SIMILAR

QUALITY, BUT WITH LESS TIME FOR TRAINING.

V. DETAILS AND CONCLUSION

We re-implement the CRF code to support real-value
features, and make no modification to CRF itself. Our
model use the similar features set as baseline systems,
four system-specified word posterior probabilities, one
language model, words number, ε number, in addition
to a penalty feature for language model, compared to
classic applications of CRF with millions of features. We
find taking maximum likelihood and pseudo-likelihood as
graphical inference principle acquire the similar perfor-
mance, and the latter lead a more quick training speed for
several folds. Due to the page limitation, readers could
refer to [13] to learn details about CRF training.

As general machine translation tasks are explored more
as a search-based problem, it is not a trivial thing to bring
sophisticated machine learning models into this area. This
paper attempts to solve the objective ambiguity problem
in MERT frame by proposing a novel objective, partial
reference, and casting decoding a confusion network as a

sequence labeling problem, then borrow traditional graph-
ical model CRF to train optimal parameters. More, in
uni-CN based system combination tasks, our CRF-based
systems could acquire better or similar results, and with
less training time. Our work show a promise of introducing
more sophisticated machine learning techniques into MT
field to improve translation quality a step further.
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