Online Spike-and-slab Inference with Stochastic
Expectation Propagation

Shandian Zhe Kuang-chih Lee Kai Zhang
Purdue Univesity Yahoo! Research NEC Labs America
szhe@purdue.edu kclee@yahoo—-inc.com kzhang@nec—-labs.com

Jennifer Neville
Purdue Univesity
neville@cs.purdue.edu

Abstract

We present OLSS, an online algorithm for Bayesian spike-and-slab model infer-
ence, based on the recently proposed stochastic Expectation Propagation (SEP)
framework [7]]. We use a fully factorized form to efficiently process high dimen-
sional features; further, we extend the SEP framework by incorporating multiple
approximate average likelihoods, each of which corresponds to a cluster of samples
(e.g., positive and negative ones). This not only better summarizes the data across
different regions, but also gives the flexibility to assign sample weights. On a
large-scale click-through-rate (CTR) prediction task, OLSS demonstrates excellent
sparsity and superior predictive performance to the popular methods in industry,
including Vowpal Wabbit [6] and FTRL-Proximal [8]].

1 Introduction

Sparse learning is critical to real applications with high dimensional data, for example, classification
with a large number of features. On one hand, too many features will lead to a complicated model and
to avoid overfitting, we have to collect a huge amount of data and use a lot of computing resources
for training, which is time consuming and computationally expensive; on the other hand, the trained
model can be ponderous and not handy for real-time applications. For example, a typical online
advertising system is required to perform a CTR prediction in 10-100 milliseconds; therefore, the
CTR model must be parsimonious.

Spike-and-slab prior [4] is the golden standard for Bayesian sparse learning. Compared with tradi-
tional L, regularization approaches, it has an appealing selective shrinkage property. Specifically,
assume we have d features; for each feature j, we have a weight w; and the spike-and-slab prior over
wj is defined as follows:

p(s;) = Bern(s;|po) = pg’ (L= po)' =%, plw;ls;) = ;N (w;[0,70) + (1 — 5;)8(w;) (1)

where §(-) is a Dirac-delta function. Here s; — a selection indicator sampled from a Bernoulli
distribution— decides what type of prior over wj: if s; is 1, meaning feature j is selected, the weight
w; is assigned a flat Gaussian prior with variance 7y (slab component), corresponding to a mild
regularization; if otherwise s; is 0, meaning feature j is irrelevant, the weight w; is assigned a spike
prior centered at 0 (spike component), inducing a strong shrinkage effect.

Despite the amazing property, Bayesian spike-and-slab models are relatively less popular, mainly due
to the computational hurdle for posterior inference, especially for large data. Conventional Markov-
Chain Monte-Carlo sampling techniques converge very slowly for high dimensional problems;

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

standard Variational Bayes [5] or Expectation Propagation [9], although every efficient, cannot handle
massive samples due to the memory limit of a single computer.

Inspired by the recent stochastic Expectation Propagation framework (SEP) [[7], we develop OLSS,
an online inference algorithm of Bayesian spike-and-slab models for feature selection; to the best of
our knowledge, this is the first algorithm that can deal with both a huge number of samples and high
dimensional features. Specifically, we first adopt a factorized form over the feature weights so as to
handle high dimensions, and to save computations for sparse categorical features. Second, we extend
SEP, by using multiple approximate average-likelihoods, rather than one. Each average-likelihood
summarizes the information from a cluster of samples. In this way, data distributions in different
regions can be more accurately captured, at a negligible extra cost. In addition, it provides a flexibility
of assigning weights for samples in different clusters, say, positive and negative samples.

We have applied OLSS for a real CTR prediction task. On the data with millions of samples, and
hundreds of thousands features, OLSS can greatly reduced the number of features to a few hundreds,
without sacrificing much prediction accuracy; on average, OLSS obtains a superior predictive
performance to the state-of-the-art methods in industry, including Vowpal Wabbit [6] and FTRL-
proximal [8]]. Furthermore, the selected features by OLSS are proven very useful to construct more
advanced, nonlinear CTR prediction models.

2 Stochastic Expectation Propagation

Let us first briefly review EP [9] and SEP [7]. Consider a probabilistic model parameterized by 6.
Given the data D = {2z, ...,zy}, the joint probability is p(6, D) = py(0) [[,, p(2z.|0).To obtain
the exact the posterior p(@|D), we have to calculate the marginal distribution p(D), which is usually
intractable. To address this problem, EP uses an exponential-family term f,,(6) to approximate
each likelihood p(z,|0), and f,(0) to the prior po(0), resulting an approximate posterior ¢(€) o
fo(0) 11, f»(0). Using the property that the exponential family are close under multiplying and
dividing operations, EP cyclically refines each approximate term f; in the following four steps: (1)
calculating the calibrating distribution, g_;(0) x ¢(0)/f;(0); (2) constructing a tilted distribution
t;(0) x q_;(0)p(z;]0); (3) projecting t; back into the exponential family, ¢*(8) o proj(¢;(0)), via
moment matching; (4) updating the f;: f2°V(0) x ¢*(0)/q—:(0).

?

EP often works well in practice. However, since it maintains an approximate likelihood term f,,(0)
for every sample n, it may fail when the samples are too many to be stored in memory. To address this
issue and make EP scalable for large data, SEP instead uses one average-likelihood term, f,(8), to
summarize all the data likelihoods, and defines the approximate posterior to be ¢(8) o fo(8)f.(0)".
By only keeping and updating fj and f,, SEP greatly reduces the memory usage. SEP further uses
an online mechanism to update f,(8). Specifically, given sample n, we calculate the calibrating
distribution by ¢_,,(0) ¢(0)/f.(0), and follow the same way as the original EP to obtain an
approximate likelihood, f,,(0); we then integrate f,,(0) into the updating of f,(8), by taking the
(geometric) average over the data likelihoods, where the likelihood for sample n is represented by

[1(8) and the others are represented by f, (). Therefore, we have f,(0)™" = (f,,(8) f.(6)N 1) ~,

Writing down the updates in terms of the natural parameters, A;" = + X, + (1 — %)X, where
A, and A, are for f, and f,, respectively, we can see that the update of the natural parameters of
fa 1s a weighted combination of the old values and the new ones from the approximate sample
likelihood. Further, we can use a mini-batch of samples {z,,,, ..., Zn,, } to achieve a larger move:

A = L5 A, + (L=),

3 Online Inference for Bayesian Spike-and-slab Models

Now, we present OLSS, our online inference algorithm for spike-and-slab models based on the
SEP framework. We focus on sparse linear models with spike-and-slab priors. Suppose we have a
dataset D = {(x1,¥1),.--, (XN, yn)}, where each z,, is a d-dimensional feature vector and y,, is
the response. Here we consider binary responses for classification task, i.e., y, € {+1,—1}. We
assume a d x 1 weight vector w, such that given x,,, we have p(y,|x,, w) = ®(y,w ' x,,), where
®(+) is the CDF of standard Gaussian distribution. Note that in real applications, although x,, can
be extremely high dimensional, they are often very sparse, i.e., most of the elements are zero. This

is mainly due to the sparse categorical features, such as the product brand or the web site domain.
They often have a large cardinality and we have to use a sparse, long feature vector for representation.
Therefore, to avoid the unnecessary computation, we rewrite p(y, |X,, w) = ‘I)(an[Tn %X,) where
I,, is the indexes of nonzero elements in x,, and X,, is the corresponding nonzero subvector. We
further assign the spike-and-slab prior over w (see (I))), and obtain the joint probability as follows:

(D, w,s|po, 70) = [1{—, Bern(s;|po) (s;N (w0, 70) + (1 = 5;)8(w;)) TInZy ®(ynw]).

For tractable inference, we first approximate the prior term, s, N (w;|0,7) + (1 — s;)d(w;), with
Bern(s;|a;)N (wj|u1j,v1;). Then, we use two average-likelihood terms, fF(wy) and f, (wp),
defined by f (w;) = HjeIN(wj\u;j,v;j) and f;-(wr) = [[;c; N (wjlus;, va;), for the positive
and negative samples respectively. We then define the approximate posterior to be ¢(s, w)

H;l:l Bern(s|po)Bern(s;| o)N (w;paj, viy) TTny £ (Wi,) 2@ =Y £ (wy,)2 2= Hence,

d + -
q(w,s) o Hj:1Bern(8j|p0)Bern(8j|pj) (wJ|M1J’vl])/\/(wj|/j‘2]7v;])n N(“’J“‘Qy%;))

and is fully factorized over features, where n and n; are the appearance counts of feature j
in positive and negative samples, respectively. i\Iote that unlike the standard SEP using only one
average-likelihood for all the data, we consider the different sample types and for each type, we
use a different average-likelihood. This has two advantages: first, the summarization of the data
likelihoods can be more accurate; and it opens a way to enhance SEP—that is, we can cluster the
data first, and for each cluster we use an average-likelihood, to better capture the shape of full data
distribution. Second, we can vary the weights for different class of samples, through the settings
of nj and n; . This can be very useful for applications with unbalanced samples. Take the online
advertising as an example. The number of clicked impressions (i.e., positive samples) are far less
than the non-clicks (negative samples). To save computation, we can collect all the positive samples
but subsample a comparable number of negative samples; then for training, we intentionally set large
{n; }; to maintain the same positive/negative ratio in the full data. This is equivalent to duplicate the
negative samples to simulate the original sample bias.

The algorithm, OLSS, sequentially processes data, each time a mini-batch. In each min-batch,
we calculate the approximate likelihoods for each positive and negative samples in parallel, then
update the corresponding average-likelihood terms for each feature j, i.e., N (wj] ugj, v;j) and
N (wj|pg;, va;). following the way mentioned in Section 2. After every a few mini-batches, we update
the approximate prior terms, {Bern(s;|o;)N (w;|p1;,v15)};, with the current average-likelihoods.

The derivation of the updates is pretty standard, hence we omit the details to save space. The algorithm
is summarized in Algorithm 1.

After the training, we select all the features that have the posterior selection probabilities bigger than
1.ie., {jlg(s; =1) > 3}. Then we use the selected feature weights for prediction.

Algorithm 1 OLSS(D, po, 70, M, T, {n} ,n} };)

Random shuffle samples in D.

Initialize for each feature j: p; = 0.5, pu1; = pg; = pig; = 0,v1; = v3; = vy; = 10°.

repeat
Collect a mini-batch of samples B; with size M, where B+ are B, denote the positive and
negative samples, and bJr and b;; denote the appearance counts of feature jin Bj" and B,
Calculate the approxnnate 11ke11h00d for each sample in B; to obtain {N (w; |H;t, Vi) }iteB;
Update the Gaussian terms for the average—likelihoods

+ nt_pt +
+-1 bji -1 J bji + -1 #2J /Lgr —b; 1‘2;
Ugj nt ZreB* Ve T nf o V2 v;r] ZteB* vje n;r o3,
_ -1 b _ n, —=b.. _ —1 o - 1 n. —b-. p,z
vy — - v I iy, %e% R
2 " ZteBi Jt + n; 47 gy n; ZteBz‘ vjit * Ty Vg

If T mini-batches have been processed, update {p;, pt1;, v1;}; for the approximate prior terms.
until all samples in D is passed.
return ¢(w,s) = H N (w;|pj,vj)Bern(s;j|e;), where v; = (Ul_jl + nj'v;j_ + n_vgj_l)fl,

Wi = v (““ +n +M2] + ;l:;]) a; =0c(07 po) + o (p;)) ((-) is the logitic function).

e
0.785 O ® 079 %
_________ o 0.8
____________ % e
0775 e
8] ©078
2 Sorss 38 § 2 § Sor
< *-FTRLp| <4765 < i
—vw i - i
0.785 i X 0.7 &
X X :
% % X
0.
7% 76 12 08 04 01 075546 12 08 04 01 0785 4% 12 08 04 o 0.77
Feature Number 10% x10° Feature Number x10° Feature Number : 07/22 07/23
(a) 07/22 (b) 07/23 (c) 07/24

Figure 1: Prediction accuracy v.s. the number of features (a-c), and prediction of GBT trained on 504
features selected by OLSS (d).

4 Experiment

We examined OLSS in a real CTR prediction task. We collected the training data from a 7 days’
clicks log generated by Yahoo! Display ads platform, between 07/15/2016 and 07/21/2016. Then we
tested on the logs in 07/22/2016, 07/23/2016 and 07/24/2016. The number of features are 204, 327;
the size of training and testing data are 1.8M, 133.7M, 116.0M, and 110.2M . For training, we
collected all the click impressions and subsampled a comparable number of non-clicks, while for
testing data, we used all the click and nonclick impressions. Note that training CTR prediction models
with comparable clicks and non-clicks is common in online advertising systems [[1]]. We compared
with two state-of-the-art methods widely used in industry, online logistic regression in Vowpal Wabbit
(VW) not doing feature selection, FTRL-proximal (FTRLp) with online feature selection. For our
approach, we set 7y to 1.0, M to 100 and 7" to 1. We varied pp—the prior belief about the ratio of
selected features—to adjust the sparsity level; for VW we adopted the default parameters, which
turned out to have the best predictive performance; FTRLp has four parameters, «, 5, A\; and Ao,
where {«, 5} are used to control the per-coordinate learning rate, and {1, A2} are the strengths
for L; and L regularization; to choose the best parameters, we fixed L; = 1.0 and Ly = 1.0 and
fine tuned {«, 3} in a validation dataset sampled from the log in 07/23/2016. The best settings are
a = = 0.1. Then we fixed Ay to 1.0, adjusted \; and examined the sparsity and the predictive
accuracy (in our application, different choices of Ao have little effect to the predictive performance) .

First, we examined how much sparsity OLSS can yield when varying po. From Table [T} we can
see that big pg encouraged a large number of features to be selected; when we decreased py, OLSS
quickly pruned massive features, as expected. Finally, the number of features can be reduced to a few
hundreds, taking only 0.2% of the whole feature set.

Table 1: The number of selected features v.s. the setting of pg.

00 0.8 0.5 0.4 0.3 0.1 100° 10°° 10 °
feature number | 204,080 53,827 5,591 3,810 2,174 1,004 663 504
ratio (%) 99.9% 263% 27% 19% 1.1% 05% 03% 02%

Next, we examined the predictive performance of OLSS and FTRL when selecting different number
of features. We report the area-under-curve (AUC) for all the three test datasets. As shown in Figure
[Th-c, the prediction accuracy decreased when using less and less features for both OLSS and FTRL.
However, OLSS always outperformed FTRLp, in all sparsity levels. This is more significant when
smaller number of features were selected. In addition, compared with VW using all of features, our
method, OLSS, kept a superior predictive performance until the feature number became too small.
However, the accuracy drop of OLSS is much less than FTRLp.

Finally, to confirm the usefulness of the selected features, we trained a nonlinear classification model,
Gradient Boosting Tree (GBT) [22 3], based on the 504 features selected by OLSS (when setting
po = 10~7). GBT has an excellent performance for CTR prediction [I0] but is not scalable for
high dimensional features. We compared GBT with OLSS on the same 504 features, and with VW
using all the 204, 037 features. As shown in Figure[Tld, GBT outperformed both OLSS and VW on
all the three test datasets. Therefore, the selected features by OLSS are useful not only for linear
classification models, but also for the advanced, nonlinear models. This enlightens another application
of sparse learning—that is, we can first choose a small set of useful features and then based on them
we construct feasible and more powerful models to further improve our prediction tasks.

-.VW
EmOLSS|
EGBT

07/24

References

[1] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang Zhang. Laser: A scalable
response prediction platform for online advertising. In Proceedings of the 7th ACM international
conference on Web search and data mining, pages 173-182. ACM, 2014.

[2] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189-1232, 2001.

[3] Jerome H Friedman. Stochastic gradient boosting. Computational Statistics & Data Analysis,
38(4):367-378, 2002.

[4] Edward I George and Robert E McCulloch. Approaches for Bayesian variable selection.
Statistica Sinica, pages 339-373, 1997.

[5] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An in-
troduction to variational methods for graphical models. Machine learning, 37(2):183-233,
1999.

[6] John Langford. Vowpal wabbit, 2013. URL http://hunch. net/vw.

[7] Yingzhen Li, José Miguel Herndndez-Lobato, and Richard E Turner. Stochastic expectation
propagation. In Advances in Neural Information Processing Systems, pages 2323-2331, 2015.

[8] H Brendan McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems
and 11 regularization. In AISTATS, pages 525-533, 2011.

[9] Thomas P Minka. Expectation propagation for approximate Bayesian inference. In Proceedings
of the Seventeenth conference on Uncertainty in artificial intelligence (UAI), pages 362—-369.
Morgan Kaufmann Publishers Inc., 2001.

[10] Ilya Trofimov, Anna Kornetova, and Valery Topinskiy. Using boosted trees for click-through
rate prediction for sponsored search. In Proceedings of the Sixth International Workshop on
Data Mining for Online Advertising and Internet Economy, page 2. ACM, 2012.

	Introduction
	Stochastic Expectation Propagation
	Online Inference for Bayesian Spike-and-slab Models
	Experiment

