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Abstract
Tensor factorization is a powerful tool to analyse multi-way data. Recently pro-
posed nonlinear factorization methods, although capable of capturing complex
relationships, are computationally quite expensive and may suffer a severe learning
bias in case of extreme data sparsity. Therefore, we propose a distributed, flexible
nonlinear tensor factorization model, which avoids the expensive computations and
structural restrictions of the Kronecker-product in the existing TGP formulations,
allowing an arbitrary subset of tensorial entries to be selected for training. Mean-
while, we derive a tractable and tight variational evidence lower bound (ELBO) that
enables highly decoupled, parallel computations and high-quality inference. Based
on the new bound, we develop a distributed, key-value-free inference algorithm in
the MAPREDUCE framework, which can fully exploit the memory cache mecha-
nism in fast MAPREDUCE systems such as SPARK. Experiments demonstrate the
advantages of our method over several state-of-the-art approaches, in terms of both
predictive performance and computational efficiency.

1 Introduction
Tensors, or multidimensional arrays, are generalizations of matrices (from binary interactions) to
high-order interactions between multiple entities. For example, we can extract a three-mode tensor
(user, advertisement, context) from online advertising logs. To analyze tensor data, people usually
turn to factorization approaches, which use a set of latent factors to represent each entity and
model how the latent factors interact with each other to generate tensor elements. Classical tensor
factorization models, including Tucker [18] and CANDECOMP/PARAFAC (CP) [5], assume multi-
linear interactions and hence are unable to capture more complex, nonlinear relationships. Recently,
Xu et al. [19] proposed Infinite Tucker decomposition (InfTucker), which generalizes the Tucker
model to infinite feature space using a Tensor-variate Gaussian process (TGP) and is hence more
powerful in modeling intricate nonlinear interactions. However, InfTucker and its variants [22, 23]
are computationally expensive, because the Kronecker product between the covariances of all the
modes requires the TGP to model the entire tensor structure. In addition, they may suffer from
the extreme sparsity of real-world tensor data, i.e., when the proportion of the nonzero entries is
extremely low. As is often the case, most of the zero elements in real tensors are meaningless: they
simply indicate missing or unobserved entries. Incorporating all of them in the training process may
affect the factorization quality and lead to biased predictions.

To address these issues, we propose a distributed, flexible nonlinear tensor factorization model,
which has several important advantages. First, it can capture highly nonlinear interactions in the
tensor, and is flexible enough to incorporate arbitrary subset of (meaningful) tensor entries for the
training. This is achieved by placing a Gaussian process prior over tensor entries, where the input
is constructed by concatenating the latent factors from each mode and the intricate relationships
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are captured by using the kernel function. By using such a construction, the covariance function
is then free of the Kronecker-product structure, and as a result users can freely choose any subset
of tensor elements for the training process and incorporate prior domain knowledge. For example,
one can choose a combination of balanced zero and nonzero elements to overcome the learning bias.
Second, the tight variational evidence lower bound (ELBO) we derived using functional derivatives
and convex conjugates subsumes optimal variational posteriors, thus evades inefficient, sequential
E-M updates and enables highly efficient, parallel computations as well as improved inference quality.
Moreover, the new bound allows us to develop a distributed, gradient-based optimization algorithm.
Finally, we develop a simple yet very efficient procedure to avoid the data shuffling operation, a
major performance bottleneck in the (key-value) sorting procedure in MAPREDUCE. That is, rather
than sending out key-value pairs, each mapper simply calculates and sends a global gradient vector
without keys. This key-value-free procedure is general and can effectively prevent massive disk IOs
and fully exploit the memory cache mechanism in fast MAPREDUCE systems, such as SPARK.

Evaluation using small real-world tensor data have fully demonstrated the superior prediction accuracy
of our model in comparison with InfTucker and other state-of-the-art; on large tensors with millions
of nonzero elements, our approach is significantly better than, or at least as good as two popular
large-scale nonlinear factorization methods based on TGP: one uses hierarchical modeling to perform
distributed infinite Tucker decomposition [22]; the other further enhances InfTucker by using Dirichlet
process mixture prior over the latent factors and employs an online learning scheme [23]. Our method
also outperforms GigaTensor [8], a typical large-scale CP factorization algorithm, by a large margin.
In addition, our method achieves a faster training speed and enjoys almost linear speedup with respect
to the number of computational nodes. We apply our model to CTR prediction for online advertising
and achieves a significant, 20% improvement over the popular logistic regression and linear SVM
approaches (Section 4 of the supplementary material).

2 Background
We first introduce the background knowledge. For convenience, we will use the same notations
in [19]. Specifically, we denote a K-mode tensor by M ∈ Rd1×...×dK , where the k-th mode is
of dimension dk. The tensor entry at location i (i = (i1, . . . , iK)) is denoted by mi. To introduce
Tucker decomposition, we need to generalize matrix-matrix products to tensor-matrix products.
Specifically, a tensorW ∈ Rr1×...×rK can multiply with a matrix U ∈ Rs×t at mode k when its
dimension at mode-k is consistent with the number of columns in U, i.e., rk = t. The product is
a new tensor, with size r1 × . . . × rk−1 × s × rk+1 × . . . × rK . Each element is calculated by
(W ×k U)i1...ik−1jik+1...iK =

∑rk
ik=1 wi1...iKujik .

The Tucker decomposition model uses a latent factor matrix Uk ∈ Rdk×rk in each mode k and a
core tensorW ∈ Rr1×...×rK and assumes the whole tensorM is generated byM =W ×1 U(1) ×2

. . . ×K U(K). Note that this is a multilinear function ofW and {U1, . . . ,UK}. It can be further
simplified by restricting r1 = r2 = . . . = rK and the off-diagonal elements ofW to be 0. In this
case, the Tucker model becomes CANDECOMP/PARAFAC (CP).

The infinite Tucker decomposition (InfTucker) generalizes the Tucker model to infinite feature space
via a tensor-variate Gaussian process (TGP) [19]. Specifically, in a probabilistic framework, we
assign a standard normal prior over each element of the core tensorW , and then marginalize outW
to obtain the probability of the tensor given the latent factors:

p(M|U(1), . . . ,U(K)) = N (vec(M); 0,Σ(1) ⊗ . . .⊗ Σ(K)) (1)

where vec(M) is the vectorized whole tensor, Σ(k) = U(k)U(k)> and ⊗ is the Kronecker-product.
Next, we apply the kernel trick to model nonlinear interactions between the latent factors: Each
row uk

t of the latent factors U(k) is replaced by a nonlinear feature transformation φ(uk
t ) and thus

an equivalent nonlinear covariance matrix Σ(k) = k(U(k),U(k)) is used to replace U(k)U(k)>,
where k(·, ·) is the covariance function. After the nonlinear feature mapping, the original Tucker
decomposition is performed in an (unknown) infinite feature space. Further, since the covariance of
vec(M) is a function of the latent factors U = {U(1), . . . ,U(K)}, Equation (1) actually defines a
Gaussian process (GP) on tensors, namely tensor-variate GP (TGP) [19], where the input are based
on U . Finally, we can use different noisy models p(Y|M) to sample the observed tensor Y . For
example, we can use Gaussian models and Probit models for continuous and binary observations,
respectively.
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3 Model
Despite being able to capture nonlinear interactions, InfTucker may suffer from the extreme sparsity
issue in real-world tensor data sets. The reason is that its full covariance is a Kronecker-product
between the covariances over all the modes—{Σ(1), . . . ,Σ(K)} (see Equation (1)). Each Σ(k) is of
size dk × dk and the full covariance is of size

∏
k dk ×

∏
k dk. Thus TGP is projected onto the entire

tensor with respect to the latent factors U , including all zero and nonzero elements, rather than a
(meaningful) subset of them. However, the real-world tensor data are usually extremely sparse, with
a huge number of zero entries and a tiny portion of nonzero entries. On one hand, because most zero
entries are meaningless—they are either missing or unobserved, using them can adversely affect the
tensor factorization quality and lead to biased predictions; on the other hand, incorporating numerous
zero entries into GP models will result in large covariance matrices and high computational costs. Zhe
et al. [22, 23] proposed to improve the scalability by modeling subtensors instead, but the sampled
subtensors can still be very sparse. Even worse, because they are typically of small dimensions (for
efficiency considerations), it is often possible to encounter subtensors full of zeros. This may further
incur numerical instabilities in model estimation.

To address these issues, we propose a flexible Gaussian process tensor factorization model. While
inheriting the nonlinear modeling power, our model disposes of the Kronecker-product structure in
the full covariance and can therefore select an arbitrary subset of tensor entries for training.

Specifically, given a tensor M ∈ Rd1×...×dK , for each tensor entry mi (i = (i1, . . . , iK)), we
construct an input xi by concatenating the corresponding latent factors from all the modes: xi =

[u
(1)
i1
, . . . ,u

(K)
iK

], where u
(k)
ik

is the ik-th row in the latent factor matrix U(k) for mode k. We assume

that there is an underlying function f : R
∑K

j=1 dj → R such that mi = f(xi) = f([u
(1)
i1
, . . . ,u

(K)
iK

]).
This function is unknown and can be complex and nonlinear. To learn the function, we assign a
Gaussian process prior over f : for any set of tensor entries S = {i1, . . . , iN}, the function values
fS = {f(xi1), . . . , f(xiN )} are distributed according to a multivariate Gaussian distribution with
mean 0 and covariance determined by XS = {xi1 , . . . ,xiN }:

p(fS |U) = N (fS |0, k(XS ,XS))

where k(·, ·) is a (nonlinear) covariance function.

Because k(xi,xj) = k([u
(1)
i1
, . . . ,u

(K)
iK

], [u
(1)
j1
, . . . ,u

(K)
jK

]), there is no Kronecker-product structure
constraint and so any subset of tensor entries can be selected for training. To prevent the learning
process to be biased toward zero, we can use a set of entries with balanced zeros and nonzeros;
furthermore, useful domain knowledge can also be incorporated to select meaningful entries for
training. Note, however, that if we still use all the tensor entries and intensionally impose the
Kronecker-product structure in the full covariance, our model is reduced to InfTucker. Therefore,
from the modeling perspective, the proposed model is more general.

We further assign a standard normal prior over the latent factors U . Given the selected tensor entries
m = [mi1 , . . . ,miN ], the observed entries y = [yi1 , . . . , yiN ] are sampled from a noise model
p(y|m). In this paper, we deal with both continuous and binary observations. For continuous data,
we use the Gaussian model, p(y|m) = N (y|m, β−1I) and the joint probability is

p(y,m,U) =
∏K

t=1
N (vec(U(t))|0, I)N (m|0, k(XS ,XS))N (y|m, β−1I) (2)

where S = [i1, . . . , iN ]. For binary data, we use the Probit model in the following manner. We
first introduce augmented variables z = [z1, . . . , zN ] and then decompose the Probit model into
p(zj |mij ) = N (zj |mij , 1) and p(yij |zj) = 1(yij = 0)1(zj ≤ 0) + 1(yij = 1)1(zj > 0) where
1(·) is the indicator function. Then the joint probability is

p(y, z,m,U) =
∏K

t=1
N (vec(U(t))|0, I)N (m|0, k(XS ,XS))N (z|m, I)

·
∏

j
1(yij = 0)1(zj ≤ 0) + 1(yij = 1)1(zj > 0). (3)

4 Distributed Variational Inference
Real-world tensors often comprise a large number of entries, say, millions of non-zeros and billions
of zeros, making exact inference of the proposed model totally intractable. This motives us to develop
a distributed variational inference algorithm, presented as follows.
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4.1 Tractable Variational Evidence Lower Bound

Since the GP covariance term — k(XS ,XS) (see Equations (2) and (3)) intertwines all the la-
tent factors, exact inference in parallel is quite difficult. Therefore, we first derive a tractable
variational evidence lower bound (ELBO), following the sparse Gaussian process framework by
Titsias [17]. The key idea is to introduce a small set of inducing points B = {b1, . . . ,bp} and
latent targets v = {v1, . . . , vp} (p � N ). Then we augment the original model with a joint
multivariate Gaussian distribution of the latent tensor entries m and targets v, p(m,v|U ,B) =
N ([m,v]>|[0,0]>, [KSS ,KSB ; KBS ,KBB ]) where KSS = k(XS ,XS), KBB = k(B,B),
KSB = k(XS ,B) and KBS = k(B,XS). We use Jensen’s inequality and conditional Gaus-
sian distributions to construct the ELBO. Using a very similar derivation to [17], we can obtain a
tractable ELBO for our model on continuous data, log

(
p(y,U|B)

)
≥ L1

(
U ,B, q(v)

)
, where

L1

(
U ,B, q(v)

)
= log(p(U)) +

∫
q(v) log

p(v|B)

q(v)
dv +

∑
j

∫
q(v)Fv(yij , β)dv. (4)

Here p(v|B) = N (v|0,KBB), q(v) is the variational posterior for the latent targets v and
Fv(·j , ∗) =

∫
log
(
N (·j |mij , ∗)

)
N (mij |µj , σ

2
j )dmij , where µj = k(xij ,B)K−1

BBv and σ2
j =

Σ(j, j) = k(xij ,xij )− k(xij ,B)K−1
BBk(B,xij ). Note that L1 is decomposed into a summation of

terms involving individual tensor entries ij(1 ≤ j ≤ N). The additive form enables us to distribute
the computation across multiple computers.

For binary data, we introduce a variational posterior q(z) and make the mean-field assumption that
q(z) =

∏
j q(zj). Following a similar derivation to the continuous case, we can obtain a tractable

ELBO for binary data, log
(
p(y,U|B)

)
≥ L2

(
U ,B, q(v), q(z)

)
, where

L2

(
U ,B, q(v), q(z)

)
= log(p(U)) +

∫
q(v) log(

p(v|B)

q(v)
)dv +

∑
j
q(zj) log(

p(yij |zj)
q(zj)

)

+
∑

j

∫
q(v)

∫
q(zj)Fv(zj , 1)dzjdv. (5)

One can simply use the standard Expectation-maximization (EM) framework to optimize (4) and
(5) for model inference, i.e., the E step updates the variational posteriors {q(v), q(z)} and the M
step updates the latent factors U , the inducing points B and the kernel parameters. However, the
sequential E-M updates can not fully exploit the paralleling computing resources. Due to the strong
dependencies between the E step and the M step, the sequential E-M updates may take a large number
of iterations to converge. Things become worse for binary case: in the E step, the updates of q(v)
and q(z) are also dependent on each other, making a parallel inference even less efficient.

4.2 Tight and Parallelizable Variational Evidence Lower Bound

In this section, we further derive tight(er) ELBOs that subsume the optimal variational posteriors
for q(v) and q(z). Thereby we can avoid the sequential E-M updates to perform decoupled, highly
efficient parallel inference. Moreover, the inference quality is very likely to be improved using tighter
bounds. Due to the space limit, we only present key ideas and results here; detailed discussions are
given in Section 1 and 2 of the supplementary material.

Tight ELBO for continuous tensors. We take functional derivative of L1 with respect to q(v) in
(4). By setting the derivative to zero, we obtain the optimal q(v) (which is a Gaussian distribution)
and then substitute it into L1, manipulating the terms, we achieve the following tighter ELBO.
Theorem 4.1. For continuous data, we have

log
(
p(y,U|B)

)
≥ L∗1(U ,B) =

1

2
log |KBB | −

1

2
log |KBB + βA1| −

1

2
βa2 −

1

2
βa3

+
β

2
tr(K−1

BBA1)− 1

2

K∑
k=1

‖U(k)‖2F +
1

2
β2a>4 (KBB + βA1)−1a4 +

N

2
log(

β

2π
), (6)

where ‖ · ‖F is Frobenius norm, and

A1 =
∑

j
k(B,xij )k(xij ,B), a2 =

∑
j
y2
ij , a3 =

∑
j
k(xij ,xij ), a4 =

∑
j
k(B,xij )yij .
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Tight ELBO for binary tensors. The binary case is more difficult because q(v) and q(z) are
coupled together (see (5)). We use the following steps: we first fix q(z) and plug the optimal q(v) in
the same way as the continuous case. Then we obtain an intermediate ELBO L̂2 that only contains
q(z). However, a quadratic term in L̂2 , 1

2 (KBS〈z〉)>(KBB + A1)−1(KBS〈z〉), intertwines all
{q(zj)}j in L̂2, making it infeasible to analytically derive or parallelly compute the optimal {q(zj)}j .
To overcome this difficulty, we use the convex conjugate of the quadratic term, and introduce a
variational parameter λ to decouple the dependences between {q(zj)}j . After that, we are able to
derive the optimal {q(zj)}j using functional derivatives and to obtain the following tight ELBO.
Theorem 4.2. For binary data, we have

log
(
p(y,U|B)

)
≥ L∗2(U ,B,λ) =

1

2
log |KBB | −

1

2
log |KBB + A1| −

1

2
a3

+
∑
j

log
(
Φ((2yij − 1)λ>k(B,xij ))

)
− 1

2
λ>KBBλ +

1

2
tr(K−1

BBA1)− 1

2

K∑
k=1

‖U(k)‖2F (7)

where Φ(·) is the cumulative distribution function of the standard Gaussian.

As we can see, due to the additive forms of the terms in L∗1 and L∗2, such as A1, a2, a3 and a4, the
computation of the tight ELBOs and their gradients can be efficiently performed in parallel.

4.3 Distributed Inference on Tight Bound

4.3.1 Distributed Gradient-based Optimization

Given the tighter ELBOs in (6) and (7), we develop a distributed algorithm to optimize the latent
factors U , the inducing points B, the variational parameters λ (for binary data) and the kernel
parameters. We distribute the computations over multiple computational nodes (MAP step) and then
collect the results to calculate the ELBO and its gradient (REDUCE step). A standard routine, such as
gradient descent and L-BFGS, is then used to solve the optimization problem.

For binary data, we further find that λ can be updated with a simple fixed point iteration:

λ(t+1) = (KBB + A1)−1(A1λ
(t) + a5) (8)

where a5 =
∑

j k(B,xij )(2yij − 1)
N
(
k(B,xij

)>λ(t)|0,1
)

Φ
(

(2yij
−1)k(B,xij

)>λ(t)
) .

Apparently, the updating can be efficiently performed in parallel (due to the additive structure of A1

and a5). Moreover, the convergence is guaranteed by the following lemma. The proof is given in
Section 3 of the supplementary material.

Lemma 4.3. Given U and B, we have L∗2(U ,B,λt+1) ≥ L∗2(U ,B,λt) and the fixed point iteration
(8) always converges.

To use the fixed point iteration, before we calculate the gradients with respect to U and B, we
first optimize λ via (8) in an inner loop. In the outer control, we then employ gradient descent or
L-BFGS to optimize U and B. This will lead to an even tighter bound for our model: L∗∗2 (U ,B) =
maxλ L

∗
2(U ,B,λ) = maxq(v),q(z) L2(U ,B, q(v), q(z)). Empirically, this converges must faster

than feeding the optimization algorithms with ∂λ, ∂U and ∂B altogether, especially for large data.

4.3.2 Key-Value-Free MAPREDUCE

We now present the detailed design of MAPREDUCE procedures to fulfill our distributed inference.
Basically, we first allocate a set of tensor entries St on each MAPPER t such that the corresponding
components of the ELBO and the gradients are calculated; then the REDUCER aggregates local results
from each MAPPER to obtain the integrated, global ELBO and gradient.

We first consider the standard (key-value) design. For brevity, we take the gradient computation for
the latent factors as an example. For each tensor entry i on a MAPPER, we calculate the corresponding
gradients {∂u

(1)
i1
, . . . ∂u

(K)
iK
} and then send out the key-value pairs {(k, ik)→ ∂u

(k)
ik
}k, where the

key indicates the mode and the index of the latent factors. The REDUCER aggregates gradients with
the same key to recover the full gradient with respect to each latent factor.
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Although the (key-value) MAPREDUCE has been successfully applied in numerous applications, it
relies on an expensive data shuffling operation: the REDUCE step has to sort the MAPPERS’ output
by the keys before aggregation. Since the sorting is usually performed on disk due to significant data
size, intensive disk I/Os and network communications will become serious computational overheads.
To overcome this deficiency, we devise a key-value-free MAP-REDUCE scheme to avoid on-disk data
shuffling operations. Specifically, on each MAPPER, a complete gradient vector is maintained for all
the parameters, including U , B and the kernel parameters; however, only relevant components of the
gradient, as specified by the tensor entries allocated to this MAPPER, will be updated. After updates,
each MAPPER will then send out the full gradient vector, and the REDUCER will simply sum them up
together to obtain a global gradient vector without having to perform any extra data sorting. Note that
a similar procedure can also be used to perform the fixed point iteration for λ (in binary tensors).

Efficient MAPREDUCE systems, such as SPARK [21], can fully optimize the non-shuffling MAP
and REDUCE, where most of the data are buffered in memory and disk I/Os are circumvented to the
utmost; by contrast, the performance with data shuffling degrades severely [3]. This is verified in our
evaluations: on a small tensor of size 100× 100× 100, our key-value-free MAPREDUCE gains 30
times speed acceleration over the traditional key-value process. Therefore, our algorithm can fully
exploit the memory-cache mechanism to achieve fast inference.

4.4 Algorithm Complexity
Suppose we use N tensor entries for training, with p inducing points and T MAPPER, the time
complexity for each MAPPER node is O( 1

T p
2N). Since p� N is a fixed constant (p = 100 in our

experiments), the time complexity is linear in the number of tensor entries. The space complexity
for each MAPPER node is O(

∑K
j=1mjrj + p2 + N

T K), in order to store the latent factors, their
gradients, the covariance matrix on inducing points, and the indices of the latent factors for each
tensor entry. Again, the space complexity is linear in the number of tensor entries. In comparison,
InfTucker utilizes the Kronecker-product properties to calculate the gradients and has to perform
eigenvalue decomposition of the covariance matrices in each tensor mode. Therefor it has a higher
time and space complexity (see [19] for details) and is not scalable to large dimensions.

5 Related work
Classical tensor factorization models include Tucker [18] and CP [5], based on which there are many
excellent works [2, 16, 6, 20, 14, 7, 13, 8, 1]. Despite the wide-spread success, their underlying
multilinear factorization structures prevent them from capturing more complex, nonlinear relationship
in real-world applications. Infinite Tucker decomposition [19], and its distributed or online exten-
sions [22, 23] overcome this limitation by modeling tensors or subtensors via tensor-variate Gaussian
processes (TGP). However, these methods may suffer from the extreme sparsity in real-world tensors
due to the Kronecker-product structure in TGP formulations. Our model further address this issue by
eliminating the Kronecker-product restriction, and can model an arbitrary subset of tensor entries.
In theory, all such nonlinear factorization models belong to the family of random function prior
models [11] for exchangeable multidimensional arrays.

Our distributed variational inference algorithm is based on sparse GP [12], an efficient approximation
framework to scale up GP models. Sparse GP uses a small set of inducing points to break the
dependency between random function values. Recently, Titsias [17] proposed a variational learning
framework for sparse GP, based on which Gal et al. [4] derived a tight variational lower bound for
distributed inference of GP regression and GPLVM [10]. The derivation of the tight ELBO in our
model for continuous tensors is similar to [4]; however, the gradient calculation is substantially
different, because the input to our GP factorization model is the concatenation of the latent factors.
Many tensor entries may partly share the same latent factors, causing a large amount of key-value
pair to be sent during the distributed gradient calculation. This will incur an expensive data shuffling
procedure that takes place on disk. To improve the computational efficiency, we develop a non-
key-value MAP-REDUCE to avoid data shuffling and fully exploit the memory-cache mechanism
in efficient MAPREDUCE systems. This strategy is also applicable to other MAP-REDUCE based
learning algorithms. In addition to continuous data, we also develop a tight ELBO for binary data on
optimal variational posteriors. By introducing p extra variational parameters with convex conjugates
(p is the number of inducing points), our inference can be performed efficiently in a distributed
manner, which avoids explicit optimization on a large number of variational posteriors for the latent
tensor entries and inducing targets. Our method can also be useful for GP classification problem.
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6 Experiments
6.1 Evaluation on Small Tensor Data
For evaluation, we first compared our method with various existing tensor factorization methods.
To this end, we used four small real datasets where all methods are computationally feasible: (1)
Alog, a real-valued tensor of size 200× 100× 200, representing a three-way interaction (user, action,
resource) in a file access log. It contains 0.33% nonzero entries.(2) AdClick, a real-valued tensor
of size 80 × 100 × 100, describing (user, publisher, advertisement) clicks for online advertising.
It contains 2.39% nonzero entries. (3) Enron, a binary tensor depicting the three-way relationship
(sender, receiver, time) in emails. It contains 203× 203× 200 elements, of which 0.01% are nonzero.
(4) NellSmall, a binary tensor of size 295 × 170 × 94, depicting the knowledge predicates (entity,
relationship, entity). The data set contains 0.05% nonzero elements.

We compared with CP, nonnegative CP (NN-CP) [15], high order SVD (HOSVD) [9], Tucker, infinite
Tucker (InfTucker) [19] and its extension (InfTuckerEx) which uses the Dirichlet process mixture
(DPM) prior to model latent clusters and local TGP to perform scalable, online factorization [23].
Note that InfTucker and InfTuckerEx are nonlinear factorization approaches.

For testing, we used the same setting as in [23]. All the methods were evaluated via a 5-fold cross
validation. The nonzero entries were randomly split into 5 folds; 4 folds were used for training and
the remaining non-zero entries and 0.1% zero entries were used for testing so that the number of
non-zero entries is comparable to the number of zero entries. In doing so, zero and nonzero entries are
treated equally important in testing, and the evaluation will not be dominated by large portion of zeros.
For InfTucker and InfTuckerEx, we performed extra cross-validations to select the kernel form (e.g.,
RBF, ARD and Matern kernels) and the kernel parameters. For InfTuckerEx, we randomly sampled
subtensors and tuned the learning rate following [23]. For our model, the number of inducing points
was set to 100, and we used a balanced training set generated as follows: in addition to nonzero
entries, we randomly sampled the same number of zero entries and made sure that they would not
overlap with the testing zero elements.

Our model used ARD kernel and the kernel parameters were estimated jointly with the latent factors.
We implemented our distributed inference algorithm with two optimization frameworks, gradient
descent and L-BFGS (denoted by Ours-GD and Ours-LBFGS respectively). For a comprehensive
evaluation, we also examined CP on balanced training entries generated in the same way as our
model, denoted by CP-2. The mean squared error (MSE) is used to evaluate predictive performance
on Alog and Click and area-under-curve (AUC) on Enron and NellSmall. The averaged results from
the 5-fold cross validation are reported.

Our model achieves a higher prediction accuracy than InfTucker, and a better or comparable accuracy
than InfTuckerEx (see Figure 1). A t-test shows that our model outperforms InfTucker significantly
(p < 0.05) in almost all situations. Although InfTuckerEx uses the DPM prior to improve factoriza-
tion, our model still obtains significantly better predictions on Alog and AdClick and comparable or
better performance on Enron and NellSmall. This might be attributed to the flexibility of our model
in using balanced training entries to prevent the learning bias (toward numerous zeros). Similar
improvements can be observed from CP to CP-2. Finally, our model outperforms all the remaining
methods, demonstrating the advantage of our nonlinear factorization approach.

6.2 Scalability Analysis

To examine the scalability of the proposed distributed inference algorithm, we used the following
large real-world datasets: (1) ACC, A real-valued tensor describing three-way interactions (user,
action, resource) in a code repository management system [23]. The tensor is of size 3K × 150×
30K, where 0.009% are nonzero. (2) DBLP: a binary tensor depicting a three-way bibliography
relationship (author, conference, keyword) [23]. The tensor was extracted from DBLP database and
contains 10K × 200× 10K elements, where 0.001% are nonzero entries. (3) NELL: a binary tensor
representing the knowledge predicates, in the form of (entity, entity, relationship) [22]. The tensor
size is 20K × 12.3K × 280 and 0.0001% are nonzero.

The scalability of our distributed inference algorithm was examined with regard to the number of
machines on ACC dataset. The number of latent factors was set to 3. We ran our algorithm using
the gradient descent. The results are shown in Figure 2(a). The Y-axis shows the reciprocal of the
running time multiplied by a constant—which corresponds to the running speed. As we can see, the
speed of our algorithm scales up linearly to the number of machines.
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Figure 1: The prediction results on small datasets. The results are averaged over 5 runs.
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Figure 2: Prediction accuracy (averaged on 50 test datasets) on large tensor data and the scalability.

6.3 Evaluation on Large Tensor Data

We then compared our approach with three state-of-the-art large-scale tensor factorization methods:
GigaTensor [8], Distributed infinite Tucker decomposition (DinTucker) [22], and InfTuckerEx [23].
Both GigaTensor and DinTucker are developed on HADOOP, while InfTuckerEx uses online inference.
Our model was implemented on SPARK. We ran Gigatensor, DinTucker and our approach on a large
YARN cluster and InfTuckerEx on a single computer.

We set the number of latent factors to 3 for ACC and DBLP data set, and 5 for NELL data set.
Following the settings in [23, 22], we randomly chose 80% of nonzero entries for training, and then
sampled 50 test data sets from the remaining entries. For ACC and DBLP, each test data set comprises
200 nonzero elements and 1, 800 zero elements; for NELL, each test data set contains 200 nonzero
elements and 2, 000 zero elements. The running of GigaTensor was based on the default settings
of the software package. For DinTucker and InfTuckerEx, we randomly sampled subtensors for
distributed or online inference. The parameters, including the number and size of the subtensors and
the learning rate, were selected in the same way as [23]. The kernel form and parameters were chosen
by a cross-validation on the training tensor. For our model, we used the same setting as in the small
data. We set 50 MAPPERS for GigaTensor, DinTucker and our model.

Figure 2(b)-(d) shows the predictive performance of all the methods. We observe that our approach
consistently outperforms GigaTensor and DinTucker on all the three datasets; our approach outper-
forms InfTuckerEx on ACC and DBLP and is slightly worse than InfTuckerEx on NELL. Note again
that InfTuckerEx uses DPM prior to enhance the factorization while our model doesn’t; finally, all the
nonlinear factorization methods outperform GigaTensor, a distributed CP factorization algorithm by a
large margin, confirming the advantages of nonlinear factorizations on large data. In terms of speed,
our algorithm is much faster than GigaTensor and DinTucker. For example, on DBLP dataset, the
average per-iteration running time were 1.45, 15.4 and 20.5 minutes for our model, GigaTensor and
DinTucker, respectively. This is not surprising, because (1) our model uses the data sparsity and can
exclude numerous, meaningless zero elements from training; (2) our algorithm is based on SPARK,
a more efficient MAPREDUCE system than HADOOP; (3) our algorithm gets rid of data shuffling and
can fully exploit the memory-cache mechanism of SPARK.

7 Conclusion
In this paper, we have proposed a novel flexible GP tensor factorization model. In addition, we have
derived a tight ELBO for both continuous and binary problems, based on which we further developed
an efficient distributed variational inference algorithm in MAPREDUCE framework.
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