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Abstract

The key task of physical simulation is to solve par-
tial differential equations (PDEs) on discretized
domains, which is known to be costly. In particu-
lar, high-fidelity solutions are much more expen-
sive than low-fidelity ones. To reduce the cost,
we consider novel Gaussian process (GP) models
that leverage simulation examples of different fi-
delities to predict high-dimensional PDE solution
outputs. Existing GP methods are either not scal-
able to high-dimensional outputs or lack effective
strategies to integrate multi-fidelity examples. To
address these issues, we propose Multi-Fidelity
High-Order Gaussian Process (MFHoGP) that
can capture complex correlations both between
the outputs and between the fidelities to enhance
solution estimation, and scale to large numbers of
outputs. Based on a novel nonlinear coregionaliza-
tion model, MFHoGP propagates bases through-
out fidelities to fuse information, and places a
deep matrix GP prior over the basis weights to
capture the (nonlinear) relationships across the
fidelities. To improve inference efficiency and
quality, we use bases decomposition to largely
reduce the model parameters, and layer-wise ma-
trix Gaussian posteriors to capture the posterior
dependency and to simplify the computation. Our
stochastic variational learning algorithm success-
fully handles millions of outputs without extra
sparse approximations. We show the advantages
of our method in several typical applications.

1 Introduction

Physical simulation (Keane and Nair, 20035)) is critical for
many science and engineering problems such as climate
prediction and aircraft design. The core task of phys-
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ical simulation is to solve partial differential equations
(PDEs) for various physical models. Given the PDE param-
eters and initial/boundary conditions, traditional numerical
solvers (Peird and Sherwin, |2005)) place a grid over the prob-
lem domain to discretize the PDEs and convert solving them
into iteratively solving a linear system of equations. The
solution field is represented by the solved function values
at the grid points and hence are high-dimensional. Despite
the success of traditional methods, they are known to be
computationally costly (Santner et al.,|2003). Even worse,
any change of the PDE parameters or initial/boundary con-
ditions will require re-computation from scratch (Oakley|
and O’Hagan| [2002)). To reduce the cost, it is natural to
consider using examples generated by the numerical solvers
to train a machine learning model (Kennedy and O’Hagan|,
2000), with which, we can directly predict the solution field
(output) for new parameters and (parameterized) conditions
(i.e., input).

However, due to computational restrictions, the number of
simulation examples is usually limited, and can be much
smaller than the dimension of the solution output. Further-
more, collecting high-fidelity examples (with very accurate
solution fields) is even more expensive, because we have to
run the numerical solvers with very dense grids, which leads
to an explosion in computation cost (Keane and Nair},[2005).
In contrast, generating low-fidelity samples with coarser
grids is cheaper, but low-fidelity samples can be quite in-
accurate and biased. Hence, in practice we often can only
obtain mixed examples where most are low-fidelity and only
a few high-fidelity (Peherstorfer et al.l 2018). Training with
many low-fidelity examples can result in small variances
but large biases, while training with very few high-fidelity
samples can have small biases but much larger variances. To
improve the prediction accuracy, it is crucial to effectively
synergize and exploit the examples of all the fidelities.

To address this problem, we consider developing a novel
Gaussian process (GP) model. While many excellent multi-
output GPs can capture complex output correlations (Al4
varez et al.,|2012)), they are often not scalable to high dimen-
sional outputs and lack strategies to exploit multiple-fidelity
samples to further improve training. Although |Perdikaris
et al.| (2017) and |Cutajar et al. (2019) fulfilled multi-fidelity
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GP learning, they only estimate single output functions.
While we can extend their work outright to a deep GP (Dami{
anou and Lawrence, 2013) for multiple outputs, the outputs
are fed into the next layer as the input of another GP and
hence cannot be high-dimensional, say, hundreds of thou-
sands or millions. In addition, the outputs in each layer are
assumed to be independent given the inputs, so their strong
dependencies might not be fully captured.

We propose MFHoGP, a multi-fidelity high-order GP model,
which can capture the complex, strong correlations both be-
tween the fidelities and between the outputs to enhance func-
tion estimation, and efficiently scale up to large numbers of
outputs. Our major contributions are listed as follows.

* We first propose a nonlinear coregionalization model
for single-fidelity data. By introducing a matrix GP
prior over the basis weights in the linear model of
coregionalization (LMC) framework, our model is flex-
ible enough to capture various nonlinear output cor-
relations, while maintaining the scalability to high-
dimensional outputs and a compact structure (i.e.,
bases and weights) to enable efficient information prop-
agation and fusion across different fidelities.

* Based on the nonlinear coregionalization, we propose a
deep model to integrate multi-fidelity data. The model
propagates bases throughout the fidelities, and uses a
deep matrix GP prior to recursively sample the basis
weights in each layer, so as to absorb the information
from and capture the nonlinear relationship with the
previous fidelities to further enhance function learning.

* We develop two simple yet effective tricks to improve
inference efficiency and quality. First, we impose a
decomposition structure upon the bases to greatly re-
duce the model parameters to save the computational
cost and to avoid overfitting. Second, we propose a
matrix Gaussian distribution as the variational poste-
rior of the basis weights in each fidelity to capture their
posterior dependency. The intrinsic Kronecker product
structure further simplifies computation. We use the
reparameterization trick to develop a stochastic varia-
tional learning algorithm that can handle millions of
outputs without extra sparse approximations.

For evaluation, we first examined MFHoGP on small
datasets to predict tens of thousands of outputs which cor-
respond to solving classical Burgers’, Poisson’s and heat
equations in small spatial/temporal domains. We trained
MFHoGP with examples having one, two and three fidelities.
In most cases, MFHoGP outperforms the state-of-the-art
multi-output GP regression methods. The visualization of
individual output prediction errors shows MFHoGP also bet-
ter restores the outputs locally. Finally, we used MFHoGP
to predict one million dimensional pressure fields of the
lid-driven cavity flows, with only a few hundreds of train-
ing examples. By leveraging samples of two fidelities, our
approach often achieves significant error reduction as com-

pared with the single-fidelity competitors.
2 Background

The standard GP learns a single-output function f : R® —
R from the training data D = {(x1,91),-.., (XN, yN)}
where each x,, is an input vector. The function values f =
[f(x1),..., f(xn)] are assumed to follow a multivariate
Gaussian distribution, p(f|X) = N (f|m, K), where m are
the mean function values of every input and usually set to O,
[K];; = k(xi,x;) is a kernel function of the input vectors.
The observed outputs y are assumed to be sampled from a
noisy model, e.g., p(y|f) = N (y|f, 7I). Integrating out f,
we obtain the marginal likelihood p(y|X) = N (y|0, K., +
7I). We can maximize the likelihood to estimate the kernel
parameters and noise variance 7.

Many tasks require learning a function with multiple outputs.
A classical multi-output regression framework is the Linear
Model of Coregionalization (LMC) (Journel and Huijbregts),
1978)), which assumes the outputs are a linear combination
of a set of basis vectors weighted by independent random
functions. We introduce K bases B = [by,...,bx]" and
model a d-dimensional vector function by

)= w(obi=BTwx) ()

where K is often chosen to be much smaller than d, and the
random weight functions w(x) = [wy(x),...,wx(x)]"
are sampled from independent GPs. In spite of a linear
structure, the outputs f(x) are still nonlinear to the input x
due to the nonlinearity of the weight functions. LMC can
easily scale up to a large number of outputs: once the bases
B are identified, we only need to estimate a small number
of GP models (K < d). For example, we can perform PCA
on the training outputs to find the bases, and use the singular
values as the outputs to train the weight functions. This is
also referred to as PCA-GP (Higdon et al.| 2008)).

LMC is particularly useful for our physical simulation tasks
because it is very efficient and scalable to high-dimensional
solution outputs. Also, the compact structure — a small set
of bases and weight functions — can be used to efficiently
propagate and fuse information across multiple fidelities.
Therefore, we will ground our work on LMC (other excel-
lent models will be discussed in Sec. 5).

3 Model

A critical bottleneck of LMC is that it can only model linear
correlations among the outputs (see the illustration men-
tioned below), which is oversimplified for physical sim-
ulation, where the high-dimensional solution outputs are
governed by complex PDEs, implying strong nonlinear cor-
relations. To fix this problem, one can place a GP prior
over each element of the bases B (see (I))). This method is
referred to as GP regression network (GPRN) (Wilson et al.,
2012), and can greatly promote the flexibility to capture
nonlinear output correlations. However, it will meanwhile
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largely increase the computational cost— an extra K'd GP
models need to be jointly estimated, which is very expensive
for large d. Therefore, we propose a nonlinear generaliza-
tion of LMC, which not only is flexible enough to capture
nonlinear output correlations, but also maintains the effi-
ciency and scalability to high-dimensional outputs. Based
on the nonlinear generalization, we further develop a deep
model to effectively integrate multi-fidelity data.

3.1 Nonlinear Coregionalization

The original LMC assumes independent random weight
functions, which leads to oversimplified, linear output cor-
relations. To see this, given an arbitrary input x, we can
derive the covariance of the outputs f(x) according to (I:
cov(f) = BTcov(w(x))B. Since the weight functions
w(x) are sampled independently, cov (w(x)) must be diag-
onal, and therefore cov(f) is essentially a d x d linear kernel
matrix on BT (which is d x k), implying linear correlations.

To grasp the nonlinear output correlations, we break the
independent assumption of the weight functions. Instead,
we consider the weights also as a nonlinear function of the
bases, and model their correlations with a nonlinear kernel
of the bases (e.g., RBF and Matern). To this end, we jointly
sample the K weight functions from a matrix-variate GP.
Given N training inputs X = [x1,...,xx]" and K bases
B = |by,...,bk] ", the weight functions’ projection W
(which is an N x K matrix and each element [W];; =
w;(x;)) then follows a matrix Gaussian distribution,

p(W‘X,B) :MN(W|0aKaKBB)a (2)

where the row-covariance K is the kernel matrix on the
inputs X, [K];; = k(x;,x;), and the column-covariance
Kpp the kernel matrix on the bases B, [Kgplmt =
ky(by,, by). Given the weights and bases, we sample
the observed N X d output matrix Y from a Gaussian
noise model, p(Y|W,B) = N (vec(Y)|vec(WB), 1),
where vec(-) is the vectorization and 7 the inverse noise
variance. This new model, referred to as nonlinear coregion-
alization, turns out to be a GP model.

Lemma 3.1. The marginal distribution of the output Y is
p(Y|X,B) = NV (vec(Y)[0, B'KppB) ® K + 7 'I).

Given two arbitrary outputs Y., (x;) and y,(x;), i.e., the m-
th output for input x; and t-th output for input x;, we have
cov(ym(xi), yt(sz) = k()}l, Xj)b;KBBbt +n7 L 6(x; =
Xj,m = t), where by, and by are the m-th and t-th column
of B, respectively, and §(+) is the indicator function.

The proof is given in the supplementary material. Now,
we can see that given any input x, cov(y(x)) =
k(x,x)BTKpzpB +n~'1. Aslong as K g is constructed
from a nonlinear kernel, the covariance matrix is nonlinear
to the bases and so are the output correlations. The LMC
can be viewed as an instance of our model with a particular
choice of the bases’ kernel.

Corollary 3.1.1. When we set the bases’ kernel
ky(bp, bt) = 6(by, = by), the model is reduced to LMC
with the same kernel for all the weight functions.

Note that by placing a matrix GP prior over W, we enable
LMC to capture nonlinear output dependencies, without the
need for any additional latent functions (like GPRN). By
exploiting the inherent Kronecker product (see Lemma 3.1),
we can further simplify the computation to avoid calculating
the full covariance matrix (Stegle et al., 2011). The extra
calculation only involves one small K x K kernel matrix on
the bases, namely K pp (in practice, K is usually chosen to
be less than IV (Higdon et al.,2008))). By contrast, GPRN
places a GP prior over every element of B and hence needs
to compute/estimate K d prior/posterior covariance matrices
of all the latent functions in B, which will be very expensive
for large d, e.g., millions (O(N?3Kd) time complexity).

3.2 Multi-Fidelity Nonlinear Coregionalization

Next, to exploit training samples with multiple fidelities, we
use the nonlinear coregionalization as the basic component
and propose a deep model that propagates bases and places
a deep matrix GP prior over the weight functions in all the
fidelities. In each level, we use one component to sample the
observed outputs in a particular fidelity. Each component
inherits the bases from and samples the weight functions
conditioned on the weights of the previous level. In this
way, we capture the (nonlinear) relationships with and reuse
the valuable bases from previous fidelities to enhance the
predictions for the current fidelity.

Specifically, suppose we have training examples of F' fi-
delities, {(X@, YD)} where X and Y are the
N; x sinput and N; x d output matrices at fidelity ¢. Note
that although the solutions of different fidelities are cal-
culated from distinct grids, we align them to the same di-
mension with a fixed grid via interpolation (note that it
does not influence the fidelity) (Zienkiewicz et al., [1977).
Fidelity 7 is lower than its successive fidelity ¢ + 1 and
hence N; > ... > Np. Following the standard multi-
fidelity simulation setting (Perdikaris et al., 2017 |Pe{
herstorfer et al.l [2018]), we assume the inputs of higher
fidelity samples are a subset of the lower fidelity ones, i.e.,
XE) . cxD), However, our method can be trivially
adjusted for non-overlapping inputs (see the discussion in
Sec. 3 of the supplementary material). Denote by W () and
B (%) the bases and weights in each fidelity i. We sample the
output matrix Y@ from p(Y®O[W® B® {n;}i ) =
N (vec(Y D) |[vec(W® . BO), Hj‘:1 nj_l -T), where each
n; is independently sampled from a Gamma prior, p(n;) =
Gamma(n;|a, 1) where o« > 1. Note that we use a prod-
uct of Gamma random variables as the inverse variance to
gradually diminish the noise level with the increase of the fi-
delity. This is consistent with the fact that samples of higher
fidelities should be more accurate and less noisy.
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Figure 1: The graphical representation of MFHoGP.

In the first (lowest) fidelity ( = 1), we sample the bases
B® from a continuous prior, say, Gaussian, and the weights
W) from the matrix GP prior in (7). In each higher fidelity
(¢ > 1), we inherit the bases from the previous level, and
sample additional K bases C*) from the continuous prior
again. We combine B~ and C( to construct the bases
for the current fidelity, B() = [B(*~1; C®]. In this way,
we take advantage of not only the valuable bases from the
previous fidelities — an effective summary of lower fideli-
ties’ information, but also the ones specific to the current
fidelity. Between fidelities can be complex yet strong re-
lationships. To capture and exploit these relationships, we
involve the weights of the previous fidelity in generating the
weights of the current fidelity. Specifically, we append to
the current inputs X(Q the corresponding basis weights of
the previous fidelity, X = [X®) W(i-1)(X® BE-1))],
We then sample W () from a matrix GP prior similar to @,

p(W(i)|B(i)’X(i)’W(i*1)) - p(W(i)‘B(i),f((i))
= MN(W®]0, KD, Ki),) 3)

where K(9) is the kernel matrix on the augmented inputs
X@ and KSBZ)B the kernel matrix on B(*). The chain of the
matrix GPs hence forms a deep matrix GP prior over all
the weight functions {W( )} —,to capture the (nonlinear)
relationships across the fidelities. Finally, the graphical
representation of our model is given in Fig. [1}

4 Algorithm

For efficient model estimation, we develop a stochastic vari-
ational learning algorithm that jointly updates the bases B,
the kernel and noise parameters {7}, and the variational
posterior of the weight functions {W (%)},

4.1 Decomposition Structure for Bases

First, we introduce bases decomposition to further reduce
the model parameters, the computation cost and also to
avoid overfitting. In practice, the output dimension d can be
very large, say, millions. Since each basis in {B }F isa
d dimensional vector, it will introduce too many parameters.
The estimation of these parameters will be costly and the
model can easily overfit the (small) data. To overcome these
problems, we impose a decomposition structure on the bases
to greatly reduce the parameters. Specifically, for each basis

b in fidelity i (note that B®) = [b}, ..., b%] "), we intro-
duce R compositional vectors, Ul = {uﬂ, ... ,uj- R}, each
with length ¥/d, and parameterize b; = uj1 ®X...0 ugR
where ® is the Kronecker product. The kernel function of
two bases bé—l and b}z is then defined on their compositional
vectors, ky(b? ,b% ) = k(U] ,UL). Take d = 10° as an
example. If we choose R = 3, we only need to use three
100 dimensional compositional vectors to calculate each
basis, and the parameters are reduced by 99.97%. The pro-
posed structure is essentially a rank-1 CP (Harshman,|1970)
decomposition on the tensorized basis with R modes. We
can also use higher ranks or other decomposition structures,
but this simple structure has already shown the advantages
of our model in the experiments (see Sec. [6).

We assign a standard Gaussian prior over each composi-
tional vector, p(u}) = N(u}[0,T). We then parameter-
ize each row of B(*) and C(Y) by the Kronecker product
of their corresponding compositional vectors. Note that
the bases B(*) are still constructed as [B(~1; C()] when
¢ > 1. Denote the compositional vectors in each fidelity ¢
by U = {U},... ,Uj}. The joint probability now is

F
p({u(l)v W(l)7 Y(Z): nl}'LF:I |{X(1)}ZF‘:1) = H Gam(nj|a7 1)

i=1
F K R P |
'HH H ul,[0,1) [ MAN (W@ 0, KO K))
i=lj=1r=1 i=1
a %
IV (e YO) veeWOBD) [0 @
i=1 i1

The model inference amounts to estimating the composi-
tional vectors {{/()} for the bases, the posteriors of the
weight functions in each fidelity and other parameters.

4.2 Layer-Wise Matrix Gaussian Posterior

Next, we introduce a variational posterior for the weight
functions in all the fidelities W = {W®}F_ and con-
struct a variational model evidence lower bound, £ =
IEq(VV) [IOg (p({u(z), W(Z)v Y(Z)a T]i}inl |{X(Z) }le)) -
log(¢(WV))]. While we can follow the standard mean-field
framework to use fully independent posteriors, they will
break the strong posterior dependency among the weights,
and may result in inferior inference quality. Note that the
matrix GP prior of each W) (see (2) (@) has incorporated
(nonlinear) correlations between the weight functions. To
capture the posterior dependency, we introduce a matrix
Gaussian distribution as the variational posterior of each
W (), consistent with the prior. The variational posterior of
all the weights W is then given by

F P
¢W) = [[aW?) = [TAMV WO MO, 50, 00),
i=1 i=1
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where M@, £® and Q) are the posterior mean,
row and column covariances of each W), Another
advantage is the computational efficiency. Due to the
intrinsic Kronecker product, we never need to compute
the full covariance matrix of the density (Stegle et al.|
2011). Instead, it can be calculated by the row and
column covariance matrices and hence the cost is largely
reduced, ¢(W®) = MN(WOM®O =0 Q@) =
N (vee(W®)|vee(M®), Q0 @ E(Z)) =
exp( — iu[@O7'(WO M) mOTH WO

M®)]) /((2m) N2 ([iK/2) " Note that
the same computation applies to the prior of {W ()}, We
derive the variational evidence lower bound (ELBO) finally,

F K R

L= 335l WHQ+Z

zlglrl

—fz:zKlog\E(z | + Hn] )tr(%

(dlogn; —
) r( QOBOBO )

1 i - )i
- 25 Noaogle®) - ([T ) (1Y, - MOBO) 5

i=1 j=1

F
1 ,
+ > _(a = 1logm — i — 5Eyw) [iK log(K)]
1

1=
— = Z Egom [tr(K ), WO KO WO)] + const.

where || - || is the Frobenius norm.
4.3 Stochastic Optimization

We aim to maximize the variational ELBO in @ However,
the expectation terms involving each K(*) are intractable,
because they are kernel matrices on the augmented inputs
X® = [X® Wi-1)(X® BE-1)] where the weights
from the previous fidelity are (partly) coupled in the non-
linear kernels. To address this issue, we use the reparam-
eterization trick (Kingma and Welling| 2013)) to calculate
an unbiased stochastic gradient for optimization. In each
fidelity 7, we sample a standard matrix Gaussian random
variable, Z() ~ MN(Z|0,1,T). Then we construct a pa-
rameterized sample, W) = M) + LOZORO " where
L and R are the Cholesky decompositions of the row
covariance () and column covariance Q%) in ¢(W®),
respectively. According to the following theorem, W@ s
guaranteed to be a sample of g(W(®)).

Theorem 4.1. (Gupta and Nagar, |1999) Given n X p
matrix Z, m x n matrix G and p X | matrix H, If Z. ~
MN (A, 2, ¥), rank(G) < n and rank(H) < p, then
LZR ~ MN(-|GEGT, H"¥TH).

Corollary 4.1.1. The constructed sample W@~
MN (MO 50 00, namely g(W®).

Next, we sequentially append each W (i—1) (X () B(~1)
to X to obtain the augmented inputs, based on which

log |[K35)

we compute the random kernel matrix K® (z>1). We
then replace each E,y) [tr(K%}BIW(")TK(“%W“))]
and E, () [iK log(K®")] in (@) with their unbiased esti-
mates tr (K2, 1W(i)TI~{(i)71W(i)) and i K log(K®), re-
spectively, so as to obtain an unbiased stochastic bound L.
We compute VL as an unbiased stochastic gradient of £
for optimization. We can use any stochastic optimization
algorithm to jointly update the basis compositional vec-
tors {U(V}, the variational posterior ¢(WV) (determined by
{M® L® R®}) and all the other parameters.

4.4 Prediction

Given a new input, the predictive distribution of the outputs
is not analytical. Hence, we recursively sample the weights
in each fidelity to generate posterior samples, with which we
compute an empirical distribution. Due to the space limit,
we leave the details in the supplementary material.

4.5 Algorithm Complexity

The time complexity of our inference algorithm is
O FiN;Kd + (iK)%Rd% + (iK)® + N?). Since
we can always choose R such that Rd ® < d (the simplest
choice is R = 1), the time complexity is linear to N d, where
N is the total number of samples. The space complexity is
O(FKd+ .F iN;K + (iK)? 4 (N;)?), including the
storage of the bases, the weights, and the row and column
covariance matrices of the weights in each fidelity.

5 Related Work

Many multi-output GP regression approaches have been pro-
posed. An excellent review is given in (Alvarez et al.,[2012).
A classical framework is the linear model of coregionaliza-
tion (LMC) (Matheron, [1982; |Goulard and Voltz, [1992),
which introduces a set of basis vectors, and use their linear
combination weighted by independent random functions
to predict the output vector. A popular instance is PCA-
GP (Higdon et al., [2008)) that finds a set of bases from Sin-
gular Value Decomposition (SVD) on the training outputs.
The variants of PCA-GP include KPCA-GP (Xing et al.|
2016), IsoMap-GP (Xing et al.|[2015)), etc. Despite its effi-
ciency and scalability, the standard LMC only models linear
output correlations. GP regression networks (GPRNs) (Wil
son et al.,[2012) overcome this problem by placing indepen-
dent GP priors over the basis elements. While being much
more expressive, GPRNs bring in much more computation
cost — the number of GPs need to be estimated is quite a
few times (e.g., tens) of the output dimension, and hence
it will be very expensive for high dimensions. Important
multi-output GP models also include convolved GPs (Hig{
don, |2002; |Boyle and Frean, 2005} |Alvarez et al., |2019)
and multi-task GPs (Bonilla et al., 2007, 2008} Rakitsch
et al.l 2013). Both types of models are very elegant and
flexible, however, they might be computationally too costly
(O((Nd)?) or O(N? + d?) time complexity) for massive
outputs. To mitigate this issue, several sparse approxima-
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tions have been developed (Alvarez and Lawrencel [2009j
Alvarez et al.,[2010). Recently, |Zhe et al.| (2019) tensorized
the high dimensional output, and introduced latent coordi-
nate features in the tensor space to model complex output
correlations. Overall, all these methods are developed for
single-fidelity data.

To enable GP training on multi-fidelity data, |Perdikaris et al.
(2017) sequentially learned a chain of GPs, where each GP
estimates the output of one fidelity as a function of the cur-
rent input and the output of the previous fidelity. |Cutajar]
et al.[(2019) jointly learned these GP models to propagate
the uncertainty throughout different fidelities. These ex-
cellent works focus on single output functions. While we
can extend them to a standard deep GP (Damianou and
Lawrence, 2013} |Hebbal et al., 2019)) that samples multi-
ple functions in each layer, all the outputs in one layer are
poured as the input to the GP in the next layer, and hence
cannot be many, say, millions. Moreover, standard deep
GPs consider the outputs in each layer as independent given
the inputs, and might not fully capture the strong output
dependencies, which is crucial for learning from a small set
of training examples (in physical simulation). To address
these problems, we inherit the compact structure of LMC,
i.e., a small number of bases and weight functions to han-
dle massive outputs. We first generalize LMC to flexibly
capture nonlinear output correlations. We then propagate
the (decomposed) bases and place a deep matrix GP prior
over the weight functions to fuse information throughout
the fidelities (rather than use the entire outputs), and hence
it is much more efficient. Recently, Hamelijnck et al.[(2019)
proposed a multi-task multi-resolution GP model based on
GPRN, deep GP and mixture of experts (Rasmussen and
Ghahramanil, [2002)). This work aims to integrate sensor
data with different resolutions. Distinct from our model, it
needs to integrate over the sampling periods of the sensors
to sample the observations, and emphasizes one particular
task (output). It does not scale to many outputs.

Recently, a few excellent works were proposed to learn
(deep) neural networks to solve PDEs (Raissi, [2018}; |[Raissi
et al., 2019). These works differ from ours in that (1) the
input is the spatial/temporal location and the output is a
scalar to predict the solution function value at that location,
and (2) their training and test focus on solving one particular
PDE, rather than mapping parameters of different PDEs to
their corresponding solution fields at a specific grid.

6 Experiments
6.1 Predicting Small Solution Fields

We first examined MFHoGP in predicting a relatively small
number of solution outputs. These datasets were collected
from solving three fundamental partial differential equa-
tions (PDEs), Burgers’, Poisson’s and heat equations (Olsen+
Kettlel 2011) in small spatial/temporal domains. The sizes

of the output fields for the three PDEs are 128 x 128, 32 x 32
and 100 x 100 (and so the output dimensions are 16K, 1K
and 10K), respectively. In each example, the inputs are
initial conditions and PDE parameters. We used numerical
solvers to compute the solution field. The fidelity of the
outputs are determined by the number of nodes/steps used
in the solvers. The more the nodes/steps, the higher the
fidelity. The details of the PDEs and data generation are pro-
vided in the supplementary material. For Burger’s equation,
we considered three training settings: (1) Burgers-1, 400
examples of fidelity-1 (the lowest fidelity), (2) Burgers-II,
400 fidelity-1 examples mixed with 4 fidelity-2 examples,
(3) Burgers-111, 400 fidelity-1, 40 fidelity-2 and 4 fidelity-3
examples. Similarly, we considered two training settings for
Poisson’s and heat equations: (4) Poisson-I and (5) Heat-I,
400 fidelity-1 examples, (6) Poisson-II, 400 fidelity-1 and
10 fidelity-2 examples, and (7) Heat-1I, 400 fidelity-1 and
4 fidelity-2 examples. For each setting, we used 112 ex-
amples with one higher fidelity for testing; we randomly
sampled the input parameters and generated 5 training and
test datasets. Note that the high-fidelity samples are much
fewer than the low-fidelity ones; the ratio ranges from 1/100
and 1/10. While the output dimensions are relatively small
(~ 10%), the size of training data are even smaller (~ 102).

Competing Methods. We compared MFHoGP with three
popular LMC methods/variants for scalable multi-output
regression: (1) PCA-GP (Higdon et al.,[2008), (2) IsoMap-
GP (Xing et al.,2015)),and (3) KPCA-GP (Xing et al.,[2016),
which obtain the bases or low-rank structures from Principal
Component Analysis (PCA), IsoMap (Balasubramanian and
Schwartz, |2002) and Kernel PCA (Scholkopf et al., |1998)),
respectively. In addition, we compared with (4) GPRN (Wil4
son et al.,|2012), (5) SCGP, the sparse convolved GP (Al
varez and Lawrencel [2009), and (6) HOGP, high-order Gaus-
sian process for regression (Zhe et al., [2019), a recent ap-
proach that tensorizes the outputs and can flexibly capture
nonlinear output correlations and efficiently handle very
high-dimensional outputs.

Parameter settings. We implemented MFHoGP with Ten-
sorFlow (Abadi et al. 2016), and used Adam (Kingma
and Bal [2014) for stochastic optimization. In the train-
ing, we set the learning rate to 1073 and ran Adam
for 5K epochs. For SCGP, we used the implementa-
tion from the authors’ group (https://github.com/
SheffieldML/multigp). For GPRN, we tested
the efficient implementation (https://github.com/
trungngv/gprn) from [Nguyen and Bonillal (2013)). We
used their default settings. All the other methods were im-
plemented with Matlab and used L-BFGS for optimization.
We used RBF kernel for all the methods. For each dataset,
MFHoGP integrates the examples of all the fidelities for
training. Since the competing methods are developed for
single-fidelity data, we conducted their training on the ex-
amples of each fidelity separately, and on all the examples
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Figure 3: Visualization of local errors. Each image represents the difference between the prediction and ground-truth over individual

outputs of one test example in Poisson-11.
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merged together. For instance, -F1 denotes training with the
examples of fidelity-1, -F2 with fidelity-2, and -ALL with
all the examples. For overlapping inputs across fidelities
(See Sec. [3.2), we preserve the higher-fidelity examples
in the merged set. We varied the number of bases from
{5,10, 15,20}, and ran all the methods on the 5 training/test
datasets in each setting. For MFHoGP, we decomposed
the bases according to the shapes of the output fields (see
Sec. [4.1). We computed the average root-mean-square error
(RMSE) and test log likelihood, and their standard devia-
tions of all the methods. The RMSEs are reported in Fig.
2l Due to the space limit, the test log likelihoods are re-
ported in the supplementary material. GPRN and SCGPR
are only feasible for the smallest datasets Poisson-I and
Poisson-1I (with ~ 1K outputs). For other dataset ( > 10K
outputs), they either failed with excessive memory consump-
tion, crashed or ran forever without responses. These might
be due to the cost in estimating a large number of GPs and
complex computation in convolution kernels.

From Fig. 2] we can see that MFHoGP obtains the small-
est prediction error in almost all the cases. In many
cases, MFHoGP significantly outperforms the competing
approaches (p-value < 0.05, shown by the non-overlapping
standard error bars (Minkal [2002)). Note that while SCGP
exhibits excellent performance on Poisson-I and -1, it is
inefficient and cannot deal with larger numbers of outputs,
e.g., over 10K. MFHoGP exhibits superior performance in
terms of the test log likelihood as well (see Fig. 1 in the sup-
plementary material). Note that for the competing methods,
simply combining all the examples of different fidelities
fails to achieve an improvement. In most cases, the perfor-
mance is in between only training with samples of the low-
est fidelity and higher ones (e.g., HOGP on Burgers-II and
Heat-I11, PCA-GP on Burgers-II, Heat-II and Burgers-III).
Therefore, it demonstrates the effectiveness of our approach
in integrating multi-fidelity examples, even if the high fi-
delity samples take a tiny portion. On the single-fidelity
data (see Fig. [Zh-c), our model usually improves upon the
LMC methods as well. It might be because the proposed
nonlinear coregionalization more accurately captures the
(nonlinear) output correlations and less overfits. Finally, we
also examined training our model without bases decompo-
sition: the inference is much slower and the performance
is comparable or even worse. For example, in Burgers-1
setting, bases #=15, both approaches obtain almost the same
RMSE, but the bases decomposition has 3.7x speed-up.

6.2 Local Output Recovery

Next, we examined how the outputs are individually recov-
ered, i.e., how the predictive performance varies locally.
To this end, we randomly selected a few test samples, and
visualized the difference between the prediction and ground-
truth of every single output. Fig. 3| shows the results of 5
test samples in Poisson-II setting. As we can see, in most re-
gions (rendered by grey), MFHoGP achieves (almost) zero

error, and only in a few small regions, it obtains small errors
shown in light colors. By contrast, most competing methods
result in larger errors (showed in darker colors), spreading
over the vast majority of the output regions. Note that PCA-
GP-F1, HOGP-F1/ALL and SCGP-F1/ALL obtained very
similar local output predictions. In other settings, MFHoGP
exhibits better results as well. See the supplementary ma-
terial for details. Therefore, our method not only yields a
superior global accuracy (as shown in Fig. [2)), but locally
also better recovers each individual output.

6.3 Large-Scale Flow Simulation

Finally, we applied MFHoGP in a large-scale physical sim-
ulation problem. We aimed to predict a one-million dimen-
sional pressure field for lid-driven cavity flows (Bozeman
and Dalton, [1973)). When the fluid is inside a cavity and
driven by a lid (or several lids) on the edge, the internal pres-
sure can be unevenly distributed, leading to turbulent flows.
Given the boundary condition, the pressure field can be de-
termined by solving the incompressible Navier-Stokes (NS)
equations (Chorin| |1968), which are known to be computa-
tionally challenging. To predict the high-dimensional field,
we prepared training examples of two fidelities. We varied
the number of low fidelity samples from {120, 160, 200}
and high fidelity samples from {10, 20}. For each fidelity
combination, we randomly sampled the boundary condi-
tions and simulated 5 test sets, each including 30 examples
(3 x 107 outputs). The ground-truth are computed with very
dense grids in finite difference. For MFHoGP, we decom-
posed each basis with three 100 dimensional vectors. We
reported the average normalized root-mean-square error (N-
RMSE) and standard deviation in Fig. E} As we can see, our
method consistently improves upon the competing methods,
and in many cases significantly (p < 0.05). Again, even
combining the examples of all the fidelities, the competing
methods failed to obtain improved accuracy. The results
confirm the advantages of MFHoGP in learning a function
with massive outputs from very limited data with different
fidelities, which is common in physical simulation. The
average per-epoch/-iteration time for MFHoGP, PCA-GP,
KPCA-GP, IsoMap-GP and HOGP are 36.6, 11.7, 167.6,
99.1 and 3, 417.1 seconds, respectively (when the bases # is
5). Hence, MFHoGP is much faster than HOGP and has a
comparable speed to the other scalable multi-output regres-
sion approaches. MFHoGP also exhibits smaller local errors
(in recovering individual outputs). The local visualization
results are provided in the supplementary material.

7 Conclusion

We have presented MFHoGP, a multi-fidelity high-order GP
model for physical simulation. In the future, we will explore
MFHoGP in other domains, such as multi-resolution large-
scale sensor networks output prediction. We will further
extend MFHoGP for multi-fidelity Bayesian optimization
(L1 et al., |2020) and active learning for complex system
optimization and design problems.
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