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Abstract—In many applications, a parsimonious model is often
preferred for better interpretability and predictive performance.
Online algorithms have been studied extensively for building
such models in big data and fast evolving environments, with
a prominent example, FTRL-proximal [1]. However, existing
methods typically do not provide confidence levels, and with
the usage of L; regularization, the model estimation can be
undermined by the uniform shrinkage on both relevant and
irrelevant features.

To address these issues, we developed OLSS, a Bayesian
online sparse learning algorithm based on the spike-and-slab
prior. OLSS achieves the same scalability as FTRL-proximal,
but realizes appealing selective shrinkage and produces rich
uncertainty information, such as posterior inclusion probabilities
and feature weight variances. On the tasks of text classification
and click-through-rate (CTR) prediction for Yahoo!’s display
and search advertisement platforms, OLSS often demonstrates
superior predictive performance to the state-of-the-art methods
in industry, including Vowpal Wabbit [2] and FTRL-proximal.
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I. INTRODUCTION

Many applications involve data with massive variables or
features, such as web text classification, microarray analysis,
click-through-rate (CTR) and conversion-rate (CVR) prediction
for web advertising. In these applications, we often need to
select a (small) subset of valuable features, and use them to
build models for prediction. Doing so has several important
reasons. First, too many features can result in complicated
models; to avoid overfitting, we have to collect a huge amount
of data and occupy many computing resources for training. This
is time consuming and computationally expensive, especially
when many online systems are required to update the models
in a short time window, say, a few minutes or hours. Second,
with all the features, the learned models can be ponderous and
inconvenient for real-time usage. For instance, to conduct real-
time bidding, a typical online advertising system is required
to perform each CTR prediction within 10-100 milliseconds;
hence, the CTR model must be parsimonious. Third, in feature
engineering, we need to identify/evaluate relevant features,
based on which we can explore or design new valuable features,
to iteratively improve the models and systems.

To perform feature selection, popular approaches use sparse
learning with L, regularization [3], where each feature weight
is assigned an L; penalty and the weights for the irrelevant
features are shrunk to O during training. L;-type methods
not only possess theoretical guarantees such as estimation

optimality and oracle properties [3[], [4], but also enjoy
computational convenience — the training of many models
with L; regularizations (e.g., linear/logistic regression) is a
convex optimization problem.

In practical applications, however, both the sample size
and feature number can be very large, making traditional
batch optimization algorithms infeasible. To address this issue,
McMabhan [1]] has recently developed Follow-The-Regularized-
Leader (FTRL) proximal, an online algorithm with mixed L,
and Lo regularizations, namely, the elastic net [4]]. With a single
machine, FTRL-proximal can quickly process enormous sam-
ples, prune massive useless features, and learn the prediction
model simultaneously. FTRL-proximal has become the state-
of-the-art and been applied to CTR prediction for Google’s
online advertising system [5].

Despite the great success, FTRL-proximal, and many L;-type
methods suffer several disadvantages. First, the L, regulariza-
tion essentially implements uniform shrinkage. That is, no
matter whether a feature is relevant or not, the corresponding
feature weight has to endure a shrinkage effect of the L,
penalty. This is not ideal, because the selected features’ weights
should be fully estimated from data, rather than also be
shrunk by a strong penalty. Although some L; methods, e.g.,
adaptive lasso [6], adopt different regularization strengths
over the feature weights, those strengths are determined at
the beginning and rarely close to zero. In the estimation,
all the features weights are still jointly shrunk. Second,
L;-type methods typically provide point estimates — there
lacks confidence information, such as selection uncertainty
and weight variances. These information are important for
feature evaluation, subsequent decision making, ranking and
system debugging. For example, to obtain the CTR prediction
confidence for optimal ads choice and displaying, McMahan
et al. [5]] have to invent a heuristic “uncertainty score” based
on the learning rates of FTRL-proximal.

To address these issues, we propose OLSS, a Bayesian online
sparse learning algorithm based on the spike-and-slab prior. The
spike-and-slab prior fulfills appealing selective shrinkage [7].
That is, the selected features are separated from the unselected
ones by binary indicator variables; while the weights of the
unselected features are strongly shrunk toward zero via the
spike prior, the weights of the selected features are just mildly
regularized via the slab prior (equivalent to Lo regularizations
in MAP estimation) and hence can be well estimated from data.
Then in the training, we jointly learn the indicator variables



and feature weights. Furthermore, as a principled Bayesian
approach, our algorithm seamlessly quantifies the uncertainty,
including posterior inclusion probabilities, posterior means and
variances of the feature weights. Hence, to obtain confidence
levels, we do not need any heuristics or post processing, which
can vary for different applications.

Although Bayesian spike-and-slab prior is ideal for sparse
learning, it has a severe computational bottleneck in model
estimation, which hinders it from large-scale applications. To
overcome this problem, our algorithm, OLSS, exploits the
recent stochastic Expectation Propagation (SEP) framework [_]]
and develops an efficient, online approximate learning approach.
OLSS not only achieves the same scalability as FTRL-proximal,
i.e., to both large sample size and high dimensional features,
but also fulfills the more favorable selective shrinkage and
uncertainty quantification. Specifically, we first design a flexible,
per-feature factorized approximation form to efficiently handle
high dimensional features (e.g., the sparse categorical features),
and to well preserve the selective shrinkage effect of the
original prior. Second, we enhance the standard SEP, by
estimating multiple approximate average-likelihoods. Each
average-likelihood naturally summarizes the information from
one type of samples. In this way, data distributions in different
regions can be more accurately captured, at a negligible extra
cost. In addition, it allows us to assign distinct sample weights
for different types, say, positive and negative samples. Finally,
OLSS sequentially processes data samples and updates the
posteriors of the feature weights and selection indicators in
real time; we can read out the posteriors and make predictions
at any moment.

We examined OLSS in two applications, CTR prediction
for online advertising and text classification. On data with
millions of samples and features, OLSS can greatly reduce the
feature number, say, to a few hundreds. On average, OLSS
obtains a superior predictive performance to the state-of-the-
art alternatives in industry, including Vowpal Wabbit [2] and
FTRL-proximal [1]]. In particular, we observed more evident
improvement over FTRL-proximal when less features are
selected — i.e., when stronger L; penalties are employed
in FTRL-proximal. For example, when around 1,000 features
are selected, OLSS on average reduces the AUC error of
FTRL-proximal by 9% and 41% for the two applications. This
demonstrates the advantage of the selective shrinkage by OLSS.
Finally, we analyzed the uncertainty information produced by
OLSS for online advertising. We found interesting results, part
of which agree with commonly used feature engineering tricks.

II. BAYESIAN SPIKE-AND-SLAB MODELS

First, let us introduce Bayesian sparse learning models
with spike-and-slab priors. In this paper, we focus on the
binary linear classification task, as in FTRL-proximal; it
is straightforward to extend our approach to other prob-
lems, such as regression. Suppose we have a dataset D =
{(x1,¥1)s---,(xXn,yn)}, where each x,, is a d-dimensional
input feature vector and y,, is the response: y,, € {+1,—1}.
We aim to select a subset of relevant features from the input

X = [x1,...,%,]", and use them to predict the responses
t = [t1,...,t,] . To this end, we introduce a d x 1 weight
vector w, where each entry w; is the classification weight
for feature j. Given each (z,,vy,), we assume a Probit
regression likelihood, which is widely used in Bayesian binary

classification,

(D

where ®(-) is the cumulative density function (CDF) of the
standard Gaussian distribution, i.e., ®(t) = ffooj\/(:r|0, 1)dz.
To enable feature selection, we assign a spike-and-slab prior
distribution over each feature weight w;. Specifically, we first
introduce a binary selection indicator s; € {0,1}, sampled
from the prior distribution

P(Yn|Xn, W) = (I)(anTXn)

p(s;) = Bern(s;lpo) = p’ (1 = po)' . @)
Given s;, we then sample w; from
p(wjls;) = s;N (w;]0,70) + (1 = 5;)0(w;) — (3)

where d(-) is a Dirac-delta function. Here, the selection
indicator s; determines the type of prior distribution over wj: if
s; is 1, meaning feature j is selected, the weight w; is assigned
a flat Gaussian prior with variance 7y (slab component); if
otherwise s; is 0, namely feature j is irrelevant, the weight w;
is assigned a spike prior concentrating on O (spike component).
The joint probability of our model is given by

p(Dv w, S|P0» TO)

|
=

Bern(s;|po) (s;MV (w;]0,70) + (1 — 55)8(w;))

=1

N
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=1

n
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Note that, using spike-and-slab priors yields a selective
shrinkage effect [7[]: the binary selection indicators s =
[s1,.-.,84] (see and (3)) actually separate the selected
features from the unselected ones. The classification weights
for the unselected features are directly shrunk to 0 and pruned
by the spike component, i.e., the Dirac-delta prior 6(-). The
weights for the selected features are only mildly regularized
via the slab component, i.e., the flat Gaussian prior N'(-|0, 79)
(corresponding to Lo regularization in MAP framework);
thereby, these weights can be well estimated from the observed
data, not being hurt by any strong shrinkage effect.

As a comparison, let us recall the classical L; regularization
approach: we impose an L; regularization, or penalty, over
each feature weight, and estimate the classification weights w
via minimizing a cost function similar to the following form:

N d
Clw, D)= L(w.Xnya) +AD_ fwjl, ()

n=1

where  L(w,x,,y,) is the loss function, e.g,
—1log (p(yn|xn,w)) in (0), and X is the regularization
strength. Note that some variants, e.g., adaptive lasso [6], may
assign a different A for each w;. Anyway, the L, regularizer



A| - | enforces a strong shrinkage, and encourages every feature
weight w; to be 0 — this is a uniform shrinkage effect.
Although the weights for the irrelevant features are thereby
shrunk to 0 and pruned, in the mean time the weights for the
selected features are shrunk (to certain degrees) as well. This
is actually harmful for model estimation, because the selected
features’ weights should be fully learned from data, rather
than be strongly shrunk. Hence, the selective shrinkage of the
spike-and-slab prior is more favorable, and our experimental
results (Section [V) have confirmed this point.

III. ONLINE LEARNING ALGORITHM

Given the observed data D, the learning of our model
amounts to computing the posterior distributions of the binary
selection variables s and the classification weights w, i.e.,
p(s|D, 10, po) and p(w|D, 79, po). This is also referred to
as posterior inference. The posterior distributions not only
provide the point estimates of the feature weights (i.e., the
posterior means), but also contain the valuable uncertainty
information, such as the posterior inclusion probabilities and
weight variances, which benefit feature analysis and can be
further leveraged in feature engineering.

However, the posterior inference for Bayesian spike-and-slab
models is tricky. According to Bayes’ rule, the exact computa-
tion of p(s|D, 79, po) and p(w|D, 79, po) requires the marginal
probability p(D|po,70) = Y., | (D, w,s|po,70)dw. Since
each s; in s is binary, the summation is over 24 terms, and
hence is infeasible for large d, i.e., high dimensional problems.
Although standard approximate inference techniques can avoid
the headache summation, they are still far from practical for
large-scale applications, where both the samples and features
are massive, say, millions or even billions. The Markov-Chain
Monte-Carlo sampling is known to converge very slowly for
high dimensional problems. Standard variational Bayes [9]]
and Expectation Propagation [[10], though fast, perform batch
inference, and need to store all the data in memory; hence
they are infeasible when the data volume exceeds the memory
limit.

To enable Bayesian spike-and-slab models in real-world,
large-scale applications, like FTRL-proximal for L;-type
methods, we developed OLSS, an online posterior inference
algorithm, by exploiting the recent stochastic Expectation
Propagation (SEP) framework [8].

A. Stochastic Expectation Propagation

First, let us introduce the SEP framework [8]]. To this end,
we start with the classical Expectation Propagation (EP) [10].
Consider a general probabilistic model parameterized by 6.
Given the data D = {z1,...,zx}, the joint probability is

p(e, D) = pO(e) an(zn|0)v

where pg(0) is the prior distribution. To obtain the exact
posterior p(8|D), we have to calculate the marginal distribution
p(D), which is usually intractable. To address this issue, EP
approximates p(@, D) with a distribution from the easy yet
flexible exponential family [11], ¢(8, D) x exp(t(8) T A(D))

where t(0) are the sufficient statistics and A(D) the natural
parameters. Note that many commonly used distributions
belong to the exponential family, including Gaussian, Bernoulli,
Gamma, etc. The motivation is that after we use an exponential
family distribution ¢(@, D) to replace the original model, the
calculation of posterior distribution, ¢(8|D), becomes trivial
and analytical. Hence the task is to find a best approximation
q(8,D). To do so, EP uses a fixed point iteration method
to minimize an objective, EP energy function [[10]], which
measures the similarity between p(6, D) and ¢(0, D).
Specifically, EP first introduces an exponential-family term
fn(0) to approximate each likelihood p(z,,|@), and f,(0) to
the prior po(@). Then we have ¢(6,D) x fo(0)][], fn(6).
Because the exponential family are close under multiplica-
tions/divisions, ¢(6, D) is guaranteed to be in this family. To
optimize ¢(@,D), EP cyclically refines each approximation
term f; with four steps:
Step 1. calculating the calibrating distribution, ¢\'(@) o
4(6.D)/1.(6),
constructing a
"' (0)p(20),
projecting ¢, back into the exponential family, ¢*(0)
proj(t;(0)), via moment matching,
Step 4. updating the term f;: f2°%(8) o< ¢*(8)/q\* ().
At convergence, EP reaches a fixed point that corresponds to
a stationary point of the energy function [10]. EP can be
considered as a generalized belief propagation algorithm [10].
EP often works well in practice. However, since it maintains
an approximate likelihood term f,, (@) for every sample n,
it may fail when the samples are too many to be stored in
memory. To make EP scalable to large data, SEP instead uses
only one average-likelihood term, f,(8), to summarize all the
data likelihoods. Specifically, SEP defines the approximate
distribution as

Step 2. tilted distribution ¢;(0)

Step 3.

q(@,D) X fO(e)fa(o)N (6)

By only maintaining f,(€) and f,(€), SEP greatly reduces
the memory usage. SEP further uses an online mechanism to
update f,(0). Specifically, given sample n, we calculate the
calibrating distribution by ¢\"(8) o ¢(8,D)/f.(6) (Step 1),
and follow the remaining steps as in the original EP to obtain
an approximate likelihood, f,,(0) (Step 2-4); we then integrate
fn(0) into the update of f,(@), by taking the (geometric)
average over the approximate data likelihoods, where the
approximation for sample n is f,,(0) and for all the other

samples f,(6),
Fa(0)™ = (£u(0) ful0)N 1) )

Since the approximation terms are in the exponential family,
we can express the update in terms of their natural parameters:

1

1
A =(1-=)A+ = 8

where A, and \,, belong to f,(0) and f,,(0), respectively. We
can see that the natural parameters of f, are updated by a
weighted combination of the old values and the new version



from the current sample. This is a typical stochastic update,
as in stochastic gradient descent. Furthermore, we can use
a mini-batch of samples {z,,,..., 2%y, } to achieve a larger
move,

new __ i M _ %
ALY = szzl Ao, + (1= 75)Aa- 9)

Note that while using stochastic updates, SEP essentially
performs fixed point iterations as well, and converges to
a stationary point of an EP energy function variant that
measures the similarity between the approximate and the true
distributions; under certain conditions, SEP converges to the
same fixed points as EP in the large data limit [§].

B. Online Learning for Bayesian Spike-and-slab Models

Now, we present OLSS, our online learning algorithm for
the Bayesian spike-and-slab model defined in (@), based on
the SEP framework.

1) Per-Feature Factorized Approximation: In practical appli-
cations, although each feature vector x,, can be extremely
high dimensional, they are usually very sparse, i.e., most
of the elements are zero. This is mainly due to the sparse
categorical features, such as the product brand and the word
dictionary. They often posses a large cardinality and we have
to use a sparse, long feature vector representation. For instance,
suppose there are 1K brands; then we need to incorporate 1K
binary features — each feature represents whether the sample
pertains to one particular brand or not. Since each sample
may associate with just one brand, the 1K x 1 feature vector
will only contain one nonzero element. Therefore, to avoid
unnecessary computation regarding zero-valued features, we
first rewrite the data likelihood as p(yy,|x,, W) = ‘I)(anITn Xn)
where I,, are the indices of nonzero features in x,, and X,
the nonzero sub feature vector. Now the joint probability has
a slightly changed, but totally equivalent form,

(D w, s|po, To)
= H Bern( 57|p0)(s N (w;)0,70) + (1 — S,j)é(wj))

: anl (I)(ynwl-l;in)

To enable efficient inference, we approximate the joint
probability in (I0) with an exponential family distribution
q(s,w). To do so, we first approximate the binary summation
term inside the prior distribution by the production of two
exponential family terms:

5N (w;|0,79) + (1 — s55)0(w;)
~ t1;Bern(s;|0(p;)) N (wjp, v15)

(10)

(1)

where o(z) = 1/(1 4+ e™%), t1; is the scale factor, and
{pj,p;,v1;} are the parameters of the approximation terms
that need to be estimated in our algorithm. Note that we do
not need to compute the scale factor ¢;;, because when using
q(s,w) to calculate the approximate posteriors, all the scale
factors are cancelled. We incorporate the logistic function o (-)
into our parameterization to improve the numerical stability.

The benefit of the approximation in (TI)) is twofold: first, it
decouples the selection variable s; and the feature weight w;
in the joint probability, and hence enables an efficient online
approximate inference, as we will present; second, it is flexible
to represent the selective shrinkage effect of the original prior.
For example, positive p; (i.e., o(p;) > 0.5) and relatively big
vy, can represent that the feature j is more likely to be selected
and the weight is sampled from a flat Gaussian; negative p;
(i.e., o(p;) < 0.5) and {p1;,v1;} close to O represent that
feature j is less likely to be selected and the weight is strongly
shrunk toward 0.

Next, to approximate the data likelihood, we introduce two
types of average-likelihood terms, f,(wy) and f, (w;) where I
are the indices of the nonzero features, for the positive and neg-
ative samples respectively: f.F(wy) = Hjel./\/(wjm;},v;j),
and f, (wi) = [[;c; N (w;lug;,vq;). We then use

P (ynwy, %n) & o f (w100 £ (wr, ) 10770 (12)

where t,, is the scale factor, 1(-) is the indicator function,
and {u3;,v5;, 4y, va;} are the parameters of the Gaussian
approximation terms. Again we do not need to calculate the
scale factor ¢,

Combining (T1I)) and (I2), we obtain the following approxi-
mate distribution for the model @I),

q(s,w) x H
. + 1 y”:1) - 1(y'n:71)
anl fa (wr,) fo (wr,) :

By arranging the terms, we further obtain

s, w) o T

+ —
N(wﬂ/v‘z]v”;]) N(U)JWQJ?UQ])

Bern(s;|po)Bern(s;|o(p;)) N (w;|p1, v1;)

(13)

Bern(s; po)Bern(s;lo (o)) (wy |, 1)
(14)

where nj and n; are the counts of feature j being nonzero
in positive and negative samples, respectively. Now it becomes
clear that ¢(s,w) is factorized over features. Given all the
parameters, {p;, (15, V15, u;j, v;j, Haojs Vaj }js We can immedi-
ately obtain the (approximate) posteriors for each feature j, by
marginalizing ¢(s, w) in (T4), which is trivial:

p(w;|D, po, 7o) = q(w;) = N(w;|uf,v)), (15)
(541D, po, T0) = q(s;) = Bern(sg'lpj ) (16)

where pP = o(p; + 0~} (po), v = 1/(1/vyy +n* sy +
n™Jug;) and P = wP (s for, 0t ey oy g o).

Note that unlike the standard SEP using only one average-
likelihood for all the samples, we consider different sample
types: for each type, we use a different average-likelihood.
There are two advantages: first, the data summarization can be
more accurate; in general we can cluster the data first, then
for each cluster we use an average-likelihood, to better capture
the shape of the entire data distribution. Second, we can vary
the weights for different classes of samples, via the settings
of {n;r }j and {n; };. This can be useful for applications with
imbalanced samples. Take CTR prediction as an example. The



number of clicked impressions (i.e., positive samples) is far less
than the non-clicks (negative samples). To save computation, we
can collect all the positive samples but subsample a comparable
number of negative samples; then for training, we intentionally
set large {n; }; to maintain the same positive/negative ratio in
the original data. This is equivalent to duplicate the negative
samples to simulate the original sample bias, but we do not
need explicit duplications.

2) Stochastic Updates: Now let us look at how
to estimate the approximation terms’  parameters,
{pj, 11, v1j, ,u;"j,v;rj, [aj: Ve, }j to make g(s,w) as close
as possible to p(D,w,s|po, 7). To handle big data, we
exploit the SEP framework to conduct online updates. We

sequentially process training samples, each time a mini-batch.

In the mini-batch, we simultaneously update the approximate
likelihood for each sample n — f7(wy ) if sample n is
positive and f,, (wy,) otherwise — following the steps in
Section From f (or f;7), we obtain the local update of
the Gaussian approximation term for each (nonzero) feature j

in sample n, i.e., {N(w;|uz;, v3;) or N'(w;lug;, va;)li € Tn}.

We collect all the local updates in the mini-batch, then
aggregate them to perform the global stochastic updates, as in

Specifically, denote B the current mini-batch, and
N (wj|psy",v35") the locally updated Gaussian term for each

nonzero feature j in sample n. Suppose sample n is positive.

The parameters are calculated by

n n0log z,
Moy = yj + vy —— (17)
Ops;
2 dlogz, 2 dlog zy,
UQ_] 7”;?*( ;;L) (( X ) -9 " ) (18)
8u2j szj
where
D +
n -1 —1y71 n n My Haj
vf = (@) =057 = (Op = ).
J J

( Yn ZZEIH U;Z Tni
\/1 + Zzel U;vn ?L'I

Note that MJ , j are approximate posterior mean and variance

=

of feature 7, calculated from (T3) based on the current g(s, w).

After collecting the local updates for all the positive samples
in B, we then perform the global updates of the Gaussian
approximation terms {A\ (wj|u§j, U;_j)}j according to (9, as
follows,

+ _ ot
e Ty 1

’U2j = nJr ’U+ + § U*nv (19)
j 2j  neByn=1,j€l, 2J
+_ ot *n
n; FL M
4 4B H2j 25
Uzj V25 (T o + o ) (20)
J 2j neB,y,=1,5€l, 23

where {u% ,112] *} are the updated parameters, n+B is the
nonzero count of feature j in B. Similarly, we perform the
global updates of the Gaussian terms for negative samples, i.e.,

{N (w;|pg;, v5;) }j- The updating equations are identical to the
above except that we switch + for — in the superscripts. After

Algorithm 1 OLSS(D, pg, 70, M, T, {nJ 15 1)

1: Random shuffle samples in D.

2: Initialize for each feature j: p; = 0, u1; = ,u;j = g =
0,v1; = v;'j =0, = 106.
3: repeat

4:  Collect a mini-batch of size M.

5. In the mini-batch, calculate the approximate likelihood
for each sample and obtain the local Gaussian approxi-
mation term for every present feature ((I7)(T8)).

6: Aggregate all the local updates in the min-batch
and perform the global updates of {3, vy, pia;,v3; }
(HE)).

7. if T mini-batches are processed then

8 Update {pj, pj, v1;}; using DE2E3).

9:  end if

10: until all samples in D are processed (or certain stopping
criterions are satisfied).

11: return {q(w;),q(s;)}; in (I3)(IE).

every a few mini-batches, we update the approximate prior
terms {Bern(s;|o(p;)), N (wj|p1;,v15)}; (see (II)). Since
there is only one prior distribution term, we can directly use
the standard moment matching as in EP:

P zlog(N( 107 +v\lj)) 1)
! N(p 1]|O,v\1j) ’

1y = o(p;) - fij, (22)
vi; = () (05 + (1= a(p;))ii5) (23)

where {p}, u7;,vi;} are the updated parameters, p; = pj +
o Y(po) and

D
\1j _ (¢, Dy—1 —1\—1 \1j _ \1j M5 Mg
Yy = ((v7) _U1j> My T =y (vD_vl-)’

7 J
\1j 1 M\Ij
’Ej: ((Uj J)_1+T()_1) 5 ﬂj:ﬁ]ﬁ
v

We alternatively update the Gaussian approximation terms
(M9 @0) and the prior approximation terms ZI)E2)23) until
all the samples have been processed (or some early stopping
conditions are satisfied). At convergence, the algorithm arrives
at a SEP energy function fixed point that minimizes the distance
between approximate and the true distributions [8]]. Finally,
we select all the features that have the posterior inclusion
probabilities bigger than 1, ie., {j|q(s; =1) > 1}. Then we
use the posterior means of the selected feature weights for
prediction. The algorithm is summarized in Algorithm 1. Since
at any time OLSS only stores and processes a mini-batch, the
time complexity is O(Nd), which is linear to the number of
samples and features, and the same as that of FTRL-proximal,;
the space complexity of OLSS is O(Md) (M is the mini-batch
size), and is identical to that of FTRL-proximal when M = 1.



IV. RELATED WORK

While proposed long time ago [12], [13]], the advantages
of the spike-and-slab prior are realized until recently. [7]]
demonstrated that the selective shrinkage of the spike-and-
slab prior is crucial to effective feature selection in terms of
risk misclassification. [14] showed improved performance of
Bayesian spike and slab methods over the L;-type methods in
unsupervised settings.

A key bottleneck that limits the applications of the spike-and-
slab models is the computational challenge for the posterior
inference (i.e., model estimation). To tackle this problem, quite
a few approximate inference algorithms have been developed.
For example, [[15] developed a majorization and minimization
approach to obtain the MAP estimation of the spike-and-slab
linear regression. [[16] proposed a fast Laplace approximation
approach using Nystrom method. [17], [18]] used the variational
inference framework to approximate the posteriors. Note that
the variational inference estimates the posteriors by maximizing
a variational model evidence lower bound, and is different from
EP — a message passing algorithm for belief propagation,
which essentially conducts fixed point iterations. Despite the
success of these methods, they are still insufficient for real-
world large-scale applications, where both samples and features
are massive. All the existing methods use batch inference
procedures. That is, they load the whole data into the memory;
to decide one gradient descent step or to finish one iteration,
they have to go through all the samples — this not only takes
huge memory, but also is computationally inefficient. To our
knowledge, there are no trivial modifications to address these
issues. This motives us to develop OLSS, an online spike-and-
slab approximate inference algorithm.

To obtain the uncertainty information for L; type methods,
one can employ equivalent Laplace priors over the feature
weights in a Bayesian framework. However, doing so cannot
prevent the uniform shrinkage effect in model estimation. One
might also consider using bootstrapping to obtain confidence
intervals. However, in large-scale applications, it might be too
expensive to repeatedly estimate parameters from many, many
large bootstrapping datasets.

In addition to the Laplace prior, other Bayesian sparse
priors include ARD/t-distributions [[19]], [20], normal-inverse-
Gaussian [21]], generalized double Pareto [22], horseshoe [23],
[24], etc. In spite of their success and elegant properties (such
as heavy tails and posterior consistency), the scalable posterior
inference on large-scale data remains an open and promising
research direction. The theoretical justifications of the spike-
and-slab prior are discussed in detail in [[7], [25], [26]; the
empirical comparison with other sparse priors, on small real
or synthetic data, can be found in [14], [16], [27], [28].

V. EXPERIMENT

Since our algorithm is developed to enable spike-and-slab
models in large-scale sparse learning tasks, we conducted
evaluations in two real-world large-scale applications, click-
through-rate (CTR) prediction for online advertising and
text classification. Note that in small-scale real datasets or

simulations, there have been many empirical validations of the
spike and slab models as compared with other sparse learning
approaches, including representative L; methods. Interested
readers are referred to [14]-[16], [28].

A. Click-Through-Rate Prediction

First, we performed three groups of evaluations based
on the click logs generated by two major online adver-
tisement platforms of Yahoo!, Gemini (https://gemini.yahoo.
com/advertiser/home) and BrightRoll. Note that Yahoo! was
acquired by Verizon and BrightRoll has been integrated into the
Oath platform (https://www.oath.com/advertising/platforms/).
Gemini is designed for showing ads in Yahoo! Search Engine
results; Bright-Roll is for displaying ads in large web site
portals, like Yahoo! News and Sports.

GROUP 1. In the first group of evaluation, we extracted four
days’ click logs of Gemini, from 05/01/2015 to 05/04/2015.
For training, we collected all the click impressions and
subsampled a comparable number of non-click impressions
in the log of 05/01/2015. Then we tested on the logs of the
remaining three days. We used all the click and non-click
impressions for testing. Note that training CTR prediction
models with comparable clicks and non-clicks is common
in online advertising systems [29]]. The number of features
is 1,074,917. The sizes of training and testing datasets are
9.7TM, 546.8M, 553.6 M, 878.7M.

GROUP 2. In the second group of evaluation, we collected
the training data from a 7 days’ click logs of BrightRoll,
between 07/15/2016 and 07/21/2016. We tested on the logs
in 07/22/2016, 07/23/2016 and 07/24/2016. The number of
features are 204, 327. For training, we collected all the click
impressions and subsampled a comparable number of non-
clicks; for testing data, we used all the click and non-click
impressions. The sizes of training and testing data are 1.8M,
133.7M, 116.0M and 110.2M.

GROUP 3. Real-world click data are extremely imbalanced:
the click actions are very rare. For example, in Gemini logs, the
clicks only take 0.6% of the total impressions. In the first and
second groups of evaluation, we used downsampling techniques
to obtain balanced training datasets so as to avoid the training
being dominated by large portion of nonclicks (i.e., negative
samples), and to reduce the computational cost. This trick has
been proven very useful and adopted by Yahoo! Ad science and
production team. However, to ensure that OLSS is also robust
to imbalanced cases, we performed a third evaluation using a
set of highly imbalanced impressions for training. Specifically,
from Gemini we randomly sampled a subset of click log in
05/01/2015 as the training dataset, which consists of 798, 152
samples; there are only 5,004 positive samples, i.e., clicks.
We then randomly sampled another subset of click log in
05/02/2015 for testing, which consists of 547,043 samples
with 3,688 clicks. The number of features are 617, 258.
Methods. We compared with two state-of-the-art methods
widely used in industry: online logistic regression in Vowpal
Wabbit (VW) [2], and FTRL-proximal (FTRLp) [1] which
performs sparse online logistic regression based on the L /Lo
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Fig. 1. The sparsity levels achieved by OLSS: number of selected features
v.s. setting of pp. Numbers on data points show the feature selection ratio.

regularization, i.e., elastic net. Note that the training of logistic
regression with elastic net is known to be convex, and has a
unique, global solution. Hence different algorithms will produce
the same results. We also compared OLSS with other algorithms
on small-scale datasets and obtained similar comparison results,
to what we will present as follows.

Parameter settings. While VW supports the L;/Ls
regularization as well, we found its implementation is
problematic, and cannot provide sparse estimations as
in FTRLp. Hence we turned off the L;/Lo options. We
adopted the default parameters, which turns out to performs
best. FTRLp has four parameters, a, 5, A1 and Ao, where
{a, 5} control the per-coordinate learning rate, and {\q,
Ao} are the strengths for L; and Lo regularizations. The
performance of FTRLp is very sensitive to the setting of
the four parameters. Therefore, we conducted the following
parameter selection procedure on the validation datasets. We
first fixed \y = Ay = 1.0 and then fine tuned «, 8 from
{0.005,0.0075,0.01,0.025, 0.05,0.075,0.1,0.25,0.5,0.75, 1}
x {0.005,0.0075,0.01,0.025,0.05,0.075,0.1,0.25,0.5,0.75,
1} to find the best parameters o*, 5*. Next we fixed A\; = 1.0,
a = a*, 8 = p* and tuned A\, from {0.1,0.5,1,2,3,4,5};
we then obtained the best parameter A3. Finally, we fixed
a = o, f = p* A = A5, varied the L; regularization
strength A; to change the sparsity level and examined the
predictive accuracy accordingly on the test datasets. For our
approach OLSS, we fixed the mini-batch size to 100 and set
T to 1 (see Algorithm [T). OLSS has two hyper-parameters: 7y
and po where 7, is the variance of the slab component and
po is the prior belief of the feature selection ratio. We fixed
po = 0.5 and used the same validation dataset to tune 7y from
{1,3,5,10,50,100, 1K, 5K}. Note that for OLSS we only
need to determine two hyper-parameters while for FTRLp
we need to tune four; therefore OLSS is more convenient
for practical usage. We then varied py to adjust the sparsity
level, under which we examined the predictive accuracy on
each test dataset. While we implemented OLSS with Python,
both VW and FTRLp are integrated in the Vowpal Wabbit
binary executable, which were implemented by C++ and
highly optimized. Note that Vowpal Wabbit package includes a
collection of commonly used machine learning algorithms. For
brevity, we simply refer its online logistic regression algorithm
to as VW. We ran all the methods on a single Linux server

with 32GB memory and Intel Xeon E5-2690 processors.

In the first group of evaluation, we randomly sampled 500K
impressions from Gemini 05/02/2015 log as the validation
dataset; in the second one, we randomly sampled 100K
impressions from BrightRoll 07/23/2016 log as the validation
dataset. For the third group of evaluation, we randomly split the
training data, where 118 K’ samples were used for validation; we
used the remaining 680K samples for training and selected the
best parameters according to their performance in the validation
dataset. Given the best parameters, we then ran FTRLp and
OLSS on the whole training datasets to obtain the models for
testing.

First, we examined how much sparsity OLSS can yield when
varying po. In Fig. [T} we show the number of features selected
under different pg, in the first and second groups of evaluation.
We can see that bigger pg encourages a larger number of
features to be selected; when we decreased pg, OLSS quickly
pruned massive features. Finally, the number of features can
be reduced to around 0.1% of the entire feature set.

Next, we tested the predictive accuracy of OLSS and FTRLp
under different sparsity levels. We report the Area Under
ROC Curve (AUC) for all the test datasets. This is the most
commonly used metric in the offline evaluation for CTR
prediction. The results are shown in Fig. 2} B] and . In
general, the prediction accuracy of OLSS and FTRLp gradually
decreased when selecting less and less features, except that
on the 05/04 test dataset in the first evaluation group (Fig.
[2k), OLSS and FTRLp obtained improvement when discarding
features; but later the prediction accuracy decreased after even
more features were dropped.

As we can see, in most cases, OLSS outperforms FTRLp at
all sparsity levels (except in a few cases of Fig. 2k, OLSS is
slightly worse). The improvement is particularly evident when
smaller numbers of features were selected — i.e., when FTRLp
employed stronger L; regularization strengths. Note that, due
to L, regularization’s uniform shrinkage, the weights of the
selected features have to bear strong penalties (as the unselected
features’ weights do); hence the model estimation of FTRLp
can be suboptimal and the predictive performance can be hurt,
especially when we employ stronger regularization strengths to
obtain more concise models. The improved prediction accuracy
of OLSS therefore demonstrates the advantages of the selective
shrinkage from the spike-and-slab prior.

Compared with VW, OLSS kept a superior predictive
performance until the feature number became too small.
However, the accuracy drop of OLSS is much less and gentler
than FTRLp. Furthermore, it is interesting to note that while
VW obtains excellent predictive performance by using all the
features, the advantage diminishes when it is tested on the
impressions longer afterwards. From Fig. 2l we can see that
VW’s prediction accuracy is close to OLSS preserving all the
features on 05/02 test impressions (Fig. [2p), but inferior on
05/03(2p) and more inferior on 05/04 (2k); similarly, in Fig.
the gap between VW and OLSS using all the features is farther
on 07/24 (Fig. [Bc) than on 07/21 (Bj). Therefore, compared
with VW, OLSS’s performance is less sensitive to the time



stamps of test impressions and hence more robust.

The average running time of OLSS are 122.7, 20.5 and 10.8
minutes on the three training datasets from GROUP 1 to 3.
VW and FTRLp used much less time (less than 10 minutes), as
expected, because they are implemented with highly optimized
C++ source code and have been complied to binary executables.
Our Python implementation is straightforward, and there are
much room for engineering improvement, such as feature
hashing, numerical acceleration, multi-threading, and C/C++
reimplementation.

B. Text Classification

In addition to CTR prediction, we examined OLSS in another
typical application, text classification. We used two public
datasets, News20 (http://qwone.com/ jason/20Newsgroups/) and
RCV1 [30]. News20 is collection of 19,996 news documents
originally categorized into 20 groups. We used a two-class
variant [31]], where the sizes of the positive and negative
samples are 9,999 and 9, 997, respectively. We randomly chose
10,000 samples for training and used the remaining ones
for testing; the number of features are 1,103,456, which is
much larger than the number of samples. RCV1 is an archive
of 804,414 Reuters newswire stories which were manually
categorized. We downloaded a preprocessed, binary version of
the data from http://hunch.net/~vw/rcvl.tar.gz. We randomly
chose 23, 149 stories for training and the remaining 781, 265
stories for testing. The number of features are 43,001.

As in the CTR prediction task, we examined the predictive
performance of OLSS and FTRLp at various sparsity levels.
In addition to AUC, we evaluated all the methods in terms of
F1 score, an important measurement in text classification [30].
We employed the same parameter selection procedure as in
Section [V-A} to construct the validation datasets, we randomly
split the training data and used 2,000 samples for News20 and
3,149 samples for RCV1.

As shown in Fig. Bp-d, OLSS outperforms FTRLp in terms
of both AUC and F1 score, especially when selecting less
features — this is consistent with the comparison results in
CTR prediction. We can also observe the trade-off between
the predictive accuracy and the sparsity degree: starting with
large numbers of features, both OLSS and FTRLp obtained
better or the same predictive accuracy of VW; when more
and more features were pruned, the performance degraded.
However, FTRLp’s performance dropped more steeply.

C. Feature Analysis

TABLE I
CTR FEATURE SET IN BRIGHTROLL DATASET

Type Examples
User age, gender, local_hour, local_day,. ..
AD line_id, publisher_id, ad_position_id.,. ..
Web page TLD (top level domain), subdomain, layout_id, ...
Combination TLD Xxline_id, ad_position_idxlayout_id, ...

Finally, we looked into the uncertainty information produced
by OLSS for feature analysis. We focused on the BrightRoll

dataset in Section and ran OLSS with pp = 1077, We
selected 504 out of 204,037 features. The whole feature set
are described in Table [l We investigated the posterior inclusion
probability and weight variance for each feature.

First, as shown in Fig. [, the posterior inclusion probabilities
are correlated to the posterior means of the feature weights:
features with posterior means close to 0 usually correspond to
tiny inclusion probabilities, meaning those features are very
unlikely to be selected; features with large (absolute) posterior
means often have big inclusion probabilities (say, close to 1),
meaning these features are selected and important. This is
consistent with L;-type methods which only perform weight
shrinkage. However, there are many cases between the two
extremes, e.g., the posterior weight means are around 0.2
but the posterior inclusion probabilities are between 0.4 and
0.6. It is interesting to know how and why the corresponding
features act in this way. Second, we noticed that the posterior
weight variance is directly correlated to the cardinality of the
feature group (See Fig. [5)). For example, TLD features of small
websites (e.g., TLD_soompi.com/ and TLD_smartsmania.it)
have much higher posterior weight variances than layout_id
or ad_position_id. The reason is that the whole TLD category
has much higher cardinality, and each specific TLD appears
much less frequently; the posterior variance is larger with less
observed data. This might explain why empirically account
managers choose low cardinality feature groups to set up
targeting attributes. Similarly, feature combination, i.e., the
cross features (see Table [I) can generate more fine-grained
features, and are often observed with higher (posterior mean)
weights; however, the (posterior) variances increase as well.
To mitigate this issue, we often instead use their real-valued
versions (e.g.,TLD_CTR and (TLDxline_id)_CTR), to reduce
the variances (See the variances of those features in Fig. [5).

VI. CONCLUSION

We have presented OLSS, an online Bayesian sparse learning
algorithm for large-scale, high dimensional feature selection
problems. OLSS exhibits an amazing selective shrinkage
effect and is able to quantify the uncertainty information.
OLSS has shown its effectiveness in CTR prediction and
text classification applications. While general linear models
(e.g., logistic regression) are popular in online applications,
such as web advertising and online recommendation, recent
research explore deep neural networks to automatically extract
more discriminative, nonlinear features (e.g., [32]-[34]). A
very successful approach is Wide & Deep model [35] — it
jointly learns a linear model (the wide component) and a neural
network (the deep component) to include both the manually
crafted and automatically extracted features for prediction. Like
FTRLp, our approach can be further used to contribute to the
wide component of this powerful and flexible model.
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