
Self-Adaptable Point Processes with Nonparametric
Time Decays

Zhimeng Pan, Zheng Wang, Jeff M. Phillips, and Shandian Zhe
School of Computing, University of Utah

Salt Lake City, UT 84112
{z.pan,wzhut}@utah.edu, jeffp@cs.utah.edu, zhe@cs.utah.edu

Abstract

Many applications involve multi-type event data. Understanding the complex
influences of the events on each other is critical to discover useful knowledge
and to predict future events and their types. Existing methods either ignore or
partially account for these influences. Recent works use recurrent neural networks
to model the event rate. While being highly expressive, they couple all the tem-
poral dependencies in a black-box and can hardly extract meaningful knowledge.
More important, most methods assume an exponential time decay of the influence
strength, which is over-simplified and can miss many important strength varying
patterns. To overcome these limitations, we propose SPRITE, a Self-adaptable
Point pRocess wIth nonparametric Time dEcays, which can decouple the influences
between every pair of the events and capture various time decays of the influence
strengths. Specifically, we use an embedding to represent each event type and
model the event influence as an unknown function of the embeddings and time
span. We derive a general construction that can cover all possible time-decaying
functions. By placing Gaussian process (GP) priors over the latent functions and
using Gauss-Legendre quadrature to obtain the integral in the construction, we
can flexibly estimate all kinds of time-decaying influences, without restricting to
any specific form or imposing derivative constraints that bring learning difficulties.
We then use weight space augmentation of GPs to develop an efficient stochastic
variational learning algorithm. We show the advantages of our approach in both
the ablation study and real-world applications.

1 Introduction

Events of multiple types are ubiquitous, such as in online shopping, social networking and biological
signal transduction. Understanding the complex influences of those events on each other, including
excitation, inhibition, and how the strength of these influences varies with time, is crucial to discover
useful knowledge and to predict future events and their types, which can benefit many applications,
e.g., marketing analysis, biological study, and early warnings of catastrophes.

While many excellent works have been proposed for event modeling and analysis (Blundell et al.,
2012; Linderman and Adams, 2014; Xu et al., 2016; Tan et al., 2016; Xu and Zha, 2017; Zhang et al.,
2020a), most of them are inadequate to capture complex influences between the events. The classical
Poisson processes simply ignore these influences and assume independent increments. Although
Hawkes processes (HP) can estimate the mutual excitation between the events, they ignore the
inhibition effect, which is common in real world. More important, existing methods (Xu et al., 2016;
Zhang et al., 2020a), even for those considering both the excitation and inhibition, mostly assume
an exponential time decay of the influence strength, which is over-simplified and can miss many
other decay patterns. While recent works have also used recurrent neural networks (RNNs) (Du et al.,
2016; Mei and Eisner, 2017) to model the event rate and hence are highly expressive, they couple

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

all the temporal dependencies in a black box, and are difficult to distill meaningful and important
knowledge, e.g., influence types and strengths.

To address these limitations, we propose SPRITE, a multi-variate self-adaptable point process
with nonparametric time decays. Our method not only can discover the type of the influence (i.e.,
excitation or inhibition) between every pair of the events, but also is flexible enough to estimate all
kinds of influence strength decaying patterns, not limited to the exponential decay or other particular
forms. Specifically, we first introduce an embedding to represent each event type, and model the
influence between any two events as an unknown function of the event type embeddings and time
span. In so doing, we avoid separately estimating the influence between every pair of the events, and
largely reduce the parameters. Next, we propose a general construction that covers all possible time
decaying functions. We assign Gaussian process (GP) priors over the free latent functions and use
Gauss-Legendra quadrature to calculate the integral in the construction. In this way, we can flexibly
estimate a variety of time decaying influences while not needing to impose any derivative constraint,
which can bring learning difficulties. For efficient inference, we use weight-space augmentation of
GPs to prevent computing huge covariances matrices, and neural network feature mapping to enhance
the learning capacity. We then use the re-reparameterization trick to develop a scalable stochastic
variational learning algorithm.

For evaluation, we first examined SPRITE in an ablation study. We tested the case of a single event
type with excitation effects only and three time decays, and a bi-type event case with mixed excitation
and inhibition effects. In both cases, our method accurately recovered the rate function of each type
of events and the influence between the events, performing better than state-of-the-art methods based
on or extending Hawkes processes and RNNs. Next, we examined SPRITE in three real-world and
one synthetic benchmark datasets. We examined the accuracy in predicting the occurrence time and
type of future events. In both tasks, our method nearly always outperforms the competing approaches,
often by a large margin. Finally, by looking into the embeddings and influence functions learned by
our model, we found interesting patterns within the event types and their interactions.

2 Background

Temporal Point Processes. We denote a sequence of events and their types by Γ =
[(t1, s1), . . . , (tM , sM)], where each ti is the time point when the i-th event occurred (t1 ≤ . . . ≤ tM),
si is the type of the i-th event. Suppose we have K types of events in total; so each si ∈ {1, . . . ,K}.
Temporal point processes (TPPs) (Daley and Vere-Jones, 2007) provide a fundamental framework to
characterize and model the events. A TPP is defined via the rate (or conditional intensity) function of
the events, λs(t). For example, a homogeneous Poisson process assumes each λs(t) is a constant λ0

s,
and the past events {(tj , sj)|tj < t} do not have any influence on generating a new event at t. While
being simple and convenient, Poisson processes completely ignore the interactions between the events.
Hawkes processes (HPs) (Hawkes, 1971) overcome this issue by modeling the triggering effects
between the events, λs(t) = λ0

s +
∑
tj<t

γsj→s(t− tj) where γsj→s(∆) > 0 is called “triggering
kernel”, and characterizes how largely the previous event at tj encourages a new event of type s to
occur at t. Naturally, this effect is supposed to decay with time ∆. The most commonly used choice
is the exponential decay,

γs′→s(∆) = αs′s · exp (−τs′s∆) , (1)

where αs′s > 0 and τs′s > 0. Given the definition of λs(·), the probability of the event sequence is

p(Γ) =
∏K

k=1
exp(−

∫ T

0

λk(t)dt)
∏M

i=1
λsi(ti), (2)

where T is the total span of the events in Γ and so tM ≤ T .

RNN based Point Processes. HPs only consider the triggering effects and hence can be quite
restricted. In order to estimate arbitrarily varying rate functions, recent works Du et al. (2016); Mei
and Eisner (2017) use recurrent neural networks (RNNs) to model the event dependencies and rates.
The key idea is as follows. For each event i, we introduce a hidden state vector β(ti). The event
dependency is modeled through the updating rule of the hidden states,

β(ti+1) = ρ (β(ti), ti+1) (3)

2

where ρ(·) is a complicated mapping, fulfilled by a combination of neural network operations, such
as linear transformation, nonlinear activation, and gating. Note that the event type si can also be
incorporated into ρ(·). The rate function is then defined as a transformation of β(t). We can therefore
evaluate and maximize the point process likelihood (2) for model estimation.

3 Model

While RNN based methods are highly expressive and can capture arbitrarily complex dependencies,
due to the black-box updating rule (see (3)), they can hardly distill meaningful knowledge, such as
the influence type and strength between the events, which are critical for data analysis and knowledge
discovery. On the other hand, while HPs enjoy excellent interpretability due to the additive structure
in the intensity, they overlook the inhibition effect among the events, which is common in real world.
More important, nearly all the HP based methods adopt exponential time-decaying kernels (or a
combination of them) (see (1)), including the recent works (Mei and Eisner, 2017; Zhang et al., 2020a)
that extend HPs to allow a negative triggering kernel (αs′s < 0 in (1)). However, an exponential
decay can be overly simplistic for various, complex real-world applications. These methods can
therefore miss other important decaying patterns (e.g., polynomial decays), resulting in inferior
influence estimation and predictions.

To overcome these issues, we propose SPRITE, a multi-variate self-adaptable point process model
that can explicitly estimate the influence type and strength between every pair of the events, and
flexibly capture all kinds of time decays of the influence strength, not limited to a particular form.
Specifically, we first define a raw rate function for each event type s(1 ≤ s ≤ K) to characterize
both the excitation and inhibition effects from the previous events,

λ̃s(t) = λ0
s +

∑M

i=1
1(ti < t)hsi→s(t− ti), (4)

where 1(·) is an indicator function, λ0
s is the background (or base) rate, and hsi→s(·) is an influence

term that characterizes the effect of a previous event of type si happened at ti on the occurrence of a
new event of type s at t. When hsi→s > 0, it indicates a triggering effect while hsi→s < 0 means
inhibition. The absolute value of hsi→s is the strength of the influence. Since the raw rate can be
negative, we then apply a scaled soft-plus transformation (Mei and Eisner, 2017) to ensure we obtain
a positive rate function, λs(t) = β log

(
1 + exp(λ̃s(t)/β)

)
where β > 0.

Next, we introduce a set of embeddings U = {us}Ks=1 to represent the event types. We sample these
embeddings from the standard Gaussian distribution, p(U) =

∏
sN (us|0, I). Then we model the

influence term as a function of the event type embeddings and time span,
hsi→s(∆) = h(usi ,us,∆). (5)

The advantage of doing so is that we only need to estimate one function h to capture the influence
among all the events (including those within the same type). The embeddings can further enable
us to discover the hidden structures of the event types (e.g., cluster and outliers). Otherwise, if we
estimate one function for each pair of event types, we have to learn K(K + 1)/2 functions, which
can be much more challenging and costly, especially when the event types are many (i.e., large K).

We want our model to flexibly learn the influence function h(·) and its strength decaying patterns
with time, rather than restrict to any pre-specified, parametric form, e.g., the exponential decay in (1).
In other words, we only require when h > 0, the time derivative ∂h

∂∆ < 0, and when h < 0, ∂h∂∆ > 0,
i.e., h · ∂h∂∆ < 0, to ensure |h| decreases over time. While it is standard to assign a Gaussian process
(GP) prior (Rasmussen and Williams, 2006) over h to enable a flexible, nonparametric function
estimation, incorporating the time derivative constraints is difficult. The derivative of a GP is still a
GP (provided the kernel is differentiable). Since the support of the Gaussian distribution (GP finite
projection) is the entire real space, imposing a monotonic constraint is infeasible (there are always
nonzero probabilities for positive/negative derivatives). Existing work (Riihimäki and Vehtari, 2010)
introduces a set of virtual points and encourage the derivative at these points to be as positive (or
negative) as possible. This essentially is a soft regularization, not an actual constraint.

To address this issue, we observe that the time-decaying influence functions have a general structure.
Lemma 3.1. h · ∂h∂∆ < 0 if and only if h has the form

h(usi ,us,∆) = g(usi ,us)(1− f(usi ,us,∆)), (6)

3

where g(usi ,us) = h(usi ,us, 0), 0 ≤ f(·) < 1, ∂f∂∆ > 0, and f(usi ,us, 0) = 0.

We leave the proof in the Appendix. Next, to construct f , we represent f(·) = tanh
(
z(usi ,us,∆)

)
where z(·) is another function. To satisfy the requirements for f in (6), we need to ensure z ≥ 0,
z(usi ,us, 0) = 0, and ∂z

∂∆ > 0. According to these constraints, we can represent z as an integral
function, z(usi ,us,∆) =

∫∆

0
exp

(
η(usi ,us, r)

)
dr where η(·) is a free function. Combining with

(6), we now derive a general construction of our influence function,

Corollary 3.1.1. h · ∂h∂∆ < 0 if and only if

h(usi ,us,∆) = g(usi ,us)

(
1− tanh

(∫ ∆

0

exp (η(usi ,us, r)) dr

))
(7)

where both g(·) and η(·)1 are free latent functions.

Note that our construction (7) also covers the special case that h(·) = 0 (when g = 0), i.e., no
influence is from the previous event. To flexibly estimate h(·), we can place GP priors over g and η.
However, we no longer need to incorporate any derivative constraint and hence the learning is much
easier. Note that the prior of h(·) is not GP anymore.

One might be concerned that the integral in (7) is analytically intractable and will bring troubles in
model estimation. However, since the integration is one dimensional, we can use Gauss-Legendre
quadrature to calculate the integral quite accurately and evaluate h(·). We will discuss the details in
Sec. 4.2.

4 Algorithm

The model estimation is challenging. The GP prior over the latent function g(·) in (7) requires us to
compute a multivariate Gaussian distribution of {g(us,uk)}1≤s,k≤K (the finite projection of g), and
over η(·) a multivariate Gaussian distribution of {η(us,uk,∆)}1≤s,k≤K,∆∈A where A are the time
differences between every pair of events. Hence, even with a moderate number of events and event
types (e.g., K = 100), the corresponding covariance (kernel) matrices will be huge and infeasible to
calculate. To address this problem, we use the weight space view of GPs (Rasmussen and Williams,
2006). That is, a GP model is equivalent to Bayesian linear regression after a (nonlinear) feature
mapping. We use neural networks to construct a finite yet highly expressive mapping, and explicitly
estimate the posterior of the (augmented) weight vector. In so doing, we can ease the inference
and avoid computing the full covariance matrices. We then use Gauss-Legendre quadrature and the
reparameterization trick to develop an efficient mini-batch stochastic variational learning algorithm.

4.1 GP Weight-Space Augmentation with Neural Network Feature Mapping

Specifically, we introduce R dimensional weight vectors wg and wη for the latent functions g(·) and
η(·) in (7). We then sample g and η in the following way:

wg ∼ N (wg|0, I), wη ∼ N (wη|0, I),

g(us,uk) = w>g φg(us,uk), η(us,uk,∆) = w>η φη(us,uk,∆), (8)

where φg and φη are nonlinear feature mappings fulfilled by neural networks (NNs). It is known that
if we marginalize out the weight vectors, we recover the GP model, where the function values at an
arbitrary finite set of inputs follow a multivariate Gaussian distribution. The covariance (or kernel)
function is an inner-product of the mapped feature vector. For example, the kernel for g(·) will be
κg([us,uk], [us′ ,uk′]) = (φg(us,uk))

>
φg(us′ ,uk′); the NN parameters in φg can be viewed as

kernel parameters. Although the kernel does not correspond to an infinite feature mapping as in
traditional kernels (e.g., RBF), it still can be highly expressive due to the capacity of neural networks.
We will keep the weight vectors wg and wη in our model inference. In so doing, we never need to
operate the huge full covariance matrices. The dimension of the weight vectors R is often set to be
small, e.g., 16 or 32. Hence the computation will be much more efficient, and the inference are easier
and convenient.

1Rigorously speaking, η should be exponential integrable, i.e., exp(η(·)) is integrable in [0,∆]. This is a
pretty mild condition, which can be satisfied by, e.g., continuity of η(·).

4

Suppose we have observed a collection of N independent event sequences, D = {Γn}1≤n≤N where
each Γn =

[
(tn1 , s

n
1), . . . , (tnMn

, snMn
)
]

and Mn is the number of events in sequence n. According to
(2) and (8), the joint probability of our model is given by

p(U ,wg,wη,D) =
∏

s
N (us|0, I)N (wg|0, I)N (wη|0, I)

·
∏N

n=1

∏K

k=1
exp

(
−
∫ Tn

0

λk(t)dt

)∏Mn

i=1
λsni (tni), (9)

where Tn is the total time span across the events in sequence n.

4.2 Stochastic Variational Learning

Given the joint probability (9), we aim to estimate the posterior distribution of the weight vectors
wg and wη, the event type embeddings U , the parameters in the feature mappings φg and φη, and
the other parameters. Due to the intractable model evidence (i.e., normalizer), exact inference is
infeasible. Therefore, we use variational inference (Wainwright and Jordan, 2008). Specifically, we
introduce a Gaussian variational posterior for the weight vectors,

q(wg,wη) = q(wg)q(wη) = N (wg|µg,Σg)N (wη|µη,Ση). (10)

We use the Cholesky decomposition to parameterize the posterior covariance matrices to ensure their
positive definiteness, Σg = LgL

>
g and Ση = LηL

>
η where Lg and Lη are lower triangular matrices.

We then derive a variational model evidence lower bound (ELBO),

L = −KL (q(wg)‖p(wg))− KL (q(wη)‖p(wη)) + log(p(U))

+
∑N

n=1

(
−
∑K

k=1
Eq

[∫ Tn

0

λk(t)dt

]
+
∑Mn

i=1
Eq
[
log
(
λsni (tni)

)])
,

where p(wg) and p(wη) are the standard Gaussian priors in (8), and p(U) =
∏
sN (us|0, I).

To handle large N,K (i.e., the number of sequences and event types) and the intractable
integration

∫ Tn

0
λk(t)dt, we resort to stochastic optimization. Specifically, we parti-

tion all the event sequences of into mini-batches of size B: {B1, . . . ,BN/B}, and event
types into mini-batches of size C: {C1, . . . , CK/C}. We observe that the integration of

the rate function is piece-wise,
∫ Tn

0
λk(t)dt =

∑Mn

j=0

∫ tnj+1

tnj
λk(t)dt where tn0 = 0 and

tnMn+1 = Tn. The rate λk(t) in each interval [tnj , t
n
j+1] is smooth (see (4)), and hence we

use Gauss-Legendre quadrature to compute each
∫ tnj+1

tnj
λk(t)dt. We now talk about how

to compute a sample of λk(t) for stochastic optimization, which uses the Gauss-Legendre
quadrature again. Specifically, we arrange the ELBO as L = −KL (q(wg)‖p(wg)) −
KL (q(wη)‖p(wη)) + log(p(U)) −

∑
m

B
N

∑
n∈Bm

N
B

∑
l
C
K

∑
k∈Cl

K
C Eq

[∫ Tn

0
λk(t)dt

]
+∑

m
B
N

∑
n∈Bm

N
B

∑Mn

i=1 Eq
[
log
(
λsni (tni)

)]
, which can be further viewed as an expectation,

L = Ep(m),p(l)[L̂m,l], L̂m,l = −KL (q(wg)‖p(wg))− KL (q(wη)‖p(wη)) + log(p(U))

− N

B

K

C

∑
n∈Bm

∑
k∈Cl

Eq

[∫ Tn

0

λk(t)dt

]
+
∑
n∈Bm

N

B

Mn∑
i=1

Eq
[
log
(
λsni (tni)

)]
,

where p(m) = B
N , m ∈ {1, . . . , NB }, p(l) = C

K , l ∈ {1, . . . , KC }. To conduct efficient stochastic
optimization, each step we first draw a mini-batch Bm and Cl to calculate the L̂ml. We then use the
reparameterization trick to draw from q(wg,wη): ŵg = µg + Lgεg and ŵη = µη + Lηεη, where
εg ∼ N (·|0, I) and εη ∼ N (·|0, I). We substitute these samples into the corresponding terms in the
expectations and obtain an unbiased stochastic estimate of L̂ml. We then calculate the gradient to
obtain an unbiased estimate of∇L̂ml, which is also an unbiased estimate of ∇L. Accordingly, we
can perform stochastic optimization to maximize L so as to estimate q and the other parameters.

However, a critical issue is that after we use the parameterized samples of wg and wη to obtain the
latent functions g(·) and η(·), we cannot compute the influence function h(·) in the rate function

5

λk(·), due to the intractable integral in (7). To address this issue, we observe that the integration
is only one dimensional over time. Hence, we can use Gauss Legendre quadrature to calculate the
integral with an analytical form,∫ ∆

0

exp (η(usi ,us, r)) dr ≈
∑
j

ωj
∆

2
exp

(
η(usi ,us,

∆

2
ξj +

∆

2
)

)
, (11)

where {ωj} and {ξj} are quadrature weights and nodes respectively. Note that this is based on the
integral transform of the standard Gauss Legendre quadrature, which requires that the integration
interval is [−1, 1]. We provide more details in the Appendix.

4.3 Algorithm Complexity

The time complexity of our inference algorithm is O(BCM + R3) where B and C are the mini-
batch sizes of the partitions of the event sequences and types, M is the maximum length of the
sequences, and R is the dimension of weight vectors wg and wη . Therefore, the computational cost
is proportional to the mini-batch sizes, rather than determined by the total number of sequences N
and events types K. The space complexity is O(Kd + 2R3), which is to store the covariances of
q(wg) and q(wη), and the event type embeddings U (d is the dimension of the embeddings).

5 Related Work

Many works use Poisson processes to analyze event data for its elegance and convenience, e.g., (Lloyd
et al., 2015; Schein et al., 2015, 2016, 2019). However, Poisson processes assume independent
increments in their counting processes and hence overlook the interactions between the events.
Hawkes processes (HPs) (Hawkes, 1971) therefore become popular, due to their capability of
capturing the mutual excitations between the events. Many works propose HP based models to
estimate the temporal relationships from data, e.g., (Blundell et al., 2012; Tan et al., 2016; Linderman
and Adams, 2014; Du et al., 2015; He et al., 2015; Wang et al., 2017; Yang et al., 2017a; Xu and
Zha, 2017; Xu et al., 2018). Several methods have also been proposed to improve the inference of
HPs, such as nonparametric triggering kernel (and base rate) estimation (Zhou et al., 2013; Zhang
et al., 2020b; Zhou et al., 2020), Granger causality (Xu et al., 2016), short doubly-censored event
sequences (Xu et al., 2017) and online estimation (Yang et al., 2017b). Another recent line of
research (Zhe and Du, 2018; Pan et al., 2020; Wang et al., 2020) uses or extends HPs to learn the
representations of event participants.

To overcome the limitation of HPs in only estimating the triggering effects, recent research efforts
have been made to capture more complex temporal dependencies, e.g., inhibition. In (Mei and Eisner,
2017), a simple extension of HPs was proposed to allow a negative coefficient in the exponential
triggering kernel (i.e., αs′s < 0 in (1)), and the intensity was transformed through a soft-plus function
to ensure positiveness. Zhou et al. (2021) uses a similar extension, but it models the kernel by a
mixture of shifted Beta densities, and then uses a sigmoid transform scaled by an upper-bound to
obtain a positive rate. The second method in (Mei and Eisner, 2017) develops a continues-time
Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) model to capture the event
dependencies through the nonlinear, black-box updates of the hidden states. The rate is a transform of
the hidden state. Du et al. (2016) developed a discrete RNN to model each event sequence. The rate
at any time point t is obtained by taking the exponential of a linear combination of the hidden state of
the closest event, and the time span from that event. In addition, Omi et al. (2019) used feed-forward
NNs to model the cumulative intensity function given the RNN states, so as to avoid computing the
integration in the point process likelihood (see (2)), which is usually intractable. Shchur et al. (2019)
modeled the time span between the events with a mixture of log-normal distribution parameterized
by RNN states and other parameters.

Despite the expressive power of RNN based models, they encode all the temporal dependencies
into the hidden state vectors and blackbox updating mechanisms. We can hardly extract important
knowledge including the influence type and strength between a pair of events, how they vary with
time, etc. The very recent work (Zhang et al., 2020a) uses the self-attention mechanism (Vaswani
et al., 2017; Bahdanau et al., 2014) to capture the correlation between the events. The similar idea
appears in the concurrent work (Zuo et al., 2020). Zhang et al. (2020a) modeled the rate as the
soft-plus transformation of a base rate plus an exponential time-decaying kernel, where the base

6

rate, the amplitude and decaying rate are computed via the attention mechanism, which essentially
calculates a weighted similarity with the representation of the past events. Although the model is
more interpretable and highly expressive, like most HP models, it adopts an exponential time-decay
for the influence strength, and hence can miss other decaying patterns in data. This (partly) motivates
us to develop an interpretable yet flexible point process model to capture various time decays from
data. There are other temporal models based on ODEs, e.g., (Rubanova et al., 2019).

6 Experiment

6.1 Synthetic Data

To confirm the effectiveness of SPRITE, we first conducted an ablation study with synthetic data.
Specifically, we considered two cases: single-type events and bi-type events. For single-type events,
we assumed that they only have excitation effects on each other. We examined three time-decaying
excitations,

h1(∆) = max(0.4− 0.1∆2, 0), (Quadratic)

h2(∆) = max(0.4− 0.2∆, 0), (Linear)
h3(∆) = 0.3 exp(−0.8∆). (Exponential) (12)

We applied the scaled soft-plus transformation to ensure a positive rate. We set the scale β = 0.8.
We used Thinning algorithm Lewis and Shedler (1979) to sample event sequences. For each case, we
generated 10K sequences for training and 1K for validation. The length of each sequence is 32.

For bi-type events, we assume type 0 events trigger type 1 events while type 1 inhibits type 0, and no
effects are between events of the same type:

h0→1(∆) = max(1.0− 0.05∆2, 0), h1→0(∆) = −0.5 exp(−0.5∆). (13)

We set β = 0.4 and used scaled soft-plus to obtain the positive rate function. Again, we sampled 10K
sequences for training and 1K for validation. Each sequence includes 64 events.

We compared with the following state-of-the-art methods: (1) Hawkes processes (HP) with the
standard exponential decaying triggering kernel, (2) Recurrent Marked Temporal Point Processes
(RMTPP) (Du et al., 2016) that use a discrete RNN to model the event sequences, and use hidden
RNN states and other parameters to estimate an overall rate function (for all types of events), (3)
Neural Hawkes Processes (NeuralHP) (Mei and Eisner, 2017) that use a continuous LSTM to model
the event sequences, and estimate the rate function for each event type, and (4) Self-Attentive
Hawkes Process (SAHP) (Zhang et al., 2020a) that uses the self-attention mechanism to calculate
the aggregated influence from the previous events on the current one. We implemented SPRITE
and HP with TensorFlow (Abadi et al., 2016). We used the original implementation of NeuralHP
(https://github.com/HMEIatJHU/neurawkes) and SAHP (https://github.com/
QiangAIResearcher/sahp_repo), and a high-quality open-source implementation of RMTPP
(https://github.com/woshiyyya/ERPP-RMTPP). For SPRITE and HP, we set the mini-
batch size of the event sequences to 16 and learning rate 10−3. We set the dimension of the
embeddings to 4 for SPRITE. The nonlinear feature mappings φg and φη in (8) were both chosen
as a single-layer feed-forward NN, with 16 neurons and leaky RELU as the activation function. We
used the default settings of all the other methods. We ran each method with 50 epochs (enough
for convergence). To avoid an unfair comparison caused by overfitting (especially for RNN based
methods), we evaluated the likelihood of a validation dataset after each epoch and stopped training if
there is no improvement (early stopping).

Fig. 1 a,c,e (left) show the rate function estimations of all the methods for single-type events. As
we can see, the estimations of SPRITE nearly always overlap with the ground-truth rate function,
demonstrating that our method can perfectly adapt to all the cases and capture different time decays.
By contrast, SAHP and RMTPP’s estimations significantly deviate from the ground-truth. SAHP
often severely over-estimates and under-estimates the rate (see Fig. 1c and e). RMTPP correctly
captures the trends, but often mistakenly estimates the local details. Although this test favors HP
since only the excitation effects were considered, HP still resulted in apparent deviations in the case
of quadratic and linear decays (see Fig. 1a and c), showing the limitation of the rigid exponential-
decay assumption. Note that the estimation of HP overlaps with SPRITE and the ground-truth for
exponential decays (see Fig. 1e). While NeuralHP also gives excellent rate estimations, in a few

7

https://github.com/HMEIatJHU/neurawkes
https://github.com/QiangAIResearcher/sahp_repo
https://github.com/QiangAIResearcher/sahp_repo
https://github.com/woshiyyya/ERPP-RMTPP

0 5 10 15 20 25 30

1.0

2.0

3.0 Events
RMTPP
SPRITE

Ground Truth
NeuralHP

HP
SAHP

(a) Quadratic
0 10 20 30 40

0

1

2

3

Type 0 Events
Type 1 Events

Ground Truth: Type 0
Ground Truth: Type 1

Estimated: Type 0
Estimated: Type 1

(b) HP

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.5

1.0

1.5

2.0

(c) Linear
0 10 20 30 40

0

1

2

3

(d) NeuralHP

0 5 10 15 20

0.5

1.0

1.5

2.0

(e) Exponential
0 10 20 30 40

0

1

2

3

(f) SAHP

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Learned Influence 0 → 1
Ground Truth Influence 0 → 1

0 1 2 3 4 5

−0.5

−0.4

−0.3

−0.2

−0.1

Learned Influence 1 → 0
Ground Truth Influence 1 → 0

(g) Recovered Influence function by SPRITE
0 10 20 30 40

0

1

2

3

(h) SPRITE

Figure 1: Rate function estimation for single-type events (a,c,e) and for bi-type events (b, d, f, h), and event
influence function estimated by SPRITE for bi-type events (g). The estimated influences for single-type events
are given in Fig. 1 of the Appendix. In all figures, the x-axis is time and y-axis the rate or influence value.

local regions, it still fails to capture the detail and/or gives a worse estimation than SPRITE, e.g.,
t ∈ [16, 17] in Fig. 1a, t ∈ [4.0, 4.5] and [10.5, 11.5] in Fig. 1c, and over-estimations for t around
4.0 and 19.0 in Fig. 1e.

Fig. 1 b,d,f,h (right) show the rate estimations for bi-type events. We did not compare with RMTPP,
since it only produces an overall rate function. As shown in Fig. 1b, HP’s estimation for event type
0 is completely wrong, because HP cannot capture the inhibition effects from type 1 events. In
Fig. 1f, while SAHP indeed captures both the triggering and inhibition effects, its rate estimations
severely deviate from the ground-truth, and miss capturing many local details (see the flat curves in
many intervals). Finally, NeuralHP and SPRITE can accurately estimate the rates for both events.
The estimation of SPRITE for event type 0 is slightly better, because it completely overlaps with the
ground-truth. Note that, however, SPRITE can further tell the influence type and strength between
every pair of the events while NeuralHP, based on a blackbox LSTM, cannot. All these results have
demonstrated the advantage of our method in flexibly capturing various time decays from data.

We also examined the estimated influence function by SPRITE. Fig. 1g shows the results for bi-type
events. We can see that our learned decay is very accurate, nearly overlapping with the ground-truth.
While the two influence functions (h0→1 and h1→0) are very different — one is convex and the other
concave, they both can be accurately captured by SPRITE. The estimations for the single-type events
are given in Fig. 1 of the Appendix, showing SPRITE accurately recovered all the three types of
influences. The results demonstrate the power of our nonparametric model. Note that due to the
blackbox nature, we cannot discover event influence functions from NeuralHP, SAHP and RMTPP.

8

SSTA PP HP SAHPNeuralHPRMTPP SPRITE

15

25

35

45

55

R
M
SE

33.24 34.29
32.56

34.89 34.91

47.70

29.02

SSTA
HP
NeuralHP
SPRITE

PP
SAHP
RMTPP

(a) Retweet

SSTA PP HP SAHP NeuralHPRMTPP SPRITE

0.6

0.8

1.0

1.2

1.4

1.27

1.12

1.00
1.03 1.03 1.02

0.96

(b) MIMC

SSTA PP HP SAHP NeuralHPRMTPP SPRITE

0.4

0.8

1.2

1.6

2.0

1.56

1.18
1.24

1.56

1.17

1.66

1.15

(c) SO

SSTA PP HP SAHP NeuralHPRMTPP SPRITE

0.4

0.6

0.8

1.0

1.2

1.4

1.27

0.90 0.89

1.00 1.00

1.19

0.82

(d) SIM
SSTA PP HP SAHPNeuralHPRMTPPSPRITE

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

0.549 0.549 0.540

0.497

0.574 0.575 0.575

(e) Retweet

SSTA PP HP SAHPNeuralHPRMTPPSPRITE

0.0

0.2

0.4

0.6

0.8

1.0

0.305

0.186

0.294
0.337

0.718

0.848
0.923

(f) MIMC

SSTA PP HP SAHPNeuralHPRMTPPSPRITE

0.0

0.1

0.2

0.3

0.4

0.5

0.366 0.366 0.357

0.305

0.383 0.376 0.384

(g) SO

SSTA PP HP SAHPNeuralHPRMTPPSPRITE

0.4

0.5

0.6

0.7

0.8

0.9

0.739 0.739 0.744

0.649

0.751 0.747 0.748

(h) SIM

Figure 2: Prediction accuracy of the time (top row) and type (bottom row) of the future events.

Small Medium Large

Sm
al
l

M
ed

iu
m

La
rg
e

6.8

15.6

18.8

4.8

14.2

17.4

0.7

1.9

5.1
2

5

8

10

12

15

18

(a) Initial strength (∆ = 0)

0.0 0.1 0.20

10

20

0.0 0.1 0.20

10

20

0.0 0.1 0.20

10

20

0.0 0.1 0.20

10

20

0.0 0.1 0.20

10

20

0.0 0.1 0.20

10

20

0.0 0.1 0.20

10

20

0.0 0.1 0.20

10

20

0.0 0.1 0.20

10

20

(b) Influence functions

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4

(c) Event-type clusters

0 1 2 3 4

0
1

2
3

4 −4

−3

−2

−1

0

(d) Initial strength (∆ = 0)

Figure 3: The learned time-decaying influences between every two types of events (“small”,“medium”, “large”)
from Retweet dataset (a,b). The clustering structure of the event type embeddings and the initial strength of the
influence functions organized in the event type clusters on MIMIC dataset (c, d).

6.2 Predictive Performance

Next, we examined the performance of SPRITE in predicting both the occurrence and type of the
future events. To this end, we used the following real-world benchmark datasets. (1) Retweets (Zhao
et al., 2015), 24, 000 retweet event sequences from twitter.com. The events were generated
by three types of users, “small" retweeters with less than 120 followers, “medium" retweeters
having the number of followers between 120 and 1, 363, and “large" retweeters with more than
1, 363 followers. The time of the first event in each sequence is labeled as 0, and the time of the
subsequent events are the time spans from the first event. (2) MIMIC (Du et al., 2016), clinical
visit sequences of 650 anonymous patients in a seven-year period. Each visit is considered as an
event, and the event type is the diagnosis result. We have in total 75 event types. (3) SO (Du
et al., 2016), 6, 633 awarding event sequences in the question and answer site Stack Overflow. The
users can be awarded based on both their questions and answers. There are 22 types of events,
corresponding to 22 awards, including “Nice Question”, “Good Answer”, “Guru”, “Great answer”,
etc. We downloaded the preprocessed datasets from https://drive.google.com/drive/
folders/0BwqmV0EcoUc8UklIR1BKV25YR1U. In addition, we tested the prediction accuracy
on (4) SIM — synthetic data of bi-type events in Sec. 6.1.

In addition to the methods mentioned in Sec. 6.1, we compared with two extra baselines: (1) Simple
Statistics (SSTA) that use the average span between consecutive events to predict the future event
time, and the most frequent event type to predict the future event type, and (2) a homogeneous
Poisson process (PP) that assumes the event rate is a time-invariant constant.

For Retweets, MIMIC and SO, we randomly split the dataset into 70% for training, 10% for validation,
20% for testing. We used each method to predict when the last event in a test sequence occurred
and what the type is. We calculated the root-mean-square-error (RMSE) of the time predictions, and
classification accuracy of the type predictions. We chose the dimension of embeddings as the 4th
root of the number of event types (the rule of thumb suggested by Google (TensorFlowTeam, 2017)).

9

https://drive.google.com/drive/folders/0BwqmV0EcoUc8UklIR1BKV25YR1U
https://drive.google.com/drive/folders/0BwqmV0EcoUc8UklIR1BKV25YR1U

We repeated the experiments for 5 times with the 5-fold cross validation splitting scheme, and report
the mean and standard deviation of RMSE and accuracy. For SIM, we randomly generated 10K
sequences for training, 1K for validation, and 2K for testing in each experiment. The results of all
the methods are shown in Fig. 2. As we can see, SPRITE outperforms all the competing approaches
in all the cases, except that in SIM, the prediction accuracy of event types is slightly worse than
NeuralHP. In many cases, SPRITE outperforms SHAP, RMTPP and/or NeuralHP by a large margin,
e.g., Fig. 2a, c, d, and f. The results show the advantage of SPRITE in predictive performance.

6.3 Pattern Discovery

Finally, we looked into the patterns discovered by our method. We first examined the learned influence
functions from Retweet dataset (see (5)). In Fig. 3, we show the initial strength (∆ = 0) and the curve
of the influence function for every pair of event types. We found interesting patterns. First, among
retweeting events are only excitation effects, and there are no inhibition effects. Second, “small”
users retweeting can hardly cause or excite “large” users to retweet (the same message); the initial
strength of “small→ large” is 0.7 (Fig. 3a). By contrast, “large” users’ retweeting can strongly incur
“small” users to retweet (the initial strength of “large→ small” is 18.8). This is reasonable, because
“large” users have a great many of followers, and most of these followers are “small” users. The result
is also consistent with the fact that “large” users, especially twitter celebrities, often act as hub nodes,
and play a key role in information or opinion dissemination. It is interesting to see, though, “large”
users have much less influence on other “large” users. Third, we can see across different pairs of
event types, the influence varies quite much (Fig. 3b), implying the need of flexible models for their
estimation. While approximating them as some exponential decays in standard HPs seems feasible, it
leads to much worse prediction accuracy as compared with SPRITE (see Fig. 2a and e).

Next, we examined if our method can discover hidden structures. To this end, we investigated the
learned event type embeddings from MIMIC dataset. We first performed Principled Component
Analysis (PCA) to project the embeddings onto a plane, and then ran the k-means algorithm to find
potential grouping structures. We used the elbow method (Ketchen and Shook, 1996) to determine
the cluster number. As we can see from Fig. 3c, the (projected) embeddings reflect a clear structure
within the event types. This is reasonable, because the event types are represented by the diagnosis
results of the medical visits and there can be strong associations within those diagnosis results. Note
that since the dataset is completely anonymized, we cannot verify the meaning of these clusters.
Furthermore, we investigate the (initial) influence strengths between the event types within the same
cluster and across different clusters. From Fig. 3d, we can see clear patterns. For examples, the types
of events in Cluster 4 mostly excite each other, but inhibit those of Cluster 0; the types of events in
Cluster 0 nearly inhibit those across all the clusters, including themselves. We also found interesting
structures of the embeddings and influence functions estimated from SO dataset. We leave the results
in the Appendix.

7 Conclusion

We have developed SPRITE, a self-adaptable point process that not only can explicitly estimate the
influence type and strength between every pair of events, but also is flexible enough to capture a
variety of influence time decays from data.

Acknowledgments

This work has been supported by NSF CAREER Award IIS-2046295 and NSF IIS-1619287.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving,
G., Isard, M., et al. (2016). Tensorflow: A system for large-scale machine learning. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pages
265–283.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

10

Blundell, C., Beck, J., and Heller, K. A. (2012). Modelling reciprocating relationships with hawkes
processes. In Advances in Neural Information Processing Systems, pages 2600–2608.

Daley, D. J. and Vere-Jones, D. (2007). An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media.

Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., and Song, L. (2016). Recurrent
marked temporal point processes: Embedding event history to vector. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1555–1564.

Du, N., Farajtabar, M., Ahmed, A., Smola, A. J., and Song, L. (2015). Dirichlet-hawkes processes
with applications to clustering continuous-time document streams. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 219–228.
ACM.

Hawkes, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes.
Biometrika, 58(1):83–90.

He, X., Rekatsinas, T., Foulds, J., Getoor, L., and Liu, Y. (2015). Hawkestopic: A joint model for
network inference and topic modeling from text-based cascades. In International conference on
machine learning, pages 871–880.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8):1735–
1780.

Ketchen, D. J. and Shook, C. L. (1996). The application of cluster analysis in strategic management
research: an analysis and critique. Strategic management journal, 17(6):441–458.

Lewis, P. W. and Shedler, G. S. (1979). Simulation of nonhomogeneous poisson processes by thinning.
Naval research logistics quarterly, 26(3):403–413.

Linderman, S. and Adams, R. (2014). Discovering latent network structure in point process data. In
International Conference on Machine Learning, pages 1413–1421.

Lloyd, C., Gunter, T., Osborne, M., and Roberts, S. (2015). Variational inference for gaussian
process modulated poisson processes. In International Conference on Machine Learning, pages
1814–1822. PMLR.

Mei, H. and Eisner, J. M. (2017). The neural hawkes process: A neurally self-modulating multivariate
point process. In Advances in Neural Information Processing Systems, pages 6754–6764.

Omi, T., Aihara, K., et al. (2019). Fully neural network based model for general temporal point
processes. In Advances in Neural Information Processing Systems, pages 2122–2132.

Pan, Z., Wang, Z., and Zhe, S. (2020). Scalable nonparametric factorization for high-order interaction
events. In International Conference on Artificial Intelligence and Statistics, pages 4325–4335.
PMLR.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT
Press.

Riihimäki, J. and Vehtari, A. (2010). Gaussian processes with monotonicity information. In
Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages
645–652.

Rubanova, Y., Chen, R. T. Q., and Duvenaud, D. K. (2019). Latent ordinary differential equations for
irregularly-sampled time series. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Schein, A., Linderman, S., Zhou, M., Blei, D., and Wallach, H. (2019). Poisson-randomized gamma
dynamical systems. In Advances in Neural Information Processing Systems, pages 782–793.

11

Schein, A., Paisley, J., Blei, D. M., and Wallach, H. (2015). Bayesian poisson tensor factorization for
inferring multilateral relations from sparse dyadic event counts. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1045–1054.
ACM.

Schein, A., Zhou, M., Blei, D. M., and Wallach, H. (2016). Bayesian poisson tucker decomposition
for learning the structure of international relations. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48, ICML’16, pages
2810–2819. JMLR.org.

Shchur, O., Bilovs, M., and Günnemann, S. (2019). Intensity-free learning of temporal point processes.
In International Conference on Learning Representations.

Tan, X., Naqvi, S. A., Qi, A. Y., Heller, K. A., and Rao, V. (2016). Content-based modeling of
reciprocal relationships using hawkes and gaussian processes. In UAI.

TensorFlowTeam (2017). Introducing tensorflow feature columns.
https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and
Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 30, pages 5998–6008. Curran Associates, Inc.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational
inference. Now Publishers Inc.

Wang, Y., Ye, X., Zha, H., and Song, L. (2017). Predicting user activity level in point processes
with mass transport equation. In Advances in Neural Information Processing Systems, pages
1644–1654.

Wang, Z., Chu, X., and Zhe, S. (2020). Self-modulating nonparametric event-tensor factorization. In
International Conference on Machine Learning, pages 9857–9867. PMLR.

Xu, H., Farajtabar, M., and Zha, H. (2016). Learning granger causality for hawkes processes. In
International Conference on Machine Learning, pages 1717–1726.

Xu, H., Luo, D., Chen, X., and Carin, L. (2018). Benefits from superposed hawkes processes. In
International Conference on Artificial Intelligence and Statistics, pages 623–631. PMLR.

Xu, H., Luo, D., and Zha, H. (2017). Learning hawkes processes from short doubly-censored event
sequences. In International Conference on Machine Learning, pages 3831–3840.

Xu, H. and Zha, H. (2017). A dirichlet mixture model of hawkes processes for event sequence
clustering. In Advances in Neural Information Processing Systems, pages 1354–1363.

Yang, J., Rao, V. A., and Neville, J. (2017a). Decoupling homophily and reciprocity with latent space
network models. In UAI.

Yang, Y., Etesami, J., He, N., and Kiyavash, N. (2017b). Online learning for multivariate hawkes
processes. In Advances in Neural Information Processing Systems, pages 4937–4946.

Zhang, Q., Lipani, A., Kirnap, O., and Yilmaz, E. (2020a). Self-attentive hawkes process. In
International Conference on Machine Learning, pages 11183–11193. PMLR.

Zhang, R., Walder, C., and Rizoiu, M.-A. (2020b). Variational inference for sparse gaussian process
modulated hawkes process. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 6803–6810.

Zhao, Q., Erdogdu, M. A., He, H. Y., Rajaraman, A., and Leskovec, J. (2015). Seismic: A self-
exciting point process model for predicting tweet popularity. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1513–1522.
ACM.

12

Zhe, S. and Du, Y. (2018). Stochastic nonparametric event-tensor decomposition. In Proceedings of
the 32nd International Conference on Neural Information Processing Systems, pages 6857–6867.

Zhou, F., Li, Z., Fan, X., Wang, Y., Sowmya, A., and Chen, F. (2020). Efficient inference for
nonparametric hawkes processes using auxiliary latent variables. Journal of Machine Learning
Research, 21(241):1–31.

Zhou, F., Zhang, Y., and Zhu, J. (2021). Efficient inference of flexible interaction in spiking-neuron
networks. In Proceedings of the International Conference on Learning Representations (ICLR).

Zhou, K., Zha, H., and Song, L. (2013). Learning triggering kernels for multi-dimensional hawkes
processes. In International Conference on Machine Learning, pages 1301–1309.

Zuo, S., Jiang, H., Li, Z., Zhao, T., and Zha, H. (2020). Transformer hawkes process. In International
Conference on Machine Learning, pages 11692–11702. PMLR.

13

	Introduction
	Background
	Model
	Algorithm
	GP Weight-Space Augmentation with Neural Network Feature Mapping
	Stochastic Variational Learning
	Algorithm Complexity

	Related Work
	Experiment
	Synthetic Data
	Predictive Performance
	Pattern Discovery

	Conclusion

