
Bayesian Streaming Sparse Tucker Decomposition (Supplementary material)

Shikai Fang, Robert M. Kirby, Shandian Zhe

School of Computing, University of Utah
Salt Lake City, UT 84112

shikai.fang@utah.edu, kirby@cs.utah.edu, zhe@cs.utah.edu

SUPPLEMENTARY MATERIAL

-0.05 0 0.05

1
st

 component

0.03

0

-0.032
n
d
 c

o
m

p
o

n
e

n
t

(a) BASS-Tucker

-1 -0.5 0 0.5

1
st

 component

-1

0

1

2
n

d
 c

o
m

p
o
n
e
n
t

(b) P-Tucker

Figure 1: The structures of the estimated core-tensor (folded at
the second mode) by BASS-Tucker and P-Tucker.

First, in Fig. 1, we show the first two principled components
of the core-tensor folded at the second mode. As we can
see, the results of BASS-Tucker exhibit clear grouping struc-
tures, implying different patterns of the interactions between
non-mode-2 and mode-2 factors. Again, we ran the k-means
algorithm and filled the cluster regions with different col-
ors to highlight these patterns. As a comparison, the results
of P-Tucker do not reflect meaningful structures, and the
interaction strengths are distributed like a symmetric Gaus-
sian. It again demonstrates the potential of BASS-Tucker in
discovering interesting and important patterns.

Second, in Fig. 2, we show the running time of BASS-
Tucker and POST with different streaming batch sizes. We
tested on a Windows desktop with Intel i9-9900K CPU. As
we can see, on Alog and ACC datasets with R = 5, BASS-
Tucker is much faster than POST under all the streaming
batch sizes (i.e., Fig. 2 a and b). Note that POST is based
on CP, which is much simpler (and less parameterized) than
Tucker decomposition. This might because POST needs to
run many iterations to converge in optimizing the mean-field
variational posterior (the default setting of the maximum
number of iterations is 500). In other caes, the speed of
BASS-Tucker is comparable to and even faster than POST
with the largest streaming batch size (i.e., 211 = 2048). To-

gether this shows the advantage of our one-shot incremental
update, which does not need to sequentially go through each
entry in the batch as in standard ADF, and also does not
need to perform iterative optimization as in SVB.

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).



2
8
2

9
2

10
2

11

Batch Size

0

10

20

S
e

c
o

n
d

(s
)

(a) ALOG (R=5)

2
8
2

9
2

10
2

11

Batch Size

500

1000

2000

S
e

c
o

n
d

(s
)

(b) ACC (R=5)

2
8
2

9
2

10
2

11

Batch Size

300

900

1500
S

e
c
o

n
d

(s
)

(c) MovieLen1M (R=5)

2
8
2

9
2

10
2

11

Batch Size

800

3000

5000

S
e

c
o

n
d

(s
)

(d) Anime (R=5)

2
8
2

9
2

10
2

11

Batch Size

0

30

60

S
e

c
o

n
d

(s
)

(e) ALOG (R=9)

2
8
2

9
2

10
2

11

Batch Size

1000

3000

4000

S
e

c
o

n
d

(s
)

(f) ACC (R=9)

2
8
2

9
2

10
2

11

Batch Size

300

900

1500

S
e

c
o

n
d

(s
)

(g) MovieLen1M (R=9)

2
8
2

9
2

10
2

11

Batch Size

800

3000

5000
S

e
c
o

n
d

(s
)

(h) Anime (R=9)

Figure 2: Running time with different sizes of streaming batches.


