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ABSTRACT

Designing efficient algorithms and studying computational complexity under specific

conditions have long been the heart of computer science. While it seems too much to hope

P = NP, we have discovered that many NP-hard problems can be solved in time, which is

polynomial in the input size (n) but exponential in some “parameter” (k). This approach

produces “parameterized” algorithms with running time f (k) · poly(n) for some com-

putable function f and provides several novel perspectives for characterizing and solving

NP-hard problems. My work spans several topics in this area, including preprocessing,

structural parameters, and heuristics, and it is distinguished by a focus on practicality

including implementation and verification on real-world datasets.

This dissertation includes edited versions of six papers, which have advanced the

theory of parameterized algorithms, each meticulously designed to impact real-world ap-

plications. The first two papers give new structured insights that allow more effective

preprocessing for some given parameter. The SIAM Conference on Applied and Compu-

tational Discrete Algorithms (ACDA) ’23 paper introduced an improved kernel for EX-

ACT WEIGHTED CLIQUE DECOMPOSITION and tested with biomedical datasets to identify

groups of genes that consistently coact. In the International Symposium on Parameter-

ized and Exact Computation (IPEC) ’24 paper, we showed that we can efficiently find a

structure that contains part of an optimal solution to ODD CYCLE TRANSVERSAL.

The next two papers concern structural graph parameters. In the IPEC ’22 paper,

we resolved open questions on parameterized complexity with respect to modular-width

and clique-width for problems that occur in sociology and biology, including DENSEST

k-SUBGRAPH. A relatively new parameter twin-width, unlike modular-width or clique-

width, characterizes many real-world graphs and thus has gained a lot of attention. We

designed and implemented a solver to determine the twin-width of a given graph, which

won the PACE Challenge and the associated PACE Theory Award in 2023.

The last two papers study a specific problem, GRAPH INSPECTION, arising in robotics.



The International Workshop on the Algorithmic Foundations of Robotics (WAFR) ’24 pa-

per introduces parameterized algorithms along with a framework to enable scaling and

establishes their effectiveness on simulated inspection tasks. Finally, we have a preprint

that introduces an application of arithmetic circuits and randomized algorithms, which

requires only polynomial-space.

To summarize, we present several new parameterized algorithms and carefully engi-

neered implementations that improve the state of the art in theory and practice.

iv
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CHAPTER 1

INTRODUCTION

Designing efficient algorithms and studying computational complexity under specific

conditions have long been the heart of computer science. Many NP-hard graph problems

become tractable on certain graph classes such as trees and cographs, but unfortunately,

such graphs rarely show up in real-world datasets. Hence, solvers need to employ various

heuristics and other algorithmic techniques (e.g., approximation) in practice. Modern

solvers are equipped with sophisticated preprocessing algorithms on top of the core opti-

mization tools. Such preprocessing may reduce the number of variables and constraints,

but those numbers alone do not explain the often exponential speed-ups made by applying

effective preprocessing steps. This is because the running time of modern algorithms for

NP-hard problems is often not exponential in the total input size. Rather, it is exponential

in some parameter k and scales polynomially with the input size.

The crux of this approach—known as parameterized algorithms—is that, although we

often cannot expect a polynomial-time algorithm in the input size unless P=NP, there

may be an algorithm to solve a problem in time f (k) · poly(n) for some parameter k and

a computable function f . Such an algorithm is called fixed-parameter tractable (FPT) and

offers one avenue for solving NP-hard problems. For typical optimization problems, the

standard (or natural) parameter would be the size of the solution we are looking for. In

other cases, structural parameters (a measure of some property of input instances) are

better choices. In this spirit, dozens of width parameters have been developed, inspired by

the renowned treewidth [13].

So, what exactly is “parameterized preprocessing”? A short answer could be kerneliza-

tion; kernels—“smaller sized” instances equivalent to the original problem instance—are a

key tool in the field and provide a notion of preprocessing with guarantees. But there

are also limitations, especially when the solution size is large. We, therefore, need to
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develop additional techniques to scale. A common theme in my research is the exploration

of effective preprocessing steps, possibly with unconventional parameters, that lead to

practical parameterized algorithms.

Another component of my body of work is a collection of parameterized algorithms in

practice. Technical tools brewed in the parameterized algorithms community provide new

perspectives for tackling real-world problems. Particularly, this dissertation exhibits appli-

cations in biology and robotics, incorporating significant effort of algorithm engineering

and experiments.

1.1 Overview
The rest of this chapter consists of a list of software developed (Section 1.2) and prelim-

inaries that are relevant to all of my work (Section 1.3). We first introduce mathematical

symbols and (mostly graph-theoretic) notation (Section 1.3.1) and then present a brief

summary of parameterized algorithms and complexity (Section 1.3.2). In Section 1.3.4,

we illustrate an overview of structural parameters and define selected relevant examples.

The next six chapters discuss independent topics, each of which corresponds to a con-

ference paper. Broadly speaking, Chapters 2 and 3 concern preprocessing, Chapters 4 and

5 consider structural parameters, and Chapters 6 and 7 address a problem that emerged

from robotics applications.

In Chapter 2, we study the EXACT WEIGHTED CLIQUE DECOMPOSITION problem. We

prove the existence of a kernel of size k · 2k, improving the best known 4k. We describe

implementing our algorithm, together with new reduction and search rules, and observe

over 100x speed-up on biologically-inspired benchmark datasets.

Chapter 3 introduces an alternate notion of preprocessing due to Donkers and Jansen

[15] (antler decompositions for FEEDBACK VERTEX SET) and elaborates how we can identify

in FPT time a similar structure (tight Odd Cycle Cuts) for ODD CYCLE TRANSVERSAL. This

work is in collaboration with Eindhoven University of Technology, Netherlands.

For structural parameters, Chapter 4 details our work on “happy set” problems orig-

inated from an open question involving modular-width. We resolved the parameterized

complexity of two problems: MAXIMUM HAPPY SET (MAXHS) and DENSEST k-SUBGRAPH

(DkS). We designed FPT algorithms and proved that MAXHS is FPT by both modular-
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width and clique-width, and also that DkS is FPT by neighborhood diversity, cluster dele-

tion number, and twin cover number.

One of the trendiest structural parameters is twin-width [9], which intuitively measures

a distance to a cograph. In Chapter 5, we introduce our award-winning twin-width solver

Hydra Prime and its specifics. Further, an ongoing project on ML-based twin-width solvers

is summarized in Section 5.6; this is joint work with University College Dublin, Ireland,

Goethe University Frankfurt, Germany, and Technische Hochschule Mittelhessen, Ger-

many.

Chapters 6 and 7 concern the same problem, GRAPH INSPECTION, a graph-theoretic

approach to motion planning in robotics. In collaboration with the University of Bergen,

Norway and Birkbeck, University of London, UK, we designed, implemented, and evalu-

ated several algorithms & heuristics for GRAPH INSPECTION. ILP (Integer Linear Program-

ming) and DP (Dynamic Programming) approaches are detailed in Chapter 6, showing

better performance than the state-of-the-art solver. In Chapter 7, we introduce an algo-

rithm using algebraic circuits, which has a clear advantage in asymptotic memory usage

over other algorithms. The content in Section 7.3.3 is original to this dissertation and not

included in the preprint on arXiv [5].

Lastly, we provide an overall summary and future directions in Chapter 8.

1.2 Software
We regularly developed and engineered implementations of our algorithms to assess

their effectiveness on realistic problem instances. All software is open source, fully docu-

mented, and capable of reproducing our experiments. The following is a list of accompa-

nying software.

• DeCAF (Chapter 2): https://github.com/TheoryInPractice/DeCAF

A solver for EXACT WEIGHTED CLIQUE DECOMPOSITION employing novel kernel-

ization techniques.

• Hydra Prime (Chapter 5): https://github.com/TheoryInPractice/hydraprime

A PACE-2023-winning TWIN-WIDTH solver.

• Robotic Brewing (Chapters 6 and 7):

https://github.com/TheoryInPractice/DeCAF
https://github.com/TheoryInPractice/hydraprime
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https://github.com/TheoryInPractice/robotic-brewing

A GRAPH INSPECTION solver implementing multiple algorithms (dynamic program-

ming, ILP, algebraic, heuristics).

1.3 Preliminaries
This section introduces versatile mathematical notation and background theories that

serve as a basis for all of my work. Project-specific technical preliminaries are included in

each chapter.

1.3.1 Notation

For a set S, the notation 2S indicates the power set of S. We use the standard notation for

mathematical structures; Z is the set of all integers, Z≥0 is the set of non-negative integers,

and Z+ = N is the set of positive integers. Similarly, R is the set of real numbers, R≥0 is

the set of non-negative reals, and so on. For a field F and a set X, we write F[X] for the set

of all polynomials in the variable X with coefficients in F.

We extensively use the standard O(·) notation for analyzing asymptotic behavior of

functions. The O∗(·) notation hides polynomial factors, and the Õ(·) notation hides poly-

logarithmic factors in O(·).

We generally follow the textbook by Diestel [14] for standard graph-theoretic defini-

tions and notation. Unless otherwise specified, we consider finite, undirected, simple

graphs. Such a graph G = (V, E) consists of a set V (also denoted by V(G)) of vertices

and a set E ⊆ (V
2) (also denoted by E(G)) of edges. For ease of notation, we write uv for

an undirected edge {u, v} ∈ E; note that uv = vu. We write n(G) := |V| for the number

of vertices and m(G) := |E| for the number of edges in the graph. When it is clear from

context, we write n = n(G) and m = m(G). We use NG(v) = N(v) := {u ∈ V | uv ∈ E}

and NG[v] = N[v] := NG(v) ∪ {v} to denote the open and closed neighborhoods of a

vertex v, respectively. We write degG(v) = deg(v) := |NG(v)| for the degree of a vertex v.

For a directed graph G, we write N−G (v) = N−(v) and N+
G (v) = N+(v) for the in-neighbors

and the out-neighbors of v, respectively. Similarly, we write deg−G (v) = deg−(v) and

deg+
G (v) = deg+(v) for the in-degree and the out-degree of v, respectively. For a vertex

set S ⊆ V we define its open neighborhood as NG(S) := (
⋃

v∈S NG(v)) \ S and its closed

https://github.com/TheoryInPractice/robotic-brewing


5

neighborhood as NG[S] :=
⋃

v∈S NG[v]. The subgraph of G induced by a vertex set S ⊆ V is

the graph G[S] on vertex set S with edges {uv ∈ E | u, v ∈ S}. We use G− S as a shorthand

for G[V \ S] and write G− v instead of G− {v} for singletons.

A walk in a graph G is a sequence of (not necessarily distinct) vertices (v1, . . . , vk) such

that vivi+1 ∈ E for each i < k. The walk is closed if we additionally have vkv1 ∈ E. In some

chapters, we may write (v0, v1, . . . , vk) or v0v1 . . . vk with v0 = vk to describe a closed walk.

A cycle is a closed walk whose vertices are all distinct. The length of a cycle (v1, . . . , vk) is k.

A path is a walk whose vertices are all distinct. The length of a path (v1, . . . , vk) is k − 1.

The vertices v1, vk are the endpoints of the path. For two (not necessarily disjoint) vertex

sets S, T of a graph G, we say that a path P = (v1, . . . , vk) in G is an (S, T)-path if v1 ∈ S

and vk ∈ T. If one (or both) of S and T contains only one element, we may write this

single element instead of the singleton set consisting of it. In some settings, we are given

edge weights w : E → R≥0. Otherwise, let w(e) = 1 for all e ∈ E. The weight of a walk

(v1, . . . , vk) is the sum of the weights of its edges, i.e., ∑k−1
i=1 w(vivi+1). The distance between

two vertices u, v ∈ V, denoted by d(u, v), is the minimum weight across all walks between

u and v. The distance between a vertex v and a vertex set S ⊆ V is the minimum distance

between v and any vertex in S, i.e., d(v, S) = d(S, v) := minu∈S d(v, u). We say vertices u

and v are twins if they have the same neighbors, i.e., N(u) \ {v} = N(v) \ {u}. Further,

they are called true twins if uv ∈ E and false twins otherwise.

1.3.2 Parameterized Algorithms

My work spans several topics in the area of parameterized algorithms, which was

introduced by Downey and Fellows in the 1990’s [16] and has developed into a rich area of

research. A number of mathematical tools and techniques have been developed [13, 33, 36],

fine-grained complexity classes have been established [17, 18], and parameterized algo-

rithms have been applied to practical solvers for a wide variety of NP-hard problems [37,

31].

1.3.2.1 Traditional complexity classes. Before discussing fine-grained complexity

classes, let us recall several fundamental complexity classes for decision problems. In-

formally, the class P (NP, resp.) is the set of all decision problems that can be solved by

a deterministic (non-deterministic, resp.) Turing machine in polynomial time. Similarly,
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the class PSPACE is the set of all decision problems that can be solved by a (deterministic1)

Turing machine using a polynomial amount of space. It is known that P ⊆ NP ⊆ PSPACE.

The class NP-hard is the set of problems that are at least as hard as the hardest problems in

NP.

The class co-NP is the set of problems whose complement is in NP. For any complexity

class K, Karp and Lipton [27] introduced the non-uniform class K/poly, where an algo-

rithm might differ per input size. Informally, the class K/poly consists of the problems that

would be in K if we have access to a polynomial-size advice string for each input length.

1.3.2.2 Parameterized complexity. We refer to the textbook by Cygan et al. [13] for

an introduction to parameterized complexity theory. The goal of parameterized algorithms

is to capture the exponential part of the problem complexity within a parameter, making

the rest of the computation polynomial in the input size. For an alphabet Σ and the set of

all strings Σ∗, a parameterized problem L ⊆ Σ∗×N is called fixed-parameter tractable (FPT) if

there exists an algorithmA, a computable function f : N→N, and a constant c ∈N such

that, given (I, k) ∈ Σ∗ ×N, the algorithm A correctly decides whether (I, k) ∈ L in time

bounded by f (k) · |(I, k)|c. Similarly, a parameterized problem is called slice-wise polynomial

(XP) if there is an algorithm to solve the problem in time f (k) · |(I, k)|g(k) for computable

functions f , g : N → N. The complexity classes containing all fixed-parameter tractable

and slice-wise polynomial problems are called FPT and XP, respectively.

As for lower-bounds, the granular W-hierarchy was introduced to capture the exact

complexity of various hard parameterized problems [18]. For t ≥ 1, a parameterized prob-

lem P belongs to the class W[t] if there is a parameterized reduction from P to a problem

called WEIGHTED CIRCUIT SATISFIABILITY with Ct,d, the class of all boolean circuits with

weft at most t and depth at most d. It is believed that FPT ⊊ W[1], and this is a stronger

assumption than the P ̸=NP conjecture (FPT ̸=W[1] implies P ̸=NP).

In this context, I will introduce two key notions relevant to my work: kernelization and

structural parameters.

1.3.2.3 Kernelization. Nearly all practical software to deal with NP-hard problems

incorporates a dedicated problem-specific preprocessing step. The goal of preprocessing

1Due to Savitch’s theorem [2], allowing a non-deterministic Turing machine does not add any extra power.
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is to solve efficiently the “easy parts” of a problem instance and reduce it to its computa-

tionally difficult “problem kernel.” Formal analyses of effective preprocessing had been

put aside for a long time, but with the emergence of parameterized complexity, the “lost

continent” [13] of efficient algorithms called kernelization was finally unveiled.

Kernelization works by using (data) reduction rules, which are polynomial-time algo-

rithms that map an instance (I, k) to an equivalent2 instance (I′, k′). A kernelization algorithm

has an additional requirement that the final instance size after applying all reduction rules

is bounded by some computable function g : N→ N of k, the original parameter. We say

the problem admits a polynomial (respectively, linear) kernel if g is polynomial (linear).

The following lemma shows that kernelization is another way of defining fixed-parameter

tractability.

Lemma 1.1 (Lemma 2.2 [13]). A parameterized problem is FPT if and only if it admits a kernel-

ization algorithm.

1.3.3 Showing Intractability

One of the main themes in complexity theory is the distinction between P and NP\P;

what decision problems are unlikely to be solved in polynomial time? This led to the

notion of NP-complete problems, which are the “hardest problems” in NP. To date, thou-

sands of computational problems in a variety of disciplines have been shown to be NP-

complete [2]. Each of them can be solved in polynomial time if and only if P = NP.

The study of NP-completeness involves reductions, a means of relating the computational

complexity of two different problems.

1.3.3.1 NP-hardness reductions. There are several ways to show that a problem is

NP-hard. Here we introduce Turing reductions, Cook reductions, and more restrictive Karp

reductions.

A decision problem L is Turing reducible to another problem L′ if there is a Turing

machine M that, given an oracle for deciding L′, can correctly decide L. An oracle for

L′ is a “black box” that decides L′ in constant time. If M runs in polynomial time, then the

reduction is called a Cook reduction [10]. It is straightforward to see that if L is Cook reducible

2The equivalence of two instances of Q, referred to the safeness of a reduction rule, is proven by showing
(I, k) ∈ Q if and only if (I′, k′) ∈ Q.
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to L′, then L′ is at least as hard as L, as far as polynomial-time algorithms are concerned.

For example, if L is NP-complete, then L′ is NP-hard. We use this kind of reduction for

Lemma 3.34 in Chapter 3.

Another common type of reduction is a many-one reduction. A many-one reduction

from a decision problem L to another decision problem L′ is an algorithm that transforms

an instance I of L into an instance I′ of L′ such that I is a yes-instance of L if and only if I′ is

a yes-instance of L′. A polynomial-time many-one reduction is called a Karp reduction [2].

Since a Karp reduction implies a Cook reduction, the former is stronger than the latter.

Hence, we use Karp reductions by default, for example, Lemma 3.35 in Chapter 3 and

throughout Chapter 6.

1.3.3.2 Parameterized reductions. To show the intractability of a parameterized prob-

lem, the standard toolbox in NP-completeness theory may be insufficient. Hence, we use

the following analogous notion of reduction that transfers fixed-parameter tractability.

Let A, B ⊆ Σ∗ ×N be two parameterized problems. A parameterized reduction from A

to B is an algorithm that, given an instance (I, k) of A, outputs an instance (I′, k′) of B,

satisfying the following:

1. (I, k) is a yes-instance of A if and only if (I′, k′) is a yes-instance of B,

2. k′ ≤ g(k) for some computable non-decreasing function g, and

3. the running time of the algorithm is f (k) · |I|O(1) for some computable non-

decreasing function f .

With this definition, parameterized reductions translate fixed parameter tractability as

in the following theorem:

Theorem 1.2 (Theorem 13.2 [13]). If there is a parameterized reduction from A to B and B is

FPT, then A is FPT as well.

We use parameterized reductions for Theorem 3.37 in Chapter 3.

1.3.4 Structural Parameters

Although the most “natural” parameter is the solution size for an optimization prob-

lem, many recent FPT algorithms utilize structural parameters. A structural parameter of
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a graph3 is an invariant that describes the structure of a given graph. This can be a

graph-theoretic property such as maximum degree or diameter, but the most studied one

is treewidth, a byproduct of the acclaimed graph minor theorems by Robertson & Seymour

[34]. Treewidth measures how well the cut structure of a graph resembles a tree and admits

a number of FPT algorithms using dynamic programming over its tree decomposition. One

of the most prominent results involving treewidth is Courcelle’s theorem [11], stating that

computing any graph properties definable in the monadic second-order logic of graphs is

FPT when parameterized by the treewidth.

Today, we have a diverse, growing ecology of structural parameters. As illustrated

in Figure 1.1, structural parameters, solutions to optimization problems, and distances to

specific graph classes (all of which are used in parameterized algorithm design) are often

related to one another. Such relations are present if a parameter p is provably upper-

bounded by a function of another parameter q for any graphs. In this case, we say q

is stronger than p. There are trade-offs between the strength of a parameter and fixed

parameter tractability. Graphs having a bounded weaker parameter form a larger graph

class, but more problems become intractable. For instance, the DENSEST k-SUBGRAPH

problem introduced in Section 3.1 is FPT when parameterized by the vertex cover number

but is W[1]-hard by the weaker parameter clique-width. Such boundaries are problem-

specific, and finding these boundaries is an active area of research in parameterized com-

plexity [12, 23, 3]. There are many open questions in the picture of fine-grained fixed

parameter tractability [23, 25].

1.3.4.1 Treewidth. Treewidth measures how a graph resembles a tree and admits

FPT algorithms for a number of NP-hard problems, such as WEIGHTED INDEPENDENT

SET, DOMINATING SET, and STEINER TREE [13]. Treewidth is defined by the following

notion of tree decomposition.

Definition 1.3 (treewidth [13]). A tree decomposition of a graph G is a pair (T, {Xt}t∈V(T)),

where T is a tree and Xt ⊆ V(G) is an assigned vertex set for every node t, such that the

following three conditions hold:

3There are structural parameters of other mathematical structures, such as matrices, hypergraphs, and
geometries.
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• ⋃
t∈V(T) Xt = V(G).

• For every uv ∈ E(G), there exists a node t such that u, v ∈ Xt.

• For every u ∈ V(G), the set Tu = {t ∈ V(T) : u ∈ Xt} induces a connected

subtree of T.

The width of a tree decomposition is defined to be maxt∈V(T) |Xt| − 1, and the treewidth

of a graph G, denoted by tw, is the minimum possible width of a tree decomposition of G.

1.3.4.2 Clique-width. Clique-width is a generalization of treewidth which can cap-

ture dense but structured graphs. Intuitively, a graph with bounded clique-width k can be

built from single vertices by joining structured parts, where vertices are associated by at

most k labels, and we can treat the vertices with the same label as a group.

Definition 1.4 (clique-width [12]). For a positive integer w, a w-labeled graph is a graph

whose vertices are labeled by integers in {1, . . . , w}. The clique-width of a graph G, denoted

by cw, is the minimum w such that G can be constructed by repeated application of the

following operations:

• (O1) Introduce i(v): add a new vertex v with label i.

• (O2) Union G1 ⊕ G2: take a disjoint union of w-labeled graphs G1 and G2.

• (O3) Join η(i, j): take two labels i and j, and then add an edge between every pair of

vertices labeled by i and by j.

• (O4) Relabel ρ(i, j): relabel the vertices of label i to label j.

This construction naturally defines a rooted binary tree, called a cw-expression tree G,

where G is the root and each node corresponds to one of the above operations.

1.3.4.3 Neighborhood diversity. Neighborhood diversity is a parameter introduced

by Lampis [30], which measures the number of twin classes.

Definition 1.5 (neighborhood diversity [30]). The neighborhood diversity of a graph G =

(V, E), denoted by nd, is the minimum number w such that V can be partitioned into w

sets of twin vertices.

By definition, each set of twins, called a module, is either a clique or an independent set.
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1.3.4.4 Cluster deletion number. Cluster (vertex) deletion number is the distance to

a cluster graph, defined to be a collection of disjoint cliques.

Definition 1.6 (cluster deletion number). A vertex set X is called a cluster deletion set if

G[V \ X] is a cluster graph. The cluster deletion number of G, denoted by cd, is the size of

the minimum cluster deletion set in G.

1.3.4.5 Vertex cover number. The vertex cover number is the solution size of the

classic VERTEX COVER problem.

Definition 1.7. A vertex set X ⊆ V is a vertex cover of G = (V, E) if for every edge uv ∈ E

either u ∈ X or v ∈ X. The vertex cover number of G, denoted by vc, is the size of the

minimum vertex cover of G.

1.3.4.6 Twin cover number. The notion of twin cover is introduced by Ganian [24]

and offers a generalization of vertex cover number.

Definition 1.8 (twin cover number [24]). A vertex set X ⊆ V is a twin cover of G = (V, E)

if for every edge uv ∈ E either (1) u ∈ X or v ∈ X, or (2) u and v are true twins. The twin

cover number, denoted by tc, is the size of the minimum twin cover of G.

1.3.4.7 Modular-width. Modular-width is a parameter introduced by Gajarský et al.

[23] to generalize simpler notions on dense graphs while avoiding the negative results

brought by moving to the full generality of clique-width (e.g., many problems FPT for

treewidth become W[1]-hard for clique-width [20, 21, 22]). Modular-width is defined using

the concept of modular decomposition.

Definition 1.9 (modular-width [23]). Any graph can be produced via a sequence of the

following operations:

• (O1) Introduce: Create an isolated vertex.

• (O2) Union G1 ⊕ G2: Create the disjoint union of two graphs G1 and G2.

• (O3) Join: Given two graphs G1 and G2, create the complete join G3 of G1 and G2.

That is, a graph G3 with vertices V(G1) ∪ V(G2) and edges E(G1) ∪ E(G2) ∪ {uv :

u ∈ G1, v ∈ G2}.
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• (O4) Substitute: Given a graph G with vertices v1, . . . , vn and graphs G1, . . . , Gn,

create the substitution of G1, . . . , Gn in G. The substitution is a graph G with vertex

set
⋃

1≤i≤n V(Gi) and edge set
⋃

1≤i≤n E(Gi) ∪ {uw : u ∈ Gi, w ∈ Gj, (vi, vj) ∈ E(G)}.

Each graph Gi is substituted for a vertex vi, and all edges between graphs corre-

sponding to adjacent vertices in G are added.

These operations, taken together in order to construct a graph, form a parse-tree of the

graph. The width of a graph is the maximum size of the vertex set of G used in operation

(O4) to construct the graph. The modular-width, denoted by mw, is the minimum width

such that G can be obtained from some sequence of operations (O1)-(O4).

Finding a parse-tree of a given graph, called a modular decomposition, can be done in

linear-time [38]. See Figure 1.2 for an illustration of modular decomposition. Gajarský et

al. also give FPT algorithms parameterized by modular-width for PARTITION INTO PATHS,

HAMILTONIAN PATH, HAMILTONIAN CYCLE and COLORING, using bottom-up dynamic

programming along the parse-tree [23].

1.3.4.8 Twin-width. Twin-width is a novel graph parameter introduced in 2020 by

Bonnet et al. [9] as a generalization of the permutation width for classes of permutations de-

fined by Guillemot and Marx [26]. Twin-width measures a graph’s structural complexity,

quantifying the similarity between a graph and cographs, or complement reducible graphs,

which can be reduced to a single vertex by repeatedly merging pairs of twins.

Although computing twin-width is NP-hard [6], the parameter has gained great interest

because bounded twin-width graphs are ubiquitous. Well-studied graph classes such as

bounded clique-width and bounded rank-width have bounded twin-width [9], and it is

speculated that real-world graphs tend to have small twin-widths [4]. Also, twin-width

has led to important theoretical results. Model checking in first-order logic (FO MODEL

CHECKING) in graphs of bounded twin-width is FPT [9]. Recent results include FPT

algorithms for 3-COLORING [8] and k-INDEPENDENT SET [7], as well as polynomial-time

approximation algorithms for MINIMUM DOMINATING SET [7].

One can define twin-width via sequences of trigraphs. A trigraph G has a vertex set

V(G) and two disjoint edge sets: E(G), its set of black edges, and R(G), its set of red

edges. The black graph B(G), the red graph R(G), and the total graph T (G) of a trigraph
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are the graphs defined by B(G) = (V(G), E(G)), R(G) = (V(G), R(G)), and T (G) =

(V(G), E(G)∪ R(G)). A red neighbor (black neighbor, respectively) of a vertex v ∈ V(G) in a

trigraph G is any neighbor of v inR(G) (in B(G), respectively).

A (vertex) contraction in a trigraph G consists of merging two (not necessarily adjacent)

vertices u, v ∈ V(G) into a single vertex with a new label w and updating the trigraph

into G′ as follows. We have V(G′) = V(G) \ {u, v} ∪ {w}. For red edges, we set R(G′) =

E(R(G) − {u, v}) ∪ {wx : x ∈ (NB(G)(u)△NB(G)(v)) ∪ NR(G)(u) ∪ NR(G)(v)}, where △

denotes the symmetric difference of two sets. That is, the red edges not incident to u or

v remain the same, and we introduce red edges between w and x ∈ V(G) \ {u, v} if x is

a black neighbor of either u or v (but not both), or G already contains red edge ux or vx.

Finally, we have E(G′) = E(B(G) − {u, v}) ∪ {wx : x ∈ NB(G)(u) ∩ NB(G)(v)}. Here, a

common black neighbor x of u and v transfers to the black edge wx. A contraction sequence

of an n-vertex graph G is a sequence of trigraphs G = Gn, . . . , G1 such that Gi is obtained

from Gi+1 by performing one contraction4. Notice that Gi contains exactly i vertices. A

d-sequence is a contraction sequence in which every vertex of each trigraph has at most d

red neighbors. The twin-width of G, denoted by tww(G) is the minimum integer d such that

G admits a d-sequence.

1.3.4.9 Properties of structural parameters. Finally, we note the relationship among

the parameters defined above, which establishes the hierarchy shown in Figure 1.1.

Proposition 1.10 ([3, 23]). Let cw, tw, cd, nd, tc, vc, mw be the clique-width, tree-width, cluster

deletion number, neighborhood diversity, twin cover number, vertex cover number, and modular-

width of a graph G, respectively. Then the following inequalities hold5: (i) cw ≤ 2tw+1 + 1; (ii)

tw ≤ vc; (iii) nd ≤ 2vc + vc; (iv) cw ≤ 2cd+3 − 1; (v) cd ≤ tc ≤ vc; (vi) mw ≤ nd; (vii)

mw ≤ 2tc + tc; and (viii) cw ≤ mw + 2.

1.3.4.10 Computing structural parameters. In spite of the availability of FPT al-

gorithms for NP-hard problems, such algorithms often require corresponding decompo-

sitions (e.g., a tree decomposition for treewidth, a cw-expression tree for clique-width,

4In some literature, a contraction sequence refers directly to a sequence of pairs of vertices to contract rather
than trigraphs.

5cw ≤ 2 when mw = 0; otherwise, cw ≤ mw + 1.
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a contraction sequence for twin-width, etc.) as input. This is a big obstacle when we

implement a solver; we often find theoretical results impractical due to the time needed to

obtain this decomposition.

In fact, it is known that computing treewidth, clique-width, and twin-width of a graph

is NP-hard [1, 19, 6]. Naturally, exact and approximate algorithms for computing those

parameters have been one of the most active areas in the parameterized algorithms com-

munity [28, 29, 35]. An exception is modular-width; finding a parse-tree of a given graph,

called a modular decomposition, can be done in linear-time [38]. Other polynomial-time com-

putable structural parameters include degree statistics (min/max degree, density, etc.), de-

generacy (linear-time), girth6, distance measures (radius, diameter, eccentricity), centrality

measures7, maximum matching, and minimum cut, etc. Thanks to such tractability, these

parameters are often used as “features” for machine learning [32].

6O(min{n2.38, m1.41}).

7Degree centrality in O(n2), closeness centrality in O(nm + n2), eigenvector centrality in O(n3), between-
ness centrality in O(nm + n2), etc.
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Figure 1.1: An overview of relevant structural graph parameters, depicted with solutions
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i.e., the minimum number of vertices to remove to obtain a desired graph. Arrows indicate
relations, from the strong (bottom) to the weak (top).
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Figure 1.2: An example graph G (left) with modular-width 4 and its modular decompo-
sition (right). The parse-tree has G as the root, and its nodes correspond to operations
(O1)-(O4). Notice that each node also represents a module—module members have the
same neighbors outside the module.
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CHAPTER 2

AN EXPONENTIALLY SMALLER KERNEL FOR

EXACT WEIGHTED CLIQUE

DECOMPOSITION

This chapter exemplifies kernelization for real-world applications. Mining groups of

genes that consistently co-express is an important problem in biomedical research, where

it is critical for applications such as drug-repositioning and designing new disease treat-

ments [10, 31, 39, 26, 11]. Cooley et al. modeled this problem as EXACT WEIGHTED CLIQUE

DECOMPOSITION (EWCD) in which, given an edge-weighted graph G and a positive in-

teger k, the goal is to decompose G into at most k (overlapping) weighted cliques so that

an edge’s weight is exactly equal to the sum of weights for cliques it participates in. They

show that EWCD is fixed-parameter-tractable, giving a 4k-kernel alongside a backtracking

algorithm (together called cricca) to iteratively build a decomposition. Unfortunately, be-

cause of inherent exponential growth in the space of potential solutions, cricca is typically

able to decompose graphs only when k ≤ 11. In this work, we establish reduction rules

that exponentially decrease the size of the kernel (from 4k to k2k) for EWCD. In addition,

we use insights about the structure of potential solutions to give new search rules that

speed up the decomposition algorithm. At the core of our techniques is a result from

combinatorial design theory called Fisher’s inequality that characterizes set systems with

restricted intersections. Experimental evaluation of our kernelization and decomposition

algorithms (together called DeCAF) on a corpus of biologically-inspired data showed that

in most cases DeCAF leads to over 80% reduction in the size of the kernel and orders of

magnitude improvement in the time required to obtain a decomposition relative to cricca.

As a result, DeCAF scales to instances with k ≥ 17.

In this work, I was responsible for discussing and verifying our theoretical results

centering on Fisher’s inequality and conducting all computational experiments, including
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engineering algorithms, designing heuristics, and generating datasets. Jain, Sullivan, and I

published our work “An Exponentially Smaller Kernel for Exact Weighted Clique Decom-

position” at the SIAM Conference on Applied and Computational Discrete Algorithms

(ACDA23) [17].

2.1 Introduction
Network analysis has proven to be a very effective tool in biomedical research, in which

phenomena such as the interactions between proteins and genes find natural representa-

tion as graphs [6, 20, 36, 15]. In gene co-expression analysis, for example, vertices repre-

sent genes and edges represent pairwise correlation between genes. Scientists are often

interested in finding groups (modules) of genes that consistently co-act, which manifest as

dense subgraphs or cliques in co-expression networks. The discovery of such modules is

critical in understanding disease mechanisms and in the development of new therapies

for diseases, especially when the primary genes associated with a disease may not be

amenable to drugs [10, 31, 39, 26, 11].

A recent line of work [7, 12] models the module identification problem as EXACT

WEIGHTED CLIQUE DECOMPOSITION (EWCD). In this problem, we are given a positive

integer k and a graph G whose edges have positive weights. The goal is to find a decompo-

sition of the vertices of the graph into at most k positive-weighted (possibly overlapping)

cliques such that each edge participates in a set of cliques whose weights sum to its own.

The cliques containing edge uv represent the modules in which genes u and v co-express,

and clique weights correspond to the module’s strength of effect on co-expression. Note

that one can obtain a trivial decomposition by assigning every edge to its own 2-clique with

matching weight, but this does not lead to any useful insights about the system. Hence,

previous work has relied on the principle of parsimony and aimed to find the smallest

number of cliques into which the graph is decomposable.

Although our work on EWCD is primarily motivated by gene co-expression analysis,

a weighted clique cover is also used in applications such as finding the graphlet decompo-

sition of a weighted graph [32], community detection [18, 5], identifying fraud rings [24],

spotting suspicious reviews [16] etc., where heuristics and machine learning-based meth-

ods have been employed to address its combinatorial intractability. We anticipate our
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algorithm will be transferable to many of these other settings with minor modifications.

While EWCD is NP-hard, Cooley et al. [7] recently showed that it admits a kernel1 of

size 4k. A kernelization algorithm is a polynomial-time routine that produces a (smaller)

equivalent instance—i.e., the kernelized instance is a yes-instance iff the given instance is

a yes-instance. The kernelization technique of Cooley et al. reduces an arbitrary sized

instance of EWCD to an equivalent instance of (an annotated version of EWCD) with

at most 4k vertices. Cooley et al. also describe an algorithm for obtaining a valid de-

composition of a kernelized instance (if one exists). In practice, their kernelization and

decomposition algorithms (together called cricca2) are able to solve EWCD for graphs

with k ≤ 11 cliques in less than an hour. However, many co-expression networks have

dozens of modules. Thus, a natural question is:

Does there exist a smaller kernel and/or a faster decomposition algorithm for the EXACT

WEIGHTED CLIQUE DECOMPOSITION problem?

We answer this question in the affirmative, giving a k2k-kernel and a faster decom-

position algorithm (together called DeCAF) which in practice give at least two orders of

magnitude reduction in running time over cricca3. Our kernelization technique uses a

generalization of Fisher’s inequality (from combinatorial design theory). We implement

our algorithms and empirically evaluate them on an expansion of the corpus used in [7],

demonstrating significantly improved practicality.

2.1.1 Contributions

We first summarize our contributions, then briefly describe the key ideas behind our

approaches in Section 2.3.

2.1.1.1 Smaller kernel. We give a new kernel reduction rule (K-RULE 2+) that leads

to a kernel of size at most k2k. This is an exponential reduction in the size of the kernel

compared to that of cricca which gives a kernel of size 4k in the worst case. In practice,

1The kernel of [7] is technically a compression: instances are reduced to equivalent instances of a closely-
related problem.

2They also give an integer partitioning-based decomposition algorithm for the restricted case of integral
weights.

3To be precise, over cricca*, an optimized version of cricca with updated search rules.
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the kernel obtained using DeCAF is at least an order of magnitude smaller than the ker-

nel obtained using cricca (Figure 2.1), which then reduces runtime for the downstream

decomposition algorithm.

2.1.1.2 New search rules. The decomposition approach of [7] for EWCD is a back-

tracking algorithm that iteratively searches the space of potential solutions. Every time

the algorithm builds a partial solution, it invokes an LP-solver to determine the weights

of the cliques. Based on our insights about the structure of such solutions, we are able

to design several new SEARCH RULES (S-RULEs) that prune away large parts of the search

tree reducing the number of times the LP-solver needs to be called. In conjunction with the

smaller kernel, these decrease the number of runs of the LP-solver by up to three orders of

magnitude (Figure 2.2).

2.1.1.3 Faster solution to EWCD. Figure 2.3 shows the ratio of the total time taken

by DeCAF and the total time taken by cricca for solving EWCD for several graphs with

varying ground-truth k. Because of the smaller kernel and new S-RULEs, we are able to

obtain up to two orders of magnitude reduction in the total running time, and the amount

of reduction increases as k grows.

2.1.1.4 Scale to larger k. DeCAF enables decomposition4 of graphs with k over 50%

larger than cricca (see Figures 2.4 and 2.5).

2.2 Preliminaries

Input: a graph G = (V, E), a non-negative weight function we for e ∈ E, (a

special set of vertices S ⊆ V, a non-negative weight function wv for

v ∈ S), and a positive integer k.

Problem: a set of at most k cliques C1, . . . Ck with clique weights γ1, . . . γk ∈ R+

such that wuv = ∑i:uv∈Ci
γi for all uv ∈ E (and wv = ∑i:v∈Ci

γi for all

v ∈ S) if one exists, otherwise output Infeasible.

(A)EWCD

The problems EWCD and its generalization ANNOTATED EWCD (AEWCD) which

allows some vertices to be annotated i.e., have positive weights, were first introduced by

4Subject to a 3600s timeout (matching that in [7]).
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Cooley et al. as a combinatorial model for discovering modules in gene co-expression

graphs [7]. EWCD is the special case of AEWCD when the set S = ∅. The authors showed

that an instance of EWCD can be reduced to an equivalent instance of AEWCD with at

most 4k vertices [7]. Their reduction techniques are based on those of Feldman et al. [12],

who consider a closely related problem WEIGHTED EDGE CLIQUE PARTITION (WECP)

and its generalization ANNOTATED WECP (AWECP). WECP is the special case of EWCD

when the clique weights are restricted to be 1. Specifically, for a graph G with edge weights

we and k ∈ Z+, (G, k) is a yes-instance of WECP if and only if there is a multiset of at most

k cliques such that each edge appears in exactly we cliques.

Both these works build on the linear algebraic techniques of [3], and give equivalent

matrix problem formulations in which matrices are allowed to have wildcard entries de-

noted by ⋆. For a, b ∈ R ∪ {⋆}, let a ⋆
= b if either a = b or a = ⋆ or b = ⋆. We use Mi

to represent the ith row of a matrix M and Mij to represent the element in the ith row and

the jth column. For matrices M1 and M2, we write M1 ⋆
= M2 if M1ij

⋆
= M2ij for each i, j.

The reformulation of AEWCD (given by [7]) is called BINARY SYMMETRIC WEIGHTED

DECOMPOSITION WITH DIAGONAL WILDCARDS (BSWD-DW).

Input: a symmetric matrix A ∈
(
R+

0 ∪ {⋆}
)n×n with wildcards appearing on a

subset of diagonal entries, and a positive integer k

Problem: a matrix B ∈ {0, 1}n×k and a diagonal matrix W ∈ (R+
0 )

k×k such that

A ⋆
= BWBT if such (B,W) exist, otherwise output NO.

BSWD-DW

Essentially, the goal is to find an n × k binary matrix B and a k × k diagonal matrix

with non-negative elements, W such that A ⋆
= BWBT. The row vector Bi represents the

membership information of the ith vertex, i.e., Bi,j represents whether the vertex i is a

member of the jth clique. We call Bi the signature of the vertex i. In the diagonal matrix

W, each column (and row) represents a clique from the solution and the element Wi,i

represents the weight of the ith clique. The matrix A represents the weighted adjacency

matrix of G i.e., Ai,j represents the weight of the edge (i, j). If edge (i, j) does not exist in G,

then Ai,j = 0. The wildcard entries in A are used for vertices with no weight restrictions.

EWCD is thus the special case of BSWD-DW where all the diagonal entries are wildcards.
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We say that two distinct vertices u and v in G are ⋆-twins if they are adjacent and satisfy

Au
⋆
= Av. We partition the vertices of G (and correspondingly the rows of A) into sets of

vertices called blocks such that vertices u and v belong to the same block iff u and v are

⋆-twins. [12] showed that blocks are essentially equivalence classes.

2.2.1 Related Work

There is a rich history of work emphasizing the importance of mining patterns in gene

co-expression analysis [38, 39, 37, 31] in which information about pairwise correlations

for all genes in organisms [27] is used to derive useful knowledge about sets of genes

whose expression is consistently modulated across the same tissues or cell types. Typ-

ically, unsupervised network-based learning approaches [23, 34, 10] are used for min-

ing such modules. The first combinatorial model of module identification was EXACT

WEIGHTED CLIQUE DECOMPOSITION (EWCD), introduced in [7] in ACDA21. They gave

a 4k-kernel and two parameterized algorithms for obtaining the decomposition of a graph

into weighted cliques, one based on linear programming (LP) that works for real-valued

weights, and an integer partitioning-based algorithm for the restricted case of integral

weights. Both algorithms performed comparably so we use the unrestricted LP-based

algorithm.

If clique weights are restricted to all being 1, EWCD is equivalent to WEIGHTED EDGE

CLIQUE PARTITION (WECP) as studied by [12]. Their work builds upon the linear algebraic

techniques of Chandran et al. [3] for solving the BICLIQUE PARTITION problem. WECP

itself generalizes EDGE CLIQUE PARTITION (ECP) [21] which seeks a set of cliques contain-

ing each edge at least once (but no constraint on the maximum number of occurrences). It

is known that ECP admits a k2-kernel in polynomial time [30].

On the matrix factorization side, several symmetric [40, 4, 29] and asymmetric vari-

ants [28, 13, 14, 2, 19, 3] have been studied. However, they typically either do not allow

wildcard entries, or allow B to be any non-negative matrix (not just binary) and hence

they are unable to model the clique decomposition problem, or in the case of asymmetric

variants, correspond to finding a partition of the edges of a bipartite graph into bicliques

(complete bipartite graphs) instead of cliques [3].
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2.3 Main Ideas
The starting point for this work is the algorithm of [7] for EWCD. The algorithm first

preprocesses the graph to remove isolated vertices from G and adjusts k accordingly (each

isolated vertex must be a unique clique in every valid decomposition). It then uses the

kernelization techniques of [12] to obtain a smaller equivalent instance of AEWCD. On

this kernelized instance, it runs a (parameterized) clique decomposition algorithm that

searches the space of clique membership signatures for each vertex. Note that the kernel

reduction rules of [12] were proposed for the AWECP problem in which clique weights are

restricted to be 1. [7] showed that the same rules can be used to obtain a kernel for AEWCD.

We will follow a similar sequence by first giving a kernel reduction rule for AWECP and

then showing that it can also be used for AEWCD. Thus, we first consider the setup of the

AWECP problem.

The kernelization technique of [12] works by applying two reduction rules to blocks of

⋆-twins which either prune away many of the vertices from the block or act as easy checks

for a no-instance. An important property of blocks is that they induce a complete subgraph

with uniform edge-weights, since the vertices in a block are all ⋆-twins.

• KERNEL RULE 1 [[12]] If there are more than 2k blocks, then output that the instance

is a no-instance.

• KERNEL RULE 2 [informal, [12]] If there is a block D of size greater than 2k, then pick

two distinct i, j ∈ D. Convert G into an instance G′ of AEWCD by setting the weight

of vertex i equal to the weight of edge (i, j) and removing every vertex in D from G

except i. Then (G, k) is a yes-instance iff (G′, k) is a yes-instance.

For KERNEL RULE 1 (K-RULE 1), the authors [12] show that if G is a yes-instance, then

any pair of vertices u, v in G such that u and v have different signatures in the solution

must belong to different blocks. Since there can be at most 2k possible signatures (binary

vectors of length k) there can be at most 2k blocks in a yes-instance.

For KERNEL RULE 2 (K-RULE 2), they first prove that if G is a yes-instance then for

any block of vertices, there exists a solution in which all the vertices from the block either

have the same signature or all have pairwise distinct signatures. Since there can be at

most 2k distinct signatures, if the number of vertices in a block is greater than 2k then by
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the pigeonhole principle, the signatures cannot all be distinct. Hence, there must exist a

solution in which all the vertices in the block have the same signature. In such a case, we

can keep just one representative vertex from the block to get a smaller instance.

Note that this means that any two vertices of such a block must participate in exactly

the same set of cliques. For this to happen, for vertices u, v in the block, the weight w of

the edge uv must equal the number of cliques that contain u and v in the solution. Any

solution for the reduced instance that is extendable to a solution for the original instance

must ensure that the representative vertex v is part of exactly w cliques. To enforce this

condition the weight of the representative vertex is set to w in the reduced instance.

Thus, after applying K-RULEs 1 and 2 there are at most 2k blocks with at most 2k vertices

in each block. In this way, the authors obtain a kernel of size 4k. Although this kernel was

proposed by [12] for WECP in which the clique weights have to all be 1, [7] showed that

the same techniques apply even when the cliques are allowed non-unit weights.

One way to get a smaller kernel would be to reduce the number of vertices in a block.

Some challenges in achieving this are highlighted in Section 2.3.1. The main observation

in this work is that if a decomposition of a uniform-weighted complete subgraph on t

vertices consists of a non-trivial clique (i.e., a clique spanning strictly < t vertices), then

the number of cliques in the decomposition must be ≥ t. Specifically, we show that if

G is a yes-instance then for any block with more than k vertices, all vertices of the block

must have identical signatures. Thus, we apply K-RULE 2 to every block with ≥ k + 1

vertices. Since there are at most 2k blocks and each block has at most k vertices, we obtain

a k2k-kernel. Although this gives a kernel for the WECP problem (in which cliques are

constrained to have unit weight), similar to [7] we show that this works for EWCD as well.

The running time of the kernelization algorithm remains unchanged at O(n2 log n). In

practice, we observe that this K-RULE gives an order of magnitude reduction in the size of

the kernel, which subsequently helps speed up the decomposition.

SEARCH RULES (S-RULEs): The decomposition algorithm of [7] uses backtracking to

assign signatures to vertices one by one. While doing so, it checks to make sure that the

new signature is compatible with the vertices that have already been assigned a signature.

If no compatible signature is found for a vertex, the algorithm backtracks. It continues this

process until all vertices have a valid assignment or it determines that no valid assignment
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can be found. Having rules that can quickly detect that the current (partial) assignment

cannot be extended to a valid decomposition helps us prune away branches of the search

tree and reduce the running time. We propose several search reduction rules that restrict

the set of allowed signatures, thus speeding-up the decomposition algorithm.

Our first S-RULE pertains the order in which we consider the vertices for signature

assignment, which can significantly affect how much of the search tree must be explored.

We tested several strategies, and found that a push_front approach in which vertices from

reduced blocks are considered before those in non-reduced blocks was most effective.

A justification for this strategy is in Section 2.5, and the empirical evaluation is shown

in Section 2.6.4.

Our second S-RULE comes from the straightforward observation that when assigning

a signature to a vertex, one must respect its non-neighbor relationships. More specifically,

when finding a signature for a vertex v, for all u such that uv is not an edge, BuBT
v = 0.

That is, if u and v are non-neighbors, they cannot share a clique. Thus, we only test those

signatures for v that have no cliques in common with those of its non-neighbors.

Our third and final S-RULE makes use of the fact that if the graph is a yes-instance

then there exists a solution in which all vertices in each block have either identical signa-

tures or pairwise distinct signatures. Thus, when assigning signatures to the vertices of a

block, either we assign a unique signature to all vertices in the block or assign the same

signature to all vertices in the block. This eliminates assignments in which a block has the

same signature appearing on more than 1 but not all vertices in the block. The improved

kernel along with these S-RULEs speeds up decomposition by two orders of magnitude.

Sections 2.4 and 2.5 give formal proofs of our results.

2.3.1 Challenges

One way to get a smaller kernel would be to reduce the number of vertices in a block.

Any block (definitionally) consists exclusively of ⋆-twins, thus, the weight of every edge

within the block must be the same. In other words, the vertices in the block form a

complete subgraph with uniform edge-weights. If the weights are all 1, it is known that a

decomposition of the complete subgraph on t vertices either consists of a clique containing

all the vertices (called a trivial clique), or consists of at least t cliques (Theorem 6 of [30]).
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In other words, if the given graph is a yes-instance and t > k, then the clique covering the

block must be trivial. In such a case, we can simply remove all vertices but one from the

block and apply the same reduction as in K-RULE 2.

When the edge weights are > 1, if we could show that for any decomposition S of such

a complete subgraph, there exists a set of cliques C ⊂ S such that C is a decomposition of a

complete subgraph of edge-weight 1 on t vertices, then using induction and by the above

theorem, either all cliques in S are trivial cliques or |S| ≥ wt, where w represents the weight

of the edges in the block. However, this is not necessarily true. For example, consider a

complete subgraph on 4 vertices where weight of each edge is 2. The set consisting of 4

cliques (each clique consisting of a different set of 3 vertices) is a valid decomposition of

the complete subgraph but no subset of these cliques corresponds to a decomposition of a

4-clique with unit-weighted edges. Moreover, in the more general case where a complete

subgraph does not have uniform weights, there exist weighted complete subgraphs that

can be decomposed using < t non-trivial cliques.

2.4 Smaller Kernel
Similar to [7], we will first consider the setup of the AWECP problem (in which the

cliques are constrained to have weight 1), and prove correctness of our new reduction

rule. We will then show that the rule remains valid in the case of AEWCD.

In the case of WECP (EWCD) since the vertices do not have weights, if a solution for

an instance contains a singleton clique (i.e., a clique of size 1), we can safely remove such

a clique from the solution. The remaining set of cliques also forms a solution (recall that

isolated vertices have already been removed in the preprocessing step). Thus, in the rest

of this chapter, we restrict our attention to solutions that do not contain singleton cliques.

Note that, on the other hand an instance of AWECP (AEWCD) obtained from an instance

of WECP (EWCD) can have singleton cliques to satisfy vertex weights. However, such

vertices must necessarily be the representative vertices of reduced blocks.

We now formally define two types of ⋆-twins.

Definition 2.1 (Identical and fraternal twins). Given a yes-instance (G, k) of AWECP, ⋆-

twins u and v in G are called identical twins if there exists no solution in which u and v have

distinct signatures, and fraternal twins otherwise.
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Note that there can be solutions in which fraternal twins have identical signatures – we

only require that in some solution they have different ones. Moreover, since a block consists

of ⋆-twins, if any two vertices in a block are identical twins, then all must be.

We call such blocks identical blocks.

K-RULE 2 from [12] implies that all blocks with > 2k vertices are identical blocks. Our

main insight is that a broader set of blocks must have this property. More specifically, any

block with > k vertices must be an identical block. To prove this, we will use a result from

combinatorial design theory known as the non-uniform Fisher’s inequality:

Theorem 2.2 (restated from [25]). Let w be a positive integer and let A = {A1, ..., At} be a fam-

ily of subsets of U = {e1, ..., er}. If |Ai ∩ Aj| = w for each 1 ≤ i < j ≤ t, then |A| = t ≤ r = |U|.

Essentially, the non-uniform Fisher’s inequality states that if we have a set of r elements

and we form t subsets of these elements such that any two subsets intersect in exactly w

elements, then the number of subsets can be at most the number of elements. Fisher’s

inequality was first proposed in the context of Balanced Incomplete Block Design (BIBD)

(See [33] and [1]). The uniform version was first proposed by Ronald Fisher and Majum-

dar [22] showed that the inequality holds even in the non-uniform case. The inequality

has since been proven and applied in many different problem areas. In fact, De Caen

and Gregory [9] showed the following corollary which, as we will show below, directly

corresponds to the problem we’re considering.

Let Kt represent the unweighted, complete graph on t vertices, and wKt denote the

complete multigraph on t vertices where the multiplicity of every edge is w. Let us say

that a partition R of the edge-set of wKt into cliques is non-trivial if there exists any clique

in R that is not Kt. Corollary 2.3 implies if R is non-trivial then t ≤ |R|. This can also be

viewed as a generalization of the clique partition theorem of De Bruijn and Erdös [8] for

arbitrary w (the result of [8] was for w = 1).

Corollary 2.3 (restated from [9]). Let R be a partition of the edge-set of wKt into non-empty

cliques. If not all cliques in R are Kt then |R| ≥ t.

We are now ready to prove our main theorem.
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Theorem 2.4. Let (G, k) be a yes-instance of AWECP and D be a block in G. If |D| ≥ k + 1 then

D must be an identical block.

Proof. Suppose D is not identical. Since G is a yes-instance, there exists a solution such

that not all vertices from D have the same signature i.e., not all vertices from D appear in

the same cliques. Let S be the multiset of cliques in such a solution. Let SD ⊆ S be the

multiset of cliques in which vertices from D appear. From every clique C ∈ SD, delete all

vertices that are not in D and call the resultant multiset R. Thus, R is a multiset of subsets

of D. Since any subset of vertices in a clique also forms a (smaller) clique, R is a multiset

of cliques. One can think of the cliques in R as the “projection” of the cliques in SD onto

D. Since not all vertices from D appear in the same cliques, R must consist of a non-trivial

clique.

We first show that the non-trivial cliques in R cannot all be singleton cliques. Suppose

there is a singleton clique in R consisting of v ∈ D. Then there exists a non-singleton

clique C in SD such that C ∩ D = v. Moreover, since C is not singleton, there exists a

vertex v′ ∈ C \ D. Let u ̸= v be a vertex in D. Since u and v are ⋆-twins and v is a

neighbor of v′, u must also be a neighbor of v′ and wuv′ = wvv′ . Thus, there must exist a

clique C′ ∈ SD, u, v′ ∈ C′, v /∈ C′. In other words, every vertex u ∈ D, u ̸= v must be a part

of some clique that v is not a part of. If each such clique projects into a singleton clique in R,

then |R| ≥ |D| ≥ k + 1 which is a contradiction since G is a yes-instance. Thus, there must

exist a non-singleton, non-trivial clique in R i.e., there must exist a clique containing > 1

but not all vertices from D.

Let w be the weight of all edges among the vertices in D. Let H be an unweighted,

complete multigraph on |D| vertices in which the multiplicity of every edge is w. It is easy

to see that R is a partition of the edge-set of the multigraph H into cliques. If R consists of a

non-singleton, non-trivial clique then by Corollary 2.3, |D| ≤ |R|, which is a contradiction

because G is a yes-instance (implying |R| ≤ k and |D| ≥ k + 1). Thus, R cannot consist of

non-trivial cliques.

In other words, R must be trivial i.e., every clique in R must be a K|D|. Thus, every

vertex of D must be in the exact same set of cliques in S and have the same signature in

the solution matrix B. Thus, D must be an identical block.
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Hence, we can reduce it to a representative vertex, leading to our enhancement of K-

RULE 2:

• KERNEL RULE 2+: If there is a block D of size greater than k, then apply the reduction

of K-RULE 2.

We further show that K-RULE 2+ gives a valid kernel even in the case of AEWCD.

Theorem 3.1 gives the following corollary.

Corollary 2.5. Let (G, k) be a yes-instance of AEWCD and D be a block in G. If |D| ≥ k + 1 then

D must be an identical block.

Proof. Let (A, k) be a yes-instance of AEWCD, and let (B, W) where BWBT = A be a

solution for (A, k). Let Ā = BBT be an instance of AWECP got by making the clique

weights 1. Clearly, (Ā, k) is a yes-instance of AWECP. Thus, Theorem 3.1 gives that the

block D in B must be identical. But the same B is a solution for A. Thus, D must be

identical even for the AEWCD instance (A, k).

Essentially, for any yes-instance (A, k) of AEWCD, there is an equivalent yes-instance

(Ā, k) of AWECP that has the same B. A block being identical is only a function of the

cliques in the decomposition, not the weights of the cliques. Thus, if a block is identical in

Ā, it is identical also in A.

The rest of the proof of correctness closely follows that of Rule 2 in [7] and proceeds in

two parts.

Lemma 2.6. Let (A′, k) be the reduced instance constructed by applying K-RULE 2+ to (A, k).

Then if (B′, W ′) is a solution for (A′, k) then the (B, W) constructed by K-RULE 2+ is indeed a

solution to (A, k).

Proof. We will prove that BT
u WBv

⋆
= Auv for all u, v ∈ V(G), which guarantees validity.

Let D be a block reduced by K-RULE 2+ and let i be the representative vertex. There are 3

cases:

• u, v /∈ D: Then BT
u WBv = B′u

TWB′v
⋆
= A′uv = Auv.

• u ∈ D, v /∈ D: Then BT
u WBv = B′u

TWB′i
⋆
= A′ui = Aui.
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• u, v ∈ D: If Auv = ⋆ then this case is trivial. Assume Auv ̸= ⋆. Lemma 7 of [12] states

that any two non-⋆ entries in the same block of matrix A must be equal. Hence,

BT
u WBv = B′i

TWB′i
⋆
= A′ii = Aij = Auv.

This completes the proof that (B, W) is a solution to (A, k).

Lemma 2.7. If (A, k) is a yes-instance, then the reduced instance (A′, k) produced by K-RULE 2+

is a yes-instance.

Proof. Let (B, W) be a solution of (A, k). Since the block D contains more than k rows, by

Corollary 2.5, D must be an identical block. Thus, there exist row indices p, q ∈ D such

that Bp = Bq. We define a solution (B′, W) for (A′, k) as B′u := Bu for all u ∈ V(G′) \ {i}

and B′i := Bp, where i is the representative vertex of D.

To prove that (B′, W) is indeed a valid solution for (A′, k), it is sufficient to show that

B′u
TWB′v

⋆
= A′uv for all u, v ∈ V(G′). There are 3 cases to consider:

• u, v ̸= i: Then B′u
TWB′v = Bu

TWBv
⋆
= Auv = A′uv.

• u = i,v ̸= i: Then B′i
TWBv = Bp

TWBv
⋆
= Apv = Aiv = A′iv, where the second-to-last

equality follows from p and i being in the same block D.

• u = v = i: In this case, B′i
TWB′i = Bp

TWBp = BT
p WBq = Apq

⋆
= Aij = A′ii. As in

the proof of Lemma 2.6 the ⋆
= here follows because any two entries (that are not ⋆) in

the same block of matrix A are equal (Lemma 7 of [12]). The third equality here is an

equality (and not only a ‘ ⋆= equivalence’) as Apq is not a diagonal entry.

This completes the proof that if (A, k) is a yes-instance then (A′, k) is also a yes-instance.

Thus, the kernelization algorithm of DeCAF applies K-RULE 1 of [7] and K-RULE 2+ to

get a kernel that is at most k2k in size. This leads to our main result:

Theorem 2.8. Given a graph G on n vertices and a positive integer k, the kernelization algorithm

of DeCAF finds a kernel for EXACT WEIGHTED CLIQUE DECOMPOSITION of worst-case size k2k

in time O(n3).
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Proof. The kernelization algorithm sorts the rows in A to form blocks and reduces each

block that has ≥ k + 1 vertices. The sorting of rows of A and division into blocks takes

time O(n3) and the application of K-RULE 1 and K-RULE 2+ take time O(n). Thus, the

time complexity of the kernelization algorithm is O(n3), matching that of [7].

2.5 Faster Decomposition Algorithm
Once a kernelized instance is obtained, one can run the decomposition algorithm of

[7], shown in Algorithm 1 on it. The algorithm assigns signatures to vertices one-by-one,

iteratively building a solution. When only a subset of all vertices have been assigned a

signature, we call this a partial assignment. When trying to find a compatible signature for

a vertex, the algorithm searches the entire space of 2k possible signatures for that vertex.

For every signature that the algorithm considers for a vertex, the clique weights as given by

the weight matrix W may need to change. iWCompatible (Algorithm 3) checks if the weight

matrix W is compatible with the current partial assignment. If not, to find a compatible

new set of weights, the algorithm builds a Linear Program (LP) which encodes the partial

assignment and the edge-weights (InferCliqWts-LP, Algorithm 4). If the LP returns a

solution, the algorithm updates the weight matrix. If the LP fails to return a solution, it

means that no feasible weight matrix exists for this partial assignment. In this case, the

algorithm backtracks.

Algorithm 1: CliqueDecomp-LP

1 for P ∈ {0, 1}2k×k do
2 initialize B̃ to a n× k null matrix
3 b, i← 1
4 while b ≤ 2k do
5 B̃i ← Pb
6 b← b + 1
7 W ← InferCliqWts-LP (A, B̃)
8 if W is not null matrix then
9 (B, i)← FillNonBasis (A, B̃, W)

10 if i = n + 1 then
11 return (B, W)
12 else
13 b← 2k + 1 // null W; break out of while

14 return No
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The main insight of [7] was that the pseudo-rank of B is at most 2k and that once the

basis vectors of B have been guessed correctly, there will be no need to backtrack when

filling in the signatures of other vertices. They showed that we need to run the LP only

when the algorithm backtracks and that this happens for at most 22k2
partial assignments.

FillNonBasis (Algorithm 2) shows the pseudocode for filling in the signatures for the

non-basis vectors. Note that every time the algorithm picks a new set of basis vectors

(P), the existing assignment of signatures (even non-basis vectors) are discarded. After an

exhaustive search if no valid assignment is found, the algorithm returns that the instance

is a no-instance.

Algorithm 2: FillNonBasis (A, B̃, W)

1 B← B̃
2 while B has a null row do
3 let Bi be the first null row
4 for v ∈ {0, 1}k do
5 if iWCompatible (A, B, W, i, v) then
6 Bi ← v
7 goto line 2
8 return (B, i) // there is no (i, W)-compatible v

9 return (B, n + 1) // B has no null row

Algorithm 3: iWCompatible (A, B̃, W, i, v)

1 for each non-null row Bj do
2 if vTWBj ̸= Aij then
3 return false
4 if vTWv ̸ ⋆= Aii then
5 return false
6 return true

We now design several search reduction rules that can help to quickly prune away

branches that cannot lead to a solution.

• SEARCH RULE 0: Assign signatures to reduced blocks before non-reduced blocks. We

observed during experiments that the order in which we assign signatures to vertices

can significantly impact how fast the algorithm terminates. Ideally, we would like the
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Algorithm 4: InferCliqWts-LP (A, B̃)

1 let γ1, · · · , γk ≥ 0 be variables of the LP
2 for all pairs of non-null rows B̃i, B̃j s.t. Aij ̸= ⋆ do
3 add LP constraint ∑1≤q≤k B̃iqB̃jqγq = Aij

4 if the LP is infeasible then
5 return the null matrix
6 else
7 return the diagonal matrix given by γ1, . . . , γk

first k vertices to be as close to an independent set as possible (since non-neighbors

significantly restrict potential valid signatures, see S-RULE 1). Since vertices within a

block must be neighbors, we wanted an order that hit many distinct blocks quickly,

yet was compatible with the engineering required for S-RULE 2 (below). This led

to the strategy push_front, which assigns signatures to all vertices which are repre-

sentatives of reduced blocks (which necessarily have size 1) before proceeding to

those in non-reduced blocks. We validated our choice by empirically evaluating

this against several other orders including the arbitrary approach in [7]; details

are in Section 2.6.4.

• SEARCH RULE 1: For every vertex, generate only those signatures that don’t share a clique

with the non-neighbors of that vertex. The main idea behind S-RULE 1 is that any

two non-neighbors should not share a clique. Thus, for non-neighbors u and v,

BuBv
T = 0. Whenever the algorithm is searching for a signature to assign to a new

vertex, it generates the list of cliques that are “forbidden” for that vertex based on

the signatures of the vertex’s non-neighbors. It then uses this list to generate only

those signatures that respect the “forbidden” cliques. In many cases, this drastically

reduces the number of signatures to be tried.

• SEARCH RULE 2: Vertices across blocks must have unique signatures. The cliques

that a vertex participates in cannot be a proper subset of the cliques its ⋆-twin partic-

ipates in. Make all signatures in a block either identical or pairwise distinct.

We establish the correctness of our rules using the following Lemmas.

Lemma 2.9. If u and v belong to different blocks then Bu ̸= Bv.
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Proof. For contradiction, assume Bu = Bv. Since u and v belong to different blocks, they

must not be ⋆-twins. Thus, either u is not adjacent to v or Au
⋆
̸= Av.

If u is not adjacent to v, Auv = BuWBT
v = 0. Since, Bu = Bv and since we do not

allow cliques to have weight 0, BuWBT
v = 0 iff Bu = Bv = 0. Thus, it must be the case

that Bu = Bv = 0. However, since the graph has already been preprocessed to remove all

isolated vertices, the remaining vertices must all have at least one edge adjacent to them

and hence must be a part of at least one clique. Thus, Bu, Bv ̸= 0 which is a contradiction.

Now consider the case when u and v are adjacent but Au
⋆
̸= Av. Since Bu = Bv,

BuWBT = BvWBT. Since BuWBT ⋆
= Au and BvWBT ⋆

= Av, this implies that Au
⋆
= Av,

a contradiction.

Lemma 2.10. Let (G, k) be a yes-instance of AEWCD. There exists a solution B such that for every

pair of ⋆-twins u, v in G, Bu ̸⊂ Bv and vice versa.

Proof. Suppose there exist ⋆-twins u and v and a solution B such that Bu ⊂ Bv. Then there

exists a clique C in the solution such that v ∈ C, u /∈ C. If C is a singleton clique or C has

weight 0, then we can remove C from the solution. Clearly, the remaining set of cliques

would still be a solution and the theorem would be true. So assume C has positive weight

and is not a singleton clique. Thus, there exists a vertex v′ ∈ C, v′ ̸= v. Since u and v are

⋆-twins and v is a neighbor of v′, u must also be a neighbor of v′ and wuv′ = wvv′ . Let

Suv′ and Svv′ be the set of cliques in the solution in which edges uv′ and vv′ participate,

respectively. Then since Bu ⊂ Bv, Suv′ ⊂ Svv′ . Moreover, wuv′ = ∑i:uv′∈Ci
γi where γi

represents the weight of clique i. Similarly, wvv′ = ∑i:vv′∈Ci
γi. But since the cliques have

positive weights and Suv′ ⊂ Svv′ , wuv′ < wvv′ which is a contradiction.

We know from Theorem 3.1 that blocks having > k vertices must be identical blocks.

However, blocks having ≤ k vertices can be fraternal. Moreover, by Lemma 11 of [12]

we know that if the given instance is a yes-instance then there exists a solution in which

all vertices in a block have either identical signatures or pairwise distinct signatures. We

show that if the given instance is a yes-instance of AEWCD then there exists a solution in

which this condition is simultaneously true for all blocks.

Theorem 2.11. If (G, k) is a yes-instance of AEWCD, there exists a solution in which every block
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of G has either identical signatures or pairwise distinct signatures.

Proof. Consider any solution (B, W) to the given instance and suppose there exists a block

D whose vertices have signatures that are neither all unique nor all pairwise-disjoint (if

such a block does not exist then the theorem is trivially true). Thus, there exist vertices

v1, v2, v3 in D such that Bv1 = Bv2 ̸= Bv3 . Consider the n × k matrix B′ got by setting

B′v1 = Bv1 , B′v2 = Bv2 , B′v3 = Bv1 and ∀x ̸= v1, v2, v3, B′x = Bx i.e., B′ has the same

signatures as B for all vertices except v3 and B′v3 is set to Bv1 . To prove that (B′, W) is

indeed a valid solution for (G, k), it is sufficient to show that B′uWB′Tv
⋆
= Auv for all vertices

u, v in G. There are 3 cases to consider:

• u, v ̸= v3: B′uWB′Tv = BuWBT
v

⋆
= Auv.

• u = v3,v ̸= v3: B′uWBT
v = Bv1WBT

v
⋆
= Av1v = Av3v, where the last equality follows

from v1 and v3 being in the same block D.

• u = v = v3: in this case, B′v3WB′Tv3
= Bv1WBT

v3

⋆
= Av1v3

⋆
= Av3v3 . The ⋆

= here follows

because any two entries (that are not ⋆) in the same block of matrix A are equal

(Lemma 7 of [12]).

We can apply this iteratively to all vertices in D and to other blocks until all blocks either

have identical signatures or pairwise distinct signatures.

Thus, we only need to search over those assignments that satisfy the conditions of

Theorem 2.11. In Line 5 in CliqueDecomp-LP and Line 4 in FillNonBasis, when assigning

a signature to a vertex we ensure that all vertices in its block have either identical or

unique signatures. This eliminates assignments in which a block consists of some repeated

signature but not all identical signatures, thereby reducing the search space.

2.5.1 Running Time

The overall running time of DeCAF is O(4k2
2kk4(k223k + k3L)), where L is the number

of bits required for input representation [35]. If L = O(2k) this comes to O(4k2
k616k) and

for cricca is O(4k2
k232k). In practice we are able to get at least two orders of magnitude

speedup.
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The for loop in Line 1 of Algorithm 1 has at most 22k2
iterations. FillNonBasis takes

time O(n2k2k), where n is the number of vertices in the kernelized instance. Algorithm

InferCliqWts-LP solves an LP with k variables and at most 4k2 constraints which can be

solved inO(k4L) time where L is the number of bits required for input representation [35].

iWCompatible runs in time O(nk) and hence, the total time taken by FillNonBasis is

O(n2k2k). Hence, the total time taken by CliqueDecomp-LP without the S-RULEs is

O(22k2
2k(k4L + n2k2k)). Since n ≤ 4k, the total running time of CliqueDecomp-LP as given

by [7] is O(4k2
k2(32k + k3L)). Thus, if L = O(2k), this comes to O(4k2

k232k).

S-RULE 0 pushes singleton vertices from reduced blocks to front in timeO(n). S-RULE 1

when assigning a signature to a vertex v, loops over the non-neighbors of v and generates

the list of forbidden cliques in time O(nk). S-RULE 2 when assigning a signature to a

vertex, compares with the signatures of other vertices in the block in O(nk) time. Thus,

the running time of CliqueDecomp-LP with S-RULEs is O(22k2
2nk2(k4L + n2k2k)). Due to

the new kernel, we can set n = k2k. This gives an overall running time ofO(4k2
2kk4(k223k +

k3L)).

2.6 Experimental Results
We compared the performance of our kernelization and decomposition algorithms

with those of [7]. We use the publicly available Python package of [7] provided by its

authors and implement our new algorithms as an extension. We ran all experiments on

identical hardware, equipped with 40 CPUs (Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz)

and 191000 MB of memory, and running CentOS Linux release 7.9.2009. We used Gurobi

Optimizer 9.1.2 as the LP solver, parallelized using 40 threads. A timeout of 3600 seconds

per instance was used in all experiments. Code and data to replicate all experiments are

available at https://github.com/TheoryInPractice/DeCAF.

2.6.1 Notation

We use KD and SD to denote our kernelization and decomposition algorithms, respec-

tively. We use KC to denote the kernelization algorithm of [7], and SC (SC∗) for the decom-

position algorithm of [7] without (with) S-RULE 0. Thus, cricca represents the combination

(KC, SC), cricca* is (KC, SC∗) and DeCAF is(KD, SD). We use nC and nD to denote number

https://github.com/TheoryInPractice/DeCAF
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of vertices remaining in the graph (the kernel) after applying KC and KD respectively. For

some experiments, we subselect instances based on their seed, as detailed in the experi-

ment description.

2.6.2 Datasets

The authors of [7] evaluate cricca on two biology-inspired synthetic

datasets (LV and TF, seeds 0-19). Details about how these datasets were created are in

Section 7 and Appendix D of [7]. We use the same datasets and expand the corpus for

our experiments using the same procedure for generating the graphs as [7] (with different

seeds), noting that validating scalability and correctness in the exact setting is a necessary

precursor to evaluation on noisy real-world data with unknown ground truth. Detailed

instructions for generating the data are in our codebase.

We assume that every graph has been preprocessed to remove isolated vertices. Each

(preprocessed) graph G has a ground-truth k—the minimum k such that (G, k) is a yes-

instance. We distinguish this from kin, which denotes the number of desired cliques input

to the algorithms; each (G, kin) denotes a unique instance of EWCD. Details about these

instances can be found in Table 2.1. As in [7], we restrict our main corpus to graphs with

3 ≤ k ≤ 11; for k ∈ [5, 7], we generated multiple instances for each G using several values

of kin above and below k (E.3 in [7]). The number of unique G are shown in column “#G”

and the number of (G, kin) instances are shown in the column “#(G, kin)”. The columns n

and m denote the average number of vertices and edges across all instances per k value.

For ease of comparison of running times, we do not include instances that timed out on

any combination of KC, KD, SC∗ and SD in Table 2.1. A detailed breakdown of timeouts is

in Section 2.6.7.

2.6.3 Smaller Kernel

To evaluate the effect of KERNEL RULE 2+, we compared the kernel size and the run-

ning time of KD with those of KC. We used the entire dataset (seeds 0-19) of ground-truth k

between 3 and 11 (inclusive), with input k (kin) varied between 0.4k and 1.6k. Because the

difference between two versions is only the threshold value used in K-RULE 2 and K-RULE

2+, it holds that nD ≤ nC. Further, if KC solves the problem, that is, it finds the instance a

no-instance, then so does KD.
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Figure 2.1 plots the ratio nD/nC for each instance, colored by kin. We can see that most

instances got shrunk to less than 20% of nC. Also we observe that our kernel size nD

decreases (1) as n increases and (2) as kin increases. The former is intuitive; K-RULE 2+ is

more effective when the instance is larger, removing more vertices from the graph. The

latter is explained by the fact that KC is effective only for blocks that are exponential in size

with respect to kin and thus, has less impact when kin is large, where as KD is able to reduce

all blocks with > kin vertices and hence is effective even when kin is large.

For the running time of the kernelization process, we computed the relative running

time i.e., the ratio of the running time of KD to that of KC. The first and third quantiles

were 0.99 and 1.01, respectively, and the maximum was 1.24. We conclude that there is no

significant difference in running times.

2.6.4 Effects of Vertex Reordering

We found that vertex ordering has a significant impact on the efficiency of the decom-

position process, especially when we obtain a smaller kernel. We experimented with the

following orderings.

arbitrary is the baseline strategy used in cricca. It keeps one arbitrary vertex from

each block that is reduced and does not reorder the vertices. push_front is the one adopted

as S-RULE 0. It keeps one arbitrary vertex from each block that is reduced and moves the

representative vertex to the front of the ordering. push_back does the opposite; it keeps

one arbitrary vertex from each block that is reduced and moves the representative vertex

to the back. keep_first keeps the earliest vertex from each block that is reduced and does

not reorder the vertices.

To clearly distinguish the effect of ordering (S-RULE 0) from the other S-RULEs, we

ran SC∗ (SC with S-RULE 0) on seed 0 instances, where we experimented with each of the

above orderings. We obtained results for both KD and KC. Figure 2.6 plots the log-scale

distribution of running time of (KD, SC∗) for the different ordering strategies compared to

arbitrary. push_front gave the most speedup (10 to 100 times) and did not time out on

any instances. We believe this is because singleton vertices from reduced blocks tend to be

non-neighbors which helps to quickly detect infeasible assignments. We observed similar

behavior with the (KC, SC∗) combination as shown in Figure 2.7 in Section 2.6.7.
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2.6.5 Faster Decomposition

We show results comparing the time taken by cricca* and the time taken by DeCAF for

decomposing all instances reported in Table 2.1. We also do an ablation study and report

the effect of the smaller kernel on the running time, with and without search rules.

2.6.5.1 Comparison with cricca*. Figure 2.3 gives the ratio of the running time of

cricca* and the running time of DeCAF for different k (lower is better). This includes the

kernelization time as well as the time required for decomposition. For small k, we do not

see a significant reduction in runtime but for larger k we are able to obtain up to two orders

of magnitude reduction in the running time, and the trend indicates that the reduction in

runtime increases with k. Note that we do not include here information about instances for

which either cricca* or DeCAF timeout. In the entire corpus of 2556 instances, 297 instances

timed out for cricca* and 3 for DeCAF. More detailed information about these instances is

in Section 2.6.7 (Table 2.2). Note that the order in which the algorithm considers vertices

to assign signatures to impacts the running time. In some cases, despite the smaller kernel

and push_front ordering, the running time can go up. Such instances have a ratio > 1 in

Figure 2.3 and are extremely rare.

Figure 2.2 shows the ratio of the number of times the LP solver was invoked by cricca*

and the number of times the LP solver was invoked by DeCAF. Because of the search rules

and the smaller kernel, we are able to obtain up to three orders of magnitude reduction in

the number of runs of the LP solver. Similar to running time, we see an increasing trend in

the reduction in the search space with k.

2.6.5.2 Ablation study. To study the relative impact of the smaller kernel and the

search rules on the running time of the decomposition algorithm, we tested all four combi-

nations of the kernels (KC and KD) and decomposition algorithms (SC∗ and SD). Here, we

only consider the running time of the decomposition algorithms and not the kernelization

algorithms and do not include numbers for any instance that timed out across all four

combinations. Table 2.1 shows the average reduction obtained in all 4 combinations for

different k. The smaller kernel has a greater impact on the runtime compared to that of the

search rules. Moreover, as expected, the average reduction increases as k increases.
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2.6.6 Scalability

In this section, we evaluate the overall scalability of our implementation. We consider

two input k values, (1) kin = k for yes-instances and (2) kinput = ⌈0.8k⌉ for no-instances.

In Figure 2.4, we compare four configurations, the combinations cricca*, DeCAF and two

kin values for k ∈ [5, 6, 7] with the instances of seeds [0, 9]. We observe that no-instances

take longer than yes-instances in both versions. For cricca*, the median runtime reaches

the time limit (3600 seconds) with k = 7 for no-instances. In contrast, DeCAF achieves a

median of 13 seconds. For yes-instances, for k = 7 there is an order of magnitude difference

in the runtimes of the two algorithms.

To test for scalability, we ran DeCAF on 12 randomly-selected instances for each k ∈

[8, 17]. Figure 2.5 shows the distribution of running time for the yes and no instances.

The median runtime for no-instances with DeCAF hits the time limit at k = 9. Compare

this with the time taken by cricca* in Figure 2.4; it already hits the time limit at k = 7.

Since both cricca* and DeCAF timeout for k ≥ 9, we focus on the yes-instances. For yes-

instances, DeCAF finished within 1000 seconds for all k except for a few “hard” instances

with k = 13, 16 (this may happen because the worst-case running time is not polynomially

bounded). Compare this with Figure 7 in [7] which shows that cricca already hits the

time limit at k = 9. We conclude that with DeCAF we are able to scale to at least 1.5× larger

k than cricca for yes-instances. Details on the number of LP runs are shown in Figures 2.8

and 2.9.

2.6.7 Additional Experimental Results

This section includes supplemental information on instances that timed out, as well as

the results of vertex reordering strategies on KC and the number of LP runs on the corpus

of instances from Section 6.4.

2.6.7.1 Timeouts. The number of timeouts with cricca* as well as DeCAF for differ-

ent k are given in Table 2.2.

2.6.7.2 Distribution on LP runs when scaling k. In Figures 2.8 and 2.9, we include

data on the number of executions of the LP solver on the corpus used in Section 6.4, broken

out by yes- and no-instances.
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2.6.7.3 Impact of vertex reordering on KC. We also evaluated all four vertex or-

dering strategies using kernelized instances produced by the algorithm in [7] using the

instances with seed 0. Figure 2.7 presents the results. While none of them significantly

out-performed arbitrary, we note that push_front also did not degrade performance.

2.7 Conclusion
We gave a k2k kernel for EWCD, an exponential reduction over the best-known ap-

proach (a 4k kernel). It remains open whether a polynomial kernel exists for EWCD. We

also describe new search rules that reduce the decomposition search space for the problem.

Our algorithm DeCAF achieves two orders of magnitude speedup over the state-of-the-art

algorithm, cricca; it reduces the number of LP runs by up to three orders of magnitude.

Since our approach prunes away large parts of the search space, we are able to scale to

solve instances with a larger number of ground-truth cliques (k) than previously possible,

though the approach struggles to solve no-instances in this setting. We believe additional

rules for quickly detecting infeasibility will help the algorithm to achieve similar scalability

when kin < k. A natural next step is to consider optimization variants in the non-exact

setting.



44

Figure 2.1: Kernel size of KD relative to that of KC on entire corpus (seeds 0-19), sorted by
instance size (prior to kernelization) and colored by kin.
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Figure 2.2: DeCAF reduces the number of LP runs of cricca* by two orders of magnitude.
We plot the ratio of number of LP runs on all instances that completed in 3600s with both
algorithms. Instances are binned by k, the number of cliques in the desired decomposition,
highlighting that the reduction in LP runs increases with the parameter value.



45

3 4 5 6 7 8 9 10 11

10 −3 

10 −2 

10 −1 

1

k (number of cliques)

tim
e 

(D
eC

A
F)

 / 
tim

e 
(c

ric
ca

*)

Figure 2.3: DeCAF improves the runtime of cricca* by two orders of magnitude. We plot
the ratio of execution time on all instances that completed in 3600s with both algorithms.
Instances are binned by k, the number of cliques in the desired decomposition, highlighting
that the improvement in runtime increases with the parameter value.

Figure 2.4: Runtime distribution (log-scale) for cricca* and DeCAF on corpus of YES (kin =
k) and NO (kin = ⌈0.8k⌉) instances with seeds [0, 9] and 5 ≤ k ≤ 7.
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Figure 2.5: Runtime distribution (log-scale) for DeCAF on corpus of YES (kin = k) and NO
(kin = ⌈0.8k⌉) instances with seeds [0, 9] and 8 ≤ k ≤ 17.

Figure 2.6: Log-log plot of decomposition runtime distribution on instances with seed 0
using different vertex reordering strategies (and kernel KD). Times relative to arbitrary.
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Figure 2.7: Log-scale plot of decomposition running time distribution with different vertex
reordering strategies compared to arbitrary. Tested with the instances of seed 0, k ∈
[3, 11] and the original kernels (KC).

Figure 2.8: Distribution of number of LP runs (log-scale) for cricca* and DeCAF on corpus
of YES (kin = k) and NO (kin = ⌈0.8k⌉) instances with seeds [0, 9] and 5 ≤ k ≤ 7.
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Figure 2.9: Distribution of number of LP runs (log-scale) for DeCAF on corpus of YES (kin =
k) and NO (kin = ⌈0.8k⌉) instances with seeds [0, 9] and 8 ≤ k ≤ 17.
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Table 2.1: Corpus number of instances and average sizes grouped by k value (seeds [0, 9]
and k ∈ [3, 11]). Right columns show average runtime reduction for combinations of
kernels KC, KD and decomposition algorithms SC∗ , SD.

KC KD
SC∗ SD SC∗ SD

cricca* DeCAF
k #G #(G, kin) n m speedup

3 321 321 198.21 38.72 1.00 2.40 2.23 2.45
4 225 225 223.13 146.69 1.00 3.60 4.74 8.81
5 300 564 313.85 2677.86 1.00 6.30 147.91 669.55
6 360 734 369.28 10182.26 1.00 11.83 158.88 1379.24
7 136 274 542.28 28477.22 1.00 13.06 500.44 6061.28
8 31 31 459.77 22834.32 1.00 17.79 169.95 3421.30
9 27 27 824.78 61877.89 1.00 6.45 317.75 9316.60
10 24 24 778.25 116381.50 1.00 22.96 134.39 6876.59
11 18 18 953.00 99219.67 1.00 12.66 128.11 13475.95

Table 2.2: Table showing the number of instances in the main corpus that timed out for
cricca* and DeCAF for 3 ≤ k ≤ 11.

k 3 4 5 6 7 8 9 10 11

cricca* 0 0 21 46 132 20 30 27 21
DeCAF 0 0 0 0 0 0 3 0 0
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CHAPTER 3

REDUCING THE SEARCH SPACE

FOR ODD CYCLE TRANSVERSAL

In the previous chapter, we saw an example of kernels effectively reducing the search

space. In this chapter, we study an alternative notion of preprocessing that is applicable

even when the solution size is not small. Donkers and Jansen introduced antler decompo-

sitions for FEEDBACK VERTEX SET and established a framework of preprocessing “beyond

kernelization” [5]. Collaborating with Bart M. P. Jansen1, Blair D. Sullivan2, and Ruben

Verhaegh1, we extended their idea to another problem, ODD CYCLE TRANSVERSAL. We

presented our new results at the International Symposium on Parameterized and Exact

Computation (IPEC) ’24 and published the paper “Preprocessing to Reduce the Search

Space for Odd Cycle Transversal” [14]. I was in charge of establishing technical results and

writing the proof of about the half of key lemmas/theorems. For statements marked (♦),

the proof is mostly contributed by coauthors and not included in this dissertation. Please

refer to the full paper for details.

3.1 Introduction
The NP-hard ODD CYCLE TRANSVERSAL problem asks for a minimum vertex set

whose removal from an undirected input graph G breaks all odd cycles, and thereby yields

a bipartite graph. Finding odd cycle transversals has important applications, for example

in computational biology [10, 23] and adiabatic quantum computing [8, 9]. ODD CYCLE

TRANSVERSAL parameterized by the desired solution size k has been studied intensively,

leading to important advances such as iterative compression [21] and matroid-based kernel-

ization [16, 17]. The randomized kernel due to Kratsch and Wahlström [17, Lemma 7.11]

1Eindhoven University of Technology, Netherlands.

2University of Utah, USA.
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is a polynomial-time algorithm that reduces an n-vertex instance (G, k) of ODD CYCLE

TRANSVERSAL to an instance (G′, k′) on O((k log k log log k)3) vertices, that is equivalent

to the input instance with probability at least 2−n. Experiments with this matroid-based

kernelization, however, show disappointing preprocessing results in practice [20]. This

formed one of the motivations for a recent line of research aimed at preprocessing that

reduces the search space explored by algorithms solving the reduced instance, rather than

preprocessing aimed at reducing the encoding size of the instance (which is captured by

kernelization). To motivate our work, we present some background on this topic.

A kernelization of size f : N → N for a parameterized problem P is a polynomial-time

algorithm that reduces any parameterized instance (I, k) to an instance (I′, k′) with the

same YES/NO answer, such that |I′|, k′ ≤ f (k). It therefore guarantees that the size of the

instance is reduced in terms of the complexity parameter k. It does not directly ensure

a reduction in the search space of the follow-up algorithm that is employed to solve the

reduced instance. Since the running times of FPT algorithms for the natural parameteri-

zation of ODD CYCLE TRANSVERSAL [10, 21, 18] depend exponentially on the size of the

sought solution, the size of the search space considered by such algorithms can be reduced

significantly by a preprocessing step that finds some vertices S that belong to an optimal

solution for the input graph G: the search for a solution of size k on G then reduces to the

search for a solution of size k− |S| on G− S. Researchers therefore started to investigate in

which situations an efficient preprocessing phase can guarantee finding part of an optimal

solution.

One line of inquiry in this direction aims at finding vertices that not only belong to

an optimal solution, but are even required for building a c-approximate solution [2, 15];

such vertices are called c-essential. This has resulted in refined running time guarantees,

showing that an optimal odd cycle transversal of size k can be found in time 2.3146k−ℓ ·

nO(1), where ℓ is the number of vertices in the instance that are essential for making a

3-approximate solution [2]. Another line of research, more relevant to the subject of this

chapter, aims at finding vertices that belong to an optimal solution when there is a simple,

locally verifiable certificate of the existence of an optimal solution containing them. So far,

the latter direction has been explored for VERTEX COVER (where a crown decomposition [1, 7]

forms such a certificate), and for the (undirected) FEEDBACK VERTEX SET problem (where



55

an antler decomposition [5]) forms such a certificate.

A crown decomposition (see Figure 3.1) of a graph G consists of a partition of its vertex

set into three parts: the crown I (which is required to be a non-empty independent set),

the head H (which is required to contain all neighbors of I), and the remainder R = V(G) \

(I ∪ H), such that the graph G[I ∪ H] contains a matching M of size |H|. Since I is an

independent set, this matching partners each vertex of H with a private neighbor in I.

The existence of a crown decomposition shows that there is an optimal vertex cover (a

minimum-size vertex set intersecting all edges) that contains all vertices of H and none of I:

any vertex cover contains at least |M| = |H| vertices from I ∪ H to cover the matching M,

while H covers all the edges of G that can be covered by selecting vertices from I ∪ H.

Hence a crown decomposition forms a polynomial-time verifiable certificate that there is

an optimal vertex cover containing all vertices of H. It facilitates a reduction in search

space for VERTEX COVER: graph G has a vertex cover of size k if and only if G − (I ∪ H)

has one of size k − |H|. A crown decomposition can be found in polynomial time if it

exists, which yields a powerful reduction rule for VERTEX COVER [1].

Inspired by this decomposition for VERTEX COVER, Donkers and Jansen [5] introduced

the notion of an antler decomposition of a graph G. It is a partition of the vertex set into

three parts: the antler A (which is required to induce a non-empty acyclic graph), the

head H (which is required to contain almost all neighbors of A: for each tree T in the

forest G[A], there is at most one edge that connects T to a vertex outside H), and the

remainder R = V(G) \ (A ∪ H), while satisfying an additional condition in terms of an

integer z that represents the order of the antler decomposition. In its simplest form for z = 1

(we discuss z > 1 later), the additional condition says that the graph G[A ∪ H] should

contain |H| vertex-disjoint cycles. Since G[A] is acyclic, each of these cycles contains

exactly one vertex of H. They certify that any feedback vertex set of G contains at least |H|

vertices from A ∪ H. Since A induces an acyclic graph, and all cycles in G that enter a

tree T of G[A] from R must leave A from H, the set H intersects all cycles of G that contain

a vertex of A ∪ H. Hence there is an optimal feedback vertex set containing H. By finding

an antler decomposition we can therefore reduce the problem of finding a size-k solution

in G to finding a size-(k − |H|) solution in G − (A ∪ H), and therefore reduce the search

space for algorithms parameterized by solution size.
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Donkers and Jansen proved that, assuming P ̸=NP, there unfortunately is no

polynomial-time algorithm to find an antler decomposition if one exists [5, Theorem 3.4].

However, they gave a fixed-parameter tractable preprocessing algorithm, parameterized by

the size of the head. There is an algorithm that, given a graph G and integer k such that G

contains an antler decomposition (A, H, R) with |H| = k, runs in time 2O(k
5) · nO(1) and

outputs a set of at least k vertices that belong to an optimal feedback vertex set. For each

fixed value of k, this yields a preprocessing algorithm to detect vertices that belong to an

optimal solution if there is a simple certificate of their membership in an optimal solution.

In fact, Donkers and Jansen gave a more general algorithm; this is where z-antlers

for z > 1 make an appearance. Recall that for a 1-antler decomposition (A, H, R) of a

graph G, the graph G[A ∪ H] must contain a collection C of |H| vertex-disjoint cycles.

These cycles certify that the set H is an optimal feedback vertex set in the graph G[A ∪ H].

In fact, the feedback vertex set H in G[A ∪ H] is already optimal for the subgraph C ⊆

G[A ∪ H], and that subgraph C is structurally simple because each of its connected com-

ponents (which is a cycle) has a feedback vertex set of size z = 1. This motivates the

following definition of a z-antler decomposition for z > 1: the set H should be an op-

timal feedback vertex set for the subgraph G[A ∪ H], and moreover, there should be a

subgraph Cz ⊆ G[A ∪ H] such that (1) H is an optimal feedback vertex set in Cz, and

(2) each connected component of Cz has a feedback vertex set of size at most z. So for

a z-antler decomposition (A, H, R) of a graph G, there is a certificate that H is part of an

optimal solution in the overall graph G that consists of the decomposition together with the

subgraph Cz ⊆ G[A ∪ H] for which H is an optimal solution. The complexity of verifying

this certificate scales with z: it comes down to verifying that H ∩V(C) is indeed an optimal

feedback vertex set of size at most z for each connected component of the subgraph Cz.

Donkers and Jansen presented an algorithm that, given integers k ≥ z ≥ 0 and a graph G

that contains a z-antler decomposition whose head has size k, outputs a set of at least k

vertices that belongs to an optimal feedback vertex set in time 2O(k
5z2)nO(z). For each fixed

choice of k and z, this gives a reduction rule (that can potentially be applied numerous

times on an instance) to reduce the search space if the preconditions are met.
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3.1.1 Our Contribution

We investigate search-space reduction algorithms for ODD CYCLE TRANSVERSAL,

thereby continuing the line of research by Donkers and Jansen [5]. We introduce the notion

of tight odd cycle cuts to provide efficiently verifiable witnesses that a certain vertex set

belongs to an optimal odd cycle transversal, and present algorithms to find vertices that

belong to an optimal solution in inputs that admit such witnesses.

To be able to state our main result, we introduce the corresponding terminology. An

odd cycle cut (OCC) in an undirected graph G is a partition of its vertex set into three parts:

the bipartite part B (which is required to induce a bipartite subgraph of G), the cut part C

(which is required to contain all neighbors of B), and the rest R = V(G) \ (B ∪ C). An

odd cycle cut is called tight if the set C forms an optimal odd cycle transversal for the

graph G[B ∪ C]. In this case, it is easy to see that there is an optimal odd cycle transversal

in G that contains all vertices of C, since all odd cycles through B are intersected by C. A

tight OCC (B, C, R) has order z if there is a subgraph Cz of G[B∪C] for which C is an optimal

odd cycle transversal, and for which each connected component of Cz has an odd cycle

transversal of size at most z. This means that for z = 1, if there is such a subgraph Cz ⊆

G[B ∪ C], then there is one consisting of |C| vertex-disjoint odd cycles. We use the term z-

tight OCC to refer to a tight OCC of order z. Our notion of z-tight OCCs forms an analogue

of z-antler decompositions. Note that the requirement that C contains all neighbors of B is

slightly more restrictive than in the FEEDBACK VERTEX SET case. We need this restriction

for technical reasons, but discuss potential relaxations in Section 3.8.

Similarly to the setting of z-antlers for FEEDBACK VERTEX SET, assuming P ̸=NP there

is no polynomial-time algorithm that always finds a tight OCC in a graph if one exists;

not even in the case z = 1 (Theorem 3.36). We therefore develop algorithms that are

efficient for small k and z. The following theorem captures our main result, which is

an OCT-analogue of the antler-based preprocessing algorithm for FVS. The width of an

OCC (B, C, R) is defined as |C|. Our theorem shows that for constant z we can efficiently

find k vertices that belong to an optimal solution, if there is a z-tight OCC of width k.

Theorem 3.1. There is a deterministic algorithm that, given a graph G and integers k ≥ z ≥ 0,

runs in 2O(k
33z2) · nO(z) time and either outputs at least k vertices that belong to an optimal solution
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for ODD CYCLE TRANSVERSAL, or concludes that G does not contain a z-tight OCC of width k.

One may wonder whether it is feasible to have more control over the output, by having

the algorithm output a z-tight OCC (B, C, R) of width k, if one exists. However, a small

adaptation of a W[1]-hardness proof for antlers [5, Theorem 3.7] shows (Theorem 3.37)

that the corresponding algorithmic task is W[1]-hard even for z = 1. This explains why

the algorithm outputs a vertex set that belongs to an optimal solution, rather than a z-tight

OCC.

In terms of techniques, our algorithm combines insights from the previous work on

antlers [5] with ideas in the representative-set based kernelization [17] for ODD CYCLE

TRANSVERSAL. The global idea behind the algorithm is to repeatedly simplify the graph,

while preserving the structure of z-tight OCCs, to arrive at the following favorable situa-

tion: if there was a z-tight OCC of width k in the input, then the reduced graph has a z-tight

OCC (B, C, R) of the same width that satisfies |B| ∈ kO(1). At that point, we can use color

coding with a set of kO(1) colors to ensure that the structure B∪C gets colored in a way that

makes it tractable to identify it. The simplification steps on the graph are inspired by the

kernelization for ODD CYCLE TRANSVERSAL and involve the computation of a cut covering

set of size kO(1) that contains a minimum three-way {X, Y, Z}-separator for all possible

choices of sets {X, Y, Z} drawn from a terminal set T of size kO(1). The existence of such

sets follows from the matroid-based tools of Kratsch and Wahlström [17]. We can avoid the

randomization incurred by their polynomial-time algorithm by computing a cut covering

set in 2O(k) · nO(1) time deterministically. Compared to the kernelization for ODD CYCLE

TRANSVERSAL, a significant additional challenge we face in this setting is that the size of

OCTs in the graph can be arbitrarily large in terms of the parameter k. Our algorithm is

looking for a small region of the graph in which a vertex set exists with a simple certificate

for its membership in an optimal solution; it cannot afford to learn the structure of global

OCTs in the graph. This local perspective poses a challenge when repeatedly simplifying

the graph: we not only have to be careful how these operations affect the total solution

size in G, but also how these modifications affect the existence of simple certificates for

membership in an optimal solution. This is why our reduction step works with three-way

separators, rather than the two-way separators that suffice to solve or kernelize OCT.
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3.1.2 Organization

The remainder of this work is organized as follows. The first twelve pages of the

manuscript present the key statements and ideas. After presenting preliminaries on graphs

in Section 3.2, we define (tight) OCCs in Section 3.3 and explore some of their properties. In

Section 3.4 we show how color coding can be used to find an OCC whose bipartite part is

connected and significantly larger than its cut. Given such an OCC, we show in Section 3.5

how to simplify the graph while preserving the essential structure of odd cycles in the

graph. This leads to an algorithm that finds vertices belonging to an optimal solution

the presence of a tight OCC in Section 3.6. In Section 3.7 we give the hardness proofs

mentioned above. Finally, we conclude in Section 3.8.

3.2 Preliminaries
Refer to Section 1.3.1 for graph-theoretic definitions and notation.

The parity of a path or cycle refers to the parity of its length. For a walk W = (v1, . . . , vk),

we refer to its vertex set as V(W) = {v1, . . . , vk}. Observe that if W is a closed walk of odd

parity (a closed odd walk), then the graph G[V(W)] contains a cycle of odd length (an odd

cycle): any edge connecting two vertices of V(W) that are not consecutive on W splits the

walk into two closed subwalks, one of which has odd length.

For a positive integer q, a proper q-coloring of a graph G is a function f : V(G) →

{0, . . . , q− 1} such that f (u) ̸= f (v) for all uv ∈ E(G). A graph G is bipartite if its vertex

set can be partitioned into two partite sets L∪̇R such that no edge has both of its endpoints

in the same partite set. It is well-known that the following three conditions are equivalent

for any graph G: (1) G is bipartite, (2) G admits a proper 2-coloring, and (3) there is no

cycle of odd length in G. An odd cycle transversal (OCT) of a graph G is a set S ⊆ V(G)

such that G− S is bipartite. An independent set is a vertex set S such that G[S] is edgeless.

We say that a vertex set X in a graph G separates two (not necessarily) disjoint vertex sets S

and T if no connected component of G − X simultaneously contains a vertex from S and

a vertex from T. For a collection {T1, . . . , Tm} of (not necessarily disjoint) vertex sets

in a graph G, we say that a vertex set X is an {T1, . . . , Tm}-separator if X separates all

pairs (Ti, Tj) for i ̸= j. Note that X is allowed to intersect
⋃

i∈[m] Ti.

The following lemma captures the main idea behind the iterative compression algo-
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rithm [21] (cf. [3, §4.4]) for solving ODD CYCLE TRANSVERSAL. Given a (potentially sub-

optimal) odd cycle transversal W of a graph, it shows that the task of finding an odd cycle

transversal disjoint from W whose removal leaves a bipartite graph with W0, W1 ⊆ W in

opposite partite sets of its bipartition is equivalent to separating two vertex sets derived

from a baseline bipartition of G −W. Our statement below is implied by Claim 1 in the

work of Jansen and de Kroon [11].

Lemma 3.2 ([11, Claim 1]). Let W be an OCT in graph G. For each partition of W = W0 ∪W1

into two independent sets, for each proper 2-coloring c of G−W, we have the following equivalence

for each X ⊆ V(G) \W: the graph G− X has a proper 2-coloring with W0 color 0 and W1 color 1

if and only if the set X separates A from R in the graph G−W, with:

A = (NG(W0) ∩ c−1(0)) ∪ (NG(W1) ∩ c−1(1)),

R = (NG(W0) ∩ c−1(1)) ∪ (NG(W1) ∩ c−1(0)).

The next lemma gives a simple sufficient condition for a graph to be bipartite.

Lemma 3.3. Let G be a graph and let VL ∪ V0 ∪ VR = V(G) be a partition of its vertices such

that V0 is a {VL, VR}-separator. If there exist proper 2-colorings fL : (V0 ∪ VL) → {0, 1} and

fR : (V0 ∪ VR) → {0, 1} of G[V0 ∪ VL] and G[V0 ∪ VR] respectively such that fL(v0) = fR(v0)

for every v0 ∈ V0, then G is bipartite.

3.2.1 Multiway Cuts

We introduce some terminology about multiway cuts. Let T = (T1, . . . , Ts) be a parti-

tion of a set T ⊆ V(G) of terminal vertices in an undirected graph G. A multiway cut of T

in G is a vertex set X ⊆ V(G) such that for each pair ti, tj ∈ T \ X that belong to different

parts of partition T , the graph G − X does not contain a path from ti to tj. A restricted

multiway cut of T is a vertex set X that is a multiway cut for T such that X ∩ T = ∅, i.e.,

it does not contain any terminals. The parameterized problem of computing a restricted

multiway cut is well-known to be fixed-parameter tractable parameterized by solution

size [4].

Theorem 3.4 ([4, Corollary 2.6]). There is an algorithm that, given an undirected n-vertex

graph G, terminal set T ⊆ V(G), and integer k, runs in time 2O(k) · nO(1) and either outputs
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the minimum size of a vertex set U ⊆ V(G) \ T for which all vertices of T belong to a different

connected component of G−U, or determines that any such multiway cut has size larger than k.

While the original formulation of the theorem is stated in terms of simply solving the

decision problem (is there a solution of size at most k?), by running this algorithm for

all possible k′ in the range of {0, . . . , k} we can identify the size of an optimal solution

with only a polynomial factor overhead. Next, we show that with a small modification

we can use the same algorithm to compute the size of a minimum multiway cut of an

s-partition T = (T1, . . . , Ts) of the terminal set T (or determine its size is larger than k). To

express the necessary modification on the graph, we need the following concept. The op-

eration of identifying a vertex set X in an undirected graph G yields the graph G′ obtained

from G by removing X while inserting a single new vertex x with NG′(x) = NG(X).

Observation 3.5. Let G be an undirected graph with terminal set T and let T = (T1, . . . , Ts) be

an s-partition of T. The following two conditions are equivalent for each vertex set U ⊆ V(G) \ T:

• The set U is a multiway cut of the partition T in G;

• No connected component of G′ − U contains more than one vertex of T′, where G′ is the

graph obtained from G by identifying each non-empty vertex set Ti for i ∈ [s] into a single

vertex ti, and T′ is the set containing the vertices ti resulting from these identifications. (The

order in which the sets are identified does not affect the final result.)

The forward implication is trivial; the converse follows from the fact that any path

between two distinct vertices of T′ contains a subpath connecting vertices belonging to

two different sets of the partition T , which must therefore be broken by any multiway cut

for the partition T in G.

Lemma 3.6. There is an algorithm that, given an undirected n-vertex graph G, an integer s, an

s-partition T = (T1, . . . , Ts) of a terminal set T ⊆ V(G), and integer k, runs in time 2O(k) · nO(1)

and either outputs the minimum size of a restricted multiway cut for T , or outputs ⊥ to indicate

that any such restricted multiway cut has size larger than k.

Proof. Apply the algorithm of Theorem 3.4 to the graph G′ and terminal set T′ obtained by

identifying each set Ti into a new terminal vertex ti ∈ T′, with a budget of k. Correctness
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follows from Observation 3.5.

We will use Lemma 3.6 to construct a deterministic FPT-algorithm to compute a cut

covering set later. For a vertex set U in an undirected graph G, the operation of bypassing

vertex set U results in the graph bypassU(G) that is obtained as follows: starting from G−

U, add an edge uv between every pair of distinct vertices u, v which appear together in the

same connected component of G[U]? Hence bypassU(G) is a graph on vertex set V(G) \U

that has an edge uv whenever uv ∈ E(G) or there is a path from u to v for which all internal

vertices belong to U.

Observation 3.7. Let G be an undirected graph with terminal set T ⊆ V(G), and let (T1, . . . , Ts)

be a partition of T. For any set R ⊆ V(G) \ T of bypassed vertices and any vertex set U ⊆

V(G) \ R, the set U is a restricted multiway cut of (T1, . . . , Ts) in G if and only if U is a restricted

multiway cut of (T1, . . . , Ts) in bypassR(G).

This observation implies that bypassing a set of non-terminal vertices can only make it

harder to form a multiway cut.

3.2.2 Covering Multiway Cuts for Generalized Partitions

For a positive integer s, a generalized s-partition of a set T is a partition

T ∗ = (T0, T1, . . . , Ts, TX) of T into s + 2 parts, some of which can be empty. The parts T0

and TX play a special role, which are the free and deleted part of T ∗, respectively. Let T′ =

T1 ∪ . . . ∪ Ts. A multiway cut of T ∗ is a (non-restricted) multiway cut in G − TX of the

partition T = (T1, . . . , Ts) of T′. Hence the vertices of TX are deleted from the graph, while

no cut constraints are imposed on the vertices of T0.

A minimum multiway cut of a generalized s-partition T ∗ in a graph G is a minimum-

cardinality vertex set that satisfies the requirements of a multiway cut for T ∗. We denote

the size of a minimum multiway cut of T ∗ in G by MwCut(G, T ∗). The following cut

covering lemma by Kratsch and Wahlström will be useful for our algorithm.

Theorem 3.8 ([17, Theorem 5.14]). Let G be an undirected graph on n vertices with a set T ⊆

V(G) of terminal vertices, and let s ∈ N be a constant. There is a set Z ⊆ V(G) with |Z| =

O(|T|s+1) such that Z contains a minimum multiway cut of every generalized s-partition T ∗ of T,
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and we can compute such a set in randomized polynomial time with failure probability O(2−n).

For a generalized s-partition T = (T0, T1, . . . , Ts, TX) of a terminal set T ⊆ V(G) in an

undirected graph G, we call a multiway cut X of T restricted if it satisfies X∩ (⋃s
i=1 Ti) = ∅.

Hence a restricted multiway cut does not delete any vertex that is active as a terminal in

the generalized partition. A minimum restricted multiway cut of T is a restricted multiway

cut whose size is minimum among all restricted multiway cuts. We denote the minimum

size of a restricted multiway cut of T in G by ResMwCut(G, T ), which we define as +∞ if

no such cut exists.

The following lemma shows that the randomization in the polynomial-time algorithm

by Kratsch and Wahlström can be avoided by the use of a single-exponential FPT algo-

rithm, and that the cut covering set can be adapted to work for restricted multiway cuts as

long as we have a bound on their size.

Lemma 3.9 (♦). Let s ∈ N be a constant. There is a deterministic algorithm that, given an

undirected n-vertex graph G and a set T ⊆ V(G) of terminals, runs in time 2O(|T|) · nO(1)

and computes a set Z ⊆ V(G) with |Z| = O(|T|2s+2) with the following guarantee: for each

generalized s-partition T of T, if there is a restricted multiway cut for T of size at most |T| in G,

then the set Z contains a minimum restricted multiway cut of T .

3.2.3 Universal Sets: The Deterministic Version of Color Coding

For a set D of size n and integer k with n ≥ k, an (n, k)-universal set for D is a family U

of subsets of D such that for all S ⊆ D of size at most k we have {S ∩U | U ∈ U} = 2S.

Theorem 3.10 ([19, Theorem 6], cf. [3, Theorem 5.20]). For any set D and integers n and k

with |D| = n ≥ k, an (n, k)-universal set U for D with |U | = 2O(k) log n can be created

in 2O(k)n log n time.

We extend the notion of universal set to the following notion of universal function family.

For sets A of size n and B of size q and an integer k with n ≥ k, an (n, k, q)-universal function

family is a family F of functions A→ B such that for all S ⊆ A of size at most k, the family

{ f |S : f ∈ F} contains all qk functions from A to B. Here we write f |S for the restriction

of f to domain S.
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Corollary 3.11. There is an algorithm that, given sets A, B with n = |A|, q = |B|, and a

positive integer k ≤ n, constructs an (n, k, q)-universal function family F of size 2O(kq′) logq′ n in

2O(kq′)nq′ logq′ n time, where q′ = ⌈log2 q⌉. In particular, when q is a constant, both the size and

construction time are 2O(k)nO(1).

Proof. Let q′ = ⌈log2 q⌉. The algorithm starts by computing an (n, k)-universal set for A

in 2O(k)n log n time via Theorem 3.10. We conceptually create q′ copies of this universal

set, denoted Ui for i ∈ [q′], where each Ui has size 2O(k) log n. Now consider the Cartesian

product U× := U1× . . .×Uq′ . For a set X ⊆ A we denote its indicator function by IX : A→

{0, 1}, so that IX(x) = 1 if x ∈ X and IX(x) = 0 if x ̸∈ X. Also, let g : {0, 1}q′ → [2q′ ]

be a function that converts binary representations of integers between 0 and (2q′ − 1) into

integers in the range {1, . . . , 2q′}; note that 2q′ ≥ q. Finally, define an arbitrary surjective

function h : [2q′ ] → B. Now, we construct a family of functions F as follows: for each

(U1, . . . , Uq′) ∈ U×, create a function f : A → B such that f (x) = h(g(IU1(x), . . . , IUq′ (x))).

It is straightforward to see that |F | ≤ |U×| ≤ |U1|q
′ ≤ 2O(kq′) logq′ n. This construction can

be done in O(|F | · nq′) time because for each f ∈ F , its values f (x) can be computed by

sequentially scanning (U1, . . . , Uq′) in time O(nq′).

We complete the proof by showing that F is an (n, k, q)-universal function family. First,

observe that for all S ⊆ A of size at most k, for each i ∈ [q′], the family {IUi |S : Ui ∈ Ui}

contains all functions from S to {0, 1}. Consequently, {g(IU1 |S, . . . , IUq′ |S) : (U1, . . . , Uq′) ∈

U×} contains all functions from S to [2q′ ]. Since the function h is surjective, the family

{ f |S : f ∈ F} includes all functions from S to B.

3.3 Odd Cycle Cuts
In order to extend the “antler” framework of [5] to ODD CYCLE TRANSVERSAL (OCT),

we define a problem-specific decomposition which we term Odd Cycle Cuts (OCCs). Our

decompositions have three parts — a bipartite induced subgraph XB, a vertex separator

XC (which we call the head), and a remainder XR.

Definition 3.12 (Odd Cycle Cut). Given a graph G, a partition (XB, XC, XR) of V(G) is an

Odd Cycle Cut (OCC) if (1) G[XB] is bipartite, (2) there are no edges between XB and XR,

and (3) XC ∪ XB ̸= ∅.
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We say |XC| is the width of an OCC, and observe that XC hits all odd cycles in G− XR.

We denote the minimum size of an OCT in G by oct(G).

Observation 3.13. If (XB, XC, XR) is an OCC in G, then |XC| ≥ oct(G[XC ∪ XB]).

Analogous to z-antlers [5], here we define a tight OCC as a special case of an OCC. For

a graph G, a set XC ⊆ V(G) and an integer z, an XC-certificate of order z is a subgraph H

of G such that XC is an optimal OCT of H, and for each component H′ of H we have

|XC ∩ V(H′)| ≤ z. Throughout the chapter, and starting with the following definition,

we will use the convention of referring to a tight OCC as (AB, AC, AR) to emphasize its

stronger guarantees compared to an arbitrary OCC (XB, XC, XR).

Definition 3.14 ((z-)tight OCC). An OCC (AB, AC, AR) of a graph G is tight when |AC| =

oct(G[AC ∪ AB]). Furthermore, (AB, AC, AR) is a tight OCC of order z (equivalently, z-tight

OCC) if G[AC ∪ AB] contains an AC-certificate of order z.

Note this definition naturally implies oct(G) = |AC| + oct(G[AR]): the union of AC

with a minimum OCT in G[AR] forms an OCT for G (since AC separates AB from AR) for

which the requirement |AC| = oct(G[AC ∪ AB]) guarantees optimality.

The following lemma characterizes an intersection of an OCC and a tight OCC.

Lemma 3.15. Let (XB, XC, XR) be a (not necessarily tight) OCC in the graph G and let

(AB, AC, AR) be a tight OCC in G. Then |AC ∩ XB| ≤ |XC|.

Proof. Suppose for contradiction that |AC ∩ XB| > |S|. Then, A′C := (AC \ XB) ∪ (XC ∩

(AB ∪ AC)) is a subset of AB ∪ AC that is strictly smaller than AC. Now, showing that A′C

is an OCT of G[AB ∪ AC] contradicts the assumption that AC is a smallest such OCT by

virtue of (AB, AC, AR) being a tight OCC.

To show that A′C is an OCT of G[AB ∪ AC], we let F be an arbitrary odd cycle in this

graph and show that it intersects A′C. First, if F intersects XC, it intersects A′C in particular,

since XC ∩ (AB ∪ AC) ⊆ A′C.

Otherwise, since XC separates XB and XR in G, F is completely contained in either

G[XB] or G[XR]. The former is not possible, since G[XB] is bipartite by assumption, so

F lives in G[XR]. Furthermore, since F was assumed to live in G[AB ∪ AC] and G[AB] is
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bipartite, F intersects AC. In particular, as we found F to live in G[XR], it intersects AC ∩XR

which is a subset of A′C by construction. Hence, F intersects A′C in any case.

The main result of this section is that assuming a graph G has a z-tight OCC, there exists

a z-tight OCC (AB, AC, AR) such that the number of components in G[AB] is bounded in

terms of z and |AC|. To facilitate a proof, here we characterize the components in the

bipartite part of an XC-certificate that are safe to remove.

Lemma 3.16. For a graph G and its vertex set XC ⊆ V(G), let H be an XC-certificate of order

z in G. Suppose there exists a connected component D of H − XC that satisfies the following two

criteria, where H′ is a connected component of H that contains D, and X′C := XC ∩V(H′):

(1) For each vertex x ∈ X′C for which H[{x} ∪V(D)] contains an odd cycle, there are at least z

connected components D′ ̸= D of H − XC for which H[{x} ∪V(D′)] also contains an odd

cycle, and

(2) For each pair of distinct vertices x, y ∈ X′C, for each parity p ∈ {0, 1}, if the graph

H[{x, y} ∪ V(D)] contains an (x, y)-path of parity p, then there are at least z connected

components D′ ̸= D of H − XC for which H[{x, y} ∪ V(D′)] also contains an (x, y)-path

of parity p.

Then oct(H) = oct(H −V(D)).

Proof. Let us suppose that D satisfies these criteria. Assume for a contradiction that

oct(H −V(D)) < oct(H). Then oct(H′ −V(D)) < oct(H′) ≤ z, where the last inequality

comes from the assumption that H is an order-z XC-certificate. Let X be an optimal OCT

for oct(H′ − V(D)), whose size is less than oct(H′) ≤ z. It follows that H′ − X has an

odd cycle. Out of all odd cycles of H′ − X, let A be an odd cycle that minimizes the

quantity t := |V(A) ∩V(D)|. Note that t > 0, otherwise A would also be an odd cycle in

H′ −V(D) which contradicts X being an OCT for that subgraph. Since XC is an OCT in H

by the definition of XC-certificate, the component D of H − XC is bipartite. Hence the odd

cycle A is not fully contained in V(D), but contains at least one vertex d of D since t ≥ 1.

Orient the odd cycle A in an arbitrary direction and let x be the first vertex after d on A

that does not belong to V(D). Similarly, let y be the first vertex before d on A that does not

belong to V(D). We distinguish two cases, depending on whether x = y.
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Case 1: If x = y. In this case, A is an odd cycle in H[{x} ∪ V(D)]. Since component

D satisfied criterion (1), there are at least z connected components D′ ̸= D of H − XC

for which H[{x} ∪ V(D′)] contains an odd cycle. Since |X| < z, at least one of these

components D∗ does not contain any vertex of X. Then, H[{x} ∪V(D∗)] contains an odd

cycle A′, but we have V(A′) ∩V(D) = ∅. This contradicts our choice of A as an odd cycle

minimizing V(A) ∩V(D).

Case 2: If x ̸= y. Observe that the subpath of C from x to y through d forms an (x, y)-

path P in the graph H[{x, y} ∪ V(D)]. Let p be the parity of path P. Since component D

satisfied criterion (2), there are at least z connected components D′ ̸= D of H − XC that

provide an (x, y)-path of parity p. Since |X| < z, at least one of these components D∗ does

not contain any vertex of X. Consider the closed walk A′ that is obtained by replacing

the subpath P of A by an (x, y)-path P′ of the same parity in the graph H[{x, y} ∪V(D∗)].

Since the replacement preserves the total parity and provides an alternative connection

between the two vertices x, y that appeared on A, it follows that A′ is a closed odd walk.

Since V(D∗)∩ X = ∅, it follows that A′ is a closed odd walk in H′ − X, which implies that

H′ − X contains an odd cycle whose vertex set is a subset of V(A′). But note that A′ uses

strictly fewer vertices from V(D) than A does, since vertex d ∈ V(D) does not appear in

V(A′). This contradicts our choice of A as an odd cycle minimizing |V(A) ∩ V(D)| and

proves the claim.

The following lemma states that we can bound the number of components in an XC-

certificate. This is inspired by and a variation of [5, Lemma 4.5].

Lemma 3.17. Let G be a graph. For a set XC ⊆ V(G), let H be an XC-certificate of order z

in G. Then H contains an XC-certificate Ĥ of order z in G such that Ĥ − XC has at most z2|XC|

components.

Proof. If there is a connected component D of H − XC that satisfies the two criteria of

Lemma 3.16, then, update H to H − V(D). From Lemma 3.16, we have

oct(H) = oct(H − V(D)) = |XC|, and since we never remove vertices in XC, H − V(D)

remains an z-tight OCC. We repeat this process until the criteria become unsatisfied, and

let Ĥ be the final graph.



68

Now, we count the number of components in Ĥ − XC. For each vertex x ∈ XC, there

are at most z components in Ĥ − XC that violates criterion (1) because otherwise, one of

those components will satisfy criterion (1). This results in that there exist at most z · |XC|

components in Ĥ − XC violating criterion (1).

For each component H′ of H, for each distinct vertex pair x, y ∈ XC ∩ H′, and for

each parity p ∈ {0, 1}, there are at most z components in Ĥ − XC that violates criterion

(2) because otherwise, one of those components will satisfy criterion (2). This results in

that there exist at most ∑H′ (
|XC∩V(H′)|

2 ) · 2z = z ·∑H′(|HC ∩ V(H′)|)(|HC ∩ V(H′)| − 1) ≤

z · (z− 1)|XC| components in Ĥ − XC violating criterion (2).

Hence, the number of components in Ĥ − XC is upper-bounded by z · |XC|+ z · (z−

1)|XC| = z2|XC|, as desired.

Lastly, we state the following lemma. This is an extension of [5, Lemma 4.6].

Lemma 3.18. Let (AB, AC, AR) be a z-tight OCC in a graph G for some z ≥ 0. There exists a

set A′B ⊆ AB such that (A′B, AC, AR ∪ AB \ A′B) is a z-tight OCC in G and G[A′B] has at most

z2|AC| components.

Proof. Since (AB, AC, AR) is a z-tight OCC, the graph G[AB ∪ AC] contains an AC-certificate

H of order z. From Lemma 3.17 we know that H contains an AC-certificate Ĥ of order z

such that Ĥ − AC has at most z2|AC| components.

Let A′B be the union of the vertices in the components B in G[AB] such that B includes

at least one vertex from Ĥ. By definition, (A′B, AC, AR ∪ AB \ A′B) is a z-tight OCC such

that G[A′B] has at most z2|AC| components.

Finally, we introduce the notion of an imposed separation problem whose solutions natu-

rally correspond to odd cycle transversals of specific subgraphs.

Definition 3.19. Let (XB, XC, XR) be an OCC of G, and let fB : XB → {0, 1} be a proper

2-coloring of G[XB]. Let C1, C2 ⊆ XC be two disjoint subsets of XC and let fC : C1 → {0, 1}

be a (not necessarily proper) 2-coloring of the vertices in C1. Based on this 4-tuple of objects

(C1, C2, fC, fB), we define three (potentially overlapping) subsets A, R, N ⊆ XB.

1. Let A be the set of vertices vb ∈ XB with a neighbor vc ∈ C1 such that fB(vb) = fC(vc).
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2. Let R be the set of vertices vb ∈ XB with a neighbor vc ∈ C1 such that fB(vb) ̸= fC(vc).

3. Finally, let N := NG(C2) ∩ XB.

We refer to the problem of finding a smallest {A, R, N}-separator in G[XB] as the {A, R, N}-

separation problem imposed onto G[XB] by (C1, C2, fC, fB).

To see the connection between solutions and OCTs, one may let C1 and fB in this

definition correspond to W and c respectively in Lemma 3.2, while the color classes of

fC correspond to the sets W0 and W1 respectively. As shown below in Lemma 3.20, we

can recognize parts of tight OCCs as optimal solutions to specific imposed separation

problems.

Although Definition 3.19 requires fB and fC to be colorings of XB and C1 respectively,

we sometimes abuse the notation by providing colorings whose domains are supersets

of these intended domains. In these cases, one may interpret the definition of the im-

posed separation problem as if given the restrictions of these colorings to their respective

intended domains.

One important role of these separation problems is to allow us to characterize intersec-

tions of two OCCs when at least one is tight. Specifically, in Lemma 3.20, we show that

the intersection of one OCC’s head with the other OCC’s bipartite part forms an optimal

solution to a specific 3-way separation problem, which is even optimal for a corresponding

2-way problem.

Lemma 3.20. [♦] Let (XB, XC, XR) be a (not necessarily tight) OCC in the graph G and let

(AB, AC, AR) be a tight OCC in G. Let fX : XB → {0, 1} and fA : AB → {0, 1} be proper

2-colorings of G[XB] and G[AB] respectively. Let A, R and N be the three sets to be separated in

the separation problem imposed onto G[XB] by (XC ∩ AB, XC ∩ AR, fA, fB) and let their names

correspond to their roles as defined in Definition 3.19. Then, AC ∩ XB is both a minimum-size

{A, R}-separator and a minimum-size {A, R, N}-separator in G[XB].

This will prove to be a useful property in Section 3.5 by which we are able to recognize

part of a tight OCC (AB, AC, AR) in an arbitrary graph. In Lemma 3.15, we show that for

any other OCC (XB, XC, XR) the intersection AC ∩ XB is at most as large as XC.
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3.4 Finding Odd Cycle Cuts
Our ultimate goal is to show that if the graph contains any tight OCC (XB, XC, XR)

with |XC| ≤ k, then we can produce a tight OCC with |XC| ≤ k and |XB| upper-bounded

by some function of k. To achieve this, we first show that we can efficiently find some OCC

where |XB| is large enough, and then (in Section 3.5) that we can reduce any such cut so

that |XB| is small without destroying any essential structure of the input graph.

Specifically, we say an OCC (XB, XC, XR) is reducible with respect to some function gr if

|XB| > gr(|XC|). Our results all hold for a specific polynomial gr(x) in Θ(x16), which we

specify in the main paper. We say an OCC (XB, XC, XR) is a single-component OCC if G[XB]

is connected.

Given a graph G, our goal is to output a reducible OCC efficiently assuming that G

contains a single-component OCC (XB, XC, XR) with |XB| > gr(2|XC|) and |XC| ≤ k. We

achieve this by color coding of the vertices in G (see definitions in Section 3.2.3 for details).

Consider a coloring χ : V(G)→ {Ḃ, Ċ}. For an integer ℓ, an OCC (XB, XC, XR) with |XB| ≥

ℓ is ℓ-properly colored by χ if XC ⊆ χ−1(Ċ) and there is a set of ℓ vertices of XB that are

colored Ḃ and induce a connected subgraph of G.

Our result is based on bipartite separations, as introduced by Jansen et al. [13]. Specif-

ically, define a (H, k)-separation to be a pair (C, S) of disjoint vertex sets for a graph class

H and an integer k such that G[C] ∈ H, |S| ≤ k and NG(C) ⊆ S. For H = bip, where

bip denotes the class of bipartite graphs, Jansen et al. [13] gave a 2-approximation for the

problem of computing a (bip, k)-separation covering a given connected vertex set Z.

Corollary 3.21 ([13, Lemma 4.24] (rephrased)). There is a polynomial-time algorithm that,

given a graph G, an integer k, and a non-empty vertex set Z such that G[Z] is connected, either:

• returns a (bip, 2k)-separation (C, S) with Z ⊆ C, or

• concludes that G does not have a (bip, k)-separation (C′, S′) with Z ⊆ C′.

The original formulation of the corresponding result is in terms of a problem called

(H, k)-SEPARATION FINDING. In the definition of this problem, the input graph is required

to have a bound on itsH-treewidth and the output separation is only guaranteed to weakly

cover Z, meaning that Z ⊆ C ∪ S rather than Z ⊆ C. Jansen et al. [13] used this formalism
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to treat a variety of different graph classes H. For the particular case of bipartite graphs

that is of interest here, the assumption on theH-treewidth of the input graph is never used

(as is acknowledged in their paper), and from the specification of the algorithm it can be

seen that Z ∩ S is empty: the set S is constructed as a separator in an auxiliary graph,

separating two copies of Z without intersecting these sets. Hence our formulation follows

directly from their results.

First, we show how to construct an OCC with large XB from a proper coloring.

Lemma 3.22. Given a graph G, integers k, ℓ, and a coloring χ : V(G) → {Ḃ, Ċ} of V(G) that

ℓ-properly colors a single-component OCC (XB, XC, XR) with |XC| ≤ k, an OCC (X′B, X′C, X′R)

such that |X′B| ≥ ℓ and |X′C| ≤ 2k can be found in polynomial time.

Proof. Consider the following algorithm. Let Z be the vertices in a connected component

of G[χ−1(Ḃ)]. We iterate over all components. If |Z| < ℓ or G[Z] is not bipartite, continue

to the next component. Otherwise, we invoke Corollary 3.21 to find a (bip, 2k)-separation

(B, S) such that Z ⊆ B. If such a separation exists, output (B, S, V(G) \ (B∪ S)). Otherwise,

continue to the next component.

To show the correctness, let G′ = G[χ−1(Ḃ)]. By assumption, the single-component

OCC (XB, XC, XR) is ℓ-properly colored by χ. Hence V(G′) ∩ XC = ∅ and G′ contains a

connected component G[Z] such that Z ⊆ XB and |Z| ≥ ℓ. Also, because (XB, XC) is a

(bip, |XC|)-separation in G such that Z ⊆ XB, the algorithm must output some solution

(B, S, V(G) \ (B ∪ S)) such that Z ⊆ B, which is by definition an OCC, and we know

|B| ≥ |Z| ≥ ℓ and |S| ≤ 2|XC| ≤ 2k.

For the running time, from Corollary 3.21, we can, given a component Z, find a (bip, 2k)-

separation (B, S) such that Z ⊆ B in polynomial time. There are O(n) components in G′,

so the overall runtime is also polynomial.

Now, we use this coloring scheme to find a reducible OCC, assuming that a graph G

has a single-component OCC (XB, XC, XR) with large XB.

Lemma 3.23. There exists a 2O(k
16)nO(1)-time algorithm that, given a graph G and an integer k,

either determines that G does not contain a single-component OCC (XB, XC, XR) of width at most

k with |XB| > gr(2k) or outputs a reducible OCC in G.
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Proof. We will invoke the algorithm from Lemma 3.22 multiple times for ℓ = gr(2k) + 1. If

we supply a coloring that ℓ-properly colors (XB, XC, XR), then the algorithm is guaranteed

to find an OCC (X′B, X′C, X′R) such that |X′B| > gr(2k) and |X′C| ≤ 2k, which is reducible

as |X′B| > gr(2k) ≥ gr(|X′C|). If all relevant colorings fail to find such a reducible OCC,

then we can conclude that G does not contain a single-component OCC (XB, XC, XR) with

|XC| ≤ k and |XB| ≥ ℓ > gr(2k).

Let X′B ⊆ XB be an arbitrary vertex set of size ℓ that induces a connected subgraph of G.

Since G[XB] is connected, such X′B must exist. Observe that we obtain an ℓ-proper coloring

if XC ∪ X′B are colored correctly. Let s = |XC ∪ X′B| = k + gr(2k) + 1 = O(k16).

Using an (n, k)-universal set, which is a well-known pseudorandom object [19, 3] used

to derandomize applications of color coding (see Theorem 3.10), we can construct a family

of 2O(s) log n many subsets A1, . . . , A2O(s) log n with the guarantee that for each set S ⊆ V(G)

of size s, for each subset S′ of S, there exists a set in the family with Ai ∩ S = S′. This

can be done in 2O(s)n log n = 2O(k
16)n log n time. From this family, we can construct

a family of colorings that is guaranteed to include one that ℓ-properly colors a suitable

OCC (XB, XC, XR) if one exists. To derive a coloring χi from a member Ai ⊆ V(G) of the

(n, s)-universal set, it suffices to pick χ(a ∈ A) = Ṙ and χ(a /∈ A) = Ḃ.

We run the nO(1)-time algorithm from Lemma 3.22 for each coloring, which results in

the overall runtime 2O(k
16)nO(1).

3.5 Reducing Odd Cycle Cuts
Given an OCC (XB, XC, XR) of G with |XB| > gr(|XC|), the next step is to “shrink” XB

in a way that preserves some of the structure of the input graph. In this section, we give

a reduction to do this and prove that it preserves the general structure of minimum-size

OCTs and of tight OCCs in the graph. The reduction starts with a marking scheme that

is discussed separately in Section 3.5.1. We give the full reduction, which includes this

marking scheme as a subroutine, in Section 3.5.2. The reduction will only affect G[XB] and

the edge set between XB and XC, which already ensures that an important part of the input

graph is maintained.
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3.5.1 A Marking Scheme for the Reduction

The goal of the marking scheme is to mark a set B∗ ⊆ XB of size |XC|O(1) as “interest-

ing” vertices that the reduction should not remove or modify. Intuitively, we want this set

to contain vertices which we expect might be part of the cut part of a tight OCC in G. More

precisely, we guarantee that for every tight OCC in G there is a (possibly different) tight

OCC (AB, AC, AR) such that AC ∩ XB is contained in the marked set B∗.

As seen in Lemma 3.20, for every tight OCC (AB, AC, AR) in the graph, the intersection

AC ∩ XB forms an optimal solution to a specific imposed separation problem (Defini-

tion 3.19). As such, it suffices if B∗ is a cut covering set for these imposed separation

problems.

Indeed, the key ingredient of the algorithm presented below is the computation of such

a cut covering set. Preceding this computation is a graph reduction ensuring that the

computed set covers precisely the imposed separation problems. In Lemma 3.9, we will

show that a cut covering set can be computed in deterministic FPT time parameterized by

the size of the terminal set, which leads to a total running time of 2O(|XC |)nO(1) time for the

marking step.

3.5.1.1 Marking step. Consider the following algorithm.

Input: A graph G and an OCC (XB, XC, XR) of G.

Output: Marked vertices B∗ ⊆ XB.

1. Find a proper 2-coloring fX : XB → {0, 1} of G[XB].

2. Construct an auxiliary (undirected) graph G′, initialized to a copy of G[XB]. For each

v ∈ XC, do the following:

• Add vertices v(0) and v(1) to G′.

• For each neighbor u ∈ NG(v) ∩ XB, add an edge v( fX(u))u.

Let T be the set {v(i) | v ∈ XC, i ∈ {0, 1}}. Note that |T| = 2|XC|.

3. Compute a cut covering set B∗ ⊆ V(G′) via Lemma 3.9 such that for every parti-

tion T ∗ = (T0, T1, T2, T3, TX) of T, the set B∗ contains a minimum-size solution to the

following problem:
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• find a vertex set S ⊆ V(G′) \ (T1 ∪ T2 ∪ T3) such that S separates Ti and Tj in the

graph G′ − TX for all 1 ≤ i < j ≤ 3,

as long as this problem has a solution of size at most |T|.

Lemma 3.24. [♦] Let B∗ be constructed as in the Marking step when given the graph G and an

OCC (XB, XC, XR) of G as input. If there exists a z-tight OCC (AB, AC, AR) in G, then there

exists a z-tight OCC (A∗B, A∗C, A∗R) in G with |A∗C| = |AC| and with A∗C ∩ XB ⊆ B∗.

Proof sketch. Let fX : XB → {0, 1} be the 2-coloring obtained in step 1 of the Marking

step, let fA : AB → {0, 1} be a proper 2-coloring of G[AB] and consider the separation

problem imposed onto G[XB] by (XC ∩ AB, XC ∩ AR, fA, fB). Let A, R and N be the three

sets to be separated in this problem with their names corresponding to their roles as in

Definition 3.19.

By putting the correct copy of each vertex from AB ∩ XC into T1 and T2 respectively,

putting both copies of vertices from AR ∩ XC into T3 and putting both copies of vertices

from AC ∩ XC into TX, we obtain a partition (∅, T1, T2, T3, TX) of the set T defined in

step 2, such that the corresponding separation problem has the same solution space as the

{A, R, N}-separation problem imposed onto G[XB]. By construction of B∗ in step 3, there

is a set S ⊆ B∗ (possibly different from AC ∩ XB) that is an optimal {A, R, N}-separator

in G[XB]. To construct the tight OCC (A∗B, A∗C, A∗R), we use this set S as replacement for

AC ∩ XB, which is also a minimum-size {A, R, N}-separator in G[XB] by Lemma 3.20.

As such, we define A∗C := (AC \ XB) ∪ S. To define A∗B, let U be the set of vertices from

XB \ S that are not reachable from N in G[XB]− S. Now, we define A∗B := (AB \ XB) ∪U.

Finally, we define A∗R := V(G) \ (A∗B ∪ A∗C). Clearly, this 3-partition of V(G) satisfies the

constraints |A∗C| = |AC| and A∗C ∩ XB ⊆ B∗. We proceed by showing that it satisfies the

three additional properties required to be a z-tight OCC.

First, to see that G[A∗B] is bipartite, we note that A∗B only contains vertices from AB and

XB \ S. Both are vertex sets that induce a bipartite subgraph. Then, noting the correspon-

dence between the sets A and R obtained from the separation problem and the sets A and

R as in Lemma 3.2, we invoke this lemma on G[(XC ∩ AB) ∪ XB] with c = fA and with W0

and W1 being the two color classes of this coloring restricted to XC ∩ AB. It follows that the
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vertices from A∗B in XB \ S can be properly 2-colored by a coloring f that agrees with fA on

the vertex set XC ∩ AB that separates A∗B ∩ XR and A∗B ∩ XB. As these two vertex sets are

properly colored by fA and f respectively, these colorings combine to a proper 2-coloring

of the entire graph G[A∗B] (see Lemma 3.3).

Secondly, a case distinction shows that there are no edges between A∗B and A∗R. It

combines the fact that AC ∩ XB is an {A, R, N}-separator in G[XB] — thereby in particular

separating AB ∩ XB from N in G[XB] — and the fact that A∗B only contains vertices that

already belonged to AB and vertices from XB that are not reachable from N in G[XB]− A∗C.

Finally, it remains to show that (A∗B, A∗C, A∗R) has an A∗C-certificate of order z. To prove

this, we show that the order-z certificate D of the original OCC (AB, AC, AR) is also an

order-z certificate in (A∗B, A∗C, A∗R). The main effort here is to prove that D even lives in

A∗B ∪ A∗C, after which it is easy to see that it is also an order-z certificate for our new OCC.

As Lemma 3.20 guarantees that AC ∩ XB is not only an optimal {A, R, N}-separator in

G[XB] but even an optimal {A, R}-separator in this graph, it contains exactly one vertex

from every path of a maximum packing P of pairwise vertex-disjoint (A, R)-paths in

G[XB], due to Menger’s theorem [22, Theorem 9.1]. Likewise, A∗C ∩ XB = S is also an

optimal {A, R}-separator in G[XB] and hence also contains exactly one vertex from every

path of P .

Intuitively, for any path P ∈ P , a vertex on this path that stops being reachable from

one endpoint of P when sliding the picked vertex along the path, starts becoming reachable

from the other endpoint of P. As both endpoints of P belong to A ∪ R and S only differs

from AC ∩ XB by which vertex is picked from each path in P , it cannot drastically alter

which vertices are reachable from A ∪ R, which in turn are all vertices that end up in A∗B.

Using the observation that AB and A∗B are separated from N by AC and A∗C respectively,

we see that all vertices that are disconnected from A ∪ R by substituting AC ∩ XB for S are

in particular also disconnected from N. Thereby, these vertices end up in A∗B. This shows

that (AB ∪ AC) ⊆ (A∗B ∪ A∗C), which implies that the certificate D also lives in the latter.

Now, we cover the various guarantees that were promised for the Marking step. A

visual example of the graph reduction that is part of it may be found in Figure 3.2.

First, we briefly argue the following basic guarantees of the Marking step.
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Lemma 3.25. Let G be a graph and let (XB, XC, XR) be an OCC in it. Then the Marking step can

be executed with these input parameters in 2O(|XC |)nO(1) time and outputs a set B∗ of size |XC|O(1).

Proof. First we note that indeed |B∗| = |XC|O(1), since B∗ is constructed as a set of at most

c · (2|XC|)8 vertices. Next, it is clear to see that steps 1 and 2 can be done in polynomial

time, and step 3 takes 2O(|T|)nO(1) = 2O(|XC |)nO(1) time.

Next, we formalize the main property we wished to hold for the Marking step and

proof that it is indeed satisfied.

Lemma 3.26. Let G be a graph, let (XB, XC, XR) be an OCC in it and let B∗ ⊆ XB be the result

of executing the Marking step with these input parameters. Let fX : XB → {0, 1} be the proper

2-coloring of G[XB] computed in the first step of the Marking step. Let C1, C2 ⊆ XC be two

arbitrary disjoint subsets of XC and let fC : C1 → {0, 1} be a (not necessarily proper) 2-coloring

of C1. If the {A, R, N}-separation problem imposed onto G[XB] by (C1, C2, fC, fX) has a solution

of size at most |XC|, then the set B∗ contains an optimal solution to this separation problem.

Proof. Recall that the auxiliary graph G′ consists of a copy of G[XB] and terminals T =

{v(i) | v ∈ XC, i = 0, 1}. Given C1, C2 and fC, consider the following generalized 3-

partition T of T into (∅, A′, R′, N′, TX), where TX represents deleted vertices.

• If v ∈ C1 and fC(v) = 0, then let v(0) ∈ A′ and v(1) ∈ R′.

• If v ∈ C1 and fC(v) = 1, then let v(0) ∈ R′ and v(1) ∈ A′.

• If v ∈ C2, then let v(0), v(1) ∈ N′.

• If v ∈ XC \ (C1 ∪ C2), then let v(0), v(1) ∈ TX.

Figure 3.2 illustrates this construction. Note that for v ∈ C1 we have v(i) ∈ A′ (v(i) ∈ R′,

resp.) if and only if fC(v) = i ( fC(v) = 1− i). We shall show the equivalence between

restricted 3-way cuts for {A′, R′, N′} in G′ − TX and {A, R, N}-separators in G[XB].

First, let S′ be a restricted 3-way cut for {A′, R′, N′} in G′ − TX, and assume that there

is a path sPt in G[XB]− S′ where s and t belong to different sets in {A, R, N}.

(1) If s ∈ A and t ∈ R, then there exist vertices vs ∈ NG(s) ∩ C1 and vt ∈ NG(t) ∩ C1

such that fC(vs) = fX(s) and fC(vt) ̸= fX(t). This implies v( fX(s))
s s, v( fX(t))

t t ∈ E(G′).
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By construction, v( fX(s))
s = v( fC(vs))

s ∈ A′ and v( fX(t))
t = v(1− fC(vt))

t ∈ R′, and these

vertices are present in G′ − TX. Hence, v( fX(s))
s sPtv( fX(t))

t is a path between A′ and R′

in G′ − TX − S′, a contradiction.

(2) If s ∈ A and t ∈ N, then there exist vertices vs ∈ NG(s) ∩ C1 and vt ∈ NG(t) ∩ C2

such that fC(vs) = fX(s). This implies v( fX(s))
s s, v( fX(t))

t t ∈ E(G′). By construction,

v( fX(s))
s = v( fC(vs))

s ∈ A′ and v( fX(t))
t ∈ N′. Hence, v( fX(s))

s sPtv( fX(t))
t is a path between

A′ and N′ in G′ − TX − S′, again a contradiction.

Other cases are proven symmetrically.

Conversely, let S be an {A, R, N}-separator in G[XB], and assume that S is not a re-

stricted 3-way cut for {A′, R′, N′} in G′ − TX. Then, since terminals in G′ are independent,

there is a path s(i)Pt(j) in G′ − TX − S such that s(i) and t(j) belong to different sets in

{A′, R′, N′} and P is a non-empty path in G′[XB]. Let s′ and t′ be the first and the last

vertices in P respectively (s′ and t′ can be the same vertex). We will show that s′ and t′

belong to different sets in {A, R, N} in G[XB], which leads to a contradiction.

(1) If s(i) ∈ A′ and t(j) ∈ R′, then s, t ∈ C1 and fC(s) = i, fC(t) = 1− j. Also, knowing

that fX(s′) = i, fX(t′) = j, we have s′ ∈ A and t′ ∈ R in G[XB].

(2) If s(i) ∈ A′ and t(j) ∈ N′, then s ∈ C1, t ∈ C2, and fC(s) = i. Since fX(s′) = i, we have

s′ ∈ A. From t′t(j) ∈ E(G′), we have t′ ∈ N.

Other cases are symmetrical to these.

Now, suppose there exists a smallest {A, R, N}-separator of size at most |XC| in G[XB].

Then, there exists a restricted 3-way cut of size at most |XC| for {A′, R′, N′} in G′ − TX.

From Lemma 3.9, we know that B∗ contains a minimum restricted 3-way cut Z of size at

most |XC| ≤ |T| for {A′, R′, N′} in G′ − TX. Finally, Z is indeed an optimal solution to the

{A, R, N}-separation problem.

3.5.2 Simplifying the Graph

Our eventual reduction starts with the Marking step from the previous section, after

which the graph is modified in a way that leaves marked vertices untouched. We want the

reduction to preserve the general structure of optimal OCTs and tight OCCs in the input
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graph. As this is governed by the locations and interactions of odd cycles in the graph, we

encode this information in a more space-efficient manner using the following reduction.

3.5.2.1 Reduction step. Given a graph G and an OCC (XB, XC, XR) of it, we con-

struct a graph G′ as follows.

1. Use the Marking step with input G and (XB, XC, XR) to obtain the set B∗ ⊆ XB.

2. Initialize G′ as a copy of G− (XB \ B∗).

3. For every u, v ∈ XC ∪ B∗ and for every parity p ∈ {even, odd}, check if the subgraph

G[XB \ B∗] contains the internal vertex of a (u, v)-path with parity p. If so, then:

• if p = even, add two new vertices x and x′ to G and connect both of them to u

and v.

• if p = odd, add four new vertices x, y, x′ and y′ to G and add the edges {u, x},

{x, y}, {y, v}, {u, x′}, {x′, y′} and {y′, v}.

Note that we explicitly allow u = v in this step.

Effectively, this reduction deletes the vertices XB \ B∗ from the graph. For each pair of

neighbors u, v from that set, if the deleted vertices provided an odd (resp. even) path

between them, then we insert two vertex-disjoint odd (resp. even) paths between u and v.

Hence we shrink the graph while preserving the parity of paths provided by the removed

vertices.

As we will prove in Lemma 3.29 and Lemma 3.30 respectively, the reduction can be per-

formed in 2O(|XC |) · nO(1) time and it is guaranteed to output a strictly smaller graph than

its input graph whenever it receives an OCC that is reducible with respect to the function

gr as in Section 3.4. To show that the reduction also preserves OCT and OCC structures,

we prove that it satisfies two safety properties formalized below in Lemmas 3.27 and 3.28.

Lemma 3.27. [♦] Let G be a graph, let (XB, XC, XR) be an OCC in G and let G′ be the graph

obtained by running the Reduction step with these input parameters. For all z ≥ 0, if there exists

a z-tight OCC (AB, AC, AR) in G, then there exists a z-tight OCC (A′B, A′C, A′R) in G′ with

|A′C| = |AC|.
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The proof of the lemma above uses Lemma 3.24 to infer that, for any z-tight OCC

(AB, AC, AR) of G, the graph G also contains a z-tight OCC (A∗B, A∗C, A∗R) of the same width

such that A∗C ⊆ V(G)∩V(G′). This allows for the construction of an OCC (A′B, A′C, A′R) in

G′ with A′C = A∗C. Then, A′B can be defined as the union of A∗B ∩V(G) ∩V(G′) and the set

of vertices that were added during the reduction to provide a replacement connection be-

tween any two vertices from A∗C ∪ (A∗B ∩V(G)∩V(G′)). Finally, A′R := V(G′) \ (A′B ∪ A′C).

The proof proceeds to show that the resulting partition (A′B, A′C, A′R) is a z-tight OCC

of G′. The two main insights used to prove this are the facts that:

• optimal OCTs of G′ are disjoint from the set of newly added vertices V(G′) \ V(G),

and

• odd cycles in G can be translated to very similar odd cycles in G′ and vice versa.

These insights are also covered in the proof of the second safety property below.

Lemma 3.28. [♦] Let G be a graph, let (XB, XC, XR) be an OCC in G and let G′ be the graph

obtained by running the Reduction step with these input parameters. If S′ is a minimum-size OCT

of G′, then S′ ⊆ V(G) ∩V(G′) and S′ is a minimum-size OCT of G.

We prove that the Reduction step can be executed in FPT time parameterized by |XC|.

Lemma 3.29 (♦). The Reduction step can be performed in 2O(|XC |) · nO(1) time.

Next, we show that the Reduction step outputs a strictly smaller graph than its input

graph when the OCC it is given is reducible. Recall that we call an OCC (XB, XC, XR)

reducible if |XB| > gr(|XC|) for some polynomial gr(x). The exact definition of this

polynomial had been postponed so far. Having reached the statement whose proof relies

on this definition, we now specify this exact polynomial.

Its definition is based on Lemma 3.9 in which sets Z and T are specified. Setting the

value of s in this lemma to 3 yields the existence of a constant c ∈N such that |Z| ≤ c · |T|8

for large enough |T|. Given this constant c, we define gr : N → N as gr(x) = (6(28c +

1)2 + 28c) · x16. With this definition, we can prove the following result.
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Lemma 3.30 (♦). Let G be a graph and let (XB, XC, XR) be an OCC of it. If (XB, XC, XR) is

reducible, then running the Reduction step with these input parameters yields an output graph G′

with |V(G′)| < |V(G)|.

3.6 Finding and Removing Tight OCCs
Now we find tight OCCs by the same color coding technique used in prior work [5].

Consider a coloring χ : V(G) ∪ E(G) → {Ḃ, Ċ, Ṙ} of the vertices and edges of a graph G.

For every color c ∈ {Ḃ, Ċ, Ṙ}, let χ−1
V (c) = χ−1(c) ∩V(G). For any integer z ≥ 0, a z-tight

OCC (AB, AC, AR) is z-properly colored by a coloring χ if all the following hold: (i) AC ⊆

χ−1
V (Ċ), (ii) AB ⊆ χ−1

V (Ḃ), and (iii) for each component H of G′ = G[AB ∪ AC]− χ−1(Ṙ)

we have oct(H) = |AC ∩V(H)| and |AC ∩V(H)| ≤ z. Note that χ−1(Ṙ) may include both

vertices and edges, so that the process of obtaining G′ involves removing both the vertices

and edges colored Ṙ.

The algorithm to extract a z-tight OCC from a given coloring χ of the vertices and edges

of G, is inspired by a corresponding step in previous work [5, Lemma 6.2]. The main idea

is to iteratively refine the coloring, by changing the colors of vertices and edges into Ṙ

when the current coloring does not justify their membership in a z-tight OCC. It turns

out that after exhaustively refining the coloring in this way, we can ensure the vertices

colored Ḃ and Ċ actually form the bipartite part and head of a z-tight OCC (assuming their

union is nonempty). The most computationally expensive step of the algorithm comes

from verifying the requirement that the coloring highlights an AC-certificate, consisting of

connected components that each have an OCT of size at most z. To verify this property,

the algorithm will iterate over all sets C of at most z vertices colored Ċ and test whether

they form an optimal OCT for the subgraph induced by C together with the vertex sets

of connected components colored Ḃ whose neighborhood is a subset of Ċ. This leads to

the nO(z) term in the running time.

Lemma 3.31. There is an nO(z) time algorithm taking as input an integer z ≥ 0, a graph G, and a

coloring χ : V(G)∪ E(G)→ {Ḃ, Ċ, Ṙ} that either determines that χ does not z-properly color any

z-tight OCC, or outputs a z-tight OCC (AB, AC, AR) in G such that for each OCC (ÂB, ÂC, ÂR)

that is z-properly colored by χ, we have ÂB ⊆ AB and ÂC ⊆ AC.
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Proof. Let Gχ := G − χ−1(Ṙ). Note that the value of this expression will change when

the algorithm updates the coloring χ below. We define a function Wχ : 2χ−1
V (Ċ) → 2χ−1

V (Ḃ) as

follows: for any C ⊆ χ−1
V (Ċ) let Wχ(C) denote the set of all vertices that are in a component

B of Gχ[χ
−1
V (Ḃ)] for which NGχ

(B) ⊆ C. Intuitively, the function Wχ maps Ċ-colored

vertices C to Ḃ-colored vertices B such that B could be used to build a C-certificate. The

following algorithm updates the coloring χ and recolors any vertex or edge that is not part

of a z-tight OCC to color Ṙ.

1. Recolor all edges uv to color Ṙ if χ(u) = Ṙ or χ(v) = Ṙ.

2. For each component B of G[χ−1
V (Ḃ)], recolor all vertices of B and their incident edges

to Ṙ if G[B] is not bipartite or NG(B) ̸⊆ χ−1
V (Ċ).

3. For each subset C ⊆ χ−1
V (Ċ) of size at most z, mark all vertices in C if oct(Gχ[C ∪

Wχ(C)]) = |C|.

4. If χ−1
V (Ċ) contains unmarked vertices we recolor them to Ṙ, clear markings made in

Step 3 and repeat from Step 1.

5. At this point, all vertices in χ−1
V (Ċ) are marked in Step 3. If χ−1

V (Ḃ) ∪ χ−1
V (Ċ) ̸= ∅,

then return (χ−1
V (Ḃ), χ−1

V (Ċ), χ−1
V (Ṙ)) as a z-tight OCC.

6. Otherwise, report that χ does not z-properly color any z-tight OCC.

We first show the running time. There will be at most n iterations (Steps 1-4) since in

every iteration the number of vertices in χ−1
V (Ṙ) increases. Steps 1, 2, 4, 5, and 6 can be

performed in no more than O(n2) time. For Step 3 we solve ODD CYCLE TRANSVERSAL

in time 3znO(1) [21] (see [3, Thm. 4.17]) for all O(nz) subsets C ⊆ χ−1
V (Ċ) of size at most z.

Hence, the overall runtime is nO(z).

To argue the correctness, we first show that the algorithm preserves the properness of

recoloring, that is, if an arbitrary z-tight OCC is z-properly colored prior to the recoloring,

it is also z-properly colored after the recoloring. Second, we show that output in Step

5 is necessarily a z-tight OCC in G. Under these assumptions, if χ z-properly colors a

z-tight OCC, then the algorithm must output a z-tight OCC (AB, AC, AR) in G such that

for every z-properly colored OCC (ÂB, ÂC, ÂR), we have ÂB ⊆ AB and ÂC ⊆ AC as it
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does not exclude any z-properly colored z-tight OCCs. And if χ does not z-properly color

any z-tight OCCs, the algorithm should correctly report the absence of z-properly colored

z-tight OCCs in Step 6.

Claim 3.32. All z-tight OCCs (ÂB, ÂC, ÂR) that are z-properly colored by χ prior to exe-

cuting the algorithm are also z-properly colored by χ after termination of the algorithm.

Proof. Suppose an arbitrary z-tight OCC (ÂB, ÂC, ÂR) is z-properly colored by χ. Then,

ÂC ⊆ χ−1
V (Ċ), ÂB ⊆ χ−1

V (Ḃ), and G′ = G[ÂB ∪ ÂC]− χ−1(Ṙ) is an ÂC-certificate of order

z. We will show that (1) if a vertex v is recolored, then v ̸∈ ÂB ∪ ÂC and (2) edges in

G[ÂB ∪ ÂC] are never recolored. With these conditions, we see that (ÂB, ÂC, ÂR) is z-

properly colored by χ at any time during the algorithm.

To show (1), analyze each step where a vertex is recolored. Suppose a vertex v is

recolored in Step 2. Since χ z-properly colors (ÂB, ÂC, ÂR), we have N(ÂB) ⊆ ÂC ⊆

χ−1
V (Ċ). We know that χ(v) = Ḃ, so if v ∈ ÂB, then the component B of G[χ−1

V (Ḃ)]

with v ∈ B must be entirely included in ÂB. This implies that G[B] is bipartite and

N(B) ⊆ N(ÂB) ⊆ χ−1
V (Ċ), contradicting the recoloring condition in Step 2.

Next, suppose a vertex v is recolored in Step 4. We know that χ(v) = Ċ, and v was

not marked during Step 3. Assume for the contradiction that v ∈ ÂC. Since G′ is an ÂC-

certificate of order z, there exists a component H of G′ such that v ∈ H and oct(H) = |ÂC ∩

V(H)| ≤ z. From ÂC ∩V(H) ⊆ ÂC ⊆ χ−1
V (Ċ), we know that in some iteration in Step 3 we

have C = ÂC ∩V(H). Vertex v was marked if oct(Gχ[C ∪Wχ(C)]) = |C|, which we want

to show for a contradiction. First, notice that Wχ(C) ⊆ χ−1(Ḃ), and at this point χ−1(Ḃ) is

bipartite. Hence, oct(Gχ[C∪Wχ(C)]) ≤ |C|. Next, we show that H is a subgraph of Gχ[C∪

Wχ(C)]. It is clear to see that a component H′ in H− C is also a component in Gχ[χ
−1
V (Ḃ)].

Since H is a component of G′, NG′(H′) ⊆ ÂC ∩V(H) = C, and hence NG′(V(H−C)) ⊆ C.

Also, because H is connected in G′, we have V(H − C) ⊆ Wχ(C), implying that H is a

subgraph of Gχ[C ∪Wχ(C)]. We have oct(Gχ[C ∪Wχ(C)]) ≥ oct(H) = |C|.

For (2), edge recoloring takes place only when the edge is incident to a vertex colored

Ṙ. Every edge e in G[ÂB ∪ ÂC] is not incident to any vertex in χ−1
V (Ṙ), so e cannot be

recolored.

Claim 3.33. In Step 5, (χ−1
V (Ḃ), χ−1

V (Ċ), χ−1
V (Ṙ)) is a z-tight OCC in G.
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Proof. In this proof, for any family of sets X1, . . . , Xℓ indexed by {1, . . . , ℓ} we define the

following for all 1 ≤ i ≤ ℓ: X<i :=
⋃

1≤j<i Xj and X≤i :=
⋃

1 ≤ j ≤ iXj.

From Step 2, we know that G[χ−1
V (Ḃ)] is bipartite and χ−1

V (Ḃ) ⊆ χ−1
V (Ċ). Also, Step

5 guarantees that χ−1
V (Ḃ) ∪ χ−1

V (Ċ) ̸= ∅, so (χ−1
V (Ḃ), χ−1

V (Ċ), χ−1
V (Ṙ)) is an OCC in G. It

remains to show that G[χ−1
V (Ḃ) ∪ χ−1

V (Ċ)] contains a χ−1
V (Ċ)-certificate of order z.

Let C ⊆ 2χ−1
V (Ċ) be the family of all subsets C ⊆ χ−1

V (Ċ) that have been considered and

marked in Step 3, i.e., oct(Gχ[C ∪Wχ(C)]) = |C| ≤ z for every C ∈ C. Let C1, . . . , C|C| be

the sets in C in an arbitrary order and define Di := Ci \ C<i for all 1 ≤ i ≤ |C|. Also define

vertex-disjoint subgraphs Gi := Gχ[Di ∪ (Wχ(D≤i)) \Wχ(D<i)] for all 1 ≤ i ≤ |C|. For

any i < j, we have Di ∩ Dj = ∅ by definition, and (Wχ(D≤i) \Wχ(D<i)) ∩ (Wχ(D≤j) \

Wχ(D<j)) = ∅ because Wχ(D≤i) ⊆Wχ(D<j). Hence, V(Gi) ∩V(Gj) = ∅.

Because we have oct(Gχ[Ci ∪Wχ(Ci)]) = |Ci|, then oct(Gχ[Ci ∪Wχ(Ci)]− (Ci \ Di)) =

oct(Gχ[Di ∪Wχ(Ci)]) = |Di|. Furthermore, in Gχ[Di ∪Wχ(Ci)], the vertices Wχ(Ci) ∩

Wχ(C<i) induce a bipartite graph and are disconnected from Di ∪Wχ(Ci) \Wχ(C<i); by

construction, there are no edges between Di and Wχ(C<i) because a vertex v ∈ C adjacent

to Wχ(C<i) must belong to C<i, and there are no edges between Wχ(Ci) and Wχ(C<i) as

they form different components in Gχ[χ−1
V (Ḃ)]. Hence, we have oct(Gχ[Di ∪Wχ(Ci)]) =

oct(Gχ[Di ∪Wχ(Ci)]− (Wχ(C<i))) = oct(Gi) = |Di| ≤ |Ci| ≤ z. The disjoint union of Gi

contains a (
⋃

i Di = χ−1
V (Ċ))-certificate of order z.

This concludes the proof of Lemma 3.31.

Combining all ingredients in the previous sections leads to a proof of the main theorem.

Theorem 3.1. There is a deterministic algorithm that, given a graph G and integers k ≥ z ≥ 0,

runs in 2O(k
33z2) · nO(z) time and either outputs at least k vertices that belong to an optimal solution

for ODD CYCLE TRANSVERSAL, or concludes that G does not contain a z-tight OCC of width k.

Proof. Consider the following algorithm.

1. Use the algorithm from Lemma 3.23 to either obtain a reducible OCC (XB, XC, XR) of

width at most k or determine if there is no single-component OCC of width at most

k with |XB| > gr(2k) in 2O(k
16)nO(1) time.
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2. If we obtain a reducible OCC in Step 1, then apply reductions in 2O(k)nO(1) time as

described in Lemma 3.9, and continue to Step 1.

3. Let G′ be the reduced graph. Create a (|V(G′)|+ |E(G′)|, g(k, z), 3)-universal func-

tion family F for V(G′) ∪ E(G′) → {Ḃ, Ċ, Ṙ} using Corollary 3.11, where we set

g(k, z) = 2kz2(gr(2k))2. Each function χ ∈ F represents a coloring of the vertices

and edges in G′.

4. Iterate over all colorings χ ∈ F . For each χ, call the algorithm from Lemma 3.31 as a

subroutine. If it outputs a z-tight OCC (AB, AC, AR) with |AC| ≥ k, then output AC

as the final result.

5. If all colorings result in a z-tight OCC (AB, AC, AR) such that |AC| < k, or all color-

ings are concluded as having no z-tight OCCs, then report that G does not contain a

z-tight OCC of width k.

Here, we show the running time. The reduction steps (Steps 1-2) take 2O(k
16)nO(1)

time because whenever we find a reducible OCC, the number of vertices in G decreases,

resulting in at most n iterations. For Step 3, from Corollary 3.11 we can construct a family

of colorings χ that cover all colorings when restricted to g(k, z) elements. Since the number

of vertices never increases by the reduction steps, it holds that |V(G′)| ≤ n. Steps 4-5 take

nO(z) time for each coloring, and there are 2O(g(k,z)) log2 n colorings. The overall runtime is

2O(g(k,z))nO(z) = 2O(k
33z2)nO(z).

We argue the correctness as follows. The algorithm first reduces all reducible OCCs in

Steps 1-2. Let G′ be the reduced graph when the algorithm enters Step 3.

We start by arguing that the output of the algorithm is correct when it outputs the

set AC in Step 4 after having found a z-tight OCC (AB, AC, AR) in G′. Observe that by

definition of tight OCC, the set AC is a subset of an optimal OCT S for G′. Then, from the

backward safety (Lemma 3.28) and its transitivity, we have that S ⊆ V(G) ∩ V(G′) and S

is an optimal OCT of G. So the final result AC in Step 4 belongs to an optimal solution for

ODD CYCLE TRANSVERSAL in G.

Suppose now that G contains a z-tight OCC of width k; we argue that the algorithm

will produce a suitable output in Step 4. From this, it will follow that the algorithm is
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correct in reporting that G does not have a z-tight OCC of width k if it terminates in Step 5.

By invoking forward safety (Lemma 3.27) and its transitivity, we know that if there exists

a z-tight OCC (AB, AC, AR) of width k in G, then there exists a z-tight OCC (A′B, A′C, A′R)

of width k in G′. By applying Lemma 3.18, we may assume without loss of generality that

G′[A′B] has at most z2|A′C| components.

For each component B′ in G′[A′B], the structure (V(B′), A′C, A′R ∪ (A′B \ V(B′))) is a

single-component OCC in G′ of width k. Since the reduction process stabilized with G′,

we have |V(B′)| ≤ gr(2k). Hence each of the at most z2|A′C| components of G′[A′B] has at

most gr(2k) vertices, so that |A′B| ≤ kz2 · gr(2k).

Next, we will show that there exists a coloring of V(G′) ∪ E(G′) that properly col-

ors (A′B, A′C, A′R). To see this, consider an A′C-certificate D′ of order z in G′[A′C ∪ A′B],

which exists by Definition 3.14; hence D′ is a subgraph of G′[A′C ∪ A′B] for which A′C is an

optimal OCT, while each component of D′ contains at most z vertices from A′C. Then any

coloring χ that assigns A′C color Ċ, assigns A′B color Ḃ, assigns all edges that belong to D′

color Ḃ and all remaining edges of G′[A′B ∪ A′C] color Ṙ, will z-properly color (A′B, A′C, A′R).

To obtain a z-proper coloring, it therefore suffices for the coloring to act as prescribed on

the vertex set A′B ∪ A′C and on the edges of the subgraph G′[A′B ∪ A′C].

Notice that a bipartite graph of n vertices may have at most n2/4 edges. Hence:

|E(G′[A′B ∪ A′C])| = |E(G′[A′B])|+ |EG′(A′B, A′C)|+ |E(G′[A′C])|

≤ kz2(gr(2k))2/4 + kz2gr(2k) · k +
(

k
2

)
≤ kz2(gr(2k))2,

where we use the fact that |A′C| ≤ k and use EG′(A′B, A′C) to denote the edges of G′ that

have one endpoint in A′B and the other in A′C. This allows us to bound the number of

elements whose color determines whether or not a coloring is z-proper by:

|A′B ∪ A′C ∪ E(G′[A′B ∪ A′C])| ≤ kz2 · gr(2k) + k + kz2(gr(2k))2

≤ 2kz2(gr(2k))2 = g(k, z).

Since the algorithm constructs a universal function family with parameters (|V(G′)| +

|E(G′)|, g(k, z), 3), it follows that the algorithm encounters at least one z-proper coloring
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of (A′B, A′C, A′R) if it exists. Hence the algorithm is correct if it concludes there is no z-tight

OCC in G of width k.

3.7 Hardness Results
First, we consider the NP-hardness of the following problem.

Input: A graph G.

Problem: Output a non-empty 1-tight OCC (XB, XC, XR) in G or conclude that no

non-empty 1-tight OCC exists.

1-TIGHT OCC DETECTION

To prove that this problem is NP-hard under Turing reductions, we consider the fol-

lowing version of OCT.

Input: A graph G and k vertex-disjoint odd cycles {Ci} in G.

Problem: Is there a set S ⊆ V(G) of size at most k such that G− S is bipartite?

LOWER-BOUNDED OCT

We claim that 1-TIGHT OCC DETECTION is as hard as LOWER-BOUNDED OCT.

Lemma 3.34. Assuming P ̸= NP, if there is no polynomial-time algorithm for solving LOWER-

BOUNDED OCT, then there is no polynomial-time algorithm for 1-TIGHT OCC DETECTION.

Proof. Assume 1-TIGHT OCC DETECTION is solvable in polynomial time. Then, consider

the following algorithm for LOWER-BOUNDED OCT.

1. Let C ← {Ci}. Initially, |C| = k.

2. Return Yes if C = ∅.

3. Run an algorithm for 1-TIGHT OCC DETECTION on G. If it finds a non-empty 1-

tight OCC (XB, XC, XR), then let G ← XR and C ← {Ci ∈ C | XC ∩ V(Ci) ̸= ∅},

i.e., remove odd cycles in C that hit any vertex in XC, and then continue to Step 2.

Otherwise, return No.

Let S be the union of XC found in Step 3. If the algorithm returns Yes, then it is clear

to see that |S| = k and G− S is bipartite. (G, {Ci}) is a yes-instance for LOWER-BOUNDED
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OCT. If the algorithm returns No, then there exists an induced subgraph G′ of G such that

for any OCT S of G′, there exists a cycle Ci such that |V(Ci) ∩ S| > 1. Hence, oct(G) > k,

and (G, {Ci}) is a no-instance. If 1-TIGHT OCC DETECTION is poly-time solvable, then so

is LOWER-BOUNDED OCT.

Now, let us show that LOWER-BOUNDED OCT is actually NP-hard. We adopt an

argument from [6, Lemma 16] but with simpler gadgets.

Lemma 3.35. LOWER-BOUNDED OCT is NP-hard.

Proof. We reduce from 3-SAT, a version of SATISFIABILITY (SAT) where every clause in-

cludes exactly 3 literals, to LOWER-BOUNDED OCT. Let X = x1, . . . , xn be the variables

and Φ = ϕ1, . . . , ϕm be the clauses appearing in a SAT instance.

We construct a graph G as follows:

• For each variable xi, create a new triangle and let vi and vi be two of the triangle’s

vertices. These vertices represent SAT literals xi and xi as shown in Figure 3.3 (left).

• For each clause ϕj = ℓj1 ∨ ℓj2 ∨ ℓj3, introduce a gadget illustrated in Figure 3.3 (right).

We then identify vertices s1, s2, s3 and the vertices representing ℓj1, ℓj2, ℓj3, respec-

tively.

It is clear to see that this construction can be done in polynomial time. Also observe that

there are n disjoint triangles for SAT variables and 2m disjoint triangles for clause gadgets.

By letting k = n + 2m, we have that G contains k vertex-disjoint triangles, which are odd

cycles. We claim that (X, Φ) is satisfiable if and only if G contains an OCT of size at most k.

First, assume (X, Φ) is satisfiable. Let U ⊆ V(G) be the vertices that correspond to

a certificate, and consider all odd cycles present in G −U. For each variable gadget, we

know that either xi or xi is in U, so no triangles remain in G−U. For each clause gadget,

we know that at least one of s1, s2, s3 is in U. In any cases, we can choose 2 vertices hitting

all remaining triangles. Hence, oct(G−U) ≤ 2m and oct(G) ≤ n + 2m = k.

Conversely, assume G has an OCT S ⊆ V(G) of size at most k. Since G has k vertex-

disjoint triangles, S contains exactly one vertex from each of them. For every variable

gadget, exactly one vertex is in S. For every clause gadget excluding s1, s2, s3, exactly 2

vertices must be in S, which leads to the fact that at least one of s1, s2, s3 is in S. Finally,
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we construct a solution for 3-SAT. For each 1 ≤ i ≤ n, we set xi to true if vi ∈ S, and false

otherwise. This by construction forms a certificate, and (X, Φ) is satisfiable.

Combining Lemma 3.34 and Lemma 3.35, we obtain the following result.

Theorem 3.36. 1-TIGHT OCC DETECTION is NP-hard under Turing reductions.

Next, we show that finding a non-empty 1-tight OCC of bounded width is W[1]-hard,

parameterized by the width.

Input: A graph G and an integer k.

Parameter: k.

Problem: Does G admit a non-empty 1-tight OCC (XB, XC, XR) with |XC| ≤ k?

BOUNDED-WIDTH 1-TIGHT OCC DETECTION

We will show the W[1]-hardness of this problem by a parameterized reduction from

the well-known MULTICOLORED CLIQUE problem.

Input: A graph G, an integer k, and a partition of V(G) into sets V1, . . . , Vk.

Parameter: k.

Problem: Does G include as a subgraph such a clique S such that for each 1 ≤

i ≤ k we have |S ∩Vi| = 1?

MULTICOLORED CLIQUE

Theorem 3.37. BOUNDED-WIDTH 1-TIGHT OCC DETECTION is W[1]-hard.

Proof. Consider an instance (G, χ, k) of MULTICOLORED CLIQUE, where χ : V(G) → [k]

denotes the color of each vertex such that χ(v) = ℓ if and only if v ∈ Vℓ. Without loss

of generality, we assume k ≥ 2 and n > k + 2. Then, we construct an input (G′, k′) for

BOUNDED-WIDTH 1-TIGHT OCC DETECTION as follows (see Figure 3.4 for an illustra-

tion).

1. For each vertex i ∈ V(G), introduce (k − 1) vertices Ui := {uiℓ | ℓ ∈ [k] \ {χ(i)}}

to G′.

2. For each edge ij ∈ E(G), add 4 vertices xij, x′ij, yij, and y′ij to G′.
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3. Insert edges to turn
⋃

i∈V(G) Ui into a clique in G′.

4. For each edge ij ∈ E(G), add edges from Ui ∪ Uj to xij, xij to x′ij, and x′ij to uiχ(j).

Similarly, add edges from Ui ∪Uj to yij, yij to y′ij, and y′ij to ujχ(i).

Let k′ = k(k − 1), and we claim that (G′, k′) for BOUNDED-WIDTH 1-TIGHT OCC

DETECTION MULTICOLORED CLIQUE is an equivalent instance to (G, χ, k) for MULTICOL-

ORED CLIQUE.

Claim 3.38. If G has a multicolored clique of size k, then G′ has a non-empty 1-tight OCC

of width k′.

Proof. Suppose S is a multicolored clique of size k in G. Define a 1-tight OCC (XB, XC, XR)

as follows:

• XB =
⋃

i,j∈S:i ̸=j{xij, x′ij, yij, y′ij}

• XC =
⋃

i∈S Ui

• XR = V(G′) \ (XB ∪ XC)

It is clear to see that |XC| = k(k − 1) = k′. Also, by construction, we have N(XC) =⋃
i,j∈S|i ̸=j(Ui ∪Uj ∪ {uiχ(j), ujχ(i)}) =

⋃
i∈S Ui = XC, which remains us to show that G′[XB ∪

XC] contains k′ vertex-disjoint odd cycles. Notice that G′[XB ∪ XC] contains the set of

triangles T =
⋃

i,j∈S|i ̸=j{uiχ(j)xijx′ij, ujχ(i)yijy′ij}. Since |T| = (k
2) · 2 = k′ and xij, x′ij, yij, y′ij

are unique in T, it suffices to show that
∣∣∣⋃i,j∈S|i ̸=j{uiχ(j), ujχ(i)}

∣∣∣ = k′. Since S is a mul-

ticolored clique, for every pairwise distinct i, j ∈ S, we have χ(i) ̸= χ(j). Therefore,⋃
i,j∈S|i ̸=j{uiχ(j), ujχ(i)} ⊇

⋃
i∈S

(⋃
j∈S\{i} uiχ(j)

)
=

⋃
i∈S

⋃
ℓ∈[k]\{χ(i)} uiℓ =

⋃
i∈S Ui. T indeed

consists of |
⋃

i∈S Ui| = k(k− 1) = k′ vertex-disjoint triangles, and (XB, XC, XR) is a 1-tight

OCC.

Finally, we show the backward implication.

Claim 3.39. If G′ has a non-empty 1-tight OCC of size k′, then G has a multicolored clique

of size k.

Proof. Let (XB, XC, XR) be a non-empty 1-tight OCC of size k′ in G′. We write U for
⋃

i∈S Ui

and W for
⋃

e∈E(G){xe, x′e, ye, y′e}.
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First, we show that XB ⊆ W. Assume not. Then, there exists a vertex u ∈ XB ∩ U.

Since XB is bipartite and U forms a clique in G′, we have |XB ∩ U| ≤ 2. We know that

NG′(u) ⊆ XB ∪ XC, and thus |NG′(u) \ XB| ≤ |XC|. We have: |NG′(u) \ XB| ≥ |NG′(u)| −

1 ≥ (|U| − 1)− 1 = n(k− 1)− 2 > ((k + 2)(k− 1)− 2) = k2 + k− 4 ≥ k2 − k = k′. This

implies |XC| > k′, a contradiction.

Next, we show that XC ⊆ U. For the sake of contradiction, assume there exists a vertex

x ∈ XC ∩W. Then, there must be an odd cycle in G′[{x} ∪ XB], but because {x} ∪ XB ⊆W

is bipartite, we reach a contradiction.

Now that we know XB ⊆ W and XC ⊆ U, for each u ∈ XB, there is an odd cycle in

G′[{u} ∪ XB]. This happens only when uxex′e or uyey′e forms a triangle for some e ∈ E(G),

which leads to |XB| ≥ 2|XC|.

Let E′ = {e ∈ E(G) | {xe, ye} ∩ XB ̸= ∅}. If ij ∈ E′, then all the vertices in Ci ∪ Cj are

in XC, so we can write XC =
⋃

i∈V′ Ci for some V ′ ⊆ V(G). Furthermore, from |XC| = k′ =

k(k− 1), we know |V ′| = k. From E′ ⊆ (V′
2 ), we have |XB| ≤ 4|E′| ≤ 2|V ′|(|V ′| − 1) = 2k′.

On the other hand, |XB| ≥ 2|XC| = 2k′. These inequalities hold only when E′ = (V′
2 ).

We claim that V ′ is a multicolored clique in G. Let ij be an edge in E′. By construction,

triangles uiχ(j)xijx′ij and ujχ(i)yijy′ij are in G′[XB ∪XC], and thus χ(i) ̸= χ(j). Since V ′ forms

a clique in G such that any vertex pair has different colors, V ′ is a multicolored clique.

From Claims 3.38 and 3.39, we conclude that (G, χ, k) and (G′, k′) are equivalent, and

BOUNDED-WIDTH 1-TIGHT OCC DETECTION is W[1]-hard.

3.8 Conclusion
Inspired by crown decompositions for VERTEX COVER and antler decompositions for

FEEDBACK VERTEX SET, we introduced the notion of (tight) odd cycle cuts to capture

local regions of a graph in which a simple certificate exists for the membership of certain

vertices in an optimal solution to ODD CYCLE TRANSVERSAL. In addition, we developed

a fixed-parameter tractable algorithm to find a non-empty subset of vertices that belong

to an optimal odd cycle transversal in input graphs admitting a tight odd cycle cut; the

parameter k we employed is the width of the tight OCC. Finding tight odd cycle cuts

and removing the vertices certified to be in an optimal solution leads to search-space

reduction for the natural parameterization of ODD CYCLE TRANSVERSAL. To obtain our
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results, one of the main technical ideas was to replace the use of minimum two-way

separators that arise naturally when solving ODD CYCLE TRANSVERSAL, by minimum

three-way separators that simultaneously handle breaking the odd cycles in a subgraph

and separating the resulting local bipartite subgraph from the remainder of the graph.

3.8.1 Theoretical challenges

There are several interesting directions for follow-up work. We first discuss the theo-

retical challenges. The algorithm we presented runs in time 2kO(1)nO(z), where z is the order

of the tight odd cycle cut in the output guarantee of Theorem 3.1. The polynomial term in

the exponent has a large degree, which is related to the size of the cut covering sets used

to shrink the bipartite part of an odd cycle cut in terms of its width. While we expect that

some improvements can be made by a more refined analysis, it would be more interesting

to see whether an algorithmic approach that avoids color coding can lead to significantly

faster algorithms.

An odd cycle cut (XB, XC, XR) of width |XC| = k in a graph G gives rise to a k-secluded

bipartite subgraph G[XB]; recall that a subgraph is called k-secluded if its open neighbor-

hood has size k. For enumerating inclusion-maximal connected k-secluded subgraphs that

satisfy a property Π, a bounded-depth branching strategy was recently proposed [12] that

generalizes the enumeration of important separators. Can such branching techniques be

used to improve the running time for the search-space reduction problem considered in

this chapter to 2O(k)nO(z)?

The dependence on the complexity z of the certificate is another topic for further in-

vestigation. The search-space reduction algorithm for FEEDBACK VERTEX SET by Donkers

and Jansen [5] that inspired this work, also incurs a factor nO(z) in its running time. For

FEEDBACK VERTEX SET, it is conjectured but not proven that such a dependence on z

is unavoidable. The situation is the same for ODD CYCLE TRANSVERSAL. Is there a

way to rule out the existence of an algorithm for the task of Theorem 3.1 that runs in

time f (k, z) · nO(1)?

A last theoretical challenge concerns the definition of the substructures that are used

to certify membership in an optimal odd cycle transversal. Our definition of an odd cycle

cut (XB, XC, XR) prohibits the existence of any edges between XB and XR. Together with
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the requirement that G[XB] is bipartite, this ensures that all odd cycles intersecting XB are

intersected by XC. In principle, one could also obtain the latter conclusion from a slightly

less restricted graph decomposition. Since any odd cycle enters a bipartite subgraph on

one edge and leaves via another, knowing that each connected component H of G[XB] is

connected to XR by at most one edge is sufficient to guarantee that all odd cycles visit-

ing XB are intersected by XC. The prior work on antler structures for FEEDBACK VERTEX

SET allows the existence of one pendant edge per component, and manages to detect such

antler structures efficiently. It would be interesting to see whether our approach can be

generalized for relaxed odd cycle cuts in which each component of G[XB] has at most

one edge to XR. To adapt to this setting, one would have to refine the type of three-way

separation problem that is used in the graph reduction step.

For ODD CYCLE TRANSVERSAL, one could relax the definition of the graph decompo-

sition even further: to ensure that odd cycles visiting XB are intersected by XC, it would

suffice for each connected component H of G[XB] to have at most one neighbor vH in XR,

as long as all vertices of H adjacent to vH belong to the same side of a bipartition of H.

3.8.2 Practical challenges

Since the investigation of search-space reduction is inspired by practical considerations,

we should not neglect to discuss practical aspects of this research direction. While we do

not expect the algorithm as presented here to be practical, it serves as a proof of concept

that rigorous guarantees on efficient search-space reduction can be formulated. Our work

also helps to identify the types of substructures that can be used to reason locally about

membership in an optimal solution. Apart from finding faster algorithms in theory and

experimenting with their results, one could also target the development of specialized

algorithms for concrete values of k and z.

For k = 1, a tight odd cycle cut of width 1 effectively consists of a cutvertex c of

the graph whose removal splits off a bipartite connected component B but for which the

subgraph induced by B ∪ {v} contains an odd cycle. Preliminary investigations suggest

that in this case, an algorithm that computes the block-cut tree, analyzes which blocks form

non-bipartite subgraphs, and which cut vertices break all the odd cycles in their blocks, can

be engineered to run in timeO(|V(G)|+ |E(G)|) to find a vertex v belonging to an optimal
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odd cycle transversal when given a graph that has a tight odd cycle cut of width k = 1.

Do linear-time algorithms exist for k > 1? These would form valuable reduction steps

in algorithms solving ODD CYCLE TRANSVERSAL exactly, such as the one developed by

Wernicke [?].

The k = 1 case of the relaxed odd cycle cuts described above are in fact used as one of the

reduction rules in Wernicke’s algorithm [23, Rule 7]. His reduction applies whenever there

is a triangle {u, v, w} in which w has degree two and v has degree at most three. Under

these circumstances, there is an optimal solution that contains u while avoiding v and w:

since the removal of u decreases the degree of w to one, while w is one of the at most two

remaining neighbors of v, the removal of u breaks all odd cycles intersecting {u, v, w}. This

corresponds to the fact that the triple (XB = {v, w}, XC = {u}, XR = V(G) \ {u, v, w})

forms a tight relaxed odd cycle cut. We interpret the fact that the k = 1 case was devel-

oped naturally in an existing algorithm as encouraging evidence that refined research into

search-space reduction steps can eventually lead to impact in practice.
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Figure 3.1: Examples of crown decomposition (left), antler decomposition for FEEDBACK

VERTEX SET (middle), and a tight OCC for ODD CYCLE TRANSVERSAL (right). Packings
of forbidden subgraphs are highlighted in bold.
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Figure 3.2: An illustration of the auxiliary graph used in the proof of Lemma 3.26. The left
figure shows an example graph G with the given OCC (XB, XC, XR), disjoint sets C1, C2 ⊆
XC, a proper 2-coloring fB : XB → {0, 1}, and another (not necessarily proper) 2-coloring
fC : C1 → {0, 1}. Possibly overlapping terminals A, R, N are determined as described in
the proof. The right shows the auxiliary graph G′ for G, constructed from a copy of G[XB]
with additional 2|XC| vertices. Terminals are partitioned into (A′, R′, N′, TX), where TX
is deleted when we examine restricted 3-way cuts. For both figures, the minimum 3-way
separators (in G[XB] and G′ − TX (restricted), resp.) are shaped in double circles.
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vi vi
s1 s2 s3

Figure 3.3: Gadgets used for the proof of Lemma 3.35. The left shows a variable gadget,
including two vertices representing literals. The right shows a clause gadget, where s1, s2,
s3 are connected to corresponding literals.
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Figure 3.4: A visualization of an auxiliary graph constructed from an instance (G, k) of
MULTICOLORED CLIQUE. The set U consists of n(k− 1) vertices representing the vertices
in G and their adjacent colors. The set W consists of 4m vertices representing the edges in
G replaced by a gadget for creating odd cycles.
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CHAPTER 4

PARAMETERIZED COMPLEXITY OF

MAXIMUM HAPPY SET AND

DENSEST k-SUBGRAPH

So far, we have seen algorithms for natural parameters. However, it is also common to

parameterize a problem by structural graph parameters. In this chapter, we present fixed-

parameter tractable (FPT) algorithm for two problems, MAXIMUM HAPPY SET (MAXHS)

and DENSEST k-SUBGRAPH (DkS)—also known as MAXIMUM EDGE HAPPY SET. Given a

graph G = (V, E) and an integer k, MAXHS asks for a set S of k vertices such that the num-

ber of happy vertices with respect to S is maximized, where a vertex v is happy if v and all

its neighbors are in S. We show that MAXHS can be solved in time O
(
2mw ·mw · k2 · |V|

)
and O

(
8cw · k2 · |V|

)
, where mw and cw denote the modular-width and the clique-width of

G, respectively. This answers the open questions on fixed-parameter tractability posed

in [1]. The DkS problem asks for a subgraph with k vertices maximizing the number of

edges. If we define happy edges as the edges whose endpoints are in S, then DkS can be

seen as an edge-variant of MAXHS. In this work, we show that DkS can be solved in time

f (nd) · |V|O(1) and O(2cd · k2 · |V|), where nd and cd denote the neighborhood diversity and

the cluster deletion number of G, respectively, and f is some computable function. This result

implies that DkS is also fixed-parameter tractable by twin cover number.

This project began as a class project in CS 6958, taught by Dr. Sullivan, where my team

explored several open problems in the field. Later, Sullivan and I turned our results into

the conference paper "Parameterized Complexity of Maximum Happy Set and Densest

k-Subgraph", which appeared at International Symposium on Parameterized and Exact

Computation (IPEC) ’22 [21]. I was single-handedly in charge of writing the manuscript

draft.
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4.1 Introduction
In the study of large-scale networks, communities—cohesive subgraphs in a network—

play an important role in understanding complex systems and appear in sociology, biology

and computer science, etc. [11, 18]. For example, the concept of homophily in sociology

explains the tendency for individuals to associate themselves with similar people [20].

Homophily is a fundamental law governing the structure of social networks, and finding

groups of people sharing similar interests has many real-world applications [8].

People have attempted to frame this idea as a graph optimization problem, where a

vertex represents a person and an edge corresponds to some relation in the social network.

The notion of happy vertices was first introduced by Zhang and Li in terms of graph

coloring [24], where each color represents an attribute of a person (possibly fixed). A vertex

is happy if all of its neighbors share its color. The goal is to maximize the number of happy

vertices by changing the color of unfixed vertices, thereby achieving the greatest social

benefit.

Later, Asahiro et al. introduced MAXIMUM HAPPY SET (MAXHS) which defines that

a vertex v is happy with respect to a happy set S if v and all of its neighbors are in S [1].

The MAXHS problem asks for a vertex set S of size k that maximizes the number of happy

vertices. They also define its edge-variant, MAXIMUM EDGE HAPPY SET (MAXEHS) which

maximizes the number of happy edges, an edge with both endpoints in the happy set. It is

clear to see that MAXEHS is equivalent to choosing a vertex set S such that the number

of edges in the induced subgraph on S is maximized. This problem is known as DENSEST

k-SUBGRAPH (DkS) in other literature. Both MAXHS and MAXEHS are NP-hard [1, 9],

9and we study their parameterized complexity throughout this chapter.

4.1.1 Parameterized Complexity and Related Work

Graph problems are often studied with a variety of structural parameters in addition to

natural parameters (size k of the happy set in our case). Specifically, we investigate the pa-

rameterized complexity with respect to modular-width (mw), clique-width (cw), neighborhood

diversity (nd), cluster deletion number (cd), twin cover number (tc), treewidth (tw), and vertex

cover number (vc), all of which we define in Section 2.3. Figure 4.1 illustrates the hierarchy
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of these parameters by inclusion; hardness results are implied along the arrows, and FPT1

algorithms are implied in the reverse direction.

Asahiro et al. showed that MAXHS is W[1]-hard with respect to k by a parameterized

reduction from the q-CLIQUE problem [1]. They also presented FPT algorithms for MAXHS

on parameters: clique-width plus k, neighborhood diversity, cluster deletion number

(which implies FPT by twin cover number), and treewidth.

MAXEHS (i.e., DkS) has been extensively studied in different names (for example,

the k-CLUSTER problem [7], the HEAVIEST UNWEIGHTED SUBGRAPH problem [16], and

k-CARDINALITY SUBGRAPH problem [5]). For parameterized complexity, Cai showed the

W[1]-hardness parameterized by k [6]. Bourgeois employed Moser’s technique in [22] to

show that MAXEHS can be solved in time 2tw · nO(1) [3]. Broersma et al. proved that

MAXEHS can be solved in time kO(cw) · n, but it cannot be solved in time 2o(cw log k) · nO(1)

unless the Exponential Time Hypothesis (ETH) fails [4]. To the best of our knowledge,

the parameterized complexity by modular-width, neighborhood diversity, cluster deletion

number and twin cover number remained open prior to our work. Figure 4.2 summarizes

the known and established hardness results for MAXHS and MAXEHS.

4.1.2 Our Contributions

In this work, we present four novel parameterized algorithms for MAXHS and MAX-

EHS. First, we shall provide a dynamic-programming algorithm that solves MAXHS in

time O(2mw ·mw · k2 · |V|), answering the question posed by the authors of [1]. Second,

we show that MAXHS is FPT by clique-width, giving an O(8cw · k2 · |V|) algorithm, which

removes the exponential term of k from the best known result, O(6cw · k2(cw+1) · |V|) [1].

While bounded modular-width implies bounded clique-width (Proposition 1.10), we give

both algorithms because the one for modular-width has asymptotically faster running

time.

Turning to MAXEHS, we prove it is FPT by neighborhood diversity, using an inte-

ger quadratic programming formulation. Lastly, we provide an FPT algorithm for MAX-

EHS parameterized by cluster deletion number with running time O(2cd · k2 · |V|), which

1An FPT (fixed-parameter tractable) algorithm solves the problem in time f (k) · nO(1) for some computable
function f .
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also implies the problem is FPT by twin cover number. These new results complete the

previously-open parameterized complexities in Figure 4.2, except the one of DkS parame-

terized by modular-width.

4.1.2.1 Independent work. Independently and simultaneously, Hanaka also

showed the parameterized complexity of DkS by neighborhood diversity and cluster dele-

tion number [15]. For neighborhood diversity, the complexity was implied by [19], as

we discuss in Sections 4.3.3 and 4.5.1. Further, the parameterized complexity by cluster

deletion number was shown by an algorithm solving DkS in time 2bd ((k3 + bd) |V|+ |E|
)
,

where bd denotes the block deletion number (note that it holds cd ≤ bd).

4.2 Preliminaries
We use standard graph theory notation as in Section 1.3.1. Also, refer to Section 1.3.4

for the structural graph parameters considered in this chapter.

4.2.1 Problem Definitions

Asahiro et al. first introduced the MAXIMUM HAPPY SET problem in [1].

Input: A graph G = (V, E) and a positive integer k.

Problem: Find a subset S ⊆ V of k vertices that maximizes the number of happy

vertices v with N[v] ⊆ S.

MAXIMUM HAPPY SET (MAXHS)

Figure 4.3 illustrates an example instance with k = 5. Let us call a vertex that is not

happy an unhappy vertex, and observe that the set of unhappy vertices is given by N[V \ S],

providing an alternative characterization of happy vertices.

Proposition 4.1. Given a graph G = (V, E) and a happy set S ⊆ V, the set of happy vertices is

given by V \ N[V \ S].

In addition, Asahiro et al. define an edge variant [1]:
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Input: A graph G = (V, E) and a positive integer k.

Problem: Find a set S ⊆ V of k vertices that maximizes the number of happy

edges. An edge uv ∈ E is happy if and only if {u, v} ⊆ S.

MAXIMUM EDGE HAPPY SET (MAXEHS)

It is known that MAXEHS is identical to the DENSEST k-SUBGRAPH problem (DkS), as

the number of happy edges is equal to m(G[S]). Some literature (e.g., [10]) also phrases

this problem as the dual of the SPARSEST k-SUBGRAPH problem.

4.3 Background
Before describing our algorithms, we introduce some building blocks for our argument.

4.3.1 Entire Subgraphs

Structural parameters such as modular-width and clique-width entail the join opera-

tion in their underlying construction trees. When joining two subgraphs in MAXHS, it is

important to distinguish whether all the vertices in the subgraph are included in the happy

set. Formally, we introduce the notion of entire subgraphs.

Definition 4.2. Given a graph G and a happy set S, an entire subgraph with respect to S is a

subgraph G′ of G such that V(G′) ⊆ S.

By definition, the empty subgraph is always entire. The following lemma is directly

derived from the definition of happy vertices.

Lemma 4.3. Let G be a complete join of subgraphs G1 and G2. For any happy set S ⊆ V(G),

V(G1) contains a happy vertex only if G2 is entire with respect to S.

Proof. If G2 is not entire, there must exist v ∈ V(G2) such that v /∈ S. Recall Proposition 4.1,

and we have N[V(G) \ S] ⊇ N(v) ⊇ V(G1), which implies that any vertex in V(G1) cannot

be happy.

4.3.2 Knapsack Variant with Nonlinear Values

The classic KNAPSACK problem has a number of variants, including 0-1 KNAPSACK

[14] and QUADRATIC KNAPSACK [13]. In this chapter we consider another variant, where
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the objective function is the sum of nonlinear functions, but the function range is limited

to integers. Specifically, each item has unit weight, but its value may vary depending on

the number of copies of each type of item. We also require the weight sum to be exact and

call this problem f -KNAPSACK, where f stands for function.

Input: Given a set of n items numbered from 1 to n, a weight capacity W ∈ Z+
0

and a value function fi : Di → Z+
0 , defined on a non-negative integral

domain Di for each item i.

Problem: For every 1 ≤ i ≤ n, find the number xi ∈ Di of instances of item i to

include in the knapsack, maximizing ∑n
i=1 fi(xi), subject to ∑n

i=1 xi = W.

f -KNAPSACK

We show that this problem is solvable in polynomial-time.

Lemma 4.4. f -KNAPSACK can be solved in time O(nW2).

Proof. First, define the value ϕ[t, w] to be the maximum possible sum ∑t
i=1 fi(xi), subject to

∑t
i=1 xi = w and xi ∈ Di for every i. Then, perform bottom-up dynamic programming as

follows.

• Initialize: ϕ[0, w] =

{
0 if w = 0,
−∞ if w > 0 (meaning Infeasible).

• Update: ϕ[t, w] = max
xt∈Dt∧xt≤w

ft(xt) + ϕ[t− 1, w− xt]

• Result: ϕ[n, w] for 0 ≤ w ≤W is the optimal value for weight w.

The base case (ϕ[0, w]) represents the state where no item is in the knapsack, so both

the objective and weight are 0; otherwise, infeasible. For the inductive step, any optimal

solution ϕ[t, w] can be decomposed into ft(xt) + ∑t−1
i=1 fi(xi) for some xt, and the latter

term (∑t−1
i=1 fi(xi)) must equal ϕ[t− 1, w− xt] by definition. We consider all possible inte-

gers xt, and thus the algorithm is correct.

Since 0 ≤ t ≤ n, 0 ≤ w ≤ W, and the update takes time O(W), the total running

time is O(nW2). By using the standard technique of backlinks, one can reconstruct the

solution {xi} within the same asymptotic running time.

The following result is a natural by-product of the algorithm above.
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Corollary 4.5. Given an integer W, f -KNAPSACK for all weight capacities 0 ≤ w ≤ W can be

solved in total time O(nW2).

4.3.3 Integer Quadratic Programming

For MAXEHS, we use the following known result that INTEGER QUADRATIC PRO-

GRAMMING is FPT by the number of variables and coefficients.

Input: An n × n integer matrix Q, an m × n integer matrix A and an m-

dimensional integer vector b.

Problem: Find a vector x ∈ Zn minimizing xTQx, subject to Ax ≤ b.

INTEGER QUADRATIC PROGRAMMING (IQP)

Proposition 4.6 (Lokshtanov [19]). There exists an algorithm that given an instance of IQP,

runs in time f (n, α)LO(1), and outputs a vector x ∈ Zn. If the input IQP has a feasible solution

then x is feasible, and if the input IQP is not unbounded, then x is an optimal solution. Here α

denotes the largest absolute value of an entry of Q and A, and L is the total number of bits required

to encode the input.

It is convenient to have a linear term in the objective function. This can be achieved by

introducing a new variable x̂ = 1 and adding [0, q] as the corresponding row in Q [19].

Corollary 4.7. Proposition 4.6 holds if we generalize the objective function from xTQx to xTQx +

qTx for some n-dimensional integer vector q. Here α is the largest absolute value of an entry of Q,

q and A.

4.4 Algorithms for Maximum Happy Set
Now we describe our FPT algorithms for MAXHS with respect to modular-width and

clique-width. At a high level, we employ a bottom-up dynamic programming (DP) ap-

proach on the parse-tree of a given graph, considering each node once. At each node,

we use several techniques on precomputed results to update the DP table. For simplicity,

our DP tables store the maximum number of happy vertices. Like other DP applications,

a certificate, i.e., the actual happy set, can be found by using backlinks within the same

asymptotic running time.
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4.4.1 Parameterized by Modular-Width

We give an algorithm whose running time is singly-exponential in the modular-width,

quadratic in k and linear in the graph size.

Theorem 4.8. MAXHS is solvable in time O(2mw ·mw · k2 · |V(G)|), where mw is the modular-

width of the input graph G.

Our algorithm follows the common framework seen in [12]. Given a graph G, a parse-

tree with modular-width mw can be computed in linear-time [23]. The number of nodes

in the parse-tree is linear in |V(G)| [12]. Our algorithm traverses the parse-tree from the

bottom, considering only operation (O4), as operations (O2)-(O3) can be replaced with a

single operation (O4) with at most two arguments [12]. Further, we assume 2 ≤ mw < k

without loss of generality.

Each node in the parse-tree corresponds to an induced subgraph of G, which we write

G. We keep track of a table ϕ[G, w], the maximum number of happy vertices for G with

regard to a happy set of size w. We may assume 0 ≤ w ≤ k because we do not have

to consider a happy set larger than size k. The entries of the DP table are initialized

with ϕ[G, w] = −∞. For the base case, a graph G0 with a single vertex introduced by

operation (O1), we set ϕ[G0, 0] = 0 and ϕ[G0, 1] = 1. The solution to the original problem

is given by ϕ[G, k].

Our remaining task is to compute, given a graph substitution G = H(G1, . . . , Gn) (n ≤

mw), the values of ϕ[G, w] provided partial solutions ϕ[G1, ·], . . . , ϕ[Gn, ·]. We first choose

a set of entire subgraphs from G1, . . . , Gn. Then, we identify the subgraph type for each Gi

during a graph substitution.

Definition 4.9 (subgraph type). Given a graph substitution H(G1, . . . , Gn), where vi ∈

V(H) is substituted by Gi, and a happy set S, we categorize each substituted subgraph Gi

into the following four types.

• Type I: Gi is entire and for every j such that vj ∈ NH(vi), Gj is entire.

• Type II: Gi is not entire and for every j such that vj ∈ NH(vi), Gj is entire.

• Type III: Gi is entire and not Type I.
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• Type IV: Gi is not entire and not Type II.

Intuitively, Type I and II subgraphs are surrounded by entire subgraphs in H, the

metagraph to substitute, and Type I and III subgraphs are entire. A pictorial representation

of this partition is presented in Figure 4.4. Observe that from Lemma 4.3, the subgraphs

with Type III and IV cannot include any happy vertices. Further, Type II subgraphs are

independent in H because their neighbors must be of Type III. This ensures that the choice

of a happy set in Type II is independent of other subgraphs.

Lastly, we formulate an f -KNAPSACK instance as described in the following algorithm

for updating the DP table on a single operation (O4).

Algorithm 4.10 (MaxHS-MW). Given a graph substitution G = H(G1, . . . , Gn) and partial

solutions ϕ[G1, ·], . . . , ϕ[Gn, ·], consider all combinations of entire subgraphs from

G1, . . . , Gn and proceed the following steps.

(Step 1) Identify subgraph types for G1, . . . , Gn. (Step 2) Formulate an f -KNAPSACK

instance with capacity k and value functions fi, based on the subgraph Gi’s type as follows.

• Type I : fi(x) = |Gi| , x = |Gi|.

• Type II : fi(x) = ϕ[Gi, x], 0 ≤ x < |Gi|.

• Type III : fi(x) = 0, x = |Gi|.

• Type IV : fi(x) = 0, 0 ≤ x < |Gi|.

Then, update the DP table entries ϕ[G, w] for 0 ≤ w ≤ k with the solution to f -KNAPSACK,

if its value is greater than the current value.

We now prove that the runtime of this algorithm is FPT with respect to modular-width.

Lemma 4.11. Algorithm 4.10 correctly computes ϕ[G, w] for every 0 ≤ w ≤ k in time O(2mw ·

mw · k2).

Proof. First, the algorithm considers all possible sets of entire substituted

subgraphs (G1, . . . , Gn). The optimal solution must belong to one of them. It remains

to prove the correctness of the f -KNAPSACK formulation in step 2. From Lemma 4.3, the

subgraphs of Type III and IV cannot increase the number of happy vertices, so we set
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fi(x) = 0. For Type I, the algorithm has no option but to include all of V(Gi) in the happy

set, and they are all happy.

The subgraphs of Type II are the only ones that use previous results, ϕ[Gi, ·]. Since

the new neighbors to Gi are required to be in the happy set, for any choice of the happy

set in Gi, happy vertices remain happy, and unhappy vertices remain unhappy. Thus, we

can directly use ϕ[Gi, ·]; its choice does not affect other substituted subgraphs, as Type II

subgraphs are independent in H. The domain of functions fi is naturally determined by

the definition of entire subgraphs.

Now, consider the running time of Algorithm 4.10. It considers 2n possible combi-

nations of entire subgraphs. Step 1 can be done by checking neighbors for each vertex

in H, so the running time is O(|E(H)|) = O(n2). And step 2 takes time O(nk2) from

Corollary 4.5. The total running time is O(2n(n2 + nk2)) = O(2mw ·mw · k2) as we assume

n ≤ mw < k.

Proof of Theorem 4.8. It is trivial to see that the base case of the DP is valid, and the correct-

ness of inductive steps is given by Lemma 4.11. We process each node of the parse-tree

once, and it has O(|V(G)|) nodes [12]. Thus, the overall runtime is O(2mw · mw · k2 ·

|V(G)|).

4.4.2 Parameterized by Clique-Width

We provide an algorithm for MAXHS parameterized only by clique-width (cw), which

no longer requires a combined parameter with solution size k as presented in [1].

Theorem 4.12. Given a cw-expression tree of a graph G with clique-width cw, MAXHS can be

solved in time O(8cw · k2 · |V(G)|).

Here we assume that we are given a cw-expression tree, where each node t represents

a labeled graph Gt. A labeled graph is a graph whose vertices are labeled by integers in

L = {1, . . . , cw}. Every node must be one of the following: introduce node i(v), union

node G1 ⊕ G2, relabel node ρ(i, j), or join node η(i, j). We write Vi for the set of vertices

with label i.

Our algorithm traverses the cw-expression tree from the leaves and performs dynamic

programming. For every node t, we keep track of the annotated partial
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solution ϕ[t, w, X, T], for every integer 0 ≤ w ≤ k and sets of labels X, T ⊆ L. We call

X the entire labels and T the target labels. ϕ[t, w, X, T] is defined to be the maximum number

of happy vertices having target labels T for Gt with respect to a happy set S ⊆ V(Gt) of

size w such that Vℓ is entire to S if and only if ℓ ∈ X. The entries of the DP table are

initialized with ϕ[t, w, X, T] = −∞. The solution to the original graph G is computed

by maxX⊆L ϕ[r, k, X, L], where r is the root of the cw-expression tree. Now we claim the

following recursive formula for each node type.

Lemma 4.13 (Formula for introduce nodes). Suppose t is an introduce node, where a vertex v

with label i is introduced. Then, the following holds.

ϕ[t, w, X, T] =


1 if w = 1, X = L and i ∈ T;
0 if w = 1, X = L and i /∈ T;
0 if w = 0 and X = L \ {i};
−∞ otherwise.

Proof. First, notice that all labels but i are empty and thus entire. If we include v in the

happy set, then we get w = 1 and X = L (all labels are entire). The resulting value

depends on the target labels. If i is a target label, i.e., i ∈ T, then v is a happy vertex having

a target label, resulting in ϕ[t, w, X, T] = 1. Otherwise, ϕ[t, w, X, T] = 0. If w = 0, then

label i cannot be entire, and the only feasible solution is ϕ[t, 0, L \ {i}, T] = 0.

Lemma 4.14 (Formula for union nodes). Suppose t is a union node with child nodes t1 and t2.

Then, the following holds.

ϕ[t, w, X, T] = max
0≤w̃≤w

max
X1,X2⊆L

:X1∩X2=X

ϕ[t1, w̃, X1, T] + ϕ[t2, w− w̃, X2, T]

Proof. At a union node, since Gt1 and Gt2 are disjoint, any maximum happy set in Gt must

be the disjoint union of some maximum happy set in Gt1 and that in Gt2 for the same target

labels. We consider all possible combinations of partial solutions to Gt1 and Gt2 , so the

optimality is preserved. Note that a label in Gt is entire if and only if it is entire in both Gt1

and Gt2 .

Lemma 4.15 (Formula for relabel nodes). Suppose t is a relabel node with child node t′, where

label i in graph Gt′ is relabeled to j. Then, the following holds.
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ϕ[t, w, X, T] =


−∞ if i /∈ X;
ϕ[t′, w, X, T′] if i ∈ X and j ∈ X;

max
Y∈{∅,{i},{j}}

ϕ[t′, w, X \ {i} ∪Y, T′] if i ∈ X and j /∈ X,

where T′ = T ∪ {i} if j ∈ T and T \ {i} otherwise.

Proof. At a relabel node ρ(i, j), label i becomes empty, so it must be entire in Gt, leading to

the first case. The variable T′ converts the target labels in Gt′ to those in Gt. If label j is a

target in Gt, then i and j must be targets in Gt′ . Likewise, if label j is not a target in Gt, then

neither i nor j should be targets in Gt′ .

If label j is entire in Gt, then the maximum happy set must be the same as the one in Gt′

where both labels i and j are entire. If j is not entire in Gt, then we need to choose the best

solution from the following: i is entire but j is not, j is entire but i is not, neither i nor j is

entire. Because Gt and Gt′ have the same underlying graph, the optimal solution must be

one of these.

Figure 4.5 illustrates the third case of the formula in Lemma 4.15.

Lemma 4.16 (Formula for join nodes). Suppose t is a join node with the child node t′, where

labels i and j are joined. Then, the following holds.

ϕ[t, w, X, T] =


ϕ[t′, w, X, T] if i ∈ X and j ∈ X
ϕ[t′, w, X, T \ {i}] if i ∈ X and j /∈ X
ϕ[t′, w, X, T \ {j}] if i /∈ X and j ∈ X
ϕ[t′, w, X, T \ {i, j}] if i /∈ X and j /∈ X

Proof. At a join node η(i, j), first observe that for any happy set, the vertices labeled other

than i, j are unaffected; happy vertices remain happy. Further, if label j is not entire in Gt,

then all vertices in Vi cannot be happy from Lemma 4.3. Thus, the maximum happy set

in Gt is equivalent to the one in Gt′ such that label i is not a target label. The same argument

applies to the other cases.

Figure 4.6 illustrates the second case of the formula in Lemma 4.16. Lastly, we examine

the running time of these computations.

Proposition 4.17. Given a cw-expression tree and its node t, and partial solutions ϕ[t′, ·, ·, ·] for

every child node t′ of t, we can compute ϕ[t, w, X, T] for every w, X, T in time O(8cw · k2).
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Proof. It is clear to see that for fixed t, w, X, T, the formulae for introduce, relabel, and

join nodes take O(1). If we compute ϕ[t, ·, ·, ·] for every w, X, T, the total running time is

O((2cw)2 · k) since w is bounded by k and there are 2cw configurations for X and T.

For the union node formula, observe that X can be determined by the choice of X1 and

X2, so it is enough to consider all possible values for w, T, w̃, X1, X2, which results in the

running time O((2cw)3 · k2), or O(8cw · k2).

This completes the proof of Theorem 4.12, as we process each node of the cw-expression

tree once, and it has O(|V(G)|) nodes.

4.5 Algorithms for Maximum Edge Happy Set
In addition to MAXHS, we also study its edge-variant MAXEHS. One difference from

MAXHS is that when joining two subgraphs, we may increase the number of edges be-

tween those subgraphs, even if they are not entire. In other words, the number of edges

between joining subgraphs depends on two variables, and quadratic programming nat-

urally takes part in this setting. Here, we present FPT algorithms for two parameters—

neighborhood diversity and cluster deletion number—to investigate the boundary be-

tween parameters that are FPT (e.g., treewidth) and W[1]-hard (e.g., clique-width) (see

Figure 4.2).

4.5.1 Parameterized by Neighborhood Diversity

As shown in Figure 4.1, neighborhood diversity is a parameter specializing modular-

width. To obtain a finer classification of structural parameters, we now show MAXEHS is

FPT parameterized by neighborhood diversity.

Let nd be the neighborhood diversity of the given graph G. We observe that any

instance (G, k) of MAXEHS can be reduced to the instance of INTEGER QUADRATIC PRO-

GRAMMING (IQP) as follows.

Lemma 4.18. MAXEHS can be reduced to IQP with O(nd) variables and bounded coefficients in

time O(|V(G)|+ |E(G)|).

Proof. First, we compute the set of twins (modules) M = M1, . . . , Mnd of G, and obtain

the quotient graph H on the modulesM in time O(|V(G)|+ |E(G)|) [17]. Note that each
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module Mi is either a clique or an independent set. Let us define a vector q ∈ Znd such

that qi = 1 if Mi is a clique, and qi = 0 if Mi is an independent set. Further, let A ∈ Znd×nd

be the adjacency matrix of H where Aij = 1 if Mi Mj ∈ E(H), and Aij = 0 otherwise.

We then formulate an IQP instance as follows:

• Variables: x ∈ Znd.

• Maximize: f (x) = xT(A + qqT)x− qTx (equivalently, minimize − f (x)).

• Subject to: ∑i xi = k and 0 ≤ xi ≤ |Mi| for every 1 ≤ i ≤ nd.

This formulation has nd variables, and its coefficients are either 0 or ±1, thus bounded.

After finding the optimal vector x, pick any xi vertices from module Mi and include them

in the happy set S. We claim that S maximizes the number of happy edges.

For any happy set S, the number of happy edges is given by the sum of the number

of happy edges inside each module Mi, which we call internal edges, and the number of

edges between each module pair Mi and Mj, or external edges. Let x ∈ Znd be a vector such

that xi = |S ∩Mi| for every i. Then, the number of internal edges of module Mi is qi · (xi
2 ),

and the number of external edges between modules Mi and Mj is Aij · xixj. The number

of happy edges, i.e., |E(G[S])|, is given by: h(x) =
[
∑nd

i=1 qi · (xi
2 )
]
+

[
∑1≤i<j≤nd Aij · xixj

]
.

One can trivially verify f (x) = 2h(x).

If the IQP instance is feasible, then we can find a happy set S of size k maximizing h(x),

which must be the optimal solution to MAXEHS. Otherwise, ∑i |Mi| = |V(G)| < k, and

MAXEHS is also infeasible.

Figure 4.7 exemplifies a quotient graph of a graph with nd = 5, along with vector q and

matrix A. The following is a direct result from Lemma 4.18 and Proposition 4.6.

Theorem 4.19. MAXEHS can be solved in time f (nd) · |V(G)|O(1), where nd is the neighborhood

diversity of the input graph G and f is a computable function.

4.5.2 Parameterized by Cluster Deletion Number

Finally, we present an FPT algorithm for MAXEHS parameterized by the cluster dele-

tion number of the given graph.
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Theorem 4.20. Given a graph G = (V, E) and its cluster deletion set X of size cd, MAXEHS can

be solved in time O(2cd · k2 · |V|).

Recall that by definition, G[V \ X] is a set of disjoint cliques. Let C1, . . . , Cp be the

clusters appeared in G[V \X]. Our algorithm first guesses part of the happy set S′, defined

as S ∩ X, and performs f -KNAPSACK with p items.

Algorithm 4.21 (MaxEHS-CD). Given a graph G = (V, E) and its cluster deletion set X,

consider all sets of S′ ⊆ X such that |S′| ≤ k and proceed the following steps.

(Step 1) For each clique Ci, sort its vertices in non-increasing order of the number of

neighbors in S′. Let vi,1, . . . , vi,|Ci | be the ordered vertices in Ci. (Step 2) For each 1 ≤

i ≤ p, construct a function fi as follows: fi(0) = 0 and for every 1 ≤ j ≤ |Ci|, fi(j) =

fi(j− 1)+
∣∣N(vi,j) ∩ S′

∣∣+ j− 1. (Step 3) Formulate an f -KNAPSACK instance with capacity

k − |S′| and value functions fi for every 1 ≤ i ≤ p. Then, obtain the solution {xi} with

the exact capacity k − |S′| if feasible. (Step 4) Construct S as follows: Initialize with S′

and for each clique Ci, pick xi vertices in order and include them in S. That is, update

S← S ∪ {vi,1, . . . , vi,xi} for every 1 ≤ i ≤ p. Finally, return S that maximizes |E(G[S])|.

Intuitively, we construct function fi in a greedy manner. When we add a vertex v in

clique Ci to the happy set S, it will increase the number of happy edges by the number

of v’s neighbors in S′ and the number of the vertices in Ci that are already included in

S. Therefore, it is always advantageous to pick a vertex having the most neighbors in S′.

Figure 4.8 illustrates the key ideas of Algorithm 4.21. The following proposition completes

the proof of Theorem 4.20.

Proposition 4.22. Given a graph G = (V, E) and its cluster deletion set X of size cd, Algo-

rithm 4.21 correctly finds the maximum edge happy set in time O(2cd · k2 · |V|).

Proof. The algorithm considers all possible sets of S ∩ X, so the optimal solution should

extend one of them. It is clear to see that when the f -KNAPSACK instance is feasible,

S ends up with k vertices, since the sum of the obtained solution must be k − |S′|. The

objective of the f -KNAPSACK is equivalent to |E(G[S])| − |E(G[S′])|, that is, the number

of happy edges extended by the vertices in V \ X. Since S′ has been fixed at this point, the
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optimal solution to f -KNAPSACK leads to that to MAXEHS. Lastly, the value function fi

is correct because for each clique Ci, the number of extended edges is given by (|Si |
2 ) +

∑v∈Si
|N(v) ∩ S′|, where Si = S ∩ Ci and xi = |Si|. This is maximized by choosing |Si|

vertices that have the most neighbors in S′, if we fix |Si|, represented as xi in f -KNAPSACK.

This is algebraically consistent with the recursive form in step 2.

For the running time, the choice of S′ adds the complexity of 2cd to the entire algo-

rithm. Having chosen S′, vertex sorting (step 1) can be accomplished by checking the

edges between S′ and V \ X, so it takes only O(k · |V|). The f -KNAPSACK (step 3) takes

time O(pk2) = O(k2 · |V|) from Corollary 4.5, because there are p items and weights are

bounded by k. Steps 2 and 4 do not exceed this asymptotic running time. The total runtime

is O(2cd · k2 · |V|).

4.6 Conclusions and Future Work
We present four algorithms using a variety of techniques, two for MAXIMUM HAPPY

SET (MAXHS) and two for MAXIMUM EDGE HAPPY SET (MAXEHS). The first shows

that MAXHS is FPT with respect to the modular-width parameter, which is stronger than

clique-with but generalizes several parameters such as neighborhood diversity and twin

cover number. We then give an FPT dynamic-programming algorithm for MAXHS param-

eterized by clique-width. This improves the best known complexity result of FPT when

parameterized by clique-width plus k.

For MAXEHS, we prove that it is FPT by neighborhood diversity, using a result for

INTEGER QUADRATIC PROGRAMMING as a black box. Lastly, we show an FPT algorithm

parameterized by cluster deletion number, the distance to a cluster graph, which then

implies FPT by twin cover number. These results have answered several open questions of

[1] (Figure 4.2). While it is FPT, there cannot be a polynomial kernel with respect to nd and

cd, due to the lower-bounds on CLIQUE parameterized by vertex cover number, unless NP

⊆ co-NP/poly [2].

There are multiple potential directions for future research. As highlighted in Figure 4.2,

the parameterized complexity of MAXEHS with respect to modular-width is still open.

Another direction would be to find the lower bounds for known algorithms.
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clique-width

modular-width cluster
deletion

neighborhood
diversity twin cover

vertex cover

treewidth

(weak)

(strong)

Figure 4.1: Hierarchy of relevant structural graph parameters. Arrows indicate general-
izations.

Parameter MAXHS MAXEHS
Size k of happy set W[1]-hard[1] W[1]-hard[6]
Clique-width + k FPT[1] FPT[4]
Clique-width FPT W[1]-hard[4]
Modular-width FPT Open
Neighborhood diversity FPT[1] FPT
Cluster deletion number FPT[1] FPT
Twin cover number FPT[1] FPT
Treewidth FPT[1] FPT[3]
Vertex cover number FPT[1] FPT[3]

Figure 4.2: Known and established hardness results under select parameters for MAXHS
and MAXEHS (as known as DENSEST k-SUBGRAPH). New results from this work in red.
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S

Figure 4.3: Given a graph above, if k = 5, choosing S = {c, d, e, f , g}makes only one vertex
(e) happy (left). On the other hand, S = {a, b, c, d, e} is an optimal solution, making four
vertices (a, b, c, d) happy (right).
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I
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IV

II
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G1

G2

G3

G4

G5

G6

G7

G8

G9 G10

G11

Figure 4.4: Four types of the subgraphs after applying operation (O4). Entire subgraphs
(Type I and III) are shaded in gray. A subgraph becomes Type III or IV if it has a non-entire
neighbor (e.g., G3, G9). In a Type I subgraph, all vertices are happy. Type II subgraphs
may or may not admit a happy vertex. Type III and IV subgraphs cannot contain a happy
vertex, as it is adjacent to a non-entire subgraph.

Gt′

ρ(i, j)

Gt

i j

ϕ[t′, 4, ∅, {i, j}] = 3

i j

ϕ[t′, 4, {i}, {i, j}] = 2

i j

ϕ[t′, 4, {j}, {i, j}] = 1

j

ϕ[t, 4, {i}, {j}] = 3

entire: i

entire: ∅ entire: i entire: j

Figure 4.5: Visualization of the relabel operation ρ(i, j) in the cw-expression tree of labels
i, j. Figures show happy sets of size 4 (shaded in gray) maximizing the number of happy
vertices (shown with double circles). After relabeling i to j, label i becomes empty and thus
entire. Since label j in Gt corresponds to labels i and j in Gt′ , to compute ϕ[t, 4, {i}, {j}],
we need to look up three partial solutions ϕ[t′, 4, ∅, T′], ϕ[t′, 4, {i}, T′], and ϕ[t′, 4, {j}, T′],
where T′ = {i, j}, and keep the one with the largest value (the left one in this example).
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Gt′

η(i, j)

Gt

i j

ϕ[t′, 5, {i}, {i, j}] = 4

i j

ϕ[t′, 5, {i}, {j}] = 2

i j

ϕ[t, 5, {i}, {i, j}] = 2

entire: i, target: i, j

entire: i, target: i, j entire: i, target: j

Figure 4.6: Visualization of the join operation η(i, j) in the cw-expression tree of labels
i, j. Figures show happy sets of size 5 (shaded in gray) maximizing the number of happy
vertices (shown with double circles) for different target labels. We consider the case where
label i is entire and j is not. The graph Gt′ admits 4 happy vertices if both i and j are target
labels. However, this is no longer true after the join because label j is not entire. Instead,
the optimal happy set for Gt can be found where label i is excluded from the target labels
for Gt′ , i.e., ϕ[t′, 5, {i}, {j}], which admits 2 happy vertices with label j. Notice that we do
not count the happy vertices with label i if it is not a target.

M1

M2

M3

M4

M5

12 2

3

8 0

(6)

(3) (0)

(0) (0)

q =


1
1
0
0
1

 , A =


0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 0
0 0 1 0 0


Figure 4.7: Example instance of MAXEHS with nd = 5. The figure shows the quotient
graph H of the given graph G on its modules M1, . . . , M5. Every edge in H forms a biclique
in G. The maximum edge happy set for k = 10 are shaded in gray. It also shows the
number of internal edges for each module (e.g., (6) for M1), and that of external edges
between modules (e.g., 12 between M1 and M2). Vector q indicates if each module is a
clique or an independent set (e.g., q1 = 1 because M1 is a clique), and A is the adjacency
matrix of the quotient graph.
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v1,1 v1,2 v1,3 v1,4
v2,1 v2,2

X S′

C1 C2

f1(0) = 0

f1(1) = 3

f1(2) = 6

f1(3) = 9

f1(4) = 12

f2(0) = 0

f2(1) = 2

f2(2) = 3

Figure 4.8: Visualization of MaxEHS-CD, given a graph G = (V, E) with its cluster deletion
set X and a fixed partial solution S′ (|S′| = 3, shaded in gray). The graph after removing
X, i.e., G[V \ X], forms cliques C1 and C2. For each clique, vertices are sorted in decreasing
order of the number of neighbors in S′ (edges to S′ in thicker lines). Functions f1 and f2
are constructed as described in the algorithm and used for f -KNAPSACK. For example,
f1(3) = f1(2) + 1 + (3− 1) as vertex v1,3 has one edge to S′ and two edges to previously-
added v1,1 and v1,2. If k = 6, then we pick k− |S′| = 3 vertices from C1 and C2. The optimal
solution would be {v1,1, v1,2, v1,3} because f1(3) + f2(0) = 9 gives the maximum objective
value in the f -KNAPSACK formulation.
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CHAPTER 5

TWIN-WIDTH SOLVER

The previous chapter investigated several structural parameters and gave FPT algo-

rithms for specific problems. However, a drawback of such an approach is that real-

world graphs rarely have small values of most parameters that admit FPT algorithms.

The relatively new parameter twin-width can be seen as a good compromise—filling the

gap between efficiency and practicality. Although its origin was the permutation width

of Guillemot and Marx [8], real-world graph instances tend to have surprisingly small

twin-widths. The study of twin-width has been producing fruitful results, including FPT

algorithms for 3-COLORING [5] and k-INDEPENDENT SET [4], as well as polynomial-time

approximation algorithms for MINIMUM DOMINATING SET [4] and other problems. Still,

there is a big gap between theory and practice, and one of the main obstacles is that

computing the twin-width of a given graph is notoriously hard.

In the parameterized algorithms community, the annual Parameterized Algorithms

and Computational Experiments Challenge (PACE) was conceived in Fall 2015 to deepen

the relationship between parameterized algorithms and practice. I participated in this

challenge in 2021 through 2023, but here I want to highlight our achievements in PACE

2023, when the task was to compute the twin-width of a graph and output its certificate

(called a contraction sequence). Working with Dursteler and Sullivan, we submitted our

solver Hydra Prime and won the Exact Track. This work was also awarded the PACE Theory

Award at International Symposium on Parameterized and Exact Computation (IPEC) ’23

[14]. This chapter elaborates our technical contributions, as implemented in Hydra Prime.

5.1 Introduction
The goal of the 2023 PACE Challenge (https://pacechallenge.org/2023/) was to

compute twin-width [6], a structural graph parameter which measures how close a given

graph is to a cograph – a graph which can be reduced to a single vertex by repeatedly

https://pacechallenge.org/2023/
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merging (contracting) pairs of twins – vertices with identical open neighborhoods. More

generally, twin-width measures the minimum number of “mistakes” made in such a pro-

cess when the pairs being contracted are no longer twins. If u and v are being merged, we

say uy becomes a red edge if y is a neighbor of u but not v (and analogously for edges vy).

The width of a contraction sequence is then the maximum number of red edges incident

to any vertex (red degree) at any time during the process, and the twin-width of a graph

is the minimum width of all valid contraction sequences. While graphs with bounded

twin-width admit many FPT algorithms, computing the parameter is NP-hard, and prior

to the PACE challenge its exact computation had remained impractical even on relatively

small graphs.

Most twin-width solvers naturally begin by removing twins, as all groups of twins can

be collapsed without incurring any red edges, making it a safe operation. In Hydra Prime,

we employ a stronger notion of this via modular decompositions [9], which decompose a

graph into a hierarchy of maximal modules. A key property of these decompositions is

that the twin-width of the original graph is exactly the maximum of the twin-width of

the twin-free, prime quotient graphs (Theorem 3.1 from [15]). We thus begin by running

a re-implemented linear-time modular decomposition solver based on [17], then process

each prime graph separately, maintaining a global lower bound. If a prime graph is a tree,

we run PrimeTreeSolver, otherwise we run a series of lower- and upper-bound algorithms

(listed at the end of this section) alternatively until the bounds match, from the quickest

algorithms to the slowest. Those algorithms marked with (*) in Figure 5.1 use a SAT solver

as a subroutine; the implementation submitted to PACE uses the Kissat solver [3].

In this chapter, we focus on two additional contributions to solving twin-width which

are used in the LocalSearch and Separate algorithms implemented in Hydra Prime: “time-

line encoding” and “hydra decomposition”. Timeline encoding is a novel data structure

which enables faster computation of twin-width by storing red “sources” and “intervals”

indicating the cause and window of each red edge. In the Separate upper- and lower-

bound algorithms, we introduce hydra decomposition, an iterative refinement strategy using

small vertex separators. After defining necessary notation, we briefly describe these in

Sections 5.2 and 5.3, respectively. Additional details are in the appendix available on the

code repository.
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Notation We follow standard graph-theoretic notation (e.g., found in [7]), the original

definition of twin-width [6], and terminology introduced by Schidler and Szeider [15].

Refer to [9] and [17] for the definitions of a module, modular decomposition, a prime graph,

etc. We write u← v when vertex v is contracted into vertex u. Given a trigraph G, the weak

red potential of u, v ∈ V(G), u ̸= v is the red degree of u after contraction u← v. We further

define the unshared neighbors of vertices u and v, denoted by △(u, v) as N(u)△N(v) \

{u, v}, where△ denotes the symmetric difference of two sets. We write [n] for {1, . . . , n}.

5.2 Timeline Encoding
In this work we developed the timeline encoding, a data structure to compute the width

of a given contraction sequence. An instance of the timeline encoding stores the following

data:

• G: input graph with n vertices.

• ϕ : V(G)→ [n]: bijection that encodes an elimination ordering (vertex v is eliminated

at time ϕ(v) if ϕ(v) < n).

• p : [n− 1]→ [n]: encoding of a contraction tree. For i < j, p(i) = j if vertex ϕ−1(i) is

merged into vertex ϕ−1(j) (i.e., j is the parent of i in the contraction tree).

For internal data structures, we introduce a few terms. First, define△>(j, i) := {ϕ(w) |

w ∈ △(ϕ−1(i), ϕ−1(j)), ϕ(w) > i}. Then, the red sources at time t are a set of red edges

introduced at time t, defined as {{p(t), k} | k ∈ △>(p(t), t)}. Red sources determine

the red intervals – non-overlapping, continuous intervals where an edge is red, defined as

follows: for i < j, red source (i, j) at time t creates an interval [t, i) (red edge ij disappears

at time i). If p(i) ̸= j, then we recurse this process as if red source {p(i), j}was created (red

edge ij transfers to {p(i), j}), as illustrated in Figure 5.2.

Now we aggregate red intervals by vertices. We maintain a multiset of intervals for each

vertex such that a red interval of an edge accounts to its both endpoints. The maximum

number of the overlaps of such intervals gives the maximum red degree at a vertex over

time. Finally, we obtain the width of the contraction sequence by taking the maximum of

the red degrees over all vertices.
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A key observation is that we can dynamically compute the number of overlaps of

a multiset of intervals efficiently with a balanced binary tree (e.g., modification in time

O(log n), getting the maximum number of overlaps in O(1), etc.). For local search, we

implemented methods for modifying a contraction tree and also updating a bijection ϕ.

5.3 Hydra Decomposition
We also implemented an iterative refinement strategy which we term hydra decompo-

sition, based on finding a small vertex separator. A hydra is a structured trigraph which

consists of a (possibly empty) set of heads and a (possibly empty) vertex set tail. Each head

is a set of vertices containing one top vertex and a nonempty set of boundary vertices. The

neighbors of the top vertex must be a subset of the boundary vertices. All red edges in

the trigraph must be incident to one of the top vertices. Heads must be vertex-disjoint,

but the tail may contain boundary vertices (but not a top vertex). A compact hydra is a

hydra consisting of its tail and one extra vertex, with no heads. A head of a hydra H can

additionally be viewed as a compact hydra C, where the boundary vertices of H are the

tail of C. Now that we have defined the parts of a hydra, we will now show the operations

performed in hydra decomposition:

1. Separate: partitions the vertices of a hydra into three parts S, A, B such that S sepa-

rates A from B. The part S should not contain any vertices from the heads, and any

tail vertices cannot be in A. Figure 5.3 shows two ways of choosing a separator S of

a hydra.

2. Contract: takes a hydra and contracts all vertices but its tail. The output is a contrac-

tion sequence and the resulting compact hydra.

3. Join: combines a compact hydra C and another hydra H such that V(C)∩V(H) is the

tail of C. The output is the union of C and H, where the heads and tail of H remain

and C becomes an additional head.

We now present a description of UBSeparate. Given a graph H and a target width d for

a contraction sequence, UBSeparate runs contract on the original graph without any heads

or tails. The contract operation works as follows: If the input H is small enough, or a vertex

separator of size at most d is not found, we directly search for a contraction sequence of
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width at most d for all but tail vertices, which can be done by modified UBGreedy and

other exact algorithms. Otherwise, we perform separate to obtain a partition S, A, B. We

recursively call contract with H[A ∪ S] with S being the tail. Then, we have a contraction

sequence s1 and a compact hydra C. Next, we join C with H[B ∪ S] and obtain a hydra H′.

Notice that the tail of C must be S. We again call contract with H′ and get a contraction

sequence s2, resulting in a compact hydra C′ with the original tail of H. Finally, C′ is

returned along with the concatenation of s1 and s2 as the result of the original contract

operation.

A key observation is that since red edges reside only in heads and the size of separators

are bounded by d, the red degree of a hydra is also upper-bounded by d, which helps

construct a d-contraction sequence part by part. For d = 1 we use a linear-time algorithm

to find a vertex separator, or a cut vertex (articulation point); for d ≥ 2, we instead call a

SAT solver.

5.4 Known Theoretical Results
We utilized the following known facts extensively in our implementation.

• If G′ is an induced subgraph of a graph G, then tww(G′) ≤ tww(G) [6].

• If G is the complement graph of a graph G, then tww(G) = tww(G) [6].

• tww(G) = max
H∈P

tww(H), where P is a set of prime graphs found in the modular

decomposition of G [15].

• For a graph G, min
u,v∈V(G)

: u ̸=v

|△(u, v)| ≤ tww(G) [15].

• If every component of a graph G has at most one cycle, then tww(G) ≤ 2 [2].

• For a tree T, tww(T) ≤ 1 if and only if T is a caterpillar1 [2].

5.5 SAT Formulation
Recent PACE challenges have shown that modern SAT solvers are versatile at solving

NP-hard problems; TWIN-WIDTH is not an exception. As part of our solver, we adopted

1A caterpillar is a tree containing a path P such that all other vertices are adjacent to some vertex in P.
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a known SAT encoding by Schidler and Szeider [15] with a few additional clauses which

we will detail in Section 5.5.3. We also used novel SAT encodings to find lower bounds

(LBCore) as well as to find vertex separators (LBSeparate, UBSeparate). For our SAT encod-

ings, we assumed that a given graph G is prime and V(G) = [n], and we work with binary

variables having a value either 0 (false) or 1 (true).

We use the Kissat SAT solver 3.0.0 [3] as an external library. In addition, we imple-

mented the sequential counter [16] for encoding cardinality constraints as it performed

better than the iterative totalizer [11] (typically used in MaxSAT2) and other algorithms.

5.5.1 Lower-Bound: LBCore

For a graph G, we define the minimum neighborhood difference ℓG as min
u,v∈V(G)

: u ̸=v

|△G(u, v)|

(refer to Section 5.1 for notation). The algorithm LBCore finds an induced subgraph max-

imizing the minimum neighborhood difference, using the fact that ℓG′ ≤ tww(G′) ≤

tww(G) for any induced subgraph G′ of G.

To find a vertex set S maximizing ℓG[S], we guess an integer d with d ≥ 1 and query

a SAT solver if there exists a set S ⊆ V(G) such that ℓG[S] ≥ d. Note that since the given

graph is prime, there are no twins in G and we have ℓG ≥ 1; there is no need to test

for d = 0. We observed that SAT solvers quickly find solutions for small graphs (see

Figure 5.4).

5.5.1.1 Correctness. First, suppose that all clauses are satisfied. Then, the solution S

has at least 4 vertices and for every vertex pair i, j in S, |△G[S](i, j)| ≥ d since x(i)∧ x(j)→

∑k∈△(i,j) x(k) ≥ d, which leads to ℓG[S] ≥ d. Conversely, suppose that there is a set S such

that ℓG[S] ≥ d ≥ 1. Since S does not contain twins, |S| ≥ 4, satisfying the first constraint.

Also, we know that for every distinct vertex pair i, j in S, |△G[S](i, j)| = |△G(i, j) ∩ S| =

∑k∈△G(i,j) x(k) ≥ d. This satisfies the second constraint3.

5.5.2 Finding Vertex Separators

To perform the hydra decomposition (used in algorithms LBSeparate and UBSeparate),

we need to find a vertex separator under certain constraints. We formulate a problem as

2A problem to maximize satisfying SAT clauses. We did not use MaxSAT for the solver.

3Implication denoted by x → y is equivalent to ¬x ∨ y.
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follows: given a connected graph G and its hydra structure (defined in Section 5.3) with

head H ⊆ V(G) and tail T ⊆ V(G) vertices, and an integer k, find a vertex separator

S ⊆ V(G) \ H of size at most k, such that G− S can be partitioned into two parts A, B with

the following constraints. (1) A and B must be nonempty, (2) there are no edges between

A and B, (3) B is a superset of T \ S, and (4) at least one vertex from T must be in B.

When k = 1, we can solve this problem in linear-time by testing all articulation points

(or cut vertices) in G. Otherwise, we use color coding on V(G) indicating the guess of a

partition A, B, S with colors Ȧ, Ḃ, Ṡ : χ : V(G) → {Ȧ, Ḃ, Ṡ}. If all vertices are properly

colored, we have A = χ−1(Ȧ), B = χ−1(Ḃ), S = χ−1(Ṡ). See Figure 5.5 for the encoding.

5.5.2.1 Correctness. Notice that each SAT clause encodes all constraints in the prob-

lem definition. Let A = x−1(1), B = y−1(1), and S = z−1(1). Then, from the reachability

constraints, there cannot be an edge between A and B, as if there is an edge ij such that

i ∈ A, j ∈ B, x(i) = y(j) = 1, which violates x(i) → ¬y(j). Also, since ¬x(i) for every

i ∈ T, we have T ∩ A = ∅. Then, T ⊆ B∪ S and T \ S ⊆ B. For others, it is straightforward

to see relations between the problem definition and SAT clauses.

5.5.3 Direct Solver

Our SAT formulation for computing exact twin-width is based on the relative encoding

presented in [15], which is faster than the absolute encoding in most instances. We further

add extra hints for vertex pairs having many unshared neighbors. Specifically, for a given

target twin-width d and any integer s > 0, if vertices u, v ∈ V(G) has d + s unshared

neighbors, then contraction u← v cannot appear in the first s contractions. Otherwise, the

red degree of u after the contraction will exceed d. Even stronger, we can state that at least

s of such unshared neighbors must be contracted before contraction u ← v. With these

hints, some instances witnessed speed-ups in a SAT solver’s running time.

See Figure 5.6 for the SAT encoding. For any distinct 1 ≤ i, j ≤ n, we use shorthand no-

tation o∗(i, j) for o(i, j) if i < j and ¬o(i, j) if i > j. Also, let a∗(i, j) = a(min{i, j}, max{i, j})

and similarly r∗(i, j, k) = r(i, min{j, k}, max{j, k}).

5.5.3.1 Correctness. The main proof is in [15]. Additional hints do not affect the

fidelity of the encoding.
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5.6 ML-Based Approach to TWIN-WIDTH

This content is not included in the IPEC ’23 proceedings.

Recent trends in algorithm engineering include using machine learning (ML) to op-

timize the performance of heuristic solvers [10]. In collaboration with Deepak Ajwani4,

Alexander Leonhardt5, Holger Dell5, Johannes Meintrup6, and Manuel Penschuck5, we

have been developing a trained model to predict the twin-width of a given graph. The

team consists of PACE 2023 competitors and participants of Dagstuhl Seminar 23331 “Re-

cent Trends in Graph Decomposition.” So far, I have made two major contributions to the

project.

One of my contributions was creating diverse datasets for machine learning. We have

already tried several ML architectures with different graph embeddings and handcrafted

features, but the biggest challenge is to prepare an unbiased dataset. First, even state-

of-the-art solvers struggle to find the exact twin-width when the graph has more than

50 vertices. Therefore, if we want supervised learning for categorizing graphs by their

exact twin-width, original graph instances have to be very small7, leading to mostly single-

digit twin-widths. Second, if we generate “random” graphs, there is a strong correlation

between the twin-width and the density of the graph. For instance, the expected twin-

width of an Erdős-Rényi G(n, p) graph is known to be a function of n and p [1]. To cope

with these issues, we designed several data augmentation techniques, which control n,

m, and twin-width individually so that we can reduce biases in the dataset as much as

possible.

Additionally, I proposed and implemented a new random graph model called the

random near-modular graph8, intended to have twin-widths that poly-logarithmically grow

with n. A random near-modular graph RNM(n, r, d) takes three integral parameters n, r,

4University College Dublin, Ireland.

5Goethe University Frankfurt, Germany.

6Technische Hochschule Mittelhessen, Germany.

7For unsupervised learning, we use heuristic solvers to estimate twin-width.

8This idea was motivated by a question for the written portion of my qualifying examination from Prof.
Jeffrey Phillips.
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and d. The first step is to construct an r-ary tree T with n leaves where every level except

the last is completely filled, and the last level has all nodes filled in from left to right (such

a tree must exist). Each node represents a graph, and all leaves are singletons.

We process this tree in the bottom-up manner. At a node v in T with children G1, . . . , Gℓ,

we create a graph Gv as follows:

1. Create the disjoint union of all graphs G1, . . . , Gℓ.

2. Randomly add edges between u ∈ Gi and v ∈ Gj such that i ̸= j while maintaining

the property |{uv | u ∈ Gi, v ∈ V(Gv) \ Gi}| ≤ d for every 1 ≤ i ≤ ℓ, or equivalently,

the size of the cut (V(Gi), V(Gv \ Gi)) in Gv is at most d.

Intuitively, we want to create a graph Gv such that when we contract all vertices in

Gi for every i into a single vertex while keeping multiedges (i.e., Gv/(G1, G2, . . . , Gℓ) with

the quotient notation), we obtain a d-regular multigraph. In the end, output the graph

at the root of T. Step 2 can be done by an algorithm similar to one for random regular

graphs. Initially, all children Gi are unmarked. Pick distinct unmarked i, j, and add an

edge between random u ∈ V(Gi) and v ∈ V(Gj). If the size of the cut (V(Gi), V(Gv − Gi))

in Gv reaches d, we mark Gi (and similarly Gj). Continue until we cannot add any edges.

Proposition 5.1. A random near-modular graph RNM(n, r, d) has n vertices and twin-width

in O(r + d log n).

Proof. It is straightforward to see that the output graph G has n vertices. Now I claim

the twin-width of G is in O(r + d log n). Consider a contraction sequence that contracts

from the bottom of T, that is, we always work on a particular leaf node Gi and contract

all vertices in Gi except one. We remove Gi if it becomes a single vertex. At any point of

contractions, let Gt be the remaining graph. Then, the red degree of a vertex v ∈ Gi is the

sum of the red degree of v in Gi (internal red degree) and the number of edges between v

and Gt − V(Gi) (external red degree). The internal red degree is at most r, and the external

red degree is at most dh, where h is the height of tree T, which is O(log n). Hence, the

maximum red degree is O(r + dh) = O(r + d log n).

We observe that the RNM(n, r, d) model generates a graph whose twin-width grows
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poly-logarithmically9 when r = log2 n, d = log n, which is verified by our computational

experiments10. I believe this model captures a structure of social networks, where each

individual belongs to a hierarchy of groups (e.g., industry, country, institution, etc.), and

internal interactions are much more frequent than external ones.

Another contribution was to update our twin-width solver Hydra Prime [13] to support

trigraphs (graphs with red edges) as input. To integrate an ML model into a heuristic

solver, it is necessary to predict the twin-width in the middle of a contraction sequence. For

example, during a search of contraction sequences, a solver considers several important

branches, predicts the twin-width for each branch, and takes the best one. Source code

(Hydra Prime X) is available at [12].

9O(log2 n + log n · log n) = O(log2 n).

10Code & experimental results: https://github.com/mogproject/graph-generators/wiki. Explanation
video: https://www.youtube.com/watch?v=yNvM76KLcWw.

https://github.com/mogproject/graph-generators/wiki
https://www.youtube.com/watch?v=yNvM76KLcWw
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Exact algorithms

PrimeTreeSolver Linear-time exact solver for trees without twins.

BranchSolver Brute-force solver equipped with caching mechanism and reduction rules.

DirectSolver (*) SAT-based solver implementing the relative encoding presented in [15].

Lower-bound algorithms

LBGreedy Greedily removes a vertex u from the graph G such that |△(u, v)| is mini-
mized for some v. Reports the maximum value of min

u,v∈V(G),u ̸=v
|△G(u, v)|.

LBCore (*) SAT-based algorithm to find max
S⊆V(G)

min
u,v∈S,u ̸=v

|△G[S](u, v)|.

LBSample Sampling-based algorithm. Finds a connected induced subgraph G′ of G by
random walk and computes the exact or lower-bound twin-width of G′.

LBSeparate (*) Similar to LBSample, but uses the hydra decomposition to find an induced
subgraph to check for the lower-bound.

Upper-bound algorithms

UBGreedy Iteratively contract a vertex pair minimizing the weak red potential.

UBLocalSearch Using the timeline encoding, we make small changes to the elimination
ordering and the contraction tree to see if there is a better solution.

UBSeparate (*) Iterative refinement algorithm using the hydra decomposition.

Figure 5.1: Algorithm list.
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Figure 5.2: An illustration of the timeline encoding given a graph and its contraction
sequence. Vertex labels show the elimination ordering. For each time i with contraction
j ← i (i < j), we create red sources {k, j} for every k ∈ △>(j, i), which determines red
intervals [i, min{k, j}) that will then disappear or transfer at time min{k, j}. The red degree
corresponds to the number of overlaps of red intervals aggregated by vertices, and its
maximum value is the width of the contraction sequence.

Figure 5.3: Structure of the hydra and two examples of performing a round of hydra
decomposition.
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Variables

x(i) for 1 ≤ i ≤ n x(i) is true iff vertex i is in a solution S.

Semantics of x(i)

1
n

∑
i=1

x(i) ≥ 4

Semantics of△(i, j)

2 x(i) ∧ x(j)→ ∑
k∈△(i,j)

x(k) ≥ d for every 1 ≤ i < j ≤ n

Figure 5.4: SAT encoding for LBCore.
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Variables

x(i) for i ∈ V(G) x(i) = 1 if and only if vertex i has color Ȧ.

y(i) for i ∈ V(G) y(i) = 1 if and only if vertex i has color Ḃ.

z(i) for i ∈ V(G) z(i) = 1 if and only if vertex i has color Ṡ.

Every vertex has a color

1 x(i) + y(i) + z(i) = 1 for every i ∈ V(G)

Semantics of the heads and the tail

2a ¬z(i) for every i ∈ H Head vertex cannot be in solution.

2b ¬x(i) for every i ∈ T Tail vertex cannot be in part A.

2c
∨
i∈T

y(i) At least one tail vertex is not in solution.

Encoding reachability

3a x(i)→ ¬y(j) for every edge ij ∈ E(G)

3b y(i)→ ¬x(j) for every edge ij ∈ E(G)

Parts A and B must be nonempty

4a ∑
i∈V(G)

x(i) ≥ 1

4b ∑
i∈V(G)

y(i) ≥ 1

Constraints on solution size

5 ∑
i∈V(G)

z(i) ≤ k

Figure 5.5: SAT encoding for hydra decomposition.
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Variables

o(i, j) for 1 ≤ i < j ≤ n encodes an elimination ordering (relative
encoding); o(i, j) = 1 iff vertex i is earlier
than vertex j in the elimination ordering.

p(i, j) for 1 ≤ i < j ≤ n encodes a contraction tree; p(i, j) = 1 if vertex
i is merged into vertex j.

r(i, j, k) for 1 ≤ i, j ≤ n and j < k ≤ n encodes red edges; r(i, j, k) = 1 if after
eliminating vertex i, there is a red edge jk.

a(i, j) for 1 ≤ i < j ≤ n auxiliary variable for computing transferred
red edges; a(i, j) = 1 if a red edge ij is present
at any time.

Semantics of o

1 o∗(i, j) ∧ o∗(j, k)→ o∗(i, k) transitivity

for every mutually distinct 1 ≤ i, j, k ≤ n

Semantics of p

2a
n

∑
j=i+1

p(i, j) = 1 for every 1 ≤ i < n all but the root vertices must have one parent

2b p(i, j)→ o(i, j) for every 1 ≤ i < j ≤ n parent must be present

Semantics of r

3a p(i, j) ∧ o∗(i, k)→ r∗(i, j, k) encodes red edges

for every 1 ≤ i < j ≤ n and k ∈ △(i, j)

3b p(i, j)→ ∑1≤k≤n : i,j ̸=k o∗(k, i) ≥ s additional hints

for every 1 ≤ i < j ≤ n and 1 ≤ s ≤ d

3c p(i, j) ∧ o∗(i, k) ∧ a∗(i, k)→ r∗(i, j, k) transfer red edges

for every mutually distinct 1 ≤ i, k ≤ n and i < j ≤ n

3d o∗(i, j) ∧ o∗(j, k) ∧ o∗(j, m) ∧ r∗(i, k, m)→ r∗(j, k, m) maintain red edges

for every mutually distinct 1 ≤ i, j ≤ n and 1 ≤ k < m ≤ n

Semantics of a

4 o∗(k, i) ∧ o∗(k, j) ∧ r∗(k, i, j)→ a∗(i, j) for every mutually distinct 1 ≤ i, j, k ≤ n

Constraints on the solution size

5 ∑1≤y≤n : i,x ̸=y r(i, x, y) ≤ d for every distinct 1 ≤ i, x ≤ n

Figure 5.6: SAT encoding for DirectSolver.
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CHAPTER 6

FPT ALGORITHMS FOR

INSPECTION PLANNING

Similarly to the PACE Challenge’s motto, one of my ultimate goals is to bring the theory

of parameterized algorithms into practice. In Chapters 6 and 7, we show the impact of FPT

algorithms on real-world applications in robotics. Autonomous robotic inspection, where

a robot moves through its environment and inspects points of interest, has applications

in industrial settings, structural health monitoring, and medicine. Planning the paths

for a robot to safely and efficiently perform such an inspection is an extremely difficult

algorithmic challenge. In this work we consider an abstraction of the inspection plan-

ning problem, which we term GRAPH INSPECTION. We give two exact algorithms for

this problem (using dynamic programming and integer linear programming), analyze the

performance of these methods, and present multiple approaches to achieve scalability. We

demonstrate significant improvement both in path weight and inspection coverage over a

state-of-the-art approach on two robotics tasks in simulation, a bridge inspection task by a

UAV and a surgical inspection task using a medical robot.

In collaboration with Daniel Coimbra Salomao1, Alex Crane1, Matthias Bentert2, Pål

Grønås Drange2, Felix Reidl3, Alan Kuntz1, and Blair D. Sullivan1, we published our

paper “Leveraging Fixed-Parameter Tractability for Robot Inspection Planning” at the 16th

International Workshop on the Algorithmic Foundations of Robotics (WAFR 2024) [25]. As

the lead author, I engaged in each aspect of the project. I engineered DP algorithms and

devised ILP formulations. After analyzing the state-of-the-art solver (IRIS-CLI), I imple-

mented most of our algorithms (with extensive unit tests) and conducted computational

1University of Utah, USA.

2University of Bergen, Norway.

3Birkbeck, University of London, UK.
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experiments using our university’s high-performance computing resources. I wrote the

majority of the manuscript, including visualization of the experimental results, and pre-

sented our work at the WAFR conference in October 2024.

6.1 Introduction
Inspection planning, where a robot is tasked with planning a path through its environ-

ment to sense a set of points of interest (POIs) has broad potential applications. These

include the inspection of surfaces to identify defects in industrial settings such as car

surfaces [3], urban structures [5], and marine vessels [12], as well as in medical applications

to enable the mapping of subsurface anatomy [6, 7] or disease diagnosis.

Consider the demonstrative medical example of diagnosing the cause of pleural effu-

sion, a medical condition in which a patient’s pleural space—the area between the lung and

the chest wall—fills with fluid, collapsing the patient’s lung [23, 18, 26]. Pleural effusion is

a symptom, albeit a serious one, of one of over fifty underlying causes, and the treatment

plan varies significantly, depending heavily on which of the underlying conditions has

caused the effusion. To diagnose the underlying cause, physicians will insert an endoscope

into the pleural space and attempt to inspect areas of the patient’s lung and chest wall.

Automated medical robots have been proposed as a potential assistive technology with

great promise to ease the burden of this difficult diagnostic procedure. However, planning

the motions to inspect the inside of a patient’s body with a medical robot, or indeed any

environment with any robot is an extremely challenging problem.

Planning a motion for a robot to move from a single configuration to another con-

figuration is, under reasonable assumptions, known to be PSPACE-hard [17]. Inspec-

tion planning extends this typical motion planning problem by requiring the traversal

of multiple configurations. The planned route may need to include complexities such

as tracing back to where the robot has already been and/or traversing circuitous routes.

Consider Figure 6.1, where examples are given of inspections that necessitate circuitous

paths or backtracking during inspection. While the specific examples given are intuitive

in the robots’ workspaces, cycles and backtracking may be required in the c-space graph

in ways that don’t manifest intuitively in the workspace as well.

Further, it is almost certainly not sufficient to only consider the ability to inspect the
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POIs, but one must also consider the cost of the path taken to inspect them. This is

because while inspecting POIs may be an important objective, it is not the only objective in

real robotics considerations; unmanned aerial vehicles (UAVs) must operate within their

battery capabilities, and medical robots must consider the time a patient is subjected to a

given procedure.

The state-of-the-art in inspection planning, presented by Fu et al. [15] and named IRIS-

CLI, casts this problem as an iterative process with two phases. In the first phase, a rapidly-

exploring random graph (RRG) [20] is constructed. In this graph, each vertex represents a

possible configuration of the robot, edges indicate the ability to transition between config-

uration states, and edge weights indicate the cost of these transitions. Additionally, every

vertex is labeled with the set of POIs which may be inspected by the robot when in the

associated configuration state. In the second phase, a walk is computed in this graph with

the dual objectives of (a) inspecting all POIs and (b) minimizing the total weight (cost) of

the walk. By repeating both phases iteratively, Fu et al. are able to guarantee asymptotic

optimality4 of the resulting inspection plan.

In this work we focus on improving the second phase. We formulate this phase as

an algorithmic problem on edge-weighted and vertex-multicolored graphs, which we call

GRAPH INSPECTION (formally defined in Section 6.2). GRAPH INSPECTION is a general-

ization of the well-studied TRAVELING SALESPERSON (TSP) problem5 [2]. As such, it is

deeply related to the rich literature on “color collecting” problems studied by the graph

algorithms community.

GRAPH INSPECTION is closely related to the GENERALIZED TRAVELING SALESPERSON

PROBLEM (also known as GROUP TSP), in which the goal is to find a “Hamiltonian cycle

visiting a collection of vertices with the property that exactly one vertex from each [color]

is visited” [27]. If each vertex can belong to several color classes, the instance can be

transformed into an instance of GTSP [22, 11]. However, in the GRAPH INSPECTION

problem, we do not demand that a vertex cannot be visited several times; indeed, we

expect that to be the case for many real-world cases. Rice and Tsotras [28] gave an exact

4See [15] for specific definition of asymptotic optimality in their case.

5Given an edge-weighted graph and a start-vertex s, compute a minimum-weight closed walk from s
visiting every vertex exactly once.
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algorithm for GTSP in O∗(2k) time6, and although being inapproximable to a logarithmic

factor [30], they gave an O(r)-approximation in running time O∗(2k/r) [29].

Two other related problems are the T-CYCLE problem, and the MAXIMUM COLORED

(s, t)-PATH problem7. Björklund, Husfeldt, and Taslaman provided an O∗(2|T|) random-

ized algorithm for the T-CYCLE problem, in which we are asked to find a (simple) cycle

that visits all vertices in T [4]. In the MAXIMUM COLORED (s, t)-PATH problem, we are

given a vertex-colored graph G, two vertices s and t, and an integer k, and we are asked if

there exists an (s, t)-path that collects at least k colors, and if so, return one with minimum

weight. Fomin et al. [14] gave a randomized algorithm running in time O∗(2k) for this

problem. Again, in both of these problems a crucial restriction is the search for simple

paths or cycles.

Though GRAPH INSPECTION is distinct from the problems mentioned above, we lever-

age techniques from this literature to propose two algorithms which can solve GRAPH

INSPECTION optimally8. First, in Section 6.3.1 we show that while GRAPH INSPECTION

is NP-hard (as a TSP generalization), a dynamic programming approach can solve our

problem in 2|C| · poly(n) time and memory, where |C| is the number of POIs. Additionally,

we draw on techniques used in the study of TRAVELING SALESPERSON [9] to provide a

novel integer linear programming (ILP) formulation, which we describe in Section 6.3.2.

To deal with the computational intractability of GRAPH INSPECTION, Fu et al. took the

approach of relaxing the problem to near optimality, enabling them to leverage heuristics in

the graph search to achieve reasonable computational speed when solving the problem.

We take two approaches. Using the ILP, we show that on several practical instances

drawn from [15], GRAPH INSPECTION can be solved almost exactly in reasonable runtime.

However, we note the ILP will not directly scale to very large graphs. For the dynamic

programming routine, our approach is more nuanced: First, we note that as the running

time and memory consumption of this algorithm is exponential only in the number of

6The O∗ notation hides polynomial factors.

7Also studied under the names TROPICAL PATH [8] and MAXIMUM LABELED PATH [10].

8Note that in this case, and subsequently in the chapter unless otherwise indicated, ‘optimal’ refers to an
optimal walk on the given graph and is distinct from the asymptotic optimality guarantees provided in [15].
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POIs, while remaining polynomial in the size of the graph, it can optimally solve GRAPH

INSPECTION when only a few POIs are present. This situation naturally arises in some

application areas, particularly in medicine when the most relevant anatomical POIs may

be few and known in advance. When the number of POIs is large, we adapt the dynamic

programming algorithm into a heuristic by selecting several small subsets of POIs in a

principled manner (see Section 6.4.1), running the dynamic program independently for

each small subset, and then “merging” the resulting walks (see Section 6.4.2). Though

our implementation is heuristic, it is rooted in theory: it is possible to combine dynamic

programming with a “partition and merge” strategy such that, given enough runtime, the

resulting walk is optimal (see Section 6.6).

We demonstrate the practical efficacy of our algorithms on GRAPH INSPECTION in-

stances drawn from two scenarios which were used to evaluate the prior state-of-the-art

planner IRIS-CLI [15]. The first is planning inspection for a bridge using a UAV (the “drone”

scenario), and the second is planning inspection of the inside of a patient’s pleural cavity

using a continuum medical robot (the “crisp” scenario). We implemented our algorithms,

DP-IPA (Dynamic Programming) and ILP-IPA (ILP), where IPA stands for Inspection Plan-

ning Algorithm. We show (see Section 6.5.1 and Figure 6.2) that on GRAPH INSPECTION

instances of sizes similar to those used by [15], ILP-IPA produces walks with lower weight

and higher coverage than those produced by IRIS-CLI. Indeed, ILP-IPA can produce walks

with perfect coverage, even on much larger instances. However, for these larger instances

DP-IPA provides a compelling alternative, producing walks with much lower weight, with

some sacrifice in coverage.

In summary, this work takes steps toward the application of GRAPH INSPECTION as

a problem formalization for inspection planning, and importantly provides (i) multiple

novel algorithms with quality guarantees, (ii) an extensive discussion of methods used

to implement these ideas in practice, and (iii) reusable software which outperforms the

state-of-the-art on two relevant scenarios from the literature.

6.2 Preliminaries
Refer to Section 1.3.1 for graph-theoretic definitions and notation. We also refer to

Section 1.3.2 for the general notion of parameterized complexity. We use χ(v) to denote
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the colors (or labels) of a vertex (which, with nuance described below, correspond to POIs in

the robot’s workspace), and we write χ(S) to denote
⋃

v∈S χ(v). We next define the main

problem we investigate in this chapter.

Input: An undirected graph G = (V, E), a set C of colors, an edge-weight func-

tion w : E → R≥0, a coloring function χ : V → 2C , a start vertex s ∈ V,

and an integer t.

Problem: Find a closed walk P = (v0, v1, . . . , vp) in G with v0 = vp = s

and |⋃p
i=1 χ(vi)| ≥ t minimizing ∑

p
i=1 w(vi−1vi).

GRAPH INSPECTION

Note that t is the minimum number of colors to collect. For the sake of simplicity, we

may assume that G is connected, t ≤ |C|, and χ(s) = ∅.

6.3 Graph Search
In this section, we present two algorithms for solving GRAPH INSPECTION, along with

strategies for finding upper and lower bounds on the optimal solution.

6.3.1 Dynamic Programming Algorithm

We begin by establishing that GRAPH INSPECTION is fixed-parameter tractable with

respect to the number of colors by giving a dynamic programming algorithm we refer to

as DP-IPA.

Theorem 6.1. GRAPH INSPECTION can be solved in O((2|C|(n + |C|) + m + n log n)n) time,

where n = |V|, m = |E|, and C is the set of colors.

Proof. Recall that we may assume χ(s) = ∅. Otherwise, we can collect all colors in χ(s) for

free; removing the colors χ(s) from the coloring function and decreasing t by |χ(s)| gives

an equivalent instance. We solve GRAPH INSPECTION using dynamic programming. First,

we compute the all-pairs shortest paths of G in O(nm + n2 log n) by n calls of Dijkstra’s

algorithm (O(m + n log n) time) using a Fibonacci heap. Note that the new distance func-

tion w′ is complete and metric. Hence, we may assume that an optimal solution collects

at least one new color in each step (excluding the last step where it returns to s). Hence,

we store in a table T[v, S] with v ∈ V \ {s} and S ⊆ C, where S contains at least one color
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in χ(v), the length of a shortest walk that starts in s, ends in v, and collects (at least) all

colors in S. We fill T by increasing size of S by the recursive relation:

T[v, S] =

{
∞ if S ∩ χ(v) = ∅
minu∈V T[u, S \ χ(v)] + w′(uv) otherwise.

Therein, we assume that T[s, S] = 0 if S = ∅ and T[s, S] = ∞, otherwise. We will next

prove that the table is filled correctly. We do so via induction on the size of S. To this

end, assume that T was computed correctly for all entries where the respective set S has

size at most i. Now consider some entry T[v, S] where S ∩ χ(v) ̸= ∅ and |S| = i + 1.

Let ℓ′ be the value computed by our dynamic program and let opt be the length of a

shortest walk that starts in s, ends in v, and collects all colors in S. It remains to show

that ℓ′ = opt and to analyze the running time. We first show that ℓ′ ≤ opt. To this end,

let W = (s, v1, . . . , vp = v) be a walk of length opt that collects all colors in S. If p = 1,

then S ⊆ χ(v) and ℓ′ ≤ T[s, ∅] + w′(sv) = w′(sv). Moreover, the shortest path from s

to v has length w′(sv) and hence ℓ′ ≤ w′(sv) ≤ opt. If p > 1, then W ′ = (s, v1, . . . , vp−1)

is a walk from s to vp−1 that collects all colors in S′ = S \ χ(v). Hence, by construc-

tion T[vp−1, S′] ≤ opt−w′(vp−1v) and hence ℓ′ = T[v, S] ≤ T[vp−1, S′] + w′(vp−1v) ≤ opt.

We next show that ℓ′ ≥ opt. To this end, note that whenever T[v, S] is updated, then

there is some vertex u such that T[v, S] = T[u, S \ χ(v)] + w′(uv) (where possibly u = s

and S \ χ(v) = ∅). By induction hypothesis, there is a walk from s to u that collects all

colors in S \ χ(v) of length T[u, S \ χ(v)]. If we add vertex v to the end of this walk, we get

a walk of length ℓ′ that starts in s, ends in v, and collects all colors in S. Thus, opt ≤ ℓ′.

After the table is completely filled for all color sets S with |S| ≤ t, then we just need to

check whether there exists a vertex v ∈ V \ {s} and a set S with |S| = t such that T[v, S] +

w′(vs) ≤ ℓ. Note that the number of table entries is 2|C|n, computing one table entry

takesO(n + |C|) time, and the final check in the end takesO(2|C|n) time. Thus, the overall

running time of our algorithm is in O(nm + n2 log(n) + 2|C|(n + |C|)n) = O((2|C|(n +

|C|) + m + n log n)n).

6.3.2 Integer Linear Programming Algorithm

In this section, we present ILP-IPA, an Integer Linear Programming (ILP) formulation

of the problem, inspired by the flow-based technique for TSP [9]. As a (trivially checkable)
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precondition, we require that a solution walk includes at least two vertices. We observe

that there is a simpler formulation if the input is a complete metric graph; however, in

practice, creating the completion and applying this approach significantly degrades per-

formance because of the runtime’s dependence on the number of edges.

Our ILP formulation for GRAPH INSPECTION can be found in Figure 6.3. Intuitively,

the flow amount at a vertex encodes the number of occurrences of the vertex in a walk.

Constraints (1a) and (1b) implement flow conditions, and (2a) and (2b) ensure that the flow

originates at vertex s. An edge included in a solution and not touching s emits 2 charges,

and the charges are distributed among the edge’s endpoints. If every solution edge is part

of a walk from s, then a charge consumption at each vertex can be slightly less than 2 per

incoming flow. There are O(|C| + m) constraints if t = |C|, and O(|C|m) constraints if

t < |C|.

6.3.2.1 Correctness. Before showing the correctness of the ILP formulation, we char-

acterize solution walks for GRAPH INSPECTION. In the following, we view a solution

walk as a sequence of directed edges. For a walk P = v0v1 . . . vℓ, we write |P| for the

number of edges in P, i.e., |P| = ℓ, and E(P) for the set of directed edges in the walk,

i.e., E(P) = {vi−1vi | 1 ≤ i ≤ ℓ}. We write w(P) for the length of the walk, that is,

w(P) := ∑uv∈E(P) w(u, v). We now prove a simple lemma.

Lemma 6.2. For any feasible instance of GRAPH INSPECTION, there exists an optimal solution

without repeated directed edges.

Proof. Assume not, and let P = sP1uvP2uvP3s be a solution minimizing |P|. Consider a

walk P′ = sP1uP2vP3s, where P2 is the reversed walk of P2. Since |P′| < |P| and both

visit the same set of vertices, we have that w(P′) > w(P) by our choice of P. How-

ever, w(P′) = w(sP1u) + w(uP2v) + w(vP3s) ≤ w(sP1u) + w(u, v) + w(vP2u) + w(u, v) +

w(vP3s) = w(P), a contradiction.

The following is a simple observation.

Observation 6.3. Given an instance of GRAPH INSPECTION, there exists a closed walk P of

length ŵ visiting vertices V ′ ⊆ V(G) if and only if there exists a connected Eulerian multigraph

G′ = (V ′, E′) such that ŵ = ∑uv∈E′ w(uv), where E′ is the multiset of the edges in P.
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This leads to a structural lemma about solutions.

Lemma 6.4. For any feasible instance of GRAPH INSPECTION, there exists an optimal solution

with at most 2n− 2 edges. This bound is tight.

Proof. Let P be an optimal solution with the minimum number of edges. From Observation

6.3, we may assume there exists a connected Eulerian multigraph H that encodes P. Since

H is connected, it has a spanning tree T as a subgraph. Let H′ = H− E(T). If H′ contains a

cycle C, then H−C is also connected and Eulerian, as removing a cycle from a multigraph

does not change the parity of the degree of each vertex. Hence, there exists a shorter

solution P′ that is an Euler tour in H−C, a contradiction. Knowing that both T and H′ are

acyclic, we have |E(H)| = |E(T)|+ |E(H′)| ≤ 2n− 2. This is tight whenever G is a tree

where all leaves have a unique color.

Now we are ready to prove the correctness of the ILP formulation.

Theorem 6.5. The ILP formulation in Figure 6.3 is correct.

Proof. We show that we can translate a solution for GRAPH INSPECTION to a solution for

the corresponding ILP and vise versa.

For the forward direction, let P = v0v1 . . . vℓ with v0 = vℓ = s be a solution walk with

ℓ ≥ 2 collecting at least k colors. From Lemma 6.2, we may assume that there are no indices

i, j such that i < j and vivi+1 = vjvj+1. For constraint (1), we set xu,v = 1 if uv ∈ E(P) and

0 otherwise. It is clear to see that all flow conditions are satisfied. Moreover, observe that

for any vertex v ∈ V(G) \ {s}, the flow amount ∑u∈N(v) xu,v corresponds to the number of

occurrences of v in P, which we denote by degP(v).

Next, if |P| = 2, then constraint (2) is trivially satisfied by setting ye,v = 0 for all e, v.

Otherwise, let P′ be a continuous part of P such that s appears only at the beginning and at

the end. Then, P′ contains |P′| − 2 edges that do not touch s and emit two charges each. We

know that |P′| − 1 = ∑v∈V(P′)\{s} degP′(v). For a directed edge e ∈ E(P′) and its endpoint

v ∈ e, let y(P′)
e,v be part of ye,v charged only by P′. We distribute the charges by setting

y(P′)
v′i−1v′i ,v

′
i−1

= 2− 2i
|P′|−1 and y(P′)

v′i−1v′i ,v
′
i
= 2i
|P′|−1 for every 1 ≤ i < |P′|, where P′ = v′0v′1 . . . v′|P′|

with v′0 = v′|P′| = s.
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Note that ∑u∈N(v)\{s} y(P′)
uv,v = degP′(v) ·

2(|P′|−2)
|P′|−1 = (2− 2

|P′|−1 ) · degP′(v) ≤ (2− 2
2n−3 ) ·

degP′(v) for every v ∈ V(P′) \ {s}. The last inequality is due to Lemma 6.4. This in-

equality still holds when we concatenate closed walks P′ from s since ∑u∈N(v)\{s} yuv,v =

∑P′ ∑u∈N(v)\{s} y(P′)
uv,v and ∑u∈N(v) xu,v = ∑P′ degP′(v). Constraint (2) is now satisfied.

Finally, in order to collect colors χ(v), there most be an edge uv in the solution. Notice

that constraint (3b) encodes this and constraint (3c) ensures that we collect at least k distinct

colors. Finally, observe that the objective is properly encoded.

For the backward direction, we show that there cannot be a closed flow, i.e., circulation,

avoiding s. For the sake of contradiction, let C be such a circulation. Then, since xu,v = 1

for every uv ∈ E(C), we have ∑uv=e∈E(C) ye,u + ye,v = 2|E(C)|. This is considered as

the total charge emitted from C, and it must be consumed by the vertices in C. We have

∑v∈V(C) ∑u∈N(v) yuv,u + yuv,v ≥ 2|E(C)|, and by the pigeonhole principle, there must be

a vertex v ∈ V(C) such that its charge consumption is at least deg(v), violating con-

straint (2b). Hence, there must be a closed walk from s that realizes a circulation obtained

by ILP. From constraint (3), the walk also collects at least k colors.

6.3.2.2 Solution recovery. A closed walk in a multigraph is called an Euler tour if it

traverses every edge of the graph exactly once. A multigraph is called Eulerian if it admits

an Euler tour. It is known that a connected multigraph is Eulerian if and only if every

vertex has even degree [13] and given an Eulerian multigraph with m edges, we can find

an Euler tour in time O(m) [19].

Given a certificate of an optimal solution for the aforementioned ILP, we construct a

solution walk as follows. First, let D be the set of directed edges uv such that xu,v = 1.

Next, we find an Euler tour P starting from s using all the edges in D. Then, P is a solution

for GRAPH INSPECTION.

6.3.3 Upper and Lower Bounds

When evaluating solutions, having upper and lower bounds on the optimal solution

provides useful context. For GRAPH INSPECTION, a polynomial-time computable lower

bound follows directly from the LP relaxation of the ILP in Section 6.3.2. For an upper

bound, we consider Algorithm ST (Algorithm 5), which uses a 2-approximation algorithm
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Algorithm 5: Algorithm ST
Input: A graph G = (V, E), a set C of colors, an edge-weight function w : E→ R≥0,

a coloring function χ : V → 2C , a start vertex s ∈ V, and an integer t.
Output: A closed walk in G from s collecting at least t colors.

1 S← {s}.
2 while |C| < t do

// Choose the vertex with a new color closest to s.
3 S← S ∪ {arg minv∈V d(s, v) | χ(v) \ χ(S) ̸= ∅}
4 Compute a 2-approximation T for STEINER TREE on G with terminals S.
5 Construct a closed walk W from s using the all edges in T.
6 return W

for STEINER TREE9 [21] as a subroutine. The algorithm proceeds by first choosing the

vertices closest to s collecting t colors and then finding a Steiner tree of those vertices. A

closed walk can be obtained by using each edge of the Steiner tree twice.

Theorem 6.6. Algorithm ST returns a closed walk collecting at least t colors with length at

most t · opt, where opt denotes the optimal walk length. The algorithm runs in O(tm log(n + t))

time.

Proof. Since the algorithm returns a walk including all vertices in S, it collects at least t

colors. Let dc = minv∈χ−1(c) d(s, v) for every c ∈ C. Then, let d̃ be the t-th smallest such

value, and due to Steps 1-3, for every u ∈ S, we have d(s, u) ≤ d̃. Since |S| ≤ t + 1, the

weight of the minimum Steiner tree is at most td̃, which results in that the length ℓ′ of the

walk returned by our algorithm is at most 2td̃. Now, suppose that P is an optimal walk

of length opt collecting at least t colors C ′. Then, it is clear to see that opt ≥ 2 · dc for

any c ∈ C ′. From |C ′| ≥ t, we have opt ≥ 2d̃, which implies ℓ′ ≤ t · opt.

We next analyze the running time. Steps 1-3 takesO(m log n + tn log t) time for sorting

vertices and computing the union of colors. Step 4 can be done by computing the transitive

closure on S, which takes O(tm log n) time. Step 5 takes O(n + m) time, so the overall

running time is in O(tm log(n + t)).

Lastly, we show that this bound cannot be smaller. Let G be a star K1,t+1 with s being

the center with no colors. One leaf u has t colors, and each of the other t leaves has a

9The STEINER TREE problem takes a graph G and a set of vertices S (called terminals) and asks for a
minimum-weight tree in G that spans S.
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unique single color. Every edge has weight 1. The optimal walk is (s, u, s) and has length

2, whereas the algorithm may choose V \ {u} as S. This gives a walk of length 2t.

6.4 Graph Simplification
This section introduces strategies for transforming our exact algorithms into heuristics

with improved scalability, including principled sub-sampling of colors (POIs) and creating

plans by merging walks which inspect different regions of the graph. Figure 6.4 illustrates

this idea, the partition-and-merge framework.

6.4.1 Color Reduction

The algorithms of Sections 6.3.1 and 6.3.2 give us the ability to exactly solve GRAPH

INSPECTION, but the running time is exponential in the number of colors (i.e., POIs). In

some applications, this may not be prohibitive. In surgical robotics, a doctor may identify

a small number of POIs which must be inspected to enable surgical intervention. However

in other settings, it is unrealistic to assume that the number of colors is small. In the

datasets we explore in Section 7.8 for instance, the POIs are drawn from a mesh of the

object to be inspected, and we have no a priori information about the relative importance

of inspecting individual POIs.

To deal with this challenge, we find a “representative” set C ′ ⊆ C of colors, with |C ′| = k

small enough that our FPT algorithms run efficiently on the instance in which vertex colors

are defined by χ(v) ∩ C ′ for each vertex v. We can then find a minimum-weight walk

P on the color-reduced instance and reconstruct the set of inspected colors by comput-

ing
⋃

v∈P χ(v).

Formally, we assume that there exists some function f : C2 → R≥0 which encodes the

“similarity” of colors, that is, for colors c1, c2, c3, if f (c1, c2) < f (c1, c3), then c1 is more

similar to c2 than it is to c3. In this chapter, the function f is always a Euclidean distance,

but we emphasize that our techniques apply also to other settings. For example, one

may imagine applications in which POIs are partitioned into categorical types, and it is

desirable that some POIs of each type are inspected. In this case, one could define f as an

indicator function which returns 0 or 1 according to whether or not the input colors are of

the same type. The core idea behind our methods is to select a small set of colors having
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Algorithm 6: GreedyMD
Input: C, χ0, f , and a positive integer k ≤ |C \ χ0|.
Output: C ′ ⊆ C with |C ′| = k.

1 C ′ ← χ0. // Every walk collects the colors visible from s.
2 while |C ′| < k + |χ0| do

// Choose the most dissimilar color.

3 C ′ ← C ′ ∪ {argmaxc∈C minc′∈C ′ f (c, c′)}
4 C ′ ← C ′ \ χ0;
5 return C ′

maximum dispersal, meaning that as much as possible, every color in C should be highly

similar (according to the function f ) to at least one representative color in C ′.

We evaluate four algorithms for this task. The baseline (which we call Rand) selects

colors uniformly at random. This is the strategy employed by IRIS-CLI when needed [15].

The second (called GreedyMD—MD for Maximum Dispersal) is a greedy strategy based

on the Gonzalez algorithm for k-center [16]; this algorithm is described in more detail in

Algorithm 6, where we set χ0 = χ(s). The final two algorithms (MetricMD, OutlierMD)

are modified versions of this strategy. The interested reader is referred to Section 6.7 for

a detailed description and the results of our comparative study. We note that all of our

algorithms outperform the baseline Rand in terms of the resulting coverage. We perform

our final comparisons (see Section 6.5.1) using GreedyMD for color reduction.

6.4.2 Merging Walks

When using DP-IPA or ILP-IPA on a color-reduced graph, the computed walk is mini-

mum weight for the reduced color set, but the corresponding walk in the original graph

may not collect many additional colors. To increase the coverage in the original graph, we

merge two or more walks into a single closed walk. Now, the challenge is how to keep the

combined walk short. Suppose we have a collection of W solution walks {Pi} and want a

combined walk P that visits all vertices in
⋃

i V(Pi). We model this task as the following

problem10.

10An underlying simple graph of a multigraph is obtained by deleting loops and replacing multiedges with
single edges.
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Input: A loopless connected Eulerian multigraph G and edge weights w : E→

R≥0, where E denotes the edges in G’s underlying simple graph.

Problem: Find a spanning subgraph G′ of G such that G′ is a connected Eulerian

multigraph minimizing the weight sum, i.e. ∑e∈E(G′) w(e).

MINIMUM SPANNING EULERIAN SUBGRAPH

We showed in Section 6.3.2 (see Observation 6.3) that each solution walk for GRAPH

INSPECTION is an Euler tour in a multigraph. We hence use these two characterizations

interchangeably. Unfortunately, this problem is NP-hard as we can see by reducing from

HAMILTONIAN CYCLE, which asks to find a cycle visiting all vertices in a graph. Given

an instance G with n vertices of HAMILTONIAN CYCLE, we duplicate all the edges in G so

that the graph becomes Eulerian. If we set a unit weight function w for E(G), i.e., w(e) = 1

for every e ∈ E(G), then G has a Hamiltonian cycle if and only if (G, w) has a spanning

subgraph of weight n.

In this chapter, we propose and evaluate three simple heuristics for MINIMUM SPAN-

NING EULERIAN SUBGRAPH: ConcatMerge, GreedyMerge, and ExactMerge. ConcatMerge

simply concatenates all walks. Since all walks start and end at vertex s, their concatenation

is also a closed walk. In Section 6.6, we give an algorithm which uses ConcatMerge and

solves GRAPH INSPECTION optimally. We implemented a simplified version which is

better by a factor of n in both running time and memory usage. GreedyMerge, detailed in

Section 6.8, is a polynomial-time heuristic including simple preprocessing steps for MIN-

IMUM SPANNING EULERIAN SUBGRAPH. At a high level, GreedyMerge builds a minimum

spanning tree and removes as many redundant cycles as possible from the rest. ExactMerge

is an exact algorithm using the ILP formulation for GRAPH INSPECTION.

6.4.2.1 Algorithm ExactMerge. We construct an instance of GRAPH INSPECTION by

taking the underlying simple graph of the instance G of MINIMUM SPANNING EULERIAN

SUBGRAPH. We pick an arbitrary vertex s ∈ V(G) as the starting vertex, and set unique col-

ors to the other vertices. After formulating the ILP for GRAPH INSPECTION with t = n− 1

(collecting all colors) as in Section 6.3.2, we add the following constraints: xu,v + xv,u ≤ 1

for every edge uv ∈ E(G) with multiplicity 1. Lastly, we map a solution for the ILP to the

corresponding multigraph. This multigraph should be spanning as we collect all colors
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in GRAPH INSPECTION, and it is by definition Eulerian. If each optimal solution contains

at most 2n− 2 edges (which we have already shown; see Lemma 6.4) and W is constant,

then our ILP formulation has O(n) variables. Thus (unlike the original instance of GRAPH

INSPECTION) we can often quickly solve the walk merging problem exactly.

6.4.3 Partitioning Colors

Because we want to combine multiple (W > 1) walks to form our solution, it is useful

to first partition the colors. This way, each independently computed walk collects (at least)

some disjoint subset of colors. We propose two algorithms. The first (which we call Ord-

part, short for ordered partitioning) takes an ordered color set C as input and partitions it

sequentially, i.e., by selecting the first |C|/W colors as one subset, the second |C|/W colors

as another, and so on. The second (called Geo-part, short for geometric partitioning) executes

GreedyMD with parameter W, and then partitions C by assigning each color to the most

similar (according to the function f ) of the W selected “representatives”.

We also tested whether to perform color partitioning before or after color reduction.

In the former case, the full color set C is partitioned by one of the algorithms described

above11, and then color reduction is performed on each subset. In the latter, color reduction

is performed to obtain W · k colors, and then these colors are partitioned into W sets of size

k using one of the algorithms described above. In Figure 6.5 we display the results of our

partitioning experiments on the instances used in [15], one for a surgical inspection task

(CRISP1000) and another for a bridge inspection task (DRONE1000); results for extended

datasets are deferred to Figure 6.6. We now draw attention to two trends. First, we

note that while using Ord-part before color reduction performs well in terms of coverage,

particularly for the larger k values, we believe that this result is confounded somewhat

by non-random ordering of the POIs in the input data. That is, we conjecture that the

POIs arrive in an order which conveys some geometric information. Second, we note that

while MetricMD seems to outperform GreedyMD (in terms of coverage) as a color reduction

strategy for DRONE1000 with k = 10, this effect is lessened when k = 20. We believe

that this trend is explainable, as for small k values the greedy procedure may select only

11In Figure 6.5, Ord-part is referred to as Label-part when it is performed before color reduction, to emphasize
that in this case the partitioning is based on the (potentially not random) sequence of POI labels given as input.
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peripheral POIs, while a larger k enables good representation of the entire space, including

a potentially POI-dense “core” of the surface to be inspected. Given the complexity of the

comparative results presented in Figure 6.5, we favor the simplest, most generalizable, and

most explainable strategy. For this reason, the experiments of Section 6.5.1 are performed

using GreedyMD to reduce colors before partitioning using Ord-part.

6.5 Empirical Evaluation
To assess the practicality of our proposed algorithms, we ran extensive experiments on

a superset of the real-world instances used in [15]. Figure 6.7 shows an overview of the

experiment pipeline. We first built RRGs using IRIS-CLI, originating from the CRISP and

DRONE datasets (Figure 6.7 (a)). We tested IRIS-CLI and ILP-IPA on these instances with

no additional color reduction. As IRIS-CLI iteratively outputs an s-t walk for some vertex

t ∈ V(G), we completed each walk with the shortest t-s path12 to ensure a fair comparison

while still giving as much credit as possible to IRIS-CLI (Figure 6.7 (b)). For DP-IPA, we filter

and partition POIs to obtain 3 sets of k POIs, where k = 10, 20 (Figure 6.7 (c)). Then, we

ran DP-IPA to exactly solve GRAPH INSPECTION for POI-reduced instances. In addition,

we ran ILP-IPA for comparing color reduction/partitioning algorithms (Figure 6.7 (d)) and

measured speedups of those algorithms with different number of threads (Figure 6.7 (e)).

Lastly, we merged the walks using our algorithms to construct a “combined” closed walk

(Figure 6.7 (f)). Here we define the “search time” for the combined walk as the total of

the search times of single-run walks plus the time taken for merging walks12. Except in

experiment (e), we set the time limit of each algorithm to 900 seconds (15 minutes), and

used 80 threads for DP-IPA and ILP-IPA.

We tested on four GRAPH INSPECTION instances, two of which replicate the instances

used in [15]. The first dataset, CRISP, is a simulation for medical inspection tasks of

the Continuum Reconfigurable Incisionless Surgical Parallel (CRISP) robot [1, 24]. The

dataset simulates a scenario segmented from a CT scan of a real patient with a pleural

effusion—a serious medical condition that can cause the collapse of a patient’s lung. The

second, DRONE, is an infrastructure inspection scenario, in which a UAV with a camera is

tasked with inspecting the critical structural features of a bridge. Its inspection points

12The time taken for augmenting and merging walks was negligible.
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are the surface vertices in the 3D mesh model of a bridge structure used in [15]. To

match the experiments in [15], we used IRIS-CLI to build RRGs with nbuild = 1000 and,

for CRISP, uniformly randomly selected 4200 POIs. We call these instances CRISP1000

and DRONE1000. Also, for each dataset, we built RRGs with nbuild = 2000 (denoted

CRISP2000 and DRONE2000). Refer to Section 6.9 for more information on our graph

instances and experiment environment. Code and data to replicate all experiments are

available at https://github.com/TheoryInPractice/robotic-brewing.

6.5.1 Comparison to IRIS-CLI

First we compare the overall performance of our proposed algorithms to that of IRIS-

CLI. In this experiment, we ran IRIS-CLI with all original instances, ILP-IPA with all original

instances and t = i
10 · |C| for 5 ≤ i ≤ 10, and DP-IPA with POI-reduced instances accom-

panied by walk-merging strategies, GreedyMD (MetricMD in Figure 6.8), Ord-part after color

reduction, and ExactMerge with k ∈ {10, 20}. We additionally computed the upper and

lower bounds from Section 6.3.3 for all possible k values.

Figure 6.2 plots the coverage and weight of each solution obtained within the time limit.

IRIS-CLI achieved around 87% coverage on both CRISP instances. ILP-IPA outperformed

IRIS-CLI on CRISP1000 by providing (i) for t = 0.8 · |C|, slightly better coverage paired with

a 30% reduction in weight, and (ii) for t = |C|, perfect coverage with only a 16% increase

in weight. On CRISP2000, ILP-IPA failed to find a solution except with t = |C|. Meanwhile,

DP-IPA was competitive with IRIS-CLI, finding walks with moderate reductions in weight

at the expense of slightly reduced coverage (83%). The differences between IRIS-CLI and

our algorithms are more significant on DRONE, where DP-IPA (with k = 20) outperformed

IRIS-CLI by providing more coverage (68% vs. 64%) while reducing weight by over 50%.

ILP-IPA outperformed IRIS-CLI by even larger margins on DRONE1000, but did not produce

many solutions within the time limit on DRONE2000.

To summarize, ILP-IPA is the most successful on smaller instances, and works with

various values of t. With larger graphs, ILP-IPA is more likely to time out when t < |C|

(as described in Section 6.3.2, the ILP formulation in this case is more involved). DP-IPA is

more robust on larger instances, outperforming IRIS-CLI in terms of solution weight while

providing similar coverage.

https://github.com/TheoryInPractice/robotic-brewing
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6.5.1.1 Upper and lower bounds. First, we observe that the curvatures of upper

bounds (recall Section 6.3.3) are quite different in CRISP and DRONE. We believe the geo-

metric distribution of POIs explains this difference; with CRISP, the majority of POIs are

close to the POIs seen at the starting point, which leads to concave upper-bound curves.

DRONE, on the other hand, exhibits a linear trend in upper bounds because POIs are more

evenly distributed in the 3D space, and the obtained solutions are far from these bounds.

On the lower bound side, we obtain little insight on CRISP but see that on DRONE, it

allows us to get meaningful bounds on the ratio of our solution’s weight to that of an

optimal inspection plan. For example, the lower bounds with t = |C| for DRONE1000 and

DRONE2000 are 466.74 and 364.72, respectively. The best weights by ILP-IPA are 658.35 and

773.39, giving approximation ratios of 1.4 and 2.1 (respectively).

6.5.1.2 Multithreading analysis. Our implementations of DP-IPA and ILP-IPA both

allow for multithreading, but IRIS-CLI cannot be parallelized without extensive modifica-

tion (i.e., the algorithm is inherently sequential). Figure 6.9 illustrates order-of-magnitude

runtime improvements for DP-IPA when using multiple cores. Analogous results for ILP-

IPA are deferred to Section 6.9.2.

6.5.1.3 Empirical analysis of walk-merging algorithms. The results reported in Fig-

ure 6.2 are all computed using ExactMerge for walk merging. We also evaluated the effec-

tiveness of ConcatMerge and GreedyMerge in terms of both runtime and resulting (merged)

walk weight. We observed that while GreedyMerge is a heuristic, it produces walks of

nearly optimal weight with negligible runtime increase as compared to ConcatMerge.

Meanwhile, the runtime of ExactMerge was always within a factor of two of Concat-

Merge; given the small absolute runtimes (<0.1 seconds in all cases), we chose to proceed

with ExactMerge to minimize the weight of the merged walk. Complete experimental

results are shown in Section 6.9.

6.5.1.4 Comparing ILP-IPA and DP-IPA. In this work we have contributed two new

GRAPH INSPECTION solvers, namely DP-IPA and ILP-IPA. We conclude this section with a

brief discussion of their comparative strengths and weaknesses. As discussed previously,

for small graphs (e.g., CRISP1000 and DRONE1000) ILP-IPA is clearly the best option, as it

provides higher coverage with less weight. However, DP-IPA performs better when the

graph is large. In particular, if in some application minimizing weight is more important
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than achieving perfect coverage, then DP-IPA is preferable in large graphs. One might

ask whether this trade-off (between weight and coverage) can also be tuned for ILP-IPA

by setting t < |C|, but we emphasize that in practice this choice significantly increases

the runtime of ILP-IPA, such that it is impractical on large graphs. This is clear from the

data presented in Figure 6.2, and is also detailed in Section 6.9.3. We observe that ILP-IPA

becomes less competitive with DP-IPA as n and k grow.

6.6 Walk Merging: Optimality in the Limit
We argue that our strategy for merging walks is a simplification of an algorithm that is

optimal in the limit, given sufficient runtime. Note that the dynamic program behind

Theorem 6.1 is optimal (always produces a walk of minimum weight that collects the

given colors). A very simple strategy that is also optimal is to select an arbitrary permuta-

tion (c1, c2, . . . , ck) of the colors and then compute a shortest walk that collects all colors in

the respective order. If we repeat this for each possible permutation, then at some point,

we will find an optimal solution.

We now observe that computing a walk that collects all colors in the guessed order can

be computed in polynomial time by the following dynamic program T that stores for each

vertex v and each integer i ∈ [k] the length of a shortest walk between s and v that collects

the first i colors in the guessed order. Therein, we use a second table D.

D[v, i] =

{
T[u, i− 1] + dist(u, v) if ci ∈ χ(v)
∞ else

T[v, i] = min
u∈V

D[u, i] + dist(u, v)

We mention that we assume that dist(v, v) = 0 for each vertex v.

We now modify the above strategy to achieve a better success probability than when

permutations are chosen randomly. Instead of guessing the entire sequence of colors, we

guess buckets of colors, that is, a sequence of c sets for some integer c that form a partition

of the set of colors into sets of size k/c (appropriately rounded, for this presentation, we

will assume that k is a multiple of c). Note that there are k!/((k/c)!)c possible guesses for such

buckets. For each bucket, let Si be the set of colors in the bucket. We can now compute for

each pair u, v of vertices a shortest walk between u and v that collects all colors in Si by

running the dynamic program behind Theorem 6.1 for color set Si from all vertices u ∈ V.
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Let this computed value be S[u, v, Si]. Given a guess for a sequence of buckets, we can now

compute an optimal solution corresponding to this guess by modifying the above dynamic

program as follows.

T′[v, 1] = S[s, v, S1]

T′[v, i] = min
u∈V

T[u, i− 1] + S[u, v, Si] if i > 1

Note that T′[v, i] ≤ T[v, ci] if the sequence used to compute T corresponds to the set of

buckets used to compute T′. This algorithm again achieves optimality in the limit (that is,

given enough runtime, it will find a minimum weight walk).

In order to avoid computing S for all pairs of vertices, we decided to implement a

simplification where we only compute S′[Si] = S[s, s, Si]. This version is not guaranteed

to find an optimal solution like the full DP above, as there are examples where no optimal

solution returns back to s before the very end. As an example, consider a star graph where s

is a leaf and each other leaf has a unique color. However, this simplification is faster by a

factor of n and uses a factor of n less memory while performing well in practice.

6.7 Color Reduction: Details
In this section, we describe our color reduction strategies in more detail and provide

empirical data comparing their effectiveness.

6.7.1 Initializing GreedyMD

The Gonzalez [16] algorithm on which GreedyMD is based requires that the set C ′ be

initialized with at least one color. The simplest strategy is to simply add a uniformly

randomly selected color to C ′ and then proceed with the algorithm. In practice, we found

it more effective to set C ′ = χ(s) ̸= ∅ (see Algorithm 6). That is, we begin by adding

some color which is visible from the source vertex s. We then greedily add k more colors.

At the end of the algorithm, we return C ′ \ χ(s). Intuitively, the justification for this

approach is that we collect the colors χ(s) “for free” since every solution walk begins

at s. Consequently, we do not need to ensure that C ′ is representative of these colors,

or of colors which are very similar to them. Empirically, we found that this initialization

strategy significantly improved the coverage of the resulting solutions.
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Algorithm 7: OutlierMD
Input: C, χ0, f , a positive integer k ≤ |C \ χ0|, and r ∈ R≥1.
Output: C ′ ⊆ C with |C ′| = k.

1 C ′ ← GreedyMD(C, χ0, f , ⌊rk⌋) // Choose at most (rk) representatives.

2 for c′ ∈ C ′ do
3 Xc′ ← {c′} // Initialize clusters for each c′ ∈ C ′.
4 for c ∈ C do
5 c̃ = argminc′∈C ′ f (c, c′)
6 Xc̃ ← Xc̃ ∪ {c} // Add color c to the closest cluster.

7 Sort elements of C ′ : c′1, c′2, . . . c′rk according to the size of Xc′i
(descending).

8 return {c′1, c′2, . . . c′k}

6.7.2 Introducing MetricMD and OutlierMD

A potential shortcoming of GreedyMD is that it favors outlier colors. That is, because

at each iteration it chooses the color which is most dissimilar to the previously selected

colors, we can be sure that outlier colors which are very dissimilar to every other color will

be selected. This may be undesirable for two reasons. First, if the similarity function f is

correlated to colors being visible from the same vertices, then discarding outliers from C ′

may improve coverage (as computed on C). Second, if the similarity function f (c1, c2) is

correlated to the shortest distance between vertices labeled with c1 and c2, then discarding

outliers from C ′ may reduce the weight needed for a walk collecting all colors in C ′.

We designed and tested two strategies to mitigate these effects. The first, OutlierMD

(see Algorithm 7), uses an additional scaling parameter r ≥ 1. GreedyMD is used to form

a representative color set C ′ of size rk. Next, C ′ is partitioned into rk clusters by assigning

each color c ∈ C to a cluster uniquely associated with the representative c′ ∈ C ′ to which c

is most similar. Finally, we return the k colors in C ′ associated with the largest clusters.

The second strategy, MetricMD, assumes that our colors are embeddable in a metric

space. This is true, for example, when colors represent positions in R3 on some surface

mesh of the object to be inspected. In this case, we begin by using GreedyMD to find a

representative colors set C ′ of size k. Next, we perform k-means clustering on C, using

C ′ as the initial centroids. The resulting centroids are positions in space, and may not

perfectly match the positions of any colors. To deal with this, we simply choose the colors

closest to the centroids, and return these as our representative color set. See Algorithm 8.
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Algorithm 8: MetricMD
Input: C, χ0, f , and a positive integer k ≤ |C \ χ0|.
Output: C ′ ⊆ C with |C ′| = k.

1 C ′ ← GreedyMD(C, χ0, f , k)
2 S← k-Means(C \ χ0, C ′) // Run k-Means on C \ χ0 with initial centroids C ′.
3 S′ ← ∅
4 for s ∈ S do

// For each centroid, choose the closest color.

5 S′ ← S′ ∪ {argminc∈C ′\S′ d(c, s)}
6 return S′

6.7.3 Empirical Evaluation of Color Reduction Schemes

We experimentally evaluated our color reduction schemes (GreedyMD, OutlierMD, and

MetricMD) along with the baseline Rand on each of our four datasets, with k ∈ {10, 20}. To

perform the evaluation, each algorithm was used to create a representative set of k colors,

and then DP-IPA was used to solve GRAPH INSPECTION on the color-reduced graphs.

We chose DP-IPA rather than ILP-IPA for comparison because the former is the solver

which needs color reduction to compute walks on our datasets (i.e., ILP-IPA can run on

the DRONE and CRISP datasets without any color reduction). The results of these exper-

iments are displayed in Figure 6.10. In each plot displayed in Figure 6.10, every colored

dot represents a GRAPH INSPECTION solution computed by DP-IPA after color reduction

performed by either Rand, GreedyMD, OutlierMD, or MetricMD. For each color reduction

strategy, the solution with the highest coverage (in the original, non-color-reduced graph)

is indicated with a rightward-pointing arrow, and the solution with minimum weight is

indicated with a downward-facing arrow.

Because our color reduction schemes are designed to ensure good coverage, we are

primarily interested in comparing the coverage of solutions. The results indicate that, in

general, our strategies outperform the baseline Rand in terms of coverage, often by large

margins. In terms of coverage, the comparative performances of GreedyMD, MetricMD, and

OutlierMD are somewhat difficult to disentangle. Given that GreedyMD is the simplest of

the three, the most explainable, and the most generalizable (it does not require a metric

embedding or any parameter tuning), we favor it for future experiments. However, we

leave as an interesting open direction to perform a more extensive comparison of these
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methods on a larger data corpus.

We conclude this section with a discussion of the weight of solutions. We are not sur-

prised that our strategies tend to produce higher-weight solutions than Rand since we are

optimizing for coverage even if it means requiring that a solution walk visit outlier POIs. In

particular, it is expected that GreedyMD performs poorly with respect to solution weight,

since it explicitly favors outlier POIs. In applications where the weight of the solution

is of paramount interest, even at the expense of lowering coverage, the aforementioned

extended comparison of color reduction strategies may be of particular interest.

6.8 Walk-Merging Algorithms
In this section, we present preprocessing steps for the MINIMUM SPANNING EULERIAN

SUBGRAPH and the GreedyMerge algorithm in detail.

6.8.1 Preprocessing for MINIMUM SPANNING EULERIAN SUBGRAPH

We say an edge set Ẽ ⊆ E(G) is undeletable if there is an optimal solution for MINIMUM

SPANNING EULERIAN SUBGRAPH including all the edges in Ẽ. We apply the following

rules as preprocessing.

• RULE 1: If there is an edge with multiplicity at least 4, then decrease its multiplicity

by 2. This makes the multiplicity of every edge either 1, 2 or 3.

• RULE 2: If there is an edge cut e1, e2 ∈ E(G) of size 2, then mark e1 and e2 as

undeletable. For example, this includes (but is not limited to) the following:

• edges incident to a vertex with degree 2.

• an edge with multiplicity 2 that forms a bridge in the underlying simple graph

of G.

6.8.2 Algorithm GreedyMerge

Consider the following heuristic for MINIMUM

SPANNING EULERIAN SUBGRAPH.

This algorithm runs in O(m log n) time. In practice, we apply (part of) RULE 2 to

find undeletable edges and include them in S in Line 2. To prove the correctness of data
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Algorithm 9: GreedyMerge
Input: A loopless connected Eulerian multigraph G and edge weights

w : E→ R≥0, where E denotes the edges in G’s underlying simple graph.
Output: Spanning subgraph G′ of G such that G′ is a connected Eulerian

multigraph.

1 Apply RULE 1 exhaustively.
2 Construct a minimum spanning tree S of G using a known algorithm.

// Greedily find a maximal cycle packing C in G− S.
3 C ← ∅
4 Let U be the empty multigraph with vertices V(G).
5 for e ∈ E(G− S) in order of nonincreasing weights do
6 U ← (V(U), E(U) ∪ {e}) // Add edge e to U.

7 if U contains a cycle C then
8 C ← C ∪ {C}
9 U ← U − C

10 return G−⋃
C∈C E(C)

reduction rules and algortihms, we start by a simple, well-known observation on Eulerian

graphs.

Observation 6.7. Let C be a closed walk in an Eulerian multigraph G. If G−C is connected, then

G− C is also Eulerian.

Proof. Removing a closed walk does not change the parity of the degree at each vertex.

If all vertices in G have even degrees, so do those in G − C, which implies that G − C is

Eulerian if it is connected.

We continue with the analysis of our two reduction rules.

Lemma 6.8. RULE 1 is safe.

Proof. By Lemma 6.2, there must be an optimal solution with edge multiplicity at most 2.

From Observation 6.7, if there is an edge with multiplicity at least 4, then removing 2 of

them (which can be seen as a closed walk) results in a connected Eulerian multigraph.

Lemma 6.9. RULE 2 is safe.

Proof. Let S ⊂ V(G) be a nonempty vertex set such that e1, e2 separates S from V(G) \ S.

Then, any closed walk that visits V(G) must contain at least one edge from S to V(G) \ S
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and another from V(G) \ S to S. Hence, both e1 and e2 must be in any solution.

We conclude this section by analyzing GreedyMerge.

Theorem 6.10. GreedyMerge correctly outputs a (possibly suboptimal) solution for MINIMUM

SPANNING EULERIAN SUBGRAPH in O(m log n) time.

Proof. We need to show that GreedyMerge outputs a spanning Eulerian subgraph G′ (in this

context, a subgraph is also a multigraph) of G. From Line 2, we know that S is a spanning

subgraph of G. From Line 5, we have that E(C) ⊆ E(G− S) for every C ∈ C. From Line 10,

G′ is clearly a subgraph of G, and from
⋃

C∈C E(C) ⊆ E(G − S), we have E(G′) ⊇ E(S),

and hence G′ is spanning. Knowing that G′ is connected and from Observation 6.7, a

multigraph constructed by removing any closed walk remains Eluerian. Hence, G′ is a

spanning Eluerian subgraph of G.

We next analyze the running time. RULE 1 can be executed exhaustively in O(m) time

by iterating over all edges. At this point, |E(G)| ≤ 3 · (n
2) ≤ 2n2. Now let us analyze the

rest of the steps in GreedyMerge. The running time of Line 2 is the same as that of Kruskal’s

algorithm, which isO(m log m) ⊆ O(m log(2n2)) = O(m log n). Similarly, Lines 5 to 9 has

the same running time as we iteratively examine edges and check for connectivity. Hence,

the overall running time is in O(m log n).

6.9 Experiment Details and Supplemental Results
Table 6.1 summarizes the test instances we used for our experiment.

6.9.1 Experiment Environment

We implemented our code with C++ (using C++17 standard). We ran all experiments

on identical hardware, equipped with 80 CPUs (Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz)

and 191000 MB of memory, and running Rocky Linux release 8.8. We used Gurobi Opti-

mizer 9.0.3 as the ILP solver, parallelized over CPUs.

6.9.2 Multithreading Analysis

Here, we present results of our multithreading experiments for ILP-IPA (visualized

in Figure 6.11). We configured the Gurobi ILP solver to output each feasible solution as
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soon as it is found, so to understand the impact of multithreading we are interested in

determining the lowest-weight feasible solution identified in a given time limit, for various

thread counts. Predictably, the general trend is clear: multi-threaded implementations

provide lower-weight solutions faster than single threaded solutions.

6.9.3 Additional Empirical Results and Figures

Based on our findings in Section 6.7, we also compared all three inspection planning

algorithms when DP-IPA is paired with MetricMD color reduction (instead of GreedyMD, as

shown in Figure 6.2). The results are shown in Figure 6.8.

They are qualitatively quite similar, but we observe that this approach has the disad-

vantage of requiring the POI similarity function to be a metric.

We showed the results of applying our color partitioning methods in combination with

GreedyMD and MetricMD for the 1000-node graphs in Figure 6.10; the analogous results for

the 2000-node graphs are included in Figure 6.6.

After applying color reduction and partitioning, we have a set of walks that need

merging, as discussed in Section 6.4.2 with additional details in Section 6.8. The empirical

results of comparing these approaches are shown in Figure 6.12.

Table 6.2 compares the solution weights generated by DP-IPA and ILP-IPA. In this table,

both DP-IPA and ILP-IPA are used to produce solutions on color-reduced graphs. The table

shows solution weights by ILP-IPA relative to the optimal weights that DP-IPA produces.

The trend is clear: ILP-IPA becomes less competitive with DP-IPA as n (nbuild) and k grow.

6.10 Conclusion
In this work, we took tangible and meaningful steps toward mapping the GRAPH IN-

SPECTION planning problem in robotics to established problems (e.g., GENERALIZED TSP).

We presented two algorithms, DP-IPA and ILP-IPA, to solve the problem under this abstrac-

tion, based on dynamic programming and integer linear programming. We presented

multiple strategies for leveraging these algorithms on relevant robotics examples lending

insight into the choices that can be made to use these methods in emerging problems.

We then evaluated these methods and strategies on two complex robotics applications,

outperforming the state of the art.
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Our approach of creating several reduced color sets and merging walks offers a new

paradigm for leveraging algorithms whose complexity has high dependence on the num-

ber of POIs, and opens the door for future exploration. We plan to see how these methods

perform and scale with more than three walks. Further, it remains to implement these

algorithms on real-world, physical robots and inspection tasks.
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B
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D
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Figure 6.1: Inspection planning, in contrast to traditional motion planning, may necessitate
leveraging cycles and backtracking on graphs embedded in the robot’s configuration
space. This necessitates computing a walk (rather than a path) on a graph. (A) A quadrotor,
while inspecting a bridge for potential structural defects, may need to circle around
obstacles, (B) leveraging a cycle in its c-space graph (teal). (C) A medical endoscopic robot
(black) may need to move into and then out of an anatomical cavity to, e.g., visualize the
underside of a patient’s gallbladder (green), (D) requiring backtracking in its c-space graph
(teal).
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Figure 6.2: Performance of IRIS-CLI, ILP-IPA and DP-IPA (with GreedyMD) on DRONE and
CRISP benchmarks. Each data point represents a computed inspection plan; coverage is
shown as a percentage of all POIs in the input graph. The area shaded in gray is outside
the upper/lower bounds given in Section 6.3.3.
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Case t = |C|

Case t < |C|

Variables & Objective

xu,v, xv,u ∈ {0, 1} for uv ∈ E xu,v is 1 iff the directed edge uv is present in
the solution flow.

ye,v ≥ 0 for e∈E, v∈ e Amount of charges the edge e emits to its endpoint v.

zc ∈ {0, 1} for c ∈ C Only used if t < |C|. Value 1 iff color c is collected.

min ∑
uv∈E

w(uv)(xu,v + xv,u) Minimize weighted cost of walk.

Flow conditions

1a ∑
u∈N(v)

xu,v − xv,u = 0 for every v ∈ V Flow preservation.

1b ∑
u∈N(s)

xs,u ≥ 1 Outgoing flow at source s.

Prohibit closed flow disjoint from s

2a yuv,u + yuv,v = 2(xu,v + xv,u) Solution edges not incident
to s emit charges.

for every uv ∈ E(G− s)

2b ∑
u∈N(v)\{s}

yuv,v ≤
(
2− 2

2n−3

)
· ∑
u∈N(v)

xu,v Vertices can consume slightly
less than two charges per
incoming flow.for every v ∈ V \ {s}

Count number of collected colors

3a ∑
v∈χ−1(c)

∑
u∈N(v)

xu,v ≥ 1 for every c ∈ C Collect every color.

3b zc ≤ ∑
v∈χ−1(c)

∑
u∈N(v)

xu,v for every c ∈ C Walk must cross vertex of
color c to collect c.

3c ∑c∈C zc ≥ t Collect at least t colors.

Figure 6.3: ILP-IPA, an ILP for the GRAPH INSPECTION problem.
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s

Original graph

s

C1 C2

Color-reduced graph

s

Merged walk

Figure 6.4: An illustration of the partition-and-merge framework. The color set in the
original graph (left) is reduced to 2 color sets C1 and C2, each of which contains 2 colors
(middle). For each color set, we find an optimal walk collecting all colors in the set,
resulting in the blue and red walks. Those walks are merged into the green walk, collecting
the same colors in the color-reduced graph (right).

Figure 6.5: Selected results of color partitioning experiment on datasets CRISP1000 and
DRONE1000 with k ∈ {10, 20}. Each data point represents a solution computed using
DP-IPA and ExactMerge. For each combination of color reduction method and partitioning
strategy, we highlight the solutions with maximum coverage (rightward arrow) and with
minimum weight (downward arrow).
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Figure 6.6: Results of our color partitioning experiments for datasets CRISP2000 and
DRONE2000 with k ∈ {10, 20}. Every data point represents a solution computed using
DP-IPA and ExactMerge. For each combination of color reduction and color partitioning
strategies, the solution with maximum coverage is indicated with a rightward-pointing
arrow, and the solution with minimum weight is indicated with a downward-pointing
arrow.

DRONE

CRISP

Datasets (a) Build
graphs

(b) Solve for original graphs

IRIS-CLI

ILP-IPA

add returning walk

(c) Filter and
partition POIs

(d) Solve for POI-
reduced graphs

(e) Multithreading

DP-IPA ILP-IPA

(f) Merge walks

Figure 6.7: Overview of our experiment pipeline.
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Figure 6.8: Performance of IRIS-CLI, ILP-IPA and DP-IPA (with MetricMD) on DRONE and
CRISP benchmarks. Each data point represents a computed inspection plan; coverage is
shown as a percentage of all POIs in the input graph. The area shaded in gray is outside
the upper/lower bounds given in Section 6.3.3.
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Figure 6.9: Relative (left) and absolute (right) runtimes for DP-IPA with 1-80 threads. The
relative runtime (speed-up) is with respect to a single thread.
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Figure 6.10: Results of color reduction experiments for Rand, GreedyMD, OutlierMD,
and MetricMD. Each data point represents a GRAPH INSPECTION solution generated by
DP-IPA. For each algorithm, the solution with the highest coverage (computed in the
original, non-color-reduced graph) is marked with a rightward-pointing arrow, and the
minimum weight solution is marked with a downward-pointing arrow.
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Figure 6.11: Results of multithreading experiments for ILP-IPA, executed on datasets
CRISP (top two rows) and DRONE (bottom two rows), with k = 10 (left column) or k = 20
(right column).
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Figure 6.12: Experimental results comparing ConcatMerge, GreedyMerge, and ExactMerge.
On the left, the weight of the combined walk is compared (relative to ExactMerge). On the
right, runtimes are compared. In all experiments, three walks were combined.
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Table 6.1: Corpus of test instances for GRAPH INSPECTION.

dataset CRISP DRONE

nbuild 1,000 2,000 1,000 2,000

name CRISP1000 CRISP2000 DRONE1000 DRONE2000

number of vertices (n) 1,006 2,005 1,002 2,001

number of edges (m) 18,695 41,506 19,832 44,089

number of colors 4,200 4,200 3,204 3,254
number of colors

at the starting vertex 535 540 10 10

number of colors
at a vertex

min 0 0 0 0

mean 183.39 175.71 22.67 19.16

max 855 876 129 129

stdev 179.02 170.75 24.61 22.41

edge weight

min 0.000002 0.000000 0.51 0.43

mean 0.006971 0.005275 4.61 3.91

max 0.060926 0.060926 18.51 18.51

stdev 0.005354 0.004271 1.86 1.58

minimum spanning tree weight 1.109606 1.637212 1875.53 3118.65

diameter
unweighted 7 8 6 7

weighted 0.136846 0.138467 48.24 49.73

Table 6.2: Comparison of solution weights generated by ILP-IPA, relative to the lowest
weight produced by DP-IPA; both solvers had a 15-minute timeout.

CRISP DRONE

nbuild k mean min max mean min max

1, 000 10 1.03 1.00 1.16 1.04 1.00 1.13
20 1.04 1.00 1.31 1.05 1.00 1.18

2, 000 10 1.12 1.00 1.38 1.17 1.03 1.38
20 1.16 1.01 1.34 1.19 1.02 1.51
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CHAPTER 7

ALGEBRAIC TECHNIQUES FOR

INSPECTION PLANNING

In this chapter, we continue to study the Inspection Planning problem from robotics,

but with a different approach. We investigate whether algorithms based on arithmetic

circuits are a viable alternative to existing solvers for GRAPH INSPECTION. Specifically,

we seek to address the high memory usage of existing solvers [14]. Aided by novel the-

oretical results enabling fast solution recovery, we implement a circuit-based solver for

GRAPH INSPECTION, which uses only polynomial space, and test it on several realistic

robotic motion planning datasets. While we demonstrate that circuit-based methods are

not yet practically competitive for this application, our experimental evaluation of a suite

of engineered algorithms for three key subroutines provides insights, which may guide

future efforts to bring circuit-based algorithms from theory to practice.

This is joint work with Matthias Bentert1, Daniel Coimbra Salomao2, Alex Crane2,

Felix Reidl3, and Blair D. Sullivan2. I am the lead author, designing and developing FPT,

poly-space randomized algorithms using arithmetic circuits. I also designed computa-

tional experiments and wrote the majority of the manuscript. The latest version of our

manuscript is available on arXiv [1].

In addition to the contents from the preprint, Section 7.3.3 details my exploratory work

on characterizing a minimal circuit to reproduce a multilinear monomial, which we term

as certificate flow.

1University of Bergen, Norway.

2University of Utah, USA.

3Birkbeck, University of London, UK.
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7.1 Introduction
In GRAPH INSPECTION, we are given an edge-weighted, vertex-multi-colored graph

and are asked to find a minimum-weight closed walk from a given starting vertex s that

collects at least t colors. The colors allow us to model a “collection” problem, generalizing4

the TRAVELING SALESMAN PROBLEM by allowing objects to be collectable at multiple

vertices in the graph. GRAPH INSPECTION is motivated by robotic motion planning [5, 7],

where a robot is tasked with inspecting “points of interest” by traveling a route in its con-

figuration space. While exact solutions to this problem for a whole motion planning task

may be prohibitively expensive to compute—given that the involved configuration space

is immensely large and complicated—exact algorithms are nonetheless useful as Mizutani

et al. [14] demonstrated by improving an existing planning heuristic [7] using integer linear

programming (ILP) and dynamic programming (DP) exact solvers for GRAPH INSPECTION

as subroutines. These approaches resulted in improved solution quality with comparable

running times on simulated robotic tasks.

Mizutani et al. noted two limitations of the solvers which constrain their scalability. The

ILP solver cannot solve problems on large networks5 in part because the ILP itself scales

with the number of edges in the network times the number of colors. In contrast, the DP

solver runs in time linear in the network size but scales exponentially with the number of

colors. Crucially, this is also true for the memory consumed by the DP and creates a sharp

limit for its use case. The resulting need for a GRAPH INSPECTION solver which a) runs

on large instances and b) has low space consumption was the starting point for our work

here.

One theoretical remedy to dynamic programming algorithms with exponential space

complexity are algebraic approaches which can “simulate” dynamic programming by con-

structing compact arithmetic circuits and testing the polynomials represented by these

circuits for the presence of linear monomials [11, 12, 16, 8]. We can conceptualize this as a

polynomial-time (and therefore polynomial-space) reduction from the source problem to

4Also of note is the GENERALIZED TRAVELING SALESMAN PROBLEM (GTSP) [15], for which solutions are
simple paths rather than walks. Our results extend to GTSP restricted to complete graphs with edge-weights
satisfying the triangle inequality.

5In their experiments, Mizutani et al. [14] were able to solve instances with roughly 2, 000 vertices and
40, 000 edges.
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an instance of MULTILINEAR DETECTION, in which we are given an arithmetic circuit and

are tasked with deciding whether a multilinear monomial exists. This latter problem is

solvable using polynomial space (and running times comparable to the DP counterparts).

Algorithms based on MULTILINEAR DETECTION have been implemented for certain

problems on synthetic or generic data with somewhat promising results [2, 10]. In this

work, we took the opportunity to put the arithmetic circuit approach to the test in a very

realistic setting: our test data is derived from two robotic inspection scenarios and our

GRAPH INSPECTION solver can be used as a subroutine (similarly to Mizutani et al. [14]) to

accomplish the relevant robotics tasks.

7.1.1 Theoretical Contributions

Our main contribution is the introduction of tree certificates in the context of MULTI-

LINEAR DETECTION. These objects allow us to circumvent an issue with existing results

(see Section 7.3) and, more importantly, to directly recover a solution from the circuit

without self-reduction. We present two randomized algorithms, one Monte-Carlo and

one Las Vegas, which recover tree certificates for certain linear monomials of degree k in

time Õ(2kkm) in circuits with m edges.

Next, in Section 7.4 we adapt the arithmetic circuit approach to reduce GRAPH IN-

SPECTION parameterized by t to MULTILINEAR DETECTION on integer-weighted instances.

Combining this with the aforementioned certificate recovery yields an FPT (defined in Sec-

tion 7.2) algorithm which runs in Õ(2t(ℓt3n2 + t3|C|n)) time and uses Õ(ℓtn2 + t|C|n)

space, where ℓ is an upper bound on the solution weight, |C| is the number of colors in the

instance and t is the minimum number of colors we want to collect. One general challenge

in using circuits is incorporating additional parameters like the solution weight ℓ and we

explore several options to do so which might be of independent interest.

7.1.2 Engineering Contributions

We present a C++ implementation of our theoretical algorithm with a modular de-

sign. This allows us to test different components of the algorithm, namely four different

methods of circuit construction (Section 7.5), three different search strategies to find the

optimal solution weight ℓ (Section 7.6), and both of the aforementioned solution recovery

algorithms. Our engineering choices and experiments provide insights for several prob-
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lems relevant for future implementations of arithmetic circuit algorithms, including (i) the

avoidance of circuit reconstruction when searching for optimal solution weight, (ii) the

discretization of non-integral weights, and (iii) the importance of multithreading for this

class of algorithms.

7.1.3 Experimental Results

In Section 7.8 we experimentally evaluate each of the engineering choices described

above, thereby demonstrating that careful engineering can yield significant running time

improvements for arithmetic circuit algorithms. Additionally, we illustrate a trade-off

between solution-quality and scalability by evaluating several scaling factors (used to

produce integral edge weights). Finally, we demonstrate the large gap remaining between

theory and practice: though the algebraic approach scales better in theory, it is not yet

practically competitive with dynamic programming on instances with many nodes or

more than ∼10 colors, which is too limiting for many practical applications.

7.1.4 Future Directions: Toward Practicality

In this line of work, new theoretical insights and careful engineering yield progress

toward the application of arithmetic-circuit-based techniques to a graph analysis problem

with practical relevance in robotics. However, our experimental results demonstrate that

further progress is needed before this class of algorithms becomes competitive with ex-

isting strategies in practice. From a theoretical perspective, new techniques which reduce

the depth of constructed circuits, or new solving methods which reduce the dependence

on that parameter, are desirable. Another interesting future direction would be hybrid

methods that provide a trade-off between memory-intensive dynamic programming and

time-intensive circuit evaluation. On the engineering side, the work by Kaski et al. [10]

suggests that GPGPU implementations are feasible (albeit complicated) and the use of

such hardware could provide a significant speedup for circuit-based algorithms.

7.2 Preliminaries
We refer to Section 1.3.1 and the textbook by Diestel [4] for standard graph-theoretic

definitions and notation. Also, refer to Section 1.3.2 and the textbook by Cygan et al. [3] for

parameterized complexity. Unless otherwise specified, all graphs G = (V, E) in this work
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are undirected, with edges weighted by a function w : E→ R≥0 and vertices multi-colored

by a function χ : V → 2C , where C is the color set. Given a vertex subset S ⊆ V, we use the

notations χ(S) for
⋃

v∈S χ(v). We can now define the subject of our study:

Input: An undirected graph G = (V, E), a color set C, an edge-weight function

w : E→ R≥0, a vertex-coloring function χ : V → 2C , a vertex s ∈ V, and

an integer t.

Problem: Find a minimum-weight closed walk P = (v0, v1, . . . , vp) in G with v0 =

vp = s and |⋃p
i=1 χ(vi)| ≥ t.

GRAPH INSPECTION

For the sake of simplicity, we may assume that G is connected, t ≤ |C|, and χ(s) = ∅.

7.2.1 Polynomials and Arithmetic Circuits

A monomial over a set X of variables is a (commutative) product of variables from X.

We call a monomial multilinear if no variable appears more than once in it. A polynomial

is a linear combination of monomials with coefficients from Z+.

An arithmetic circuit C over X is a directed acyclic graph (DAG) for which every source

is labelled either by a constant from Z+ (a scalar) or by a variable from X, and furthermore

every internal node is labelled as either an addition or a multiplication node. The internal

nodes and sinks of the DAG are called gates and outputs, respectively, of the circuit C.

For a node v ∈ C, we define C[v] to be the arithmetic induced by all nodes that can

reach v in C, including v. We further define PC[v](X) to be the polynomial that results from

expanding the arithmetic expression of C[v] into a sum of products. For a circuit C with a

single output r ∈ V(C), we write PC(X) for the polynomial PC[r](X).

We now formalize the problem of checking whether the polynomial representation of

an output node includes a multilinear monomial.

Input: An arithmetic circuit C over a set X of variables and an integer k.

Problem: For each output node r ∈ V(C), determine if PC[r](X) contains a multi-

linear monomial of degree at most k.

MULTILINEAR DETECTION

Prior work has established a randomized FPT algorithm which uses only polynomial
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space.

Lemma 7.1 ([12, 16]). There is a randomized O∗(2k)-time and polynomial space algorithm for

MULTILINEAR DETECTION.

7.3 Engineering MULTILINEAR DETECTION

Before elaborating on our main algorithm, we characterize arithmetic circuits in terms

of certificates and provide solution recovery algorithms.

Let PC(X) be a polynomial represented by an (arithmetic) circuit C, and let PC(X, A) be

a fingerprint polynomial derived from C as follows (as defined by Koutis and Williams):

for every addition gate v ∈ V(C) and input edge uv ∈ E(C), we annotate the edge uv

with a dedicated variable auv ∈ A. The semantic of this annotation is that the output

of node u is multiplied by auv before it is fed to v. Koutis and Williams [12] showed

that multilinear monomials can be detected using only polynomial space if the associated

fingerprint polynomial has additional properties:

Lemma 7.2 ([12, 16]). Let C be a connected arithmetic circuit over a set X of variables, and let k be

an integer. Suppose that the coefficient of each monomial in the fingerprint polynomial PC(X, A)

is 1. Then, there exists a randomized O∗(2k)-time polynomial-space algorithm for MULTILINEAR

DETECTION with (C, X, k). This is a one-sided error Monte Carlo algorithm with a constant

success probability.

To generalize this result to arbitrary circuits, Koutis and Williams defined A-circuits6

and claim that their associated fingerprint polynomial only contains monomials with co-

efficient one. However, our initial implementation showed that this claim does not hold,

and in fact the following small fingerprint circuit is indeed an A-circuit but does not have

the claimed property:

y

x

+ ×

+

+

×
a1

a2

a3

a4

6These circuits have the properties that addition and multiplication gates alternate, addition gates have an
out-degree of one, and that all scalar inputs are either 0 or 1.
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The associated fingerprint polynomial is P(X, A) = ((a1x + a2y) · a3)((a1x + a2y) · a4) =

a3a4a2
1x2 + 2a1a2a3a4xy + a3a4a2

1y2, in particular the one multilinear monomial 2a1a2a3a4xy

has coefficient 2.

In fact, the presence of multilinear monomials in the fingerprint polynomial is directly

related to the presence of tree-shaped substructures in the circuit which the above circuit

does not have. First, we need some machinery.

Given a circuit C with single output r such that PC(X, A) contains a multilinear mono-

mial, we define a certificate F̂ as a minimal sub-circuit of C with the same output node such

that PF̂ (X, A) contains a multilinear monomial, and every multiplication gate in F̂ takes

the same inputs in C. In other words, we require N−F̂ (v) = N−C (v) for every multiplication

gate v ∈ V(F̂ ). We say a certificate F̂ is a tree certificate if the underlying graph of F̂ is a

tree. We can now state the lemma.

Lemma 7.3 (Tree Certificate Lemma). Let C be a circuit without scalar inputs. For a node

v ∈ V(C), the fingerprint polynomial PC[v](X, A) contains a multilinear monomial of coefficient 1

if and only if there exists a tree certificate for v.

For example, it is clear to verify that the small circuit above does not contain a tree

certificate since any certificate must include the cycle. The following lemma helps to show

the existence of tree certificates by construction (proof in Section 7.3.1).

Lemma 7.4. Let C be an arithmetic circuit. If every multiplication gate in C has at most 1 non-

variable in-neighbor, then every certificate in C is a tree certificate.

Unfortunately, for some of our circuit constructions, the condition imposed by

Lemma 7.2 is too strong. However, we next prove that we solve MULTILINEAR DETECTION

if there exists a multilinear monomial in PC(X, A) with coefficient 1.

Lemma 7.5. Let C be a connected arithmetic circuit over a set X of variables with m edges, and

let k be an integer. Suppose there exists a multilinear monomial in the fingerprint polynomial

PC(X, A) whose coefficient is 1 if PC(X) contains a multilinear monomial of degree at most k.

Then, there exists a randomized Õ(2kkm)-time Õ(m + k|X|)-space algorithm for MULTILINEAR

DETECTION with (C, X, k). This is a one-sided error Monte Carlo algorithm with a constant
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success probability (1/4).

Proof. We use an algorithm by Koutis for ODD MULTILINEAR k-TERM [11], where we want

to decide if the polynomial represented by an arithmetic circuit contains a multilinear

monomial with odd coefficient of degree at most k.

If PC(X) does not contain a multilinear monomial of degree at most k, then the algo-

rithm always decides correctly. Suppose (C, X, k) is a yes-instance. Then, by definition,

if PC(X, A) contains a multilinear monomial of coefficient 1, then PC(X, A) contains a

multilinear monomial with odd coefficient; notice that not all multilinear monomials have

to have coefficient 1. The algorithm works inO(2k(k|X|+ T)) time andO(k|X|+ S) space,

where T and S are the time and the space taken for evaluating the circuit over the integers

modulo 2k+1, respectively.

In our case, each node stores anO(log k)-size vector of integers up to 2k+1, representing

the coefficients of a polynomial with degree O(log k). This requires Õ(k)-bit information.

The most time-consuming operation is multiplication of these vectors, which can be done

in Õ(k) time with a Fast-Fourier-Transform style algorithm [16]. Hence, T ∈ Õ(km) and

the running time is O(2k(k|X|+ T)) ⊆ Õ(2k(k|X|+ km)) = Õ(2kkm).

Storing the circuit and fingerprint polynomial requires Õ(m) space and each compu-

tation requires Õ(k) space at a time. Hence, S ∈ Õ(m + k) and O(k|X| + S) ⊆ Õ(m +

k|X|).

7.3.1 Proofs on Tree Certificates

We start by stating the following property of a tree certificate.

Proposition 7.6. Let F̂ be a tree certificate without scalar inputs. Then, for any node v ∈ V(F̂ ),

we have that PF̂ [v](X, A) is a multilinear monomial (without any other terms) of coefficient 1.

Moreover, every addition gate in F̂ has exactly one in-neighbor.

Proof. We prove by induction on the number n of nodes in F̂ that PF̂ [v](X, A) contains

exactly one monomial of coefficient 1 for all v ∈ V(F̂ ). For the base case with n = 1, the

only node is a variable node, which is by definition a multilinear monomial of coefficient 1.

For the inductive step, consider PF̂ [v](X, A) for an output node v. Notice that v must be

either an addition gate or a multiplication gate.
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If v is an addition gate, we know that there exists an in-neighbor of v whose fingerprint

polynomial contains a multilinear monomial of coefficient 1. Due to the minimality of a

certificate, v cannot have more than one in-neighbor. Let u ∈ N−F̂ (v) be v’s in-neighbor.

Then, F̂ [u] is a tree certificate for u. From the inductive hypothesis, PF̂ [v](X, A) = auv ·

PF̂ [u](X, A), which is a multilinear monomial of coefficient 1.

If v is a multiplication gate, then for every in-neighbor u of v, F̂ [u] must be a tree

certificate because otherwise PF̂ [v](X, A) cannot have a multilinear monomial. From the

inductive hypothesis, PF̂ [u](X, A) is a multilinear monomial of coefficient 1 for every u.

Notice that since the underlying graph of F̂ is a tree, for each distinct u, u′ ∈ N−F̂ (v),

PF̂ [u](X, A) and PF̂ [u′](X, A) do not share any variables or fingerprints. Hence, we con-

clude that PF̂ [v](X, A) = ∏u∈N−F̂ (v)
PF̂ [u](X, A) is also a multilinear monomial of coeffi-

cient 1.

Corollary 7.7. Let F̂ be a tree certificate without scalar inputs. Then, for any node v ∈ V(F̂ ),

F̂ [v] is also a tree certificate.

Proof. From Proposition 7.6, for any node v ∈ V(F̂ ) we have that PF̂ [v](X, A) is a multi-

linear monomial of coefficient 1. Necessarily, F̂ [v] is a certificate as it should be minimal,

and clearly the underlying graph of F̂ [v] is a tree. Thus F̂ [v] is a tree certificate.

Here we prove Lemma 7.3.

Lemma 7.3 (Tree Certificate Lemma). Let C be a circuit without scalar inputs. For a node

v ∈ V(C), the fingerprint polynomial PC[v](X, A) contains a multilinear monomial of coefficient 1

if and only if there exists a tree certificate for v.

To show this, we introduce new notation and then prove a stronger lemma. For a

nonempty set of variables ∅ ̸= X′ ⊆ X and a (possibly empty) set of fingerprints A′ ⊆

A, we write µ(X′, A′) for (∏x∈X′ x) (∏a∈A′ a). By definition, µ(X′, A′) is a multilinear

monomial of coefficient 1. Similarly, we write µ(X′) for ∏x∈X′ x in case fingerprints are

irrelevant. Also, we say a tree certificate F̂ for v ∈ V(F̂ ) encodes (X′, A′) if PF̂ [v](X, A) =

µ(X′, A′).

Lemma 7.8. Let C be a circuit without scalar inputs. For a node v ∈ V(C), the fingerprint
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polynomial PC[v](X, A) contains a monomial µ(X′, A′) for some ∅ ̸= X′ ⊆ X and A′ ⊆ A if and

only if there exists a tree certificate F̂ for v encoding (X′, A′).

Proof. We will show the both directions of implications.

(⇒) For a node v ∈ V(C), assume that PC[v](X, A) contains a monomial µ(X′, A′) for

some ∅ ̸= X′ ⊆ X and A′ ⊆ A. We will show that C has a tree certificate F̂ for v

encoding (X′, A′) by induction on the number n of nodes in C[v]. It is trivial for the base

case n = 1: since there are no scalar inputs, we have n = 1 if and only if v is a variable node

representing x ∈ X. We have PC[v](X, A) = x = µ({x}, ∅), and C[v] encodes ({x}, ∅). For

the inductive step with n > 1, consider two cases.

Suppose node v is an addition gate. Then, there exists u ∈ N−C (v) such that PC[u](X, A)

contains a monomial µ(X′, A′ \ {auv}). From the inductive hypothesis, there exists a tree

certificate F̂ for u encoding (X′, A′ \ {auv}). We see that the circuit (V(F̂ ) ∪ {v}, E(F̂ ) ∪

{uv}) forms a tree certificate for v encoding (X′, A′).

Suppose node v is a multiplication gate, and let u1, . . . , uℓ be the in-neighbors of v

in C. Since there are no scalar inputs, there must be a partition (X1, . . . , Xℓ) of X′ and a

partition (A1, . . . , Aℓ) of A′ such that for each 1 ≤ i ≤ ℓ, Xi ̸= ∅ and PC[ui ](X, A) contains a

monomial µ(Xi, Ai). From the inductive hypothesis, there exists a tree certificate F̂i for ui

encoding (Xi, Ai) for each 1 ≤ i ≤ ℓ. If tree certificates F̂i are vertex-disjoint, then the

circuit ({v} ∪⋃
i V(F̂i),

⋃
i(E(F̂i) ∪ {uiv})) forms a tree certificate for v encoding (X′, A′).

Now, assume towards a contradiction that tree certificates F̂1 and F̂2 (without loss of

generality) share a node. Let w ∈ V(F̂1) ∩ V(F̂2) be a shared node first appearing in an

arbitrary topological ordering of (V(F̂1) ∪V(F̂2), E(F̂1) ∪ E(F̂2)). Observe that w cannot

be a variable node because X1 ∩ X2 = ∅.

From Corollary 7.7, F̂1[w] and F̂2[w] are tree certificates for w. Then, there exist some

sets X′1, A′1, X′2, A′2 such that ∅ ̸= X′1 ⊆ X1, ∅ ̸= X′2 ⊆ X2, A′1 ⊆ A1, A′2 ⊆ A2,

PF̂1[w](X, A) = µ(X′1, A′1) and PF̂2[w](X, A) = µ(X′2, A′2).

Consider the circuit F̂ ′1 such that V(F̂ ′1) = (V(F̂1) \V(F̂1[w])) ∪V(F̂2[w]) and

E(F̂ ′1) = (E(F̂1) \ E(F̂1[w])) ∪ E(F̂2[w]). Since w is the earliest “overlapping” node in the

topological ordering, V(F̂1) \V(F̂1[w]) and V(F̂2[w]) do not share any nodes. Then, F̂ ′1
is the tree certificate for u1 encoding ((X1 \ X′1) ∪ X′2, (A1 \ A′1) ∪ A′2). Similarly, define
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F̂ ′2 := (V(F̂2) \V(F̂2[w]) ∪V(F̂1[w]), E(F̂2) \ E(F̂2[w]) ∪ E(F̂1[w])). We know that F̂ ′2 is

the tree certificate for u2 encoding ((X2 \ X′2) ∪ X′1, (A2 \ A′2) ∪ A′1).

For convenience, let X̃1 := (X1 \ X′1) ∪ X′2, Ã1 := (A1 \ A′1) ∪ A′2, X̃2 := (X2 \ X′2) ∪ X′1,

and Ã2 := (A2 \ A′2) ∪ A′1. Notice that by the inductive hypothesis, PC[u1](X, A) contains

monomials µ(X1, A1) and µ(X̃1, Ã1). Similarly, PC[u2](X, A) contains monomials µ(X2, A2)

and µ(X̃2, Ã2). Because v is a multiplication gate, we have

PC[v](X, A)

=
ℓ

∏
i=1

PC[ui ](X, A)

= PC[u1](X, A) · PC[u2](X, A) ·
ℓ

∏
i=3

PC[ui ](X, A)

= (µ(X1, A1) + µ(X̃1, Ã1) + . . .)·

(µ(X2, A2) + µ(X̃2, Ã2) + . . .) ·
ℓ

∏
i=3

(µ(Xi, Ai) + . . .)

= (µ(X1, A1)µ(X2, A2) + µ(X̃1, Ã1)µ(X̃2, Ã2) + . . .)·
ℓ

∏
i=3

(µ(Xi, Ai) + . . .)

= (µ(X1, A1)µ(X2, A2) + µ(X̃1, Ã1)µ(X̃2, Ã2))·
ℓ

∏
i=3

µ(Xi, Ai) + p(X, A),

for some polynomial p(X, A). This can be simplified as follows:

µ(X̃1, Ã1)µ(X̃2, Ã2)

= µ(X̃1 ∪ X̃2, Ã1 ∪ Ã2)

= µ(((X1 \ X′1) ∪ X′2) ∪ ((X2 \ X′2) ∪ X′1),

((A1 \ A′1) ∪ A′2) ∪ ((A2 \ A′2) ∪ A′1))

= µ(((X1 \ X′1) ∪ X′1) ∪ ((X2 \ X′2) ∪ X′2),

((A1 \ A′1) ∪ A′1) ∪ ((A2 \ A′2) ∪ A′2))

= µ(X1 ∪ X2, A1 ∪ A2)

= µ(X1, A1)µ(X2, A2)
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PC[v](X, A)

= 2µ(X1, A1)µ(X2, A2) ·
ℓ

∏
i=3

µ(Xi, Ai) + p(X, A)

= 2 ·
ℓ

∏
i=1

µ(Xi, Ai) + p(X, A)

= 2µ(
ℓ⋃

i=1

Xi,
ℓ⋃

i=1

Ai) + p(X, A)

= 2µ(X′, A′) + p(X, A)

This result implies that PC[v](X, A) contains a monomial αµ(X′, A′) for some integer

α ≥ 2, contradicting our assumption that PC[v](X, A) contains µ(X′, A′) as a monomial.

(⇐) Suppose that C has a tree certificate F̂ for v ∈ V(C) encoding (X′, A′) for some

∅ ̸= X′ ⊆ X and A′ ⊆ A. We will show that PC[v](X, A) contains the monomial µ(X′, A′).

By definition, we have PF̂ [v](X, A) = µ(X′, A′). We iteratively construct C ′ as follows.

1. Initially, let C ′ ← (V(C), E(F̂ )).

2. Add all the edges in E(C) \ E(F̂ ) to C ′ that are not pointing to V(F̂ ). At this point,

we still have PC ′[v](X, A) = µ(X′, A′).

3. Add an arbitrary edge uw ∈ E(C) \ E(C ′) pointing to w ∈ V(F̂ ). Here, node w is an

addition gate because otherwise edge uw must have been included in F̂ . Notice that

newly introduced terms in PC ′[v](X, A) have auw as a factor. Recall that for every edge

e such that ae ∈ A′, we have e ∈ E(F̂ ). Since uv ̸∈ E(F̂ ), auw ̸∈ A′, and PC ′[v](X, A)

still have the monomial µ(X′, A′).

4. Repeat from Step 3 until we reach C ′ = C.

From the construction above, we have shown that PC[v](X, A) contains µ(X′, A′) as a

monomial.

The following proposition characterizes variable nodes in a certificate.

Proposition 7.9. Let F̂ be a certificate for node v that is not a variable node. Then, every variable

node in F̂ has out-degree 1.

Proof. If there is a variable node x with out-degree 0, then x can be removed and F̂ is not

minimal.
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Assume towards a contradiction that a variable node x has out-degree at least 2. Then,

F̂ contains a node u with two vertex-disjoint x-u paths. Since F̂ is minimal, multilinear

monomials in PF̂ [v](X) require a monomial in PF̂ [u](X) using the two x-u paths P1, P2.

First, u cannot be a multiplication gate as the terms in PF̂ [u](X) using P1 and P2 contain

x2. Suppose u is an addition gate. Then, the terms in PF̂ [u](X) using P1 and P2 are in the

form α1x + α2x for some monomials α1 and α2. Then, having only one of the in-neighbors

of u is sufficient, and thus F̂ is not minimal, a contradiction.

Next, we prove Lemma 7.4.

Lemma 7.4. Let C be an arithmetic circuit. If every multiplication gate in C has at most 1 non-

variable in-neighbor, then every certificate in C is a tree certificate.

Proof. Let F̂ be a certificate in C. We prove by induction on the number n of nodes in F̂ . It

is clear for the base case n = 1. For the inductive step with n > 1, let v be an output node

of F̂ . We consider two cases (note that v cannot be a variable node).

Suppose node v is an addition gate. Then, it must have one in-neighbor u due to the

minimality. First, we show that F̂ [u] is a certificate for u. Since PF̂ [v](X) = PF̂ [u](X), we

know that PF̂ [u](X) contains a multilinear monomial. Also for the same reason, if F̂ [u] is

not minimal, then F̂ [v] is not minimal. Second, from the inductive hypothesis F̂ [u] is a

tree certificate, and adding edge uv to F̂ [u] does not create a cycle in the underlying graph.

Thus F̂ is a tree certificate.

Suppose node v is a multiplication gate. If v does not have a non-variable in-neighbor,

then F̂ is clearly a tree certificate. Assume that the in-neighbors of v are variable nodes

X′ ⊆ X and a non-variable node u. Since PF̂ [v](X) = µ(X′) · PF̂ [u](X), if PF̂ [v](X) contains

a multilinear monomial mv(X), then PF̂ [u](X) contains a multilinear monomial mu(X) :=

mv(X)/µ(X′). Here mu(X) may be scalar; recall that scalar terms are also considered

multilinear.

First, we show that F̂ [u] is a certificate for u. As PF̂ [u](X) contains a multilinear

monomial, it suffices to show that F̂ [u] is minimal. Assume not. Then, there exists a cer-

tificate F̂ ′[u] as a sub-circuit of F̂ [u] such that PF̂ ′[u](X) contains a multilinear monomial

m′u(X). Now, the circuit F̂ ′ constructed from F̂ by replacing F̂ [u] with F̂ ′[u] must have
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the monomial µ(X′) ·m′u(X). From Proposition 7.9, m′u(X) does not contain any variables

from X′ because for each x ∈ X′, v is the only out-neighbor of x. Hence, µ(X′) ·m′u(X) is a

multilinear monomial, contradicting that F̂ is minimal.

Second, from the inductive hypothesis F̂ [u] is a tree certificate. Also, from Proposi-

tion 7.9, F̂ [u] is disjoint from X′. Thus F̂ is a tree certificate.

7.3.2 Solution Recovery for MULTILINEAR DETECTION

We say a fingerprint circuit C over (X, A) is recoverable with respect to an output node r

and an integer k if it is verified that PC[r](X, A) contains a multilinear monomial of degree

at most k with coefficient 1. Once we have determined that C is recoverable, we want to

recover a solution by finding a tree certificate of C with the single output r.

Now we present two algorithms for finding a tree certificate: MonteCarloRecovery and

LasVegasRecovery. The basic idea common in both algorithms is backtracking from the

output node of a circuit. When seeing a multiplication gate, we keep all in-edges. For an

addition gate, we use binary search to find exactly one in-edge that is included in a tree

certificate. Specifically, for every addition gate v encountered during the solution recovery

process, let E′ be the set of in-edges of v, i.e., E′ = {uv : u ∈ N−C (v)}. Then, we say a

partition (A, B) of E′ is a balanced partition of the in-edges of v if 0 ≤ |A| − |B| ≤ 1. We

then run an algorithm for MULTILINEAR DETECTION with either C − A or C − B to decide

which edges to keep.

Lemma 7.10 (MonteCarloRecovery). Let C be a connected recoverable circuit of m edges with

respect to degree k and output r. Also assume that every tree certificate of C contains at most O(k)

addition nodes. There exists a one-sided error Monte Carlo algorithm that finds a tree certificate of

C in Õ(2kkm) time with a constant success probability.

Proof. Consider Algorithm 10. This algorithm traverses all nodes in C from the given

output node r to the variable nodes and removes nodes and edges that are not in a tree

certificate. Whenever the algorithm sees an addition gate having a path to node r in the

current circuit, it keeps exactly one in-neighbor. This operation is safe due to Proposi-

tion 7.6. Let Ĉ be the resulting circuit. Every addition gate in Ĉ has in-degree 1, and all the

in-edges of a multiplication gate are kept if there is a path to node r in Ĉ. Assuming that
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Algorithm 10: MonteCarloRecovery
Input: A recoverable circuit C with respect to k and output r, and a failure count

threshold θ.
Output: A tree certificate.

// Reversed traversal from the output node.

1 for v ∈ V(C) in topological ordering of the reverse graph of C do
2 if v ̸= r and N+(v) = ∅ then

// Remove unlinked nodes.

3 Let C ← C − v.
4 else if v is an addition gate then

// Perform binary search.

5 while deg−C (v) > 1 do
6 Let A, B be a balanced partition of the in-edges of v.
7 Repeatedly solve MULTILINEAR DETECTION at most θ times with

(C − A, k).
8 if C − A contains a tree certificate then

// Safe to remove A.

9 Let C ← C − A.
10 else

// Should keep a vertex in A.

11 Let C ← C − B.
12 return C

the algorithm solves MULTILINEAR DETECTION correctly, Ĉ is a tree certificate.

The algorithm fails when Line 7 incorrectly concludes that C − A does not have a

tree certificate. This happens with probability at most (1 − p)θ , where p is a constant

success probability of MULTILINEAR DETECTION (Lemma 7.5). By assumption, Algo-

rithm 10 enters Line 5 no more than O(k) times. Let ck be this number. Then, the overall

failure probability f (θ, k) is: ∑ck−1
i=0 (1− (1− p)θ)i · (1− p)θ = (1− p)θ · 1−(1−(1−p)θ)ck

1−(1−(1−p)θ)
=

1− (1− (1− p)θ)ck. For a fixed success probability p′ of the algorithm, we can find a value

θ ∈ O(log k) such that f (θ, k) ≤ p′.

Finally, the expected running time of this algorithm is asymptotically bounded by the

running time of Line 7 as other operations can be done in O(km) time. From Lemma 7.5,

the total running time is O(kθ · 2km) = O(2kkm log k) = Õ(2kkm) with a constant success

probability.

Lemma 7.11 (LasVegasRecovery). Let C be a connected recoverable circuit of m edges with respect

to degree k and output r. Also assume that every tree certificate of C contains at mostO(k) addition
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Algorithm 11: LasVegasRecovery
Input: A recoverable circuit C with respect to k and output r.
Output: A tree certificate.

// Reversed traversal from the output node.

1 for v ∈ V(C) in topological ordering of the reverse graph of C do
2 if v ̸= r and N+(v) = ∅ then

// Remove unlinked nodes.

3 Let C ← C − v.
4 else if v is an addition gate then

// Perform binary search.

5 while deg−C (v) > 1 do
6 Let A, B be a balanced partition of the in-edges of v.

// Alternatively set A and B.
7 for X ∈ [A, B, A, B, . . .] do
8 Solve MULTILINEAR DETECTION with (C − X, k).
9 if C − X contains a tree certificate then

// Safe to remove X.

10 Let C ← C − X.
11 break
12 return C

nodes. There exists a Las Vegas algorithm that finds a tree certificate of C with an expected running

time of Õ(2kkm).

Proof. Consider Algorithm 11. This algorithm is identical to Algorithm 10 except for the

inner loop starting from Line 5. Now, since Line 8 is a one-sided error Monte Carlo

algorithm, if C −X contains a tree certificate, then there exists a tree certificate F̂ including

some edge uv ∈ A∪ B \X. The set X is safe to remove, and with the argument in the proof

of Lemma 7.10, the algorithm correctly outputs a tree certificate of C.

For the expected running time, note that by assumption, Algorithm 11 enters Line 5 no

more thanO(k) times. Again, the running time of the algorithm is asymptotically bounded

by the running time of Line 8.

The expected number of executions of Line 8 is O(k log n) because we perform binary

search on the O(n) in-edges of an addition gate v. We know that the “correct” edge exists

in either A or B, and the algorithm for MULTILINEAR DETECTION succeeds with a constant

probability p. We expect to see one success for every 2/p runs. From Lemma 7.5, the total

expected running time is Õ(k log n · 2
p · 2km) = Õ(2kkm).
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7.3.3 Certificate Flow

This content is not included in the preprint.

Certificates help construct a minimal circuit to reproduce a multilinear monomial. But

sometimes it is useful to track how a particular multilinear monomial is built. We therefore

define a certificate flow to materialize this idea. In this section, we consider arithmetic

circuits with scalar inputs, but any scalar input must represent a positive integer.

Let us recall µ(Y) := ∏y∈Y y, and by definition µ(∅) = 1. First, we show that the

polynomial of any certificate contains only one multilinear monomial.

Lemma 7.12. Let F̂ be a certificate for node v. Then, PF̂ [v](X) contains exactly one multilinear

monomial.

Proof. Suppose PF̂ [v](X) contains a multilinear monomial α1µ(X′) for some X′ ⊆ X and

α1 ∈ Z+. Since F̂ is minimal, the set of the variable nodes in F̂ must form X′. Assume

towards a contradiction that PF̂ [v](X) contains another multilinear monomial α2µ(X′′) for

some X′ ̸= X′′ ⊆ X and α2 ∈ Z+. This implies that X′′ is a proper subset of X′. Let x

be a variable in X′ \ X′′. Since α2µ(X′′) does not contain x, there exists an edge wu for an

addition gate u in an x-v path such that there are no paths from X′′ to v using wu. Then,

P(F̂−wu)[v](X) also contains α2µ(X′′), contradicting that F̂ is minimal.

The following is a straightforward consequence of Lemma 7.12.

Corollary 7.13. Let F̂ be a certificate for node v. If PF̂ [v](X) contains a constant term, then F̂

does not contain any variable nodes.

Before formalizing the certificate flow, we introduce several notations. Let L(X) be

the set of multilinear monomials of coefficient 1 over X, that is, L(X) := {µ(Y) | Y ⊆ X}.

We use the symbol ∏ in different contexts. For a collection C (a set, a vector, a tuple,

etc.) of polynomials, we write ∏ C for ∏c∈C c. For a set C of collections, we write ∏ C

for the Cartesian product of the sets in C. Thus, ∏ C is a set of tuples. We define Mon()

as a function that takes as input a polynomial and outputs the set of monomials without

coefficient. For example, Mon(2x2 + xy+ 3y+ 9) = {x2, xy, y, 1}. For an arithmetic circuit,

we say addition and multiplication gates except the output node are internal nodes.
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Given a certificate F̂ for node v and variables X, a certificate flow on F̂ is a map ϕ :

V(F̂ ) ∪ E(F̂ )→ 2L(X) satisfying the following conditions.

1. Sources: (1a) For every variable node x, ϕ(x) = {x}. (1b) For every scalar input c,

ϕ(c) = {1}. We call {1} the constant flow. Otherwise, we say a flow is non-constant.

2. Sink: (2) ϕ(v) = {µ(X)}.

3. Outgoing flow: For every node u ∈ V(F̂ ) \ {v}, let N+
F̂ (u) = z1, . . . , zℓ. (3a) If ϕ(u) =

{1}, then ϕ(uzi) = {1} for all 1 ≤ i ≤ ℓ. (3b) Otherwise, (ϕ(uz1), . . . , ϕ(uzℓ)) is a

partition of ϕ(u).

4. Incoming flow: For every node u except input nodes, let N−F̂ (u) = y1, . . . , yℓ. (4a)

If u is an addition gate, then (ϕ(y1u), . . . , ϕ(yℓu)) is a partition of ϕ(u). If u is a

multiplication gate, let w1, . . . , wk be the in-neighbors of u such that ϕ(wiu) ̸= {1}.

(4b) If no such wi exists, then ϕ(u) = {1}. (4c) Otherwise, every ϕ(wiu) has the same

size d, and there exists qij ∈ L(X) for 1 ≤ i ≤ k, 1 ≤ j ≤ d such that ϕ(wiu) =

{qij : 1 ≤ j ≤ d} and ϕ(u) = {∏k
i=1 qij : 1 ≤ j ≤ d}.

Intuitively, this can be seen as a “flow” from sources to the sink (v), where the amount

of a flow is a set of multilinear monomials. We will later show that the “flow amount”

ϕ(u) = {q1, q2, . . .} ⊆ L(X) at node u ∈ V(F̂ ) means that PF̂ [u](X) contains a linear

combination of {q1, q2, . . .}, or ϕ(u) ⊆ Mon(PF̂ [u](X)). For a node or an edge z, we call the

size of ϕ(z) the width of the flow. We also say a certificate flow has width k if the width of

every flow amount is at most k. Figure 7.1 illustrates an example of a certificate flow.

We show basic properties of a certificate flow. For the rest of this section, we assume

that F̂ is a certificate for node v, and ϕ is a certificate flow for F̂ . We first observe that the

set of variables is “conserved” at any node.

Observation 7.14. For every internal node u, we have ∏y∈N−F̂ (u)
∏ ϕ(yu) = ∏z∈N+

F̂ (u)
∏ ϕ(uz).

Proof. Let y1, y2, . . . be the in-neighbors of u, and let z1, z2, . . . be the out-neighbors of u.

First, we will show that ∏ ϕ(u) = ∏z∈N+
F̂ (u)

∏ ϕ(uz). If ϕ(u) is the constant flow, i.e.,

ϕ(u) = {1}, then from condition (3a), ϕ(uz) = {1} for each z ∈ N+
F̂ (u). We have

∏z∈N+
F̂ (u)

∏ ϕ(uz) = 1 = ∏ ϕ(u). Otherwise, from (3b), (ϕ(uz1), ϕ(uz2), . . .) is a parti-
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tion of ϕ(u), and thus ∏ ϕ(u) = ∏(ϕ(uz1), ϕ(uz2), . . .) = (∏ ϕ(uz1)) · (∏ ϕ(uz2)) · . . . =

∏z∈N+
F̂ (u)

∏ ϕ(uz).

It remains to show that ∏ ϕ(u) = ∏y∈N−F̂ (u)
∏ ϕ(yu). If u is an addition gate, then from

(4a) (ϕ(y1u), ϕ(y2u), . . .) is a partition of ϕ(u). Hence, ∏ ϕ(u) = ∏(ϕ(y1u), ϕ(y2u), . . .) =

(∏ ϕ(y1u)) · (∏ ϕ(y2u)) · . . . = ∏y∈N−F̂ (u)
∏ ϕ(yu).

If u is a multiplication gate, let w1, w2, . . . be the in-neighbors of u such that ϕ(wiu) ̸=

{1}. If no such wi exists, then ϕ(yu) = {1} for each y ∈ N−F̂ (u). In this case, we have

∏y∈N−F̂ (u)
∏ ϕ(yu) = ∏y∈N−F̂ (u)

1 = 1, and from (4b) ϕ(u) = 1. Otherwise, from (4c)

we have ϕ(u) = {∏k
i=1 qij : 1 ≤ j ≤ d} for some qij. Then, ∏ ϕ(u) = ∏d

j=1 ∏k
i=1 qij =

∏k
i=1 ∏d

j=1 qij = ∏k
i=1 ∏ ϕ(wiu) = ∏y∈N−F̂ (u)

∏ ϕ(yu).

For the sources and the sink, the following holds.

Observation 7.15. We have ∏x∈X ∏ ϕ(x) = ∏ ϕ(v).

Proof. From condition (1a), we have ϕ(x) = {x} for each x ∈ X. From condition (2), we

have ϕ(v) = {µ(X)}. Hence, ∏x∈X ∏ ϕ(x) = ∏x∈X x = µ(X) = ∏ ϕ(v).

These observations give us important insights; a certificate flow can be seen as a multi-

commodity flow, where each commodity represents one variable. Specifically, each vari-

able starts from the corresponding variable node and travels to the output node v. When

the variable “enters” an internal node (whether an addition gate or a multiplication gate),

it “chooses” one of the outgoing edges. Because of the preservation of variables (Obser-

vation 7.14), the same variable cannot use multiple out-edges. Furthermore, since F̂ is

acyclic, the same variable cannot enter the same node twice. Hence, a variable x ∈ X

appears only along a certain x-v path. The fact that the incoming flow never shares the

same variable ensures that the image of ϕ is indeed closed in 2L(X).

Now, we relate certificates to the certificate flow. First, we show that the flow amount

at a node encodes information of the corresponding polynomial.

Proposition 7.16. Given a certificate F̂ for node v on variables X and a certificate flow ϕ for F̂ ,

for every node u ∈ V(F̂ ), we have ϕ(u) ⊆ Mon(PF̂ [u](X)).

Proof. We prove by induction on the number n of nodes in a sub-circuit F̂ [u] of F̂ . For the
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base case with n = 1, the only node u is either a variable node or a scalar input. If u is a

variable node for x, then ϕ(u) = {x}. We clearly have Mon(PF̂ [u](X)) = Mon(x) = {x} ⊇

ϕ(u). If u is a scalar node, then ϕ(u) = {1} and Mon(PF̂ [u](X)) = {1} ⊇ ϕ(u).

For the inductive step, suppose the statement holds up to n− 1. Suppose u is an addi-

tion gate. By the condition of a certificate flow, ϕ(u) =
⋃

y∈N−F̂ (u)
ϕ(yu). From the inductive

hypothesis, ϕ(yu) ⊆ Mon(PF̂ [y](X)) for each y ∈ N−F̂ (u). Then, we have Mon(PF̂ [u](X)) =

Mon(∑y∈N−F̂ (u)
PF̂ [y](X)) =

⋃
y∈N−F̂ (u)

Mon(PF̂ [y](X)) ⊇ ⋃
y∈N−F̂ (u)

ϕ(yu) = ϕ(u).

Now, suppose u is a multiplication node. First, we observe that ϕ(u) ⊆ {∏ q : q ∈

∏y∈N−F̂ (u)
ϕ(yu)}. Recall that the first ∏ denotes the product of tuple elements, and the

second denotes the Cartesian product of sets. This holds whether ϕ(u) is the constant flow

or not. Second, by definition Mon(PF̂ [u](X)) = Mon(∏y∈N−F̂ (u)
PF̂ [y](X)) = {∏ q : q ∈

∏y∈N−F̂ (u)
Mon(PF̂ [y](X))}. Third, from the inductive hypothesis, for each y ∈ N−F̂ (u)

we have ϕ(yu) ⊆ Mon(PF̂ [y](X)). Putting these together, we have ϕ(u) ⊆ {∏ q : q ∈

∏y∈N−F̂ (u)
ϕ(yu)} ⊆ {∏ q : q ∈ ∏y∈N−F̂ (u)

Mon(PF̂ [y](X))} = Mon(PF̂ [u](X)).

Using this result, we can obtain several neat observations.

Observation 7.17. Every flow amount in a certificate flow is nonempty.

Proof. Consider from the sink, which has a nonempty flow by definition. If a node u is

a multiplication gate, then its incoming flow is either the constant flow or has the same

size as ϕ(u). Hence, every incoming flow is nonempty. If u is an addition gate, suppose

there exists an in-neighbor w of u such that ϕ(wu) = ∅. Then, from Proposition 7.16,

P(F̂−wu)[v](X) also contains a multilinear monomial, a contradiction to the minimality of F̂ .

Again, every incoming flow is nonempty. This then implies that all nodes and edges have

a nonempty flow.

The following observations characterize the scalar flow at addition gates.

Observation 7.18. Let u be an addition gate such that ϕ(u) = {1}. Then, u has only one

in-neighbor.

Proof. First, u must have at least one in-neighbor to be valid. Suppose u has at least two

in-neighbors y1, y2. By construction, (ϕ(y1u), ϕ(y2u), . . .) is a partition of ϕ(u). But since
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ϕ(u) contains only one element, either ϕ(y1u) or ϕ(y2u) must be empty, contradicting

Observation 7.17.

Observation 7.19. Let u be an addition gate with an in-neighbor w such that ϕ(wu) = {1},

Then, w is the only in-neighbor of u and hence ϕ(u) = {1}.

Proof. From Lemma 7.12, PF̂ [v](X) has exactly one multilinear monomial. Since F̂ is mini-

mal, the multilinear monomial should appear in (PF̂ [u](X))d · q for some d ∈ Z+ and some

multilinear monomial q.

Assume towards a contradiction that u has in-neighbors other than w. We consider

removing the other in-edges of u from F̂ . Define F̂ ′ := F̂ −
{

yu : y ∈ N−F̂ (u) \ {w}
}

.

Since ϕ(wu) = {1}, ϕ(u) contains 1 as an element. Then, from Proposition 7.16, PF̂ ′[u](X)

contains some constant c. Now, cdq is a multilinear monomial that should appear in

PF̂ ′[v](X). Thus, F̂ is not minimal, a contradiction. Since w is the only in-neighbor of u,

ϕ(u) = ϕ(wu) = {1}.

Finally, we prove the existence of a certificate flow for any certificate. For simplicity,

we first show how to construct a certificate flow for certificates without scalar inputs.

Lemma 7.20. There exists a certificate flow ϕ for any certificate F̂ without scalar inputs.

Proof. Consider constructing a certificate flow ϕ in the reversed topological ordering of F̂ .

We maintain the following properties during this process.

• (P1) For every entity e ∈ V(F̂ ) ∪ E(F̂ ), ϕ(e) is a nonempty set of multilinear mono-

mials without 1, consisting of distinct variables. For example, ∅, {1, x} and {xy, yz}

are disallowed.

• (P2) For every processed node u ∈ V(F̂ ) that is not an input node, with processed

in-neighbors, we have ∏ ϕ(u) = ∏y∈N−F̂ (u)
∏ ϕ(yu).

• (P3) For every processed node u ∈ V(F̂ ) that is not the output node, we have

∏ ϕ(u) = ∏z∈N+
F̂ (u)

∏ ϕ(uz).

• (P4) For every processed node u ∈ V(F̂ ), ϕ(u) ⊆ Mon(PF̂ [u](X)).

• (P5) For every processed edge wu ∈ E(F̂ ), ϕ(wu) ⊆ Mon(PF̂ [w](X)).
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• (P6) For every processed node u with processed in-edges, ϕ(u) and ϕ(yu) for each

y ∈ N−F̂ (u) satisfy Condition (4a) or (4c) in the definition of a certificate flow.

Let us consider the base case. For the output node v, we set ϕ(v) = {µ(X)}, satisfying

(P1) as X ̸= ∅. Since PF̂ [v](X) contains a multilinear monomial αµ(X) for some α ∈ Z+,

we have µ(X) ∈ Mon(PF̂ [v](X)). Hence, ϕ(v) ⊆ Mon(PF̂ [v](X)), which satisfies (P4).

Next, we argue processing in-edges. Once a node u has been processed, i.e., ϕ(u) is set,

we examine the in-edges y1, . . . , yℓ of u. We will set ϕ(yiu) for each 1 ≤ i ≤ ℓ and prove

Properties (P1), (P2), and (P5) hold.

Suppose u is an addition gate. Then, from PF̂ [u](X) = ∑y∈N−F̂ (u)
PF̂ [y](X), every mono-

mial in PF̂ [u](X) must come from at least one in-neighbor. Formally, for all monomials

q ∈ Mon(PF̂ [u](X)), there exists an in-neighbor wq ∈ N−F̂ (u) such that q ∈ Mon(PF̂ [y](X)).

Now, for each q ∈ ϕ(u), add q to ϕ(wqu). Such an assignment exists because of Prop-

erty (P4) ϕ(u) ⊆ Mon(PF̂ [u](X)). This implies that ϕ(yu) ⊆ Mon(PF̂ [y](X)) for each

y ∈ N−F̂ (u), satisfying (P5) for yu. Notice that (ϕ(y1u), . . . , ϕ(yℓu)) is a partition of ϕ(u),

thus satisfying (P2) and (P6). From (P1) for u, ϕ(yiu) contains distinct variables. Also,

ϕ(yiu) cannot be empty because if so, P(F̂−yiu)[v]
(X) also contains a multilinear monomial,

violating the minimality of F̂ . Hence, each edge yiu satisfies (P1).

Suppose u is a multiplication gate. Since we have PF̂ [u](X) = ∏y∈N−F̂ (u)
PF̂ [y](X), every

monomial in PF̂ [u](X) is made up of the product of the monomials in PF̂ [y](X) for each in-

neighbor y ∈ N−F̂ (u). Formally, Mon(PF̂ [u](X)) = {∏ q : q ∈ ∏y∈N−F̂ (u)
Mon(PF̂ [y](X))}.

Then for all monomials q ∈ Mon(PF̂ [u](X)), there must exist non-constant monomials

p1(q), . . . , pℓ(q) such that ∏ℓ
i=1 pi(q) = q and pi(q) ∈ Mon(PF̂ [yi ]

(X)) for each 1 ≤ i ≤ ℓ.

This is due to (P4) for u and the fact that PF̂ [yi ]
(X) does not contain any constants.

Let ϕ(u) = (q1, . . . , qd). We set ϕ(yiu) = {pi(q1), . . . , pi(qd)} for each 1 ≤ i ≤ ℓ. From

(P1) for u, all variables in ϕ(yiu) are distinct. Furthermore, since each pi(q) partitions the

variables in q, (P2) is also satisfied. Also, by construction pi(qj) ∈ Mon(PF̂ [yi ]
(X)) for each

1 ≤ j ≤ d, and hence ϕ(yiu) ⊆ Mon(PF̂ [yi ]
(X)), satisfying (P5). Lastly, |ϕ(u)| = |ϕ(yiu)| =

d for each i, and {∏ℓ
i=1 pi(qj) : 1 ≤ j ≤ d} = {qj : 1 ≤ j ≤ d} = ϕ(u), which satisfies (P6).

Next, we consider processing nodes. When we process a node u, all the out-edges

z1, z2, . . . should have been processed. We set ϕ(u) =
⋃

z∈N+
F̂ (u)

ϕ(uz). It is clear to see

that ϕ(u) satisfies (P3) by construction. From (P5) for all out-edges z ∈ N+
F̂ (u), we have
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ϕ(uz) ⊆ Mon(PF̂ [u](X)), and (P4) ϕ(u) =
⋃

z∈N+
F̂ (u)

ϕ(uz) ⊆ Mon(PF̂ [u](X)) is also sat-

isfied. So far, we have maintained (P2) and (P3), so we have for all processed nodes

∏y∈N−F̂ (w) ∏ ϕ(yw) = ∏z∈N+
F̂ (w) ∏ ϕ(wz). Hence, the variables in {ϕ(uz) : z ∈ N+

F̂ (u)}

are all distinct. Since ϕ(u) is clearly nonempty, we obtain Property (P1).

Finally, we show the soundness of a flow. The previous arguments show that we can

construct a flow ϕ with Properties (P1)-(P7). We verify that ϕ satisfies the conditions of a

certificate flow. Conditions (1b) and (4b) are irrelevant here as F̂ does not contain scalar

inputs.

Condition (1a): From (P4), for every variable node x, ϕ(x) ⊆ Mon(PF̂ [u](X)) = {x}.

From (P1), we have ϕ(x) = {x}. Condition (2): By construction, ϕ(v) = {µ(X)}. Condi-

tion (3b): We know that ϕ(u) =
⋃

z∈N+
F̂ (u)

ϕ(uz), and 1 ̸∈ ϕ(u). For N+
F̂ = {z1, z2, . . .}, the

variables in ϕ(uz1), ϕ(uz2), . . . are all distinct, and thus (ϕ(uz1), ϕ(uz2), . . .) is a partition of

ϕ(u). Conditions (4a) and (4c) are directly implied from (P6). Hence, we have constructed

a certificate flow ϕ for F̂ .

Constructing the scalar part of a certificate flow is straightforward.

Lemma 7.21. There exists a certificate flow ϕ for any certificate F̂ .

Proof. If PF̂ [v](X) contains a constant term, then from Corollary 7.13 all the inputs are scalar

inputs. We set ϕ(e) = {1} for all e ∈ V(F̂ ) ∪ E(F̂ ).

Otherwise, let S ⊆ V(F̂ ) be the set of nodes unreachable from any variable nodes. We

claim F̂ ′ := F̂ − S is a certificate. Since PF̂ [v](X) contains a multilinear monomial with

nonempty set of variables, PF̂ ′[v](X) should also contain a multilinear monomial. And F̂ ′

should be minimal because otherwise F̂ is not minimal.

We construct a certificate flow ϕ′ for F̂ ′ using Lemma 7.20. Then extend ϕ′ to obtain ϕ

by setting ϕ(e) = {1} for all e ∈ S ∪ (E(F̂ ) \ E(F̂ ′)).

We claim that ϕ is a certificate flow for F̂ . Condition (1a): Satisfied by ϕ′. Condition

(1b): By construction ϕ(c) = {1} for each scalar input c. Condition (2): If X = ∅ (i.e.,

PF̂ [v](X) contains a constant term), then ϕ(v) = {ϕ(∅)} = {1}. Otherwise, the condition

is satisfied by ϕ′. Condition (3a): For every node u ∈ V(F̂ ′), ϕ(u) ̸= {1}. For a node u ∈ S,

we have ϕ(u) = {1} and ϕ(uz) = {1} for all z ∈ N+
F̂ (u). Condition (3b): Satisfied by ϕ′.
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Condition (4a): Let u be an addition gate. From the minimality of a certificate, if

u ∈ V(F̂ ′), then u does not have an in-neighbor in S. The condition is satisfied by ϕ′.

Otherwise, u ∈ S, and it should have exactly one in-neighbor w because having more than

one scalar input is redundant. (ϕ(wu)) = ({1}) is a partition of ϕ(u) = {1}, as desired.

Condition (4b): This case happens only with a multiplication gate u in S. ϕ(u) = {1} by

construction. Condition (4c): Now, this case is only with a multiplication gate u in V(F̂ ′)

and satisfied by ϕ′ as for any y ∈ N−F̂ (u)∩ S, ϕ(yu) = {1}. All conditions are satisfied.

This lemma with Observation 7.17 directly implies Proposition 7.9, which we proved

differently in Section 7.3.1. If a variable node has more than one out-neighbor, at least one

flow amount must be empty to preserve the variable set, so this cannot happen.

One may ask, “given a certificate, can we find a certificate flow efficiently?” We answer

this question affirmatively. First, we show that if we know the width of each flow amount,

constructing a certificate flow is trivial. For simplicity, we also assume certificates do not

contain scalar inputs as we can augment them later efficiently. We define the flow profile

π : E(F̂ ) → Z≥0 as a mapping intended to represent |ϕ(e)| for every edge e ∈ E(F̂ ). π is

a flow profile if it satisfies the following conditions.

• (W1) For each variable node x ∈ X, π(xz) = 1 for all z ∈ N+
F̂ (x).

• (W2) For each internal addition gate u ∈ V(F̂ ) \ {v}, we have ∑y∈N−F̂ (u)
π(yu) =

∑z∈N+
F̂ (u)

π(uz).

• (W3) For each internal multiplication gate u ∈ V(F̂ ) \ {v}, π(yu) = ∑z∈N+
F̂ (u)

π(uz)

for all y ∈ N−F̂ (x).

• (W4) For the output node v, π(yv) = 1 for all y ∈ N−F̂ (x).

Lemma 7.22. Given a certificate F̂ for node v on variables X without scalar inputs. Let π be a

flow profile on F̂ . Then, there exists an O(|X| · |E(F̂ )|)-time algorithm to construct a certificate

flow ϕ for F̂ such that |ϕ(e)| = π(e) for all e ∈ E(F̂ ).

Proof. Consider the following algorithm. We process all nodes and their out-neighbors in

the topological ordering of F̂ as follows.

• For every variable node x, set ϕ(x) = {x}.
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• For an addition gate u, set ϕ(u) =
⋃

y∈N−F̂ (u)
⋃

q∈ϕ(yu) q.

• For a multiplication gate u, let y1, . . . , yℓ be the in-neighbors of u. By assumptions,

we have ϕ(yiu) ̸= {1} for each i, and we know that from Condition (W3) there exists

d ∈ Z≥0 such that π(yiu) = |ϕ(yiu)| = d for each 1 ≤ i ≤ ℓ. For each i, find

qij ∈ L(X) such that ϕ(yiu) = {qij : 1 ≤ j ≤ d} with some arbitrary ordering of

ϕ(yiu). Then, set ϕ(u) = {∏ℓ
i=1 qij : 1 ≤ j ≤ d}.

• For any node u except the output node v, let z1, . . . , zℓ be the out-neighbors of u. Find

an arbitrary partition (Q1, . . . , Qℓ) of ϕ(u) such that π(uzi) = |Qi| for all 1 ≤ i ≤ ℓ.

Set ϕ(uzi) = Qi for each i.

Notice that this construction with Conditions (W1)-(W3) satisfies Conditions (1a), (1b),

(3a), (3b), (4b), and (4c) by default ((1b) and (4b) are not relevant as F̂ does not contain

scalar inputs). We will show the remaining Conditions (2) and (4a) also hold. For Con-

dition (4a), suppose towards a contradiction that there exists an addition gate u ∈ V(F̂ )

with in-neighbors y1, . . . , yℓ such that (ϕ(y1u), . . . , ϕ(yℓu)) is not a partition of ϕ(u). Since⋃ℓ
i=1

⋃
q∈ϕ(yiu) q = ϕ(u), there must be duplicates in {q : 1 ≤ i ≤ ℓ, q ∈ ϕ(yiu)}. However,

for each internal node, each variable flows to exactly one out-neighbor. And more than

one copy of the same variable cannot enter the same node as F̂ is acyclic, a contradiction.

Hence, for each node, the set of variables is conserved as in Observation 7.14. Now,

we know that ∏ ϕ(v) = µ(X). If v is an addition gate, then it must have only one in-

neighbor due to the minimality of F̂ . From (W4), regardless of the type of node v, we have

|ϕ(v)| = 1, leading to ϕ(v) = {µ(X)}, satisfying Condition (2).

The algorithm traverses all nodes in F̂ , maintaining ϕ that requires O(|X| · (|V(F̂ )|+

|E(F̂ )|)) space. The total running time is simplified to O(|X| · |E(F̂ |)).

One way to find a flow width we ∈ Z+ for all e ∈ E(F̂ ) is solving a system of linear

Diophantine equations.

Corollary 7.23. Given a certificate F̂ without scalar inputs. There exists a polynomial-time

algorithm to find a flow width satisfying the flow width condition.



203

Proof. We solve a system of linear Diophantine equations encoding the flow width condi-

tion (W1)-(W4). Let V+ and V× be the set of addition gates and the set of multiplication

gates, respectively.

Note that from (W1), we may treat π(xz) as a constant for all x ∈ X for all z ∈ N+
F̂ (x).

From Proposition 7.9, there are |X| such edges. Then, the system of equations for (W2)-

(W4) consists of (|E(F̂ )| − |X|) variables π(e) ∈ Z+ and |V+|+ ∑u∈V× deg−F̂ (u) ≤ |E(F̂ )|

constraints, whose coefficients are ±1. Also, we have π(e) ≤ |X| due to Observation 7.14.

It is known that there is a polynomial-time algorithm to find a positive-integer solution

to linear Diophantine equations [13]. Specifically, for a system of equations Ax = b for

A ∈ Zm×n and b ∈ Zm, we can find in polynomial time the Smith form D ∈ Zm×n such

that LAR = D for unimodular matrices7 L ∈ Zm×m, R ∈ Zn×n. Then, we find y ∈ Zn such

that Dy = Lb. Since D is a diagonal matrix, y can be found in polynomial time. Lastly, we

set x = Ry. It is clear to see that Ax = ARy = L−1LARy = L−1Dy = L−1Lb = b.

In our case, if x has a unique solution, then it must be a non-negative integer solution.

Otherwise, there are infinitely many solutions, and y contains at least one free variable.

We know that there exists a solution x whose elements are between 0 and |X|, inclusive,

and we can determine those values sequentially in polynomial time.

So far, we have not found a certificate having different flow widths, thus leaving here

the following question.

Open Question 7.24. Given a certificate F̂ without scalar inputs. Is there always a unique flow

profile?

If the flow profile is always unique to the certificate, then we may just solve a system

of linear equations to obtain the flow profile.

The following lemma gives an algorithm to find a certificate flow for a given certificate.

Lemma 7.25. There exists a polynomial-time algorithm to construct a certificate flow ϕ for a given

certificate F̂ .

Proof. Consider the following algorithm. First, we construct F̂ ′ by removing the constant

7A unimodular matrix is a square matrix with determinant ±1.
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flow. Let S ⊆ V(F̂ ) be the set of nodes unreachable from any variable nodes, and let

F̂ ′ := F̂ − S. If F̂ ′ is empty, then output ϕ(e) = {1} for all e ∈ V(F̂ ) ∪ E(F̂ ). This is

correct because in that case, there are no variable nodes in F̂ .

Otherwise, find the flow profile π for F̂ ′ by solving a system of linear Diophantine

equations (Corollary 7.23). If F̂ ′ is a certificate for v, then there exists a certificate flow ϕ

for F̂ ′ by Lemma 7.20, and ϕ should satisfy |ϕ(e)| = π(e) for all e ∈ E(F̂ ′). Once we

find the variables π(e) for all e ∈ E(F̂ ′), we can construct ϕ in polynomial time from

Lemma 7.22. Finally, we augment ϕ by setting ϕ(e) = {1} for e ∈ S ∪ (E(F̂ ) \ E(F̂ ′)) as

proven by Lemma 7.21.

The correctness of this algorithm is due to Lemmas 7.20 to 7.22 and corollary 7.23. The

overall running time is polynomial in |E(F̂ )|.

In the beginning of Section 7.3, we introduced the notion of the tree certificate. The

following lemma shows a relation between the width of a certificate flow and a tree certifi-

cate.

Lemma 7.26. Let F̂ be a certificate without scalar inputs. A certificate flow ϕ has width 1 if and

only if F̂ is a tree certificate.

Proof. (⇒) If ϕ has width 1, then every node has at most one out-neighbor. The underlying

graph of F̂ has to be a tree. Hence, F̂ is a tree certificate.

(⇐) If F̂ is a tree certificate, then from Proposition 7.6, every addition gate in F̂ has

in-degree 1. Then, any certificate flow ϕ for F̂ has width 1.

We have shown that every certificate admits a certificate flow, but the converse is not

true; a certificate does not guarantee the circuit being a certificate. Given a circuit and a

corresponding certificate flow, when can we conclude that F is a certificate? One such

characterization is the empty flow.

Observation 7.27. Let F be a scalar-free circuit with an output node v. If there exists a certificate

flow ϕ on F for v containing the empty flow at a node or an edge, then F is not a certificate.

Proof. If a flow amount at a node is empty, then its incident edges also must be the empty

flow. Hence, there exists an edge e such that ϕ(e) = ∅. It is clear to see that F − e admits
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the same flow without e, and then PF [v](X) contains a multilinear monomial. F is not a

certificate as it is not minimal.

Another characterization is the existence of a bad weak cycle, which we define here. A

bad weak cycle C is a weak cycle8 in F such that all the nodes in C except the sources of C

(nodes with no incoming edges in the DAG C) are addition gates. Now, we have the

following result.

Observation 7.28. If a circuit F contains a bad weak cycle, then F is not a certificate.

Proof. Let C be a bad weak cycle inF with nodes u1, . . . , uℓ. First, observe that if C includes

any variable nodes or the output node, thenF is not a certificate. By the property of cycles,

every node in C is incident to at least 2 edges. From Proposition 7.9, any variable node in

a certificate cannot have more than one out-neighbor. Also, if C includes the output node

v, then v must be an addition gate due to the definition of the bad weak cycle. A certificate

for v should not have more than one in-neighbors.

Now, suppose towards a contradiction that F is a certificate. Then, there exists a flow

profile π : E → Z≥0 representing a certificate flow for F . Without loss of generality, let

e1 = u1u2 such that d := π(e1) is minimized, and set the parity p1 = 1. For each 2 ≤ i ≤ ℓ,

if uiui+1 ∈ E(F ), then let ei = uiui+1 and pi = 1. Otherwise, i.e., ui+1ui ∈ E(F ), let

ei = ui+1ui and pi = −1. For brevity, we set uℓ+1 = u1, e0 = eℓ, and p0 = pℓ.

We create a new flow profile π′ by setting π′(ei) = π(ei)− pi · d. We claim that π′ is

a valid flow profile. For 1 ≤ i ≤ ℓ such that pi−1 = pi, we know that ui is an addition

gate, and then π′(ei−1) − π(ei−1) = π′(ei) − π(ei) = ±d; both incoming flow width

and outgoing flow width either decrease or increase by d. So, the condition at ui holds.

Otherwise, pi−1 ̸= pi, and we have π′(ei−1) + π′(ei) = π(ei−1) + π(ei). If ui is the tail of

ei−1 and ei, then ui is an addition gate, and the changes in incoming flow widths cancel

out. If ui is the head of ei−1 and ei, then the changes in outgoing flow widths also cancel

out.

Since π′(e1) = π(d1)− d = 0, there is a flow amount with the empty flow at edge e1.

By Observation 7.27, F is not a certificate, a contradiction.

8A cycle if we ignore the directionality of the edges.
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Remark 7.29. We can extend this result to the case where a weak cycle includes multiplication

gates if they have the same parity.

Open Question 7.30. Let F be a scalar-free circuit with an output node v. Identify all structures

(or all obstructions) of F such that if there exists a certificate flow on F for v with no empty flow,

then F is necessarily a certificate.

To conclude this line of work, we propose another view of certificates. Our initial

thought was to identify whether a circuit F is a certificate for node v ∈ V(F ) just by

looking at the polynomial PF [v](X). Unfortunately, this is impossible. Consider a polyno-

mial (x + y)2. If the output is a multiplication gate merging two (x + y) instances, then

the circuit may be a certificate. However, the same polynomial can be built by gluing the

terms x2, y2, 2xy by an addition gate. In this case, an edge from x2, for example, to the

addition gate is redundant, and the circuit cannot be a certificate.

The following is one way to define a class of functions to which polynomials evaluated

on a certificate belong.

Definition 7.31. For a set of variables X′ ⊆ X, a function f (X) belongs to the class Cert[X′]

of functions defined recursively as follows.

• (O1) If f (X) ∈ Z+, then f ∈ Cert[∅].

• (O2) If f (X) = x for some x ∈ X, then f ∈ Cert[{x}].

• For some functions f1 ∈ Cert[Y1] and f2 ∈ Cert[Y2] for Y1, Y2 ⊆ X:

– (O3) If f (X) = f1(X) + f2(X), then f ∈ Cert[Y1] and f ∈ Cert[Y2].

– (O4) If f (X) = f1(X) · f2(X) and Y1 ∩Y2 = ∅, then f ∈ Cert[Y1 ∪Y2].

Observation 7.32. Let f ∈ Cert[Y] be a function for some Y ⊆ X. Then, µ(Y) ∈ Mon( f (X)).

Proof. We prove by induction on the minimum number of operations to construct f . For

the base case, with (O1) we have Y = ∅. Clearly, µ(Y) = 1 ∈ Mon( f (X)) = {1}, and there

is no Y′ ⊂ Y. With (O2), we have Y = {x}. µ(Y) = x ∈ Mon( f (X)) = {x}. If Y′ ⊂ Y, then

Y′ = ∅. We see µ(Y′) = 1 ̸∈ Mon( f (X)).
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For the inductive step, suppose f was constructed by (O3) f (X) = f1(X) + f2(X) for

some f1 ∈ Cert[Y1], f2 ∈ Cert[Y2]. Without loss of generality, we may assume Y = Y1.

From the inductive hypothesis, we have µ(Y1) ∈ Mon( f1(X)). Hence, µ(Y) = µ(Y1) ∈

Mon( f1(X)) ⊆ Mon( f (X)).

Lastly, suppose f was constructed by (O4) f (X) = f1(X) · f2(X) for some f1 ∈ Cert[Y1],

f2 ∈ Cert[Y2] such that (Y1, Y2) is a partition of Y. From the inductive hypothesis, we have

µ(Y1) ∈ Mon( f1(X)) and µ(Y2) ∈ Mon( f2(X)). We know that Mon( f (X)) = {q1q2 | q1 ∈

Mon( f1(X)), q2 ∈ Mon( f2(X))}, and thus µ(Y1) · µ(Y2) ∈ Mon( f (X)). Since Y1 ∩ Y2 = ∅,

µ(Y1) · µ(Y2) = µ(Y1 ∪Y2) = µ(Y) ∈ Mon( f (X)).

Lemma 7.33. Let F̂ be a certificate for node v on variables X. Then, PF̂ [v](X) is in Cert[X].

Proof. First, observe that there exists an “equivalent” certificate F̂ ′ for v such that

PF̂ [v](X) = PF̂ ′[v](X) and every node in F̂ ′ has at most 2 in-neighbors. This can be con-

structed by adding extra addition and multiplication gates (e.g., a + b + c can be expressed

as a′ + c with a new addition gate a′ = a + b).

Let ϕ be a certificate flow for F̂ ′. We show that for every node u ∈ V(F̂ ′) and for every

multilinear monomial q ∈ ϕ(u), we have PF̂ ′[u](X) ∈ Cert[µ−1(q)]. We prove by induction

on the number n of the nodes in F̂ ′[u] for a node u. For the base case with n = 1, if u is

a scalar input, then PF̂ ′[u](X) ∈ Z+, and ϕ(u) = {1}. From (O1), PF̂ ′[u](X) ∈ Cert[∅] =

Cert[µ−1(1)]. If u is a variable node for x ∈ X, then PF̂ ′[u](X) = x, and ϕ(u) = {x}. From

(O2), PF̂ ′[u](X) ∈ Cert[{x}] = Cert[µ−1(x)].

For the inductive step, first consider the case where u has only one in-neighbor y. Then,

PF̂ ′[u](X) = PF̂ ′[y](X) and ϕ(u) ⊆ ϕ(y), and from the inductive hypothesis, for all q ∈ ϕ(y),

PF̂ ′[y](X) ∈ Cert[µ−1(q)]. Clearly, for all q ∈ ϕ(u), we have PF̂ ′[u](X) ∈ Cert[µ−1(q)].

Now, consider u has two in-neighbors y1 and y2. Suppose u is an addition gate. Then,

PF̂ ′[u](X) = PF̂ ′[y1]
(X) + PF̂ ′[y2]

(X). Let q ∈ ϕ(u). We know that ϕ(u) = ϕ(y1u) ∪ ϕ(y2u).

Without loss of generality, we may assume q ∈ ϕ(y1u). Then, q ∈ ϕ(y1) by construction.

Similarly, since ϕ(y2u) is nonempty, there must exist q′ ∈ ϕ(y2u) ⊆ ϕ(y2). From the

inductive hypothesis, we have PF̂ ′[y1]
(X) ∈ Cert[µ−1(q)] and PF̂ ′[y2]

(X) ∈ Cert[µ−1(q′)].

From (O3), PF̂ ′[u](X) ∈ Cert[µ−1(q)].

Next, suppose u is a multiplication gate. Then, PF̂ ′[u](X) = PF̂ ′[y1]
(X) · PF̂ ′[y2]

(X). Let
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q ∈ ϕ(u). We know that there exist multilinear monomials q1 and q2 such that q = q1 · q2,

q1 ∈ ϕ(y1u) ⊆ ϕ(y1), and q2 ∈ ϕ(y2u) ⊆ ϕ(y2). From the inductive hypothesis, we have

PF̂ ′[y1]
(X) ∈ Cert[µ−1(q1)] and PF̂ ′[y2]

(X) ∈ Cert[µ−1(q2)]. Notice that µ−1(q1) ∩ µ−1(q2) =

∅. From (O4), PF̂ ′[u](X) ∈ Cert[µ−1(q1) ∪ µ−1(q2)] = Cert[µ−1(q1 · q2)] = Cert[µ−1(q)].

7.4 Algorithm for GRAPH INSPECTION

The following describes a high-level algorithm ALG-IPA (ALGebraic Inspection Plan-

ning Algorithm) for GRAPH INSPECTION. There are three key subroutines: (1) circuit

construction, (2) search, and (3) solution recovery. We designed and engineered several

approaches to each, described in Sections 7.3, 7.5, and 7.6. This algorithm requires an

input graph to be complete and metric and its edge weights to be integral.

• Algorithm ALG-IPA:

Input: A complete metric graph G = (V, E), a color set C, an edge-weight function w : E→

Z≥0, a vertex-coloring function χ : V → 2C , a vertex s ∈ V such that χ(s) = ∅, and a

failure count threshold θ ∈N.

Output: A minimum-weight closed walk in G, starting at s and collecting at least t colors.

(1) Finding bounds. Using the algorithms from [14], find lower (ℓlo) and upper bounds

(ℓhi) for the solution weight. If the lower bound is fractional, then round it up to the

nearest integer.

(2) Search for the optimal weight. Find the minimum weight ℓ̃ such that there exists a

closed walk from s with weight ℓ̃, collecting at least t colors. We run the following

steps iteratively.

(a) Construction of an arithmetic circuit. As part of the search, construct an arithmetic

circuit for a target weight ℓ (ℓlo ≤ ℓ ≤ ℓhi).

(b) Evaluation of the arithmetic circuit. Solve MULTILINEAR DETECTION for the con-

structed arithmetic circuit. If the output for ℓ contains a multilinear monomial,

then we can immediately conclude that ℓ is feasible and update ℓhi. Otherwise,

we repeatedly solve MULTILINEAR DETECTION for θ times until we conclude

that ℓ is infeasible and update ℓlo.
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(3) Solution recovery. Recover and output a solution walk with weight ℓ̃. This can be

done by reconstructing an arithmetic circuit for ℓ̃, obtaining a tree certificate F̂ for it,

and constructing a walk from vertex s in G based on F̂ .

ALG-IPA can be used to solve any instance of GRAPH INSPECTION, given polynomial-

time pre- and post-processing. The solution quality incurs a penalty based on rounding

errors.

Let λ ∈ R be a scaling factor. We perform the following preprocessing steps in our

implementation. Given a graph G = (V, E), first create the transitive closure of G by

computing all-pairs shortest paths. Remove all vertices v ∈ V \ {s} that are unreachable

from s or have no colors (i.e., χ(v) = ∅). For every edge e, update its edge weight to

λ ·w(e) and round to the nearest integer9. Again, compute all-pairs shortest paths to make

G a metric graph10.

Once we obtain a solution walk W from ALG-IPA, simply replace every edge uv in W

with any shortest u-v path in G. The resulting walk becomes a solution for GRAPH IN-

SPECTION.

We prove later that ALG-IPA is a randomized FPT algorithm with respect to t, requiring

only polynomial space. The algorithm’s performance depends on the details of each sub-

routine (Sections 7.3, 7.5, and 7.6), and we defer a formal analysis of ALG-IPA to Section 7.7.

7.5 Circuit Construction
Here, we present four constructions for multilinear detection: NaiveCircuit, StandardCir-

cuit, CompactCircuit, and SemiCompactCircuit. Each circuit consists of the following nodes:

• Variables: Variable node xc for each color c ∈ C.

• Internal nodes: We conceptually create t computational layers corresponding to the

degree of a polynomial. Each layer contains two types of nodes: transmitters and

receivers. A transmitter, denoted by Tt′,v,d or Tt′,v,d,i, is a gate that transfers information

to the next layer and is identified by layer 1 ≤ t′ ≤ t, vertex v ∈ V \ {s}, the weight

d of a walk from s, and any optional index i.

9For accuracy, round weights on the transitive closure.

10This step is necessary because rounding may turn G into a non-metric graph.
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A receiver, denoted by R∗ (indices vary with construction types), is a gate that re-

ceives information from the previous layer and sends it to the transmitter in the same

layer.

• Output nodes: The construction of output nodes (sinks that matter) depends on the

search algorithm, but it is in common that they aggregate information from the

transmitters in the last layer, i.e., layer t.

If the search algorithm is UnifiedSearch (see Section 7.6.3), then there are addition

nodes Oℓ for every target value ℓ (ℓlo ≤ ℓ ≤ ℓhi) as output nodes, and the edge from

Tt,v,d in layer t to Oℓ exists if ℓ = d + w(v, s).

If the search algorithm is either StandardBinarySearch or ProbabilisticBinarySearch (Sec-

tions 7.6.1 and 7.6.2), then a target weight ℓ is given when creating a circuit. In this

case, an addition node Oℓ is the only output node, and the edge from Tt,d,i in layer t

to Oℓ exists if ℓlo ≤ d + w(v, s) ≤ ℓ.

• Auxiliary nodes: CompactCircuit and SemiCompactCircuit (Sections 7.5.3 and 7.5.4) have

another set of nodes located in between variable nodes and computational layers.

Observation 7.34. There are |C| variable nodes and at most (ℓhi − ℓlo + 1) output nodes for all

constructions.

Now we present how we construct computational layers. We then analyze the size of

each circuit and its correctness. We argue that a construction is correct when the following

conditions are met: (1) the circuit contains a tree certificate for MULTILINEAR DETECTION

with degree at most t and the output node corresponding to objective ℓ if and only if there

exists a solution walk with weight at most ℓ in an input graph for ALG-IPA, and (2) every

tree certificate contains at mostO(t) addition nodes. In the following arguments, we write

k for |C|, and set w(v, v) = 0.

7.5.1 NaiveCircuit

In this construction, transmitters are indexed by a pair of a vertex and one of its colors,

that is, we split each color of a vertex into a distinct entity.
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For the first layer, create a multiplication gate T1,v,w(s,v),c as a transmitter for every vertex

v for every color c ∈ χ(v) if w(s, v) ≤ ℓ. Every transmitter in the first layer has only one

input xc.

In other layers 1 < t′ ≤ t, proceed as follows. For every vertex v for every color

c ∈ χ(v), and for every transmitter Tt′−1,v′,d′,c′ in the previous layer, let d = d′ + w(v′, v).

We continue only if d ≤ ℓ and c ̸= c′.

First, create a new multiplication gate r as a receiver taking Tt′−1,v′,d′,c′ and xc as input.

Next, create an addition gate Tt′,v,d,c as a transmitter if this does not exist. Finally, add an

edge from r to the transmitter Tt′,v,d,c. Notice that each receiver has 2 in-neighbors, and

each transmitter may have at most k(n− 2) in-neighbors.

Lemma 7.35. NaiveCircuit is correct and creates a circuit of O(ℓhitk2n2) nodes and O(ℓhitk2n2)

edges.

Proof. For each layer, there are O(ℓhikn) addition gates Tt′,v,d,c and for each of them, there

are O(kn) multiplication gates r that link between layers. Hence, there are O(ℓhitk2n2 +

k + ℓhi) = O(ℓhitk2n2) nodes in total. By construction, there are O(ℓhitk2n2 + 2ℓhitk2n2 +

ℓhitk2n) = O(ℓhitk2n2) edges.

To show the correctness, suppose there is a solution walk (s, v1, v2, . . . , s) with weight

ℓ. Then, there must be a corresponding sequence (v1, c1), . . . , (vt, ct) such that {vi} is

an ordered (not necessarily distinct) vertex sets, and {ci} is a distinct set of colors with

ci ∈ χ(vi). Such a distinct set of colors exists because the solution walk collects at least

t colors. Let di be the distance from s to vi in this walk, i.e., d1 = w(s, v1), d2 = d1 +

w(v1, v2), . . . , di = di−1 + w(vi−1, vi). Then, we construct a tree certificate as follows:

pick Ti,vi ,di ,ci for every computational layer 1 ≤ i ≤ t, and connect Tt,vt,dt,ct to the output

node Oℓ. Observe that there is a path from T1,v1,d1,c1 to Oℓ including all Ti,vi ,di ,ci , because by

assumption w(s, v1) +w(v1, v2) + . . .+w(vt, s) = dt +w(vt, s) = ℓ. We extend this path by

adding all in-neighbors of any multiplication gates to construct Ĉ. This includes distinct t

colors {ci}, so Ĉ is a tree certificate for MULTILINEAR DETECTION.

Now, suppose there exists a tree certificate Ĉ for MULTILINEAR DETECTION. It is clear

to see from construction that every monomial in PC[Tt′ ,v,d,c]
(X) has degree t′ and every

monomial in PC[Oℓ](X) has degree t. Since the underlying graph of Ĉ is a tree, Ĉ includes
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exactly one node Ti,vi ,di ,ci for each layer 1 ≤ i ≤ t. For the same reason, the set {ci}

is distinct. Also, we know that Ĉ includes t addition gates, each of which has only one

in-neighbor. Consider a walk (s, v1, v2, . . . , vt, s). This walk collects at least t colors, and its

total weight is ℓ. Hence, this is a solution walk.

7.5.2 StandardCircuit

Intuitively, this type of circuit is built by switching addition and multiplication nodes

in the computational layers of NaiveCircuit, as described in more detail below. The indexing

scheme is also the same and the first layer is identical to the first layer of NaiveCircuit.

For layers 1 < t′ ≤ t, proceed as follows. For each vertex v, for each color c ∈ χ(v),

and for each transmitter Tt′−1,v′,d′,c′ in the previous layer, let d = d′ + w(v′, v). We continue

only if d ≤ ℓ and c ̸= c′.

First, create an addition gate Rt′,v,d,c as a receiver if it does not exist. Next, create a

multiplication gate Tt′,v,d,c as a transmitter if it does not exist. Lastly, add the following

edges: (Tt′−1,v′,d′,c′ , Rt′,v,d,c), (Rt′,v,d,c, Tt′,v,d,c), and (xc, Tt′,v,d,c). Note that in this construction,

a transmitter has at most 2 in-neighbors, and a receiver has possibly k(n− 2) in-neighbors.

Lemma 7.36. StandardCircuit is correct and creates a circuit ofO(ℓhitkn) nodes andO(ℓhitk2n2)

edges.

Proof. For each layer, there areO(ℓhikn) addition gates with in-degreeO(kn) andO(ℓhikn)

multiplication gates with in-degree 2. There are O(ℓhi) output nodes with in-degree kn.

Hence, in total there are O(ℓhitkn) nodes and O(ℓhitk2n2 + 2ℓhitkn + ℓhikn) = O(ℓhitk2n2)

edges.

For the correctness, if there is a solution walk (s, vi, v2, . . . , s) of weight ℓ, then there is

a path including Ti,vi ,di ,ci and the output node Oℓ, as defined in the proof of Lemma 7.35.

This path and the set of collected colors {ci} induce a tree certificate.

If there is a tree certificate Ĉ, then Ĉ must include t addition gates and Ti,vi ,di ,ci for each

layer 1 ≤ i ≤ t. The walk (s, v1, . . . , vt, s) will be a solution walk.

7.5.3 CompactCircuit

This is designed to have an asymptotically smaller number of nodes than the others.

In this construction, we do not split vertex colors. We have transmitters Tt′,v,d, receivers
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Rt′,v,d, and auxiliary nodes at′,v for layer t′, vertex v ∈ V \ {s}, and weight d.

First, construct auxiliary nodes. For each 1 ≤ t′ ≤ t and for each vertex v, add an

addition gate at′,v and take as input {xc : c ∈ χ(v)}.

For t′ = 1, add an edge from av to T1,v,w(s,v) if w(s, v) ≤ ℓ. For 1 < t′ ≤ t, for each vertex

v, and for each transmitter Tt′−1,v′,d′ in the previous layer, let d = d′ + w(v′, v). Notice that

it is possible that v = v′. Intuitively, this means collecting a new color without moving.

We add the following edges if d ≤ ℓ: (Tt′−1,v′,d′ , Rt′,v,d), (Rt′,v,d, Tt′,v,d), and (at′,v, Tt′,v,d).

Figure 7.2 illustrates an example of this construction type.

Lemma 7.37. CompactCircuit is correct and creates a circuit of O(ℓhitn + k) nodes and

O(ℓhitn2 + tkn) edges.

Proof. In addition to k variable nodes, there are O(tn) addition nodes at′,v, O(ℓhitn) ad-

dition nodes Tt′,v,d, O(ℓhitn) multiplication nodes Rt′,v,d, and O(ℓhi) output nodes. The

number of nodes is O(k + tn + 2ℓhitn + ℓhi) = O(ℓhitn + k). To obtain the number of

edges, we count in-degrees of those nodes. Each of at′,v has O(k) in-neighbors, each of

Tt′,v,d has 2 in-neighbors, and each of Rt′,v,d hasO(n) in-neighbors. For the output nodes, if

the search strategy is UnifiedSearch, there areO(ℓhi) nodes with in-degreeO(n). Otherwise,

there is 1 node with in-degree O(ℓhin). In either case, there will be O(ℓhin) edges to the

output. The total number of edges is O(tkn + 2ℓhitn + ℓhitn2 + ℓhin) = O(ℓhitn2 + tkn).

To show the correctness, suppose there is a solution walk of weight ℓ. Since the instance

is complete and metric, there exists a solution walk W = sv1, . . . , vp, s of weight at most

ℓ with no repeated vertices other than s such that at every vertex v in V(W) \ {s} collects

at least one new color. Then, we create a sequence (v1, c1), . . . , (vt, ct) as follows. First,

pick exactly t colors C ⊆ ⋃
v∈V(W) χ(v) so that we still collect at least one new color at

every vertex in V(W) \ {s}. Let Cv ⊆ C be the newly collected colors at vertex v. Then,

when we see a new vertex v in V(W) \ {s}, append {(v, c) : c ∈ Cv} to the sequence. Now,

we have {vi} as an ordered (not necessarily distinct) vertex sets, and {ci} is a distinct set

of colors with ci ∈ χ(vi). We write di for the distance from s to vi in the walk W, i.e.,

d1 = w(s, v1), d2 = d1 + w(v1, v2), . . . with setting w(vi, vi) = 0. By assumption, we have

dt + w(vt, s) ≤ ℓ.

We construct a tree certificate as follows. Let S ⊆ V(C) be a set of nodes such that
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S = {Ti,vi ,di : 1 ≤ i ≤ t} ∪ {Ri,vi ,di : 1 < i ≤ t} ∪ {ai,vi : 1 ≤ i ≤ t} ∪ {Oℓ′}, where ℓ′ =

dt + w(vt, s) ≤ ℓ for UnifiedSearch and ℓ′ = ℓ for the others. Let C ′ := C[S] and observe

that the underlying graph of C ′ is a tree. Then, we add variable nodes {ci : 1 ≤ i ≤ t} and

edges {ciai,vi : 1 ≤ i ≤ t} to C ′. It is clear to see that C ′ contains 2t addition gates. Also,

its underlying graph remains a tree because ci is distinct. By construction, PC ′[Oℓ′ ]
(X) is

a multilinear monomial representing the color set {ci} of size t. Observe that C ′ is a tree

certificate for MULTILINEAR DETECTION.

Conversely, suppose there exists a tree certificate Ĉ for MULTILINEAR DETECTION with

respect to weight ℓ. Every multiplication gate in Ĉ has the same in-neighbors as in C, and

from Proposition 7.6, every addition gate in Ĉ has degree 1 in Ĉ. This leaves us one struc-

ture: t variable nodes {ci}, their out-neighbors {ai,vi} such that ci ∈ χ(vi), multiplication

gates Ti,vi ,di in layers 1 ≤ i ≤ t, accompanied addition gates Ri,vi ,di for i > 1, and the

output node Oℓ. Consider a walk (s, v1, v2, . . . , vt, s). This walk collects t colors, and its

total weight is at most ℓ. Hence, this is a solution walk.

7.5.4 SemiCompactCircuit

This construction is similar to StandardCircuit, but instead of splitting vertex colors into

vertex-color tuples, we keep track of vertex-multiplicity tuples. Here, the multiplicity

means how many colors are collected at the same vertex.

First, add addition gates a(i)v as auxiliary nodes that takes as input {xc : c ∈ χ(v)} for

every vertex v ∈ V \ {s} and every multiplicity 1 ≤ i ≤ min{t, |χ(v)|}.

The first layer contains multiplication gates T1,v,d,1 as transmitters that takes a(1)v as the

only input. The other layers (1 < t′ ≤ t) contain addition gates Rt′,v,d,i as receivers and

multiplication gates Tt′,v,d,i as transmitters. Tt′,v,d,i takes two inputs, Rt′,v,d,i and a(i)v .

For every vertex v ∈ V \ {s} add the following edges: (1) (Tt′−1,v,d,i, Rt′,v,d,i+1) for i <

min{t, |χ(v)|}, and (2) (Tt′−1,v′,d′,i, Rt′,v,d′+w(v′,v),1) for v′ ̸= v, d′ + w(v′, v) ≤ ℓ, and 1 ≤

i ≤ min{t, |χ(v′)|}. The former represents collecting another color at the same vertex,

thus keeping the same walk length and incrementing the multiplicity by one. The latter

represents moving to another vertex, and the multiplicity is reset to one.

Lemma 7.38. SemiCompactCircuit is correct and creates a circuit of O(ℓhit2n + k) nodes and

O(ℓhit2n2 + tkn) edges.
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Proof. We have O(tn) auxiliary nodes a(i)v with in-degree O(k). The first layer contains

O(n) nodes with in-degree 1. For each layer 1 < t′ ≤ t, there are O(ℓhin) addition gates

Rt′,v,d,1 with in-degree O(tn), O(ℓhitn) addition gates Rt′,v,d,i with i > 1 and in-degree

1, O(ℓhitn) multiplication gates with in-degree 2. There are O(ℓhi) output nodes and

O(ℓhitn) edges to the output. Hence, there are O(ℓhit2n + k) nodes and O(tkn + ℓhit2n2 +

ℓhit2n + 2ℓhit2n + ℓhitn) = O(ℓhit2n2 + tkn) edges in total.

To show the correctness, suppose there is a solution walk of weight ℓ. Since there exists

a solution walk W = (s, v1, . . . , s) of weight at most ℓ with no repeated vertices other than

s such that every vertex v in V(W) \ {s} collects at least one new color. Then, we create a

sequence (v1, c1, µ1), . . . , (vt, ct, µ2) as follows. First, pick exactly t colors C ⊆ ⋃
v∈V(W) χ(v)

so that we still collect at least one new color at every vertex in V(W) \ {s}. Let Cv ⊆ C be

the newly collected colors at vertex v. Then, when we see a new vertex v in V(W) \ {s},

append (v, cv,1, 1), (v, cv,2, 2), . . . to the sequence, where Cv = {cv,1, cv,2, . . .}. Now, we have

{vi} as an ordered (not necessarily distinct) vertex sets, {ci} is a distinct set of colors with

ci ∈ χ(vi), and {µi} represents how many colors are collected at vertex vi so far. We write

di for the distance from s to vi in the walk W, i.e., d1 = w(s, v1), d2 = d1 +w(v1, v2), . . . , di =

di−1 + w(vi−1, vi), with setting w(vi, vi) = 0. By assumption, we have dt + w(vt, s) ≤ ℓ.

We construct a tree certificate as follows. Let S ⊆ V(C) be a set of nodes such that

S = {Ti,vi ,di ,µi : 1 ≤ i ≤ t} ∪ {Ri,vi ,di ,µi : 1 < i ≤ t} ∪ {a(µi)
vi : 1 ≤ i ≤ t} ∪ {Oℓ′}, where

ℓ′ = dt + w(vt, s) ≤ ℓ for UnifiedSearch and ℓ′ = ℓ for the others. Let C ′ := C[S] and observe

that the underlying graph of C ′ is a tree. By construction, the pair (vi, µi) is unique in the

sequence. Then, we add variable nodes {ci : 1 ≤ i ≤ t} and edges {cia
µi
vi : 1 ≤ i ≤ t} to C ′.

It is clear to see that C ′ contains 2t addition gates. Also, its underlying graph remains a tree

because ci is distinct. By construction, PC ′[Oℓ′ ]
(X) is a multilinear monomial representing

the color set {ci} of size t. C ′ is a tree certificate for MULTILINEAR DETECTION.

Conversely, suppose there exists a tree certificate Ĉ for MULTILINEAR DETECTION with

respect to weight ℓ. Every multiplication gate in Ĉ has the same in-neighbors as in C,

and from Proposition 7.6, every addition gate in Ĉ has degree 1 in Ĉ. This leaves us

one structure: t variable nodes {ci}, their out-neighbors {a(µi)
vi } such that ci ∈ χ(vi),

multiplication gates Ti,vi ,di ,µi in the computational layers 1 ≤ i ≤ t, accompanied addition

gates Ri,vi ,di ,µi for i > 1, and the output node Oℓ. Consider a walk (s, v1, v2, . . . , vt, s). This
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walk collects t colors, and its total weight is at most ℓ. This is a solution walk.

7.6 Search Strategies
In this section, we describe three search algorithms. We prove that each algorithm

correctly finds the optimal weight with probability 1− (1− p)θ , where p is the constant

success probability from Lemma 7.2, and θ is the failure count threshold greater than p−1.

Also, we analyze the expected running time under simplistic assumptions: the optimal

weight ℓ̃ is uniformly distributed between ℓlo and ℓhi; a single run of construction and

evaluation of a circuit takes (non-decreasing) f (ℓ) time; and the evaluation results in True if

ℓ̃ ≤ ℓ with probability p and False otherwise. We write T(ℓlo, ℓhi) for the expected running

time with lower and upper bounds ℓlo and ℓhi, respectively. We also define ℓdiff := ℓhi −

ℓlo + 1.

7.6.1 StandardBinarySearch

We first implemented the standard binary search. Given ℓlo and ℓhi, we examine the

middle value ℓ = ⌊(ℓlo + ℓhi)/2⌋ to see if ℓ is feasible. If ℓ is feasible, then we update ℓhi

to ℓ. On the other hand, if the circuit is evaluated only to False for θ′ times, then we set

ℓlo to ℓ+ 1. Here θ′ is a number in O(θ log log(ℓdiff)) such that (1− (1− p)θ′)⌊log2(ℓdiff)⌋ ≥

1− (1− p)θ ; such a number must exist. The algorithm terminates when ℓlo = ℓhi, and this

is our output.

Lemma 7.39. Algorithm StandardBinarySearch correctly finds the optimal weight in expected

running time Õ(θ · f (ℓhi)) with probability 1− (1− p)θ .

Proof. We have θ′ ∈ Õ(θ). It is known that binary search requires at most log2(ℓdiff)

evaluations, and each evaluation takes at most θ′ f (ℓhi) time. Hence, the running time

is O(θ′ f (ℓhi) log(ℓdiff)) ⊆ Õ(θ · f (ℓhi)).

The algorithm succeeds when all the log2(ℓdiff)-many evaluations succeed. This prob-

ability is

(1− (1− p)θ′)log2(ℓdiff) ≥ 1− (1− p)θ

by our choice of θ′.
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7.6.2 ProbabilisticBinarySearch

Algorithm 12: ProbabilisticBinarySearch
Input: An instance I of GRAPH INSPECTION, bounds of the optimal weight

ℓlo ≤ ℓhi, a failure count threshold θ′, and a probability p′.
Output: Optimal weight.

// Maintain midpoints as a stack.

1 Create an empty stack S.

2 while ℓlo < ℓhi do
3 if S is empty then
4 Push (⌊ ℓlo+ℓhi

2 ⌋, 0) to S.
5 Pop the top element (ℓ, c) from S.

6 Create a circuit C of I for ℓ.
7 Solve MULTILINEAR DETECTION with (C, k) and get result out.

8 if out = True then
9 Let ℓhi ← ℓ.

10 else
11 if c + 1 ≥ θ′ then
12 Let ℓlo ← ℓ+ 1. // reject ℓ

13 Clear S.
14 else
15 Push (ℓ, c + 1) to S.
16 if ℓ < ℓhi − 1 then

// Randomly go higher.

17 With probability p′, push (⌊ ℓ+1+ℓhi
2 ⌋, 0) to S.

18 return ℓhi

The performance of the previous algorithm degrades when the optimal value is close

to ℓlo because concluding that the value ℓ is infeasible requires θ evaluations of a circuit.

To mitigate this penalty, ProbabilisticBinarySearch evaluates each circuit once at a time and

randomly goes higher before concluding that the value is infeasible. We set this probabil-

ity11 p′ to 1− p/2. We maintain midpoints and failure counts as a stack. Algorithm 12

gives the details.

Lemma 7.40. Algorithm ProbabilisticBinarySearch correctly finds the optimal weight in expected

running time Õ((θ + ℓdiff) · f (ℓhi)) with probability 1− (1− p)θ .

11This is the probability that the algorithm gives an incorrect output, assuming that the evaluated value is
feasible with probability 1/2.
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Proof. The algorithm fails when for any feasible ℓ, it observes no successes and θ′ failures.

For a fixed ℓ, this probability is at most (1− p)θ′ , and there are at most ℓdiff possible values

to check. By the same argument for StandardBinarySearch, by setting θ′ ∈ Õ(θ) such that

(1− (1− p)θ′)ℓdiff ≥ 1− (1− p)θ , we can achieve success probability 1− (1− p)θ .

To argue the running time, let T(ℓ̃, ℓ) be the expected number of runs of an MULTI-

LINEAR DETECTION solver for ℓ < ℓhi, where the optimal weight is ℓ̃. This is sufficient as

Algorithm 12 never evaluates ℓhi.

We consider three cases. If ℓ is feasible, that is, ℓ ≥ ℓ̃, then unless the algorithm fails, it

will eventually find that ℓ is feasible because whenever the algorithm search for a higher

value, ℓ is always in the stack. Hence, T(ℓ̃, ℓ) ≤ p−1. Next, if ℓ = ℓ̃− 1, then the algorithm

must try θ′ evaluations to conclude that ℓ is infeasible. We have T(ℓ̃, ℓ) = θ′. Lastly, if

ℓ < ℓ̃− 1, the algorithm moves higher with probability p′. If it goes to another infeasible

value (lucky case), it will never come back to ℓ. If it moves to a feasible value, it will

then come back after finding that that value is feasible. Notice that the latter case only

happens at most log2(ℓhi − ℓ) times because when we come back from the higher part, the

remaining search space will be shrunk into half. Hence, T(ℓ̃, ℓ) ≤ (p′)−1 + log2(ℓhi − ℓ).

Putting these together, we sum over all possible ℓ̃, ℓ, assuming each of ℓ̃ appears with

probability ℓ−1
diff. The expected running time is

f (ℓhi)

ℓdiff

ℓhi

∑
ℓ̃=ℓlo

ℓhi−1

∑
ℓ=ℓlo

T(ℓ̃, ℓ)

≤ f (ℓhi)

ℓdiff

(
ℓdiffθ

′ + ℓ2
diff(p−1 + (p′)−1 + log2(ℓdiff))

)
∈ Õ((θ + ℓdiff) · f (ℓhi)),

as desired. Note that p and p′ are constants.

7.6.3 UnifiedSearch

The previous approach aims to reduce the number of evaluations for infeasible circuits,

but in most cases, evaluating circuits with large ℓ (more time consuming than the evalua-

tion of a circuit with small ℓ) multiple times is unavoidable.

We resolve this by tweaking a circuit to have multiple output nodes. Now, we assume

that a circuit returns out(ℓ) ∈ {True, False} for each ℓlo ≤ ℓ ≤ ℓhi. As instructed in Sec-
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tion 7.5 and illustrated in Figure 7.2, we create (ℓhi− ℓlo + 1) output nodes connecting from

the last layer of internal nodes. Other nodes are the same as the other search strategies.

The algorithm UnifiedSearch is shown in Algorithm 13. Once the output for ℓ is evalu-

ated to True, it is safe to update ℓhi ← ℓ. We can then construct a smaller circuit for the new

ℓhi, which may speed up the circuit evaluation.

Algorithm 13: UnifiedSearch
Input: An instance I of GRAPH INSPECTION, bounds of the optimal weight

ℓlo ≤ ℓhi, and a failure count threshold θ.
Output: Optimal weight.

1 for i← 1 to θ do
2 if ℓlo = ℓhi then
3 return ℓhi
4 Create a multi-output circuit C of I for all ℓ between ℓlo and ℓhi, inclusive.
5 Solve MULTILINEAR DETECTION with (C, k) and obtain results

out(ℓ) : ℓ 7→ {False, True}.
6 Let ℓhi ← min{ℓ : out(ℓ) = True}.
7 return ℓhi

Lemma 7.41. Algorithm UnifiedSearch correctly finds the optimal weight in expected running

time O(θ · f (ℓhi)) with probability 1− (1− p)θ .

Proof. Since there are at most θ circuit evaluations, the overall running time is bounded by

θ · f (ℓhi). Assuming the circuit construction is correct, we have out(ℓ) = False for every

ℓ < ℓ̃. The algorithm fails only when out(ℓ̃) is evaluated to False θ times consecutively.

This happens with probability at most (1− p)θ , which completes the proof.

7.7 Proof of Main Theorem
Now we are ready to formally state our main result.

Theorem 7.42. If the edge weights are restricted to integers, and there exists a solution with

weight at most ℓ ∈ N, then GRAPH INSPECTION can be solved in randomized Õ(2t(ℓt3n2 +

t3|C|n)) time and with Õ(ℓtn2 + t|C|n) space, with a constant success probability.

Proof. Consider running ALG-IPA with CompactCircuit, UnifiedSearch, and MonteCarloRecov-

ery with appropriate preprocessing. We set scaling factor λ = 1, assuming input weights
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are integral, and let θ be a constant that controls the overall success probability. The

preprocessing steps described in Section 7.4 take Õ(n2) time to create a complete, metric

graph. Step (1) is optional if we know an upper bound ℓ for the solution weight.

In step (2), as shown by Lemma 7.38, CompactCircuit creates a circuit C ofO(ℓt2n + |C|)

nodes and O(ℓtn2 + t|C|n) edges such that if there exists a solution walk with weight at

most ℓ in G, then C contains a tree certificate for MULTILINEAR DETECTION with degree at

most t. This implies that for an output node Oℓ′ for every ℓ′ ≤ ℓ the fingerprint polynomial

PC[Oℓ′ ]
(X, A) contains a multilinear monomial with coefficient 1 if ℓ′ is feasible. Note that

C contains O(k) addition gates.

By Lemma 7.5 and Lemma 7.41, we can find the optimal weight ℓ̃ in Õ(2tt(ℓtn2 +

t|C|n)) time and Õ(ℓtn2 + t|C|n + t|C|) = Õ(ℓtn2 + t|C|n) space with a constant proba-

bility. Lastly, in Step (3) we use MonteCarloRecovery to find a solution walk with weight

ℓ̃. From Lemma 7.10, we can find a tree certificate of C in Õ(2tt · t(ℓtn2 + t|C|n)) =

2t(ℓt3n2 + t3|C|n) time with a constant probability. As stated in the proof of Lemma 7.37,

once we find a tree certificate of C, we can reconstruct a walk W collecting at least t colors

with weight ℓ̃ on G.

The postprocessing step is to replace each edge uv in W with any of the shortest u-v

paths in the original graph for GRAPH INSPECTION to construct a solution walk W̃. Since

G is complete and metric, the weight of W̃ is also ℓ̃, and if the edge weight is restricted

to (non-negative) integers, this weight is optimal in the original instance. Also, replacing

edges in W with shortest paths in the original graph is safe because it is enough to collect

colors at the vertices appeared in W.

The algorithm fails only when either UnifiedSearch or MonteCarloRecovery fails. Since

both subroutines have a constant success probability, the overall success probability is also

constant.

7.8 Experimental Results
To show the practicality of our algebraic methods, we conducted computational experi-

ments on the real-world instances used by Fu et al. [7, 6]. We built RRGs (Rapidly-exploring

Random Graphs [9]) using IRIS-CLI, originating from the CRISP and DRONE datasets. For

each dataset, we created small (roughly 50 vertex) and large (roughly 100 vertex) instances
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and sampled k ∈ {10, 12} dispersed POIs (Points Of Interest) using an algorithm from

Mizutani et al. [14]. See Section 7.8.5 for details. Throughout the experiments, we set t = k,

i.e., algorithms try to collect all colors (POIs) in the given graph and parallelized using 80

threads.

We first verify the effect of algorithmic choices—circuit types, search strategies, and

solution recovery strategies—to see how they perform on various instances. We tested

two scaling factors for each dataset: λsmall = 50, λlarge = 100 for CRISP and λsmall = 0.1,

λlarge = 0.5 for DRONE. We measured running times by using the average measurement

from three different seeds for a pseudorandom number generator. Next, we tested several

scaling factors, as practical instances have real-valued edge weights, to observe trade-offs

between running time/space usage and accuracy.

We implemented our code with C++ (using C++17 standard). We ran all experiments

on Rocky Linux release 8.8 on identical hardware, equipped with 80 CPUs (Intel(R)

Xeon(R) Gold 6230 CPU @ 2.10 GHz) and 191000 MB of memory.

Our code and data to replicate all experiments are available at https://osf.io/4c92e/

?view_only=e3d38d9356c04d60b32c2f45ccc19853.

7.8.1 Choice of Circuit Types

To assess the four circuit type we proposed in Section 7.5, we ran our algorithm with all

the circuit types, using the UnifiedSearch search strategy. We first measured the number of

edges in the constructed arithmetic circuit as this number is a good estimator for running

time and space usage.

Figure 7.3 (left) plots the number of edges of the circuit for each instance. By construc-

tion, StandardCircuit always gives a smaller circuit than NaiveCircuit. CompactCircuit has

asymptotically the smallest circuit, but in some configurations, especially in DRONE, Com-

pactCircuit results in a larger circuit than StandardBinarySearch. We observed that DRONE

has a lower bound higher than that of CRISP, and CompactCircuit has to maintain low-

weight walks that are “below” lower bounds, thus creating more edges. Lastly, SemiCom-

pactCircuit has about the same size as StandardCircuit with DRONE and is much smaller

with CRISP.

https://osf.io/4c92e/?view_only=e3d38d9356c04d60b32c2f45ccc19853
https://osf.io/4c92e/?view_only=e3d38d9356c04d60b32c2f45ccc19853
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Next, we measured the search time to obtain the optimal weight12, using the search

strategy UnifiedSearch. Figure 7.3 (right) plots the average search time for each instance.

For both datasets, search time is closely related to the number of edges in the circuit.

With the CRISP dataset with larger k (k = 12), CompactCircuit recorded the best search

time. This was not true with DRONE; for that dataset, CompactCircuit is even slower than

NaiveCircuit. It is also surprising for us that StandardCircuit performed best on most of the

DRONE instances. This suggests that the circuit size is not the only factor for determining

the running time.

7.8.2 Choice of Search Strategies

For evaluating search strategies, we ran the algorithm with each strategy with the

circuit type SemiCompactCircuit and measured the search time (as done in the previous

experiment). Figure 7.4 (left) plots the average search time for various instances. We

observe that UnifiedSearch is the fastest with a few exceptions with DRONE, which matches

our expectation. ProbabilisticBinarySearch is more unstable; it is faster than StandardBinary-

Search with CRISP except n = 100, k = 12, λ = λlarge, but it is the slowest among three with

DRONE.

7.8.3 Choice of Solution Recovery Strategies

For each recovery strategy, we measured the time for solution recovery after finding

the optimal weight, using circuit type SemiCompactCircuit. As shown in Figure 7.4 (right),

LasVegasRecovery performed better than MonteCarloRecovery with all test instances. More-

over, unlike MonteCarloRecovery, it is guaranteed that LasVegasRecovery always succeeds.

We conclude that LasVegasRecovery has clear advantages over MonteCarloRecovery.

7.8.4 Choice of Scaling Factors

Finally, we evaluated the effect of varied scaling factors (λ) by running our algorithm

using subroutines SemiCompactCircuit, UnifiedSearch and LasVegasRecovery with fixed k =

12.

We first measured how the weight of the walk obtained by ALG-IPA is close to the

12The time for constructing a circuit was negligible (less than 1 second).
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optimal weight. Figure 7.5 (left) shows the ratio of the weight by ALG-IPA to the optimal

(the lower, the better). This ratio was less than 1.2 for all test instances, and with large

enough scaling factors (100 for CRISP, 0.25 for DRONE), the ratio converges within 1.04.

Figure 7.5 (middle) plots the peak memory usage for ALG-IPA. We observed the almost

linear growth of memory usage with respect to the scaling factor. This is due to the fact

that the size of an arithmetic circuit is proportional to the solution weight in integers.

Figure 7.5 (right) shows the overall running time (including search time and solution

recovery time) for each instance. The precise running times depend on the structure of

an instance13 as well as randomness, but our experiment demonstrates that running time

increases with the scaling factor. Taken together, the plots in Figure 7.5 illustrate a trade-off

between fidelity (influenced by rounding errors) and computational resources (time and

space).

7.8.5 Preprocessing Results

We present results of preprocessing on our GRAPH INSPECTION instances in Table 7.1.

Because k (the number of colors present in the graph) is small, this preprocessing is quite

effective. In particular, removing colorless vertices significantly reduces the size of the

graphs.

7.9 Conclusion
In this chapter we present a novel approach for solution recovery for MULTILINEAR

DETECTION and applied these findings to design a solver for GRAPH INSPECTION, thereby

addressing real-world applications in robotic motion planning. Using a modular design,

we tested variants of different algorithmic subroutines, namely search strategy, circuit

design, and solution recovery. Some of our findings are unambiguous and should easily

translate to other implementations based on arithmetic circuits: First, we can recommend

that parameter search (like the solution weight ℓ in our case) is best conducted by con-

structing a single circuit with multiple outputs for all candidate values. Second, optimizing

13It is observable that, for example, DRONE n = 50 takes longer than DRONE n = 100 when λ = 1.0.
This is because the original graph size is not the only indicator of running time. Especially, the time for
solution recovery heavily depends on the structure of optimal and suboptimal solutions. In this particular
case, DRONE n = 100 is faster because it can prune many suboptimal branches in the search space early in the
solution recovery step.
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the circuit design towards size is a clear priority as otherwise the number of circuit edges

quickly explodes. Finally, of the two novel solution recovery algorithms for MULTILINEAR

DETECTION, LasVegasRecovery is the clear winner.

Many questions remain open. While our solver is not competitive with the existing

solvers on realistic instances of GRAPH INSPECTION, it is quite plausible that it can perform

well in other problem settings where memory is much more of a concern than running

time. One drawback of the current circuit construction is the reliance on the transitive

closure of the input graph. A more efficient encoding of the underlying metric graph could

substantially reduce the size of the resulting circuit. Further, there might be preprocessing

rules for arithmetic circuits that reduce their size without affecting their semantic. Finally,

on the theoretical side, we would like to see whether other problems can be solved using

the concept of tree certificates.
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Figure 7.1: An illustration of the certificate flow for a certificate F̂ on variables X :=
{a, b, c, d, e, f } such that PF̂ [v](X) = 2 · 53(2a + b + c + d)4(e + 5 f )2, which contains the
multilinear monomial 2 · 53 · (2 · 4!) · (5 · 2!)abcde f = 120000abcde f . The nodes in F̂ consist
of variables (gray), scalar inputs (green), addition gates (purple), internal multiplication
gates (blue), and the output multiplication gate v (red). The flow amount at all nodes and
edges is depicted as a column vector of multilinear monomials in the figure.
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Figure 7.2: An example of an arithmetic circuit (CompactCircuit with UnifiedSearch),
encoding the graph instance G with colors C = {c1, c2, c3}, illustrated on the left, with
t = 3. The circuit consists of variable nodes (gray) for each color in C, auxiliary nodes
(green), receivers (purple), transmitters (blue), and output nodes (red). Notice that each
receiver/transmitter pair is identifiable by a layer, index (V \ {s} for CompactCircuit), and
walk weight from the starting vertex s. A tree certificate, corresponding to walk (s, u, w, s)
with weight 7, is highlighted in bold.

Figure 7.3: The number of edges in the circuit (left) and average search time (right) for
each circuit type.



227

Figure 7.4: Runtime of each subroutine: search strategies (left) and solution recovery
strategies (right).

Figure 7.5: The average ratio of the weight obtained by ALG-IPA to the optimal weight
(left), the average peak memory usage (middle), and the average overall running time
(right) for different scaling factors.
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Table 7.1: Instance sizes before and after preprocessing. nbuild is the parameter given
to the software of Fu et al. [7] during instance construction, and can be thought of as a
“target” number of vertices for the constructed graph. k is the number of colors remaining
after performing color reduction. n and m are the number of vertices and edges in the
color-reduced instance, while n′ and m′ are the same statistics after preprocessing.

Dataset nbuild k n m n′ m′

CRISP
50

10
70 509

15 105
12 17 136

100
10

113 951
20 190

12 24 276

DRONE
50

10
64 329

12 66
12 14 91

100
10

119 878
16 120

12 19 171
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CHAPTER 8

CONCLUSION AND FUTURE WORK

This dissertation exhibits various applications of parameterized algorithms, with the

goal of creating algorithms that will not be confined to “theoryland”. As listed in Sec-

tion 1.2, we implemented our algorithms and verified their practicality with real-world

datasets (bioinformatics in Chapter 2, robotics in Chapters 6 and 7, etc.). Smaller kernels

result in exponentially faster running time (Chapter 2), and we showed parameterized

approaches can outperform traditional search algorithms in practice (Chapter 6). The

parameterized preprocessing introduced in Chapter 3 involves a collection of nontrivial

technical tools such as color coding, matroids, and vertex separators, achieving an impor-

tant step towards further applications and generalization.

Structural parameters (as studied in Chapters 4 and 5) are very powerful when input

instances have bounded widths. Interestingly, the trade-offs between efficient algorithms

and the “strength” of parameters can also be explained by a connection to logic. It is

known that model checking in monadic second-order logic (MSO MODEL CHECKING) in

graphs of bounded clique-width is FPT [2], and similarly, model checking in first-order

logic (FO MODEL CHECKING) in graphs of bounded twin-width is FPT [1]1. Twin-width

has become an emerging area of research in this decade, continuously producing fruitful

theoretical results. Such a situation has increased the importance of twin-width solvers for

real-world instances (see Chapter 5).

As detailed in each chapter, there are several open problems and future directions of

research. Here I would like to highlight potential future work that would have impact and

promising results in real-world applications.

First, our work on algebraic techniques for Inspection Planning (Chapter 7) is miss-

ing a direct comparison to the state-of-the-art solver for GRAPH INSPECTION. We plan

1Given a witness is provided.
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additional experiments so that we can more precisely estimate when the algebraic solver

can benefit from having polynomial memory footprint. We will also need code-level per-

formance optimization to make the running time more competitive. In addition to the

main work, I want to extend the results on general certificates (Section 7.3.3). One major

open problem is whether we can directly detect a general certificate. I am also interested in

implementing massively parallel multilinear detection using GPGPUs. Is there any chance

an algebraic solver can then outperform the DP solver in terms of running time?

Second, our work on ML-based twin-width solvers (Section 5.6) is incomplete. For

methodology, we have seen what works well for supervised learning, and next plan to

implement and evaluate unsupervised learning. There are also several important open

questions in the theory of twin-width. I am especially curious about new bounds on twin-

width as they might guide and speed up twin-width solvers. For example, the maximum

twin-width of a planar graph is still open (either 7 or 8) although the recent work by

Jedelský [3] strongly suggests 7 is the right answer. Another open question is whether

there is an n-vertex graph of twin-width at least ⌈n/2⌉.

For antler decompositions (Chapter 3), we are looking for general results applicable

to other problems. We are also investigating decompositions of directed graphs, aiming

to an application for DIRECTED FEEDBACK VERTEX SET. The tight OCC for ODD CYCLE

TRANSVERSAL still needs more generalization. At least for a tri-partition (B, C, R) defined

similarly to the OCC, we want to allow some edges between B (bipartite part) and R

(remainder part), as in the original antler decomposition for FEEDBACK VERTEX SET. Then,

the part C is no longer a vertex separator, introducing several technical challenges.

A missing piece in the study of the happy set problems (Chapter 4) is the parameterized

complexity of DENSEST k-SUBGRAPH parameterized by modular-width. I suspect that

it is W[1]-hard, but we know little about hardness reductions involving modular-width.

It would be nice if we can establish a framework to show limitations of modular-width.

Additionally, little work exists on kernelization with respect to modular-width.

Bringing FPT tools into practical applications is a promising course of research, and I

am excited to bridge the gap between theory and practice.
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