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ABSTRACT

Many important fields of basic research in medicine and biology routinely em-

ploy tools for the statistical analysis of collections of similar shapes. Biologists, for

example, have long relied on homologous, anatomical landmarks as shape mod-

els to characterize the growth and development of species. Increasingly, how-

ever, researchers are exploring the use of more detailed models that are derived

computationally from three-dimensional images and surface descriptions. While

computationally-derived models of shape are promising new tools for biomedical

research, they also present some significant engineering challenges, which existing

modeling methods have only begun to address.

In this dissertation, I propose a new computational framework for statistical

shape modeling that significantly advances the state-of-the-art by overcoming many

of the limitations of existing methods. The framework uses a particle-system repre-

sentation of shape, with a fast correspondence-point optimization based on informa-

tion content. The optimization balances the simplicity of the model (compactness)

with the accuracy of the shape representations by using two commensurate entropy

metrics and no free parameters. The idea is to maximize both the geometric

accuracy and the statistical simplicity of the shape model, in accordance with

the principle of parsimony in model selection. The nonparametric representation

allows the method to be applied to a larger class of problems than existing meth-

ods, including nonspherical surfaces, open surfaces, and sets of multiple surfaces.

The relative simplicity of the surface representation and the low number of free

parameters results in a framework that is easy to use and can operate directly

on image segmentations. In collaboration with scientists from several important

areas of biomedicine, I have demonstrated that the proposed method is indeed an

e↵ective tool for scientific research.



The specific research contributions of this dissertation are as follows. First, I

describe a mathematical framework and a robust numerical algorithm for computing

optimized correspondence-point shape models using an entropy-based optimization

and particle-system technology. Second, I develop a series of extensions of the

framework to more general classes of shape analysis problems, including the analysis

of multiple-object complexes, the generalization to correspondence based on generic

functions of position, an extension to handle surfaces with open boundaries, and

shape modeling with simple regression. Third, I describe the application of sta-

tistical hypothesis testing, regression analysis, and multiple-analysis of covariance

to the proposed shape models. I also introduce new techniques for visualization

and interpretation of these statistics. Finally, in cooperation with biomedical re-

searchers, I present validation of the above research contributions by their successful

application to real-world research problems.
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CHAPTER 1

INTRODUCTION

This dissertation addresses technical challenges in biomedical shape analysis. It
describes a set of novel modeling and analysis tools and validates those tools by their
successful application to real-world research problems. Shape analysis is defined as
both the automatic computation of models of populations of similar shapes and
the statistical metrics and tests applied to those shape models. In the latter case,
researchers are typically interested in testing biological hypotheses associated with
shape and shape di↵erences. The major focus of this dissertation work is the
development of simpler, more robust, and more extensible methods for computing
correspondence-point shape models than are currently available to researchers and
the statistical interpretation of those models. This chapter introduces the specific
contributions of the dissertation, placing them within the context of the history
and major schools of thought of shape analysis research, and motivates them with
a discussion of some of the real-world problems in biomedicine for which they are
intended.

1.1 A Brief History of Morphometrics
In the study of biological organisms, theories regarding the correlation between

the shapes of anatomical structures and their function often arise. As early as
the 1600s, for example, Galileo was discussing relationships between bone shapes
and sizes in small animals [40]. Charles Darwin famously described a correlation
between beak shape and diet in Galapagos island finches as support for his theory
of natural selection, hypothesizing that variations in beak shape lead to speciation
where the abundance of di↵erent food sources varies geographically [26]. D’Arcy
Thompson’s 1917 book, On Growth and Form [104], did much to encourage the
study of how the shape of biological correlates with function, and F. O. Bower
made a similar contribution for the field of botany in his 1930 book Size and
Form in Plants [14]. Both authors helped to advance the notion that perhaps
nature could be studied in a more quantitative way, instead of just by the empirical
methods that were the norm at the time. Most significantly, Thompson introduced
the idea that the variation in similar anatomical shapes might be described by
mathematical transformations, and his work is often credited with inspiring the
field of morphometrics.

Morphometrics is the statistical analysis of the geometry of biological anatomy
and employs multivariate methods to analyze measures of shape and size. What
are known as traditional morphometric techniques [68] rely primarily on measures
of linear distance, angles, and areas of biological forms. Traditional morphometrics
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arose as a new branch of statistics by the middle of the twentieth century and
was made possible by some of the important statistical advances of the time, such
as analysis of variance [37] and principal component analysis [87, 55]. The field
was also influenced by the many empirical comparative biology studies that were
done in the years after Darwin published his theories on natural selection and
took advantage of the relative abundance of data from those studies in formulating
many of its basic methodologies [58]. Traditional morphometric tools have been
applied extensively to questions of not only evolutionary theory, but also taxonomy,
anthropology, and the growth and patterning in organisms (see, for example, the
reviews by Adams [1] and Klingenberg, et al. [68]).

While traditional morphometric techniques are an important advance over ear-
lier, empirical methods, they have limited representational and statistical power.
Commonly used shape metrics, such as maximal height and the width, do not
represent the geometry of a structure in any detailed, or in an unambiguous way,
and do not lend themselves well to interpretive visualizations of shape variation
[1, 12]. In addition, many biological hypotheses are concerned with allometry, or
correlations between the overall size of an organism and the shape of its anatomy
[59, 61, 41], and so e↵ectively separating an object’s relative scale from its shape
is an important consideration. Since linear measures are often correlated with size,
for example, allometric questions are better addressed by shape metrics that are
invariant to size.

The geometric morphometric revolution of the latter part of the 20th century
was a series of advances in shape representation and statistics that began to address
many of the limitations of traditional morphometrics. Geometric morphomet-
rics incorporate a more rigorous mathematical definition of shape, distinct from
size, that is based on homologous anatomical landmarks. Landmarks are two- or
three-dimensional coordinates of homologous points that lie on the surface of the
anatomy [12, 34] and are explicitly defined and measured by the researcher within
the context of a particular study. The variability in the shape of an insect wing,
for example, might be measured as the variability in the positions where veins
intersect (see Figure 1.1, for example) or the variability in animal skulls by the
suture points between bones [68]. Landmarks are an important shift from the use
of linear measures, which do not explicitly represent anatomical homologies, and
may therefore be less repeatable from one observer to the next. They also begin
to more completely represent the geometry of the anatomy and can be more easily
interpreted in the context of the statistical analysis.

A general framework for landmark-based shape analysis has been developed
by several researchers, which is still in widespread use today in the biological and
anthropological research communities. In a series of papers, the mathematician
David Kendall formulated a rigorous mathematical definition of point-based repre-
sentations of shape, invariant to scale and orientation [63, 64, 65]. At the same time,
zoologist Fred Bookstein did parallel work in the context of biological problems and
landmark-based shape [11, 12]. Bookstein and other researchers, notably the math-
ematicians Kent and Goodall, pioneered the use of generalized Procrustes analysis
for normalizing landmark data with respect to size and orientation [57, 66, 45, 12].
Linear distances between shapes in Procrustes space were shown to be related to a
tangent-space approximation of geodesic distances in Kendall’s shape space [66, 34].
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Figure 1.1. A landmark-based representation of a hypothetical insect wing is
constructed by annotating the positions where the veins of the wing intersect.
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Most geometric morphometric analysis of shape in biomedicine is currently based on
these results [1, 34]. The geometric morphometric toolkit also includes methods for
directly visualizing the variation in Procrustes points in the space of the geometry
from which they were derived, notably by interpolation of a transformation grid
(coordinate transformation) from one landmark shape to another using thin-plate
splines [11].

1.2 Computationally-Derived Shape Models
Another revolution in shape analysis technology is now underway. This revo-

lution is characterized by the use of computers to automatically construct shape
models, usually from three-dimensional digital images of anatomy, such as com-
puted x-ray tomography (CT) imagery and magnetic resonance imagery (MRI).
Computationally-derived models of shape o↵er many advantages over geometric
morphometric methods. Much more detailed representations of anatomical geome-
try are possible than with supervised landmarking, and thus there is the potential
to analyze shape with greater statistical power and to capture more subtle shape
variations. Shape variation and statistical results can also be visualized more
e↵ectively because the geometry of the anatomy is preserved in the analysis more
completely. Many clinical and biological applications such as phenotypic screening
and patient-specific anatomical modeling require higher throughput and less hu-
man intervention than traditional methods allow. Because computationally-derived
shape models are unsupervised, they require less work and time for a researcher
or clinician to produce. Such models may also be less susceptible to observer bias
and error, and the results may be more reproducible. Finally, with modern medical
imaging, geometric descriptions of internal anatomy can be acquired noninvasively
in living specimens and human subjects. With noninvasive imaging, shape models
are now much more viable tools for the study of soft-tissue structures, human
anatomy and pathologies, and for longitudinal studies of growth and development.

A variety of computationally-derived shape representations have been proposed,
but two major categories of approaches are common. The first strategy is to
consider the shape geometry as embedded in the image intensity values at pixels or
voxels and then use nonlinear registration to map all sample images to a reference
image, or atlas. The variation in shape is considered to be captured by the
nonlinear registration parameters. Of the image registration methods, the voxel-
and tensor-based morphometry methods and the di↵eomorphic methods are in most
widespread use. A second approach, and the approach with which this dissertation
is concerned, is to extract contours or surface parameterizations from digital images
and then sample them in a systematic way to produce an arbitrarily dense set of
correspondence points, which are used for statistical analysis in a similar fashion
as landmark points. This latter category of methods is known variously in the
literature as point-distribution models [21], point-based models, or correspondence
models.

Some early work in shape modeling that is based on image registration was done
by Bajcsy and Kovacic, who adapted the thin-plate spline methods of Bookstein
in a study of brain structure [7]. A general modeling framework for the study
of brain structure shape, called voxel-based and tensor-based morphometry, has
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been proposed by several researchers [116, 5]. Ashburner and Friston summarize
this work in a 2000 NeuroImage paper [4]. These methods deformably register a
collection of images to an atlas and then perform statistical analysis in localized
regions on either the tensor values describing the transformations or on the actual
distribution of voxel values of the transformed images.

Miller, et al. pioneered work in methods that compute di↵eomorphic image
registrations using fluid-flow models and linear statistics in the space of the initial
momentum of the geodesic flows [108, 109, 8]. These methods have been applied
to a number of biomedical problems, including the analysis of brain structure [109]
and the study of pathologies in the heart [52]. A major feature of the di↵eomorphic
approach to shape modeling is that di↵eomorphic flows are invertible and, thus, a
metric may be defined in the space of the deformations. This property has been
used by Joshi and Davis to define a mean anatomical image with variation, and they
apply these estimators to the problems of unbiased anatomical atlas construction
and regression analysis [62, 32].

Correspondence-based shape models are the computational extensions of the
geometric morphometric landmark models. They are distinct, however, from land-
marks in that they do not explicitly model biological homologies. A landmark
model is generally motivated by the hypothesis that landmarks represent positions
that are linked by a shared evolutionary pathway or developmental process [34]. A
second underlying hypothesis is that the homologous points will exhibit interesting
geometric variation relevant to the problem of study. Both of these hypotheses
must be formulated in advance by the biologist, based on his or her knowledge of
the problem and the anatomy. With correspondence methods, however, there are
no such a priori assumptions. The goal is to sample the shape in a su�ciently
dense manner so as to capture all of the interesting homologies and geometric
variation. Correspondence models attempt to learn the underlying parameters of
shape, as opposed to modeling explicitly chosen parameters. A particular set of
homologies may then be analyzed after the model has been constructed. The
analysis of correspondences, however, can be done in a similar fashion as the
analysis of landmark points, using the multivariate techniques and shape space
approximations developed by the morphometric community.

While correspondence methods o↵er many advantages over landmarking meth-
ods, the problem of how to automatically choose correspondence positions is a
di�cult and ill-posed problem. Given a random sample of shapes, the ill-posed
nature of the correspondence problem arises from the fact that there are potentially
an infinite number of possible configurations that can be chosen for the correspon-
dences on the shapes in the sample set. Some sort of regularization is therefore
required. Regularization usually takes the form of a constraint that ensures cor-
respondences faithfully represent the geometries of the samples. Several methods
have been proposed in the literature. Many use a purely geometric regularization
and construct parameterizations that only consider individual geometries. Other
methods combine geometric regularization with a consideration of the statistics
of the entire sample to produce a model that is optimized with respect to total
variance or information content.

Most methods that use only geometric regularization choose correspondences
by constructing a set of shape parameterizations and then sampling surface point
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locations in a consistent fashion. Brechbühler, Styner, and Gerig, for example,
developed approaches based on spherical harmonic descriptions of shape segmen-
tations. The spherical harmonic representations are first aligned and then sampled
into surface meshes to establish correspondence [15, 97]. This idea is an extension
of earlier work using Fourier descriptors to parameterize closed contours in two
dimensions [88, 71]. Similar approaches have been proposed that use wavelet-based
shape representations [81]. Medial-axis parameterizations of shape have also been
used to construct nonlinear shape models and applied in a number of neurobiology
studies [46, 97]. Dalal, et al. proposed a sliding landmark method which has
been shown to compare favorably to the spherical harmonics methods [24, 80].
Their method establishes correspondence by minimizing the bending energy of the
thin-plate spline mapping between sample landmarks and a template.

Optimized correspondence models are motivated by the Occam’s razor principle
of parsimony: given a number of possible models for the data, choose the simplest
model. The principle of parsimony is widely applied to model selection problems in
statistics in order to find models with minimal numbers of parameters and greater
predictive power [50]. The idea of an optimized correspondence model of shape was
first proposed by Kotche↵ and Taylor and more fully developed by Davies, Cootes,
and Taylor. Kotche↵ and Taylor proposed an algorithm in two dimensions that
minimizes the magnitude of the covariance of the correspondences. Davies, et al.
[30] proposed a information-theoretic cost function of correspondence positions for
two-dimensional shapes based on minimum description length (MDL). They later
extended the MDL method to three-dimensional shapes [29]. The MDL approach
has been shown to produce qualitatively similar results to the method of Kotche↵
and Taylor [103, 99]. The idea of an optimized correspondence model represents
an important advance in shape modeling technology. The optimized models of
Kotche↵, Taylor, and Davies are the inspiration for some of the key ideas presented
in this dissertation and are discussed in more detail in Section 2.2.2.

1.3 Shape Analysis in Modern

Biology and Medicine
Many important fields of basic research in medicine and biology are beginning

to rely on computationally-derived statistical models of shape in their research.
Typically, researchers are interested in both characterizing normal shape variation
and in hypothesis testing to evaluate or demonstrate shape di↵erences between pop-
ulations. Two areas of biomedical research are of particular interest as application
areas for the work in this dissertation. The first is the study of the human brain,
including clinical psychiatry and neuroanatomy. The second is human genetics
and, in particular, investigations into relationship between genotype and phenotype
using small-animal models of growth and disease. Both of these application areas
present unique challenges for computational shape analysis, which are among the
topics addressed in this dissertation.
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1.3.1 Neurobiology
In vivo imaging of brain anatomy has made shape analysis a feasible tool to

study many problems in neuroanatomy and clinical psychiatry, such as longitudinal
developmental studies and the progression of neurological disorders [97, 89]. In
developmental analyses, such as pediatric neurodevelopment, quantitative magnetic
resonance imaging has significantly advanced our understanding of brain devel-
opment during childhood and adolescence. Many clinical studies, however, still
rely on traditional morphometrics, such as intracranial volume and the volumes of
brain lobes and subcortical structures [69]. Computational shape analysis in this
context therefore promises to give not only new basic insights into the process of
development, but also potentially provide new diagnostic measures of individuals
against normative models. Regression models of shape versus age, for example,
could provide models of growth and age-related variability. The joint analysis of
complexes of multiple anatomical structures, or what this dissertation will refer to
as shape complexes, is also of increasing interest to clinical psychiatrists because
certain spectrum disorders, such as autism, for example, are thought to represent
a confluence of several underlying abnormalities, impacting the relationships be-
tween brain regions [20]. Better statistical models than are currently available are
needed to capture those relationships and gain insight into the mechanisms and
development of such diseases.

1.3.2 Genetic Phenotyping
Since the invention of gene-targeting technologies, genetically modified mice

have become commonplace models for the study of human development and disease
[16]. By targeting specific genes for underexpression or overexpression, researchers
can create specific alterations in a mouse genome that result in di↵erent patterns
of anatomical growth and form, or phenotype. The phenotype of a mutant mouse
population can be contrasted with that of a normal mouse population in order to
gain insight into the functionality of the targeted genes.

Small animal phenotyping is a problem for which traditional and geometric mor-
phometric techniques have traditionally been used, but for which computationally-
derived shape models hold great promise. To measure di↵erences in phenotype,
researchers have typically relied on light microscopy, histology, and traditional
morphometric descriptions of anatomy, such as the statistics of length and volume
[68, 76]. Using these traditional morphometrics, shape features are typically identi-
fied and parameterized in advance of statistical analysis. The analysis is therefore
limited by the choice of features and by the feature scales. More comprehensive and
detailed representations of shape may allow for observations of genetic expression
that have not been possible with morphometric approaches. Additionally, compu-
tational models have the advantage that they are volumetric, noninvasive, and more
easily adapted to high-throughput phenotypic screening. Several researchers have
proposed computational shape models for mouse brain phenotype using deformable
registration between groups of mean MRI images [83] and deformable registration to
a normal atlas [19]. To date, however, there has been little work done to investigate
the use of correspondence models for genetic phenotyping, which is a focus of this
dissertation.
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1.3.3 Other Applications
Computationally-derived models of shape may potentially impact many other

important areas of biomedical study. In orthopedics, for example, researchers have
applied shape models to the study of bone shapes and pathologies. In [48], Gregory,
et al. use a point-based modeling approach called Active Shape Modeling to study
the correlation between proximal femur shapes and the rate of hip fracture in
women. As with many other clinical shape studies, the goal of the hip fracture study
is to develop an image-based assessment of the risk of the occurrence of the pathol-
ogy. Active Shape Modeling, which is a technology developed by Cootes and Taylor
[21], has also been heavily used in model-guided image segmentation algorithms for
a wide variety of biomedical problems (e.g., [92, 110]). Computationally-derived
models of shape may also be promising tools for the study of anthropology and
paleontology. At the Smithsonian Institution, for example, Mathew Tocheri studies
the form and function of primate hands and feet and their evolutionary relationships
within the homonim clade [106]. Where previously Tocheri and colleagues have
used traditional morphometric approaches, they are now acquiring CT scans of
neandertal fossils for computationally-derived models. In Chapter 5, I present an
application of the work in this dissertation to another study with implications for
anthropology.

1.4 Technical Challenges for Biomedical

Shape Analysis
While computational models of shape o↵er increased power for testing of bio-

logical hypotheses of shape and shape di↵erences and are promising new tools for
new areas of biomedical research, their development and application present some
significant engineering challenges. These challenges are the primary motivation
for this dissertation work. First, as introduced in Section 1.2, there are many
di↵erent possibilities for the representation of the shape, which limits the class of
problems to which the model may be applied. Related to shape representation,
there is a second issue of model selection and avoidance of statistical pitfalls, such
as overfitting of the model to the data. A third challenge is how to statistically
analyze the high-dimensional correspondence data and how to e↵ectively visualize
statistical results and geometric variation. Finally, a significant challenge is how to
reduce the complexity and computational requirements for shape modeling so that
these methods may become more accessible to the average biomedical researcher.

1.4.1 Shape Representation
A shape analysis algorithm must adopt a mathematical representation of shape.

For the purposes of this dissertation, representations of shape can be roughly
classified into two categories: parametric models and nonparametric models. A
parametric representation defines shape as a function of a set of parameters. The
SPHARM methodology [15, 98], for example, represents shape boundaries as a
linear combination of spherical harmonic basis functions. Other methods have
been proposed that rely on wavelet basis functions [81] and Fourier decompositions
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[101]. A nonparametric representation, on the other hand, does not assume an
underlying mathematical model and the surface is represented implicitly. The
interface between the foreground and background pixels in a binary segmentation
volume, for example, is a nonparametric surface representation. Landmark models
are also a type of undetailed surface representation. Specifically, this dissertation
is concerned with nonparametric particle-based surface representations, which are
discussed in Section 2.1.4.

The choice of a specific shape representation defines, and may also limit, the
class of shapes that can be modeled. To be applicable to the full range of shape
analysis problems in biomedicine, a modeling methodology must be capable of
representing di↵erent topological classes of shapes and even changes in topology.
Correspondence-based computational models of shape in the literature rely on
spherical parameterizations of shape and can therefore represent only manifold
surfaces with spherical topologies. This limitation also precludes the analysis of
many important open-boundary anatomical structures such as the diaphragm [24]
or of localized regions of a structure, such as head of a bone. Another important
consideration is that medical or biological shapes are typically derived from the
interfaces between organs or tissue types and usually defined implicitly in the form
of segmented volumes, rather than explicit parameterizations, triangulations, or
surface point samples. Such representations therefore require additional prepro-
cessing steps that may limit the fidelity of the model and introduce error.

Automatic selection of correspondences for nonparametric shape representations
has been explored in the context of surface registration [6], but because such
methods are typically limited to pairwise correspondences and assume a fixed
set of surface point samples, they are not su�cient for the analysis of sets of
segmented volumes. While the sliding landmark method of Dalal, et al. does
not assume fixed surface correspondences, it still relies on a pair-wise registrations
to a fixed template, which must be chosen by another procedure in advance. Image-
registration-based methods for shape modeling (Section 1.2) are nonparametric in
nature, but they do not deal with the problems of selecting surface landmarks using
statistical properties of the set of shape samples and establishing geometrically
accurate surface representations.

1.4.2 The Model Selection Problem
As introduced in Section 1.2, the problem of how to automatically choose cor-

respondences that simultaneously encode shape geometry and e�ciently represent
its variability within a population is fundamentally ill-posed and requires a regu-
larization process. Outside of the shape analysis literature, a standard approach
to statistical model selection is to choose a model that explains the sample data
in an optimally e�cient way, while avoiding overfitting to the data [50, 105]. The
spherical harmonic, wavelet, and sampled medial mesh correspondence methods
(Section 1.2), however, use a purely geometric solution; they seek only consistently
regular parameterizations, not optimal correspondences [15, 97, 81]. The corre-
spondence methods that minimize information content across the shape samples
are capable of generating more powerful shape models [70, 27], but a significant
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concern is how to regularize the models so that they e↵ectively balance the inherent
trade-o↵ between model compactness and good representations of shape geometry.

1.4.3 Statistical Analysis and Interpretability
The geometric morphometrics community has established a standard approach

to statistical analysis for landmark data that relies on traditional multivariate
statistical methods and generalized Procrustes analysis [1]. The statistical analysis
of higher-dimensional, computationally-derived models, however, is more di�cult
due the larger numbers of degrees of freedom and the challenge of obtaining suf-
ficient numbers of subjects to ensure statistical power. While the correspondence
shape modeling literature has proposed some ideas, it has not reached a consensus
regarding a systematic approach (e.g. [27, 44, 98, 46]). In addition, many of the
proposed methods focus on the special case of hypothesis testing in the absence of
explanatory or confounding variables. Thus, there is significant work to be done to
investigate the application of standard tools such as regression analysis, multiple-
analysis of variance, and multiple-analysis of covariance to correspondence models.
Another important consideration is the interpretability of the statistical result in
the context of the geometry of the anatomy. Most studies with landmark-based
data use Procrustes plots and thin-plate-spline warp visualizations, for example,
to understand the variability in shape populations [11]. A similar set of standard
visualization techniques is needed for correspondence models in order for these new
tools to be more widely accepted by the biomedical community.

Hypothesis testing for group di↵erences using parametric and correspondence
models of shape has been most extensively investigated for comparative studies
of brain anatomy, where a number of di↵erent approaches have been proposed.
Among the more popular methods has been that of Styner, et al., who propose
point-wise hypothesis testing on shape correspondence points derived from spherical
harmonic parameterizations [98, 81]. This approach is appealing because it reveals
local shape di↵erences whose significance can be mapped directly onto the shape
geometry, but the results require substantial correction for multiple comparison,
which can significantly reduce statistical power. Nonlinear statistical metrics have
been proposed for medial axis shape models, but these methods are not generally
applicable to correspondence models [102, 46]. Golland, et al. propose the use of a
support vector machine to construct classifiers based on shape models and then use
leave-one-out classification rates as test statistics [44]. A similar method using linear
discriminant classifiers has been used by Davies, et al. to investigate hippocampus
shape in schizophrenia populations using MDL-based shape models [28]. While the
use of classification rates as test statistics is potentially an interesting new approach
to high-dimensional statistics, more work is needed to evaluate the e↵ect of the
additional free parameters in the analysis and whether these methods o↵er higher
statistical power in general. Another concern is how to interpret and visualize the
results for scientists who are not familiar with concepts in machine learning.
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1.4.4 Ease-of-Use and Computational Complexity
To be most useful to a biologist or clinician, a tool for shape measurement should

be relatively simple to use and robust with respect to the application. Manual
landmarking methods, for example, may be time consuming, but the procedure for
constructing landmark data is relatively straightforward and typically only requires
standard equipment such as a light microscope or camera. In addition, manual land-
marking is robust in the sense that it can be applied equally to a wide variety of data
types. The challenge for computationally-derived models is therefore to increase the
speed and power of the analysis, while maintaining the simplicity and robustness of
traditional methods. The repeatability of shape measurements is also of paramount
importance. For biologists, proper evaluation of hypotheses often requires that the
results be reproducible by other researchers. Computationally-derived models of
shape have the potential for greater reproducibility than landmark models, which
can be biased by the human factors inherent in the annotation process. Repro-
ducibility, however, may be adversely a↵ected if the modeling process incorporates
too many free parameters or too many preprocessing steps. Finally, shape modeling
methods that require excessive computational power are not as likely to be used
in an average biology laboratory. Ideally, shape modeling should be accessible to
researchers on standard desktop computers.

A turn-key correspondence-point shape modeling application for the desktops
of the biomedical community will require new, less complicated, and more robust
methods. Current approaches are often slow, di�cult to implement, and hard to
use because of the significant amount of preprocessing involved and the need to tune
many free parameters. The three-dimensional MDL correspondence method, for ex-
ample, relies on spherical parameterizations and subdivisions of an octahedral base
shape with smoothed updates that are represented as Cauchy kernels [29]. The ini-
tial parameterization must be obtained through another process such as [15], which
relaxes a spherical parameterization onto an input mesh. The overall procedure
requires significant data preprocessing, including a sequence of optimizations—first
to establish the parameterization and then on the correspondences—each of which
entails a set of free parameters or inputs in addition to the segmented volumes.
Regularization of the solution requires additional free parameterizations and the
a-priori choice of anchor shapes [29]. Typical processing times for around 1000
correspondences in small populations (N ⇡ 20) are on the order of hours to days for
MDL models [24]. Computation times may be similarly high even for unoptimized
correspondence models, such as spherical harmonic models [24].

1.5 Research Contributions
Motivated by the challenges outlined in the previous section, this dissertation

proposes a new computational framework for statistical shape modeling and anal-
ysis and evaluates that framework in the context of several scientific biomedical
studies. The modeling framework uses an optimized, correspondence-point repre-
sentation of shape. Correspondences are modeled as interacting particle systems,
a technology from the computer graphics literature, and are positioned on shape
surfaces automatically by optimizing the information content of the model. In
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this dissertation, the correspondence optimization framework is referred to as the
particle-based modeling (PBM) framework.

Information content in the PBM optimization is minimized using a variational
formulation of the combined entropy of the sample distribution in shape space and
the particle distributions on the shape surfaces. The procedure explicitly models
the inherent tradeo↵ between the statistical simplicity of the model (compactness)
and the accuracy of the shape representations (good surface samplings), balancing
the two commensurate terms with a single free parameter. This entropy-based
approach provides a natural equivalence of information content and eliminates
the need for ad-hoc regularization strategies based on anchor shapes, templates,
and reparameterizations. The method also draws a clear distinction between the
objective function and the minimization process and thus can more readily incorpo-
rate additional information such as high-order geometric information for adaptive
sampling. The proposed particle-system optimization is fully nonparametric; it is
therefore directly applicable to nonspherical topologies and can be applied directly
to volumetric image data (image segmentations).

The simplicity of the shape representation allows the framework to extend more
easily to a larger class of problems than existing methodologies. This dissertation
proposes several important extensions to the basic modeling framework, including
its application to open surfaces, correspondences based on arbitrary surface fea-
tures, modeling of shape complexes, and correspondence with regression against
explanatory variables. Each of these extensions is evaluated in the context of a
research problem in biomedicine.

As discussed in the previous section, much work remains to demonstrate the ef-
fectiveness of correspondence models for standard multivariate statistical methods,
such as the analysis of variance and shape regression. This dissertation proposes
statistical analysis methods for correspondence models that are based on accepted
methods currently in use by the morphometrics community. In addition to a
straightforward method for hypothesis testing and new methods for visualizing
significant group di↵erences, this dissertation also illustrates the application of
analysis of variance techniques to correspondence data and the visualization of
average forms in these models.

All of the proposed modeling and analysis procedures outlined above are eval-
uated in the context of real biomedical research problems. Specifically, this dis-
sertation describes results for comparative studies of subcortical brain structures
between normal, autistic, and schizophrenic populations, the estimation of corti-
cal surface thickness in human populations, regression modeling of neonatal head
shape, phenotyping of the forelimb bones for mice deficient in the Hox-d11 gene,
and phenotyping of the basioccipital bone in mice deficient in the Pax7 gene.

The following list outlines the specific contributions of the dissertation.
• The particle-based modeling (PBM) framework: A mathematical framework

and a robust numerical algorithm implementation for computing optimized
correspondence-point shape models using an entropy-based optimization and
particle-system technology.

• Extensions to the PBM mathematical framework and implementation for
several, more general classes of shape analysis problems, including (a) the
analysis of shapes with open surfaces, (b) the analysis of sets of disconnected
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surfaces, or shape complexes, (c) the generalization to correspondences based
on generic functions of position, and (d) modeling shape regression against
independent variables (such as size and age).

• Statistical methods for hypothesis testing, multiple analysis of covariance, and
regression analysis that are suitable for use with the particle-based correspon-
dence algorithm and several new methods for visualization and interpretation
of these statistical results.

• Results from collaborations with biomedical researchers that validate the
usefulness of the above methods in several key research areas, including
clinical psychiatry and neuroanatomy and phenotyping studies that have
applications to human development and anthropology.

1.6 Document Organization
The remainder of this document is organized as follows. Chapter 2 describes

the mathematical formulation of the basic PBM shape modeling framework, its
implementation, and some preliminary validation experiments on synthetic data.
Chapter 3 describes the mathematical extensions to the basic PBM framework
along with their implementations. Chapter 4 discusses statistical analysis of cor-
respondence models computed using the PBM algorithm, including some specific
approaches to hypothesis testing, regression analysis, and new methods for the
visualization and interpretation of significant shape di↵erences. Chapter 5 describes
the six di↵erent biomedical studies to which I applied the PBM framework and its
extensions. Chapter 6 summarizes the major conclusions of this dissertation work
and suggests some further related work.



CHAPTER 2

SHAPE MODELING FRAMEWORK

This chapter presents a new methodology, called the particle-based modeling
(PBM) algorithm, for constructing sets of correspondence points on a collection of
shapes. The method uses a particle-system surface representation and an entropy
optimization scheme to automatically place the correspondences. The chapter
begins with some important mathematical background and related work, including
a discussion of shape representation, the correspondence model, and the prevailing
ideas for its optimization. Next, the mathematical formulation of the PBM method
is developed, followed by a discussion of important considerations regarding data
preprocessing and initializing the optimization. The chapter concludes with a
discussion of the properties of the PBM optimization, including a comparison with
the minimum description length method (MDL) and several validation experiments
on synthetic datasets.

2.1 Shape and Shape Representation

2.1.1 Shape and its Analysis
The shape of an object is defined mathematically as all the geometric information

that is distinct from translation, orientation, and overall size [34, 65]. Stated
another way, shape is what remains when you remove location, orientation, and
uniform scale. The goal of statistical shape analysis is to estimate the variability
in the geometric shape of objects in a population using a finite subset of shapes
taken from that population. The subset of shapes from the population is called
the sample, or the sample set. In addition to an estimate of variability, a shape
model also typically includes an estimate of the mean of the population. Using the
estimates of the mean and variability, statistical measurements can be formulated to
test hypotheses. Researchers are often interested in testing for significant di↵erences
in the mean shapes of two populations, for example.

As an example of a shape analysis problem, consider Figure 2.1, which shows a
random sample (N = 10) from a population of tori. Tori are convenient examples
because their shape can be fully described with only two parameters, the distance
from the centerline of the tube to the center of the torus, R, and the smaller radius of
the tube, r. The samples shown in the figure are randomly drawn from a Gaussian
distribution of mean R = 30 and mean r = 15, with the standard deviations
�
R

= 3 and �
r

= 5, respectively. The goal of shape analysis for this population
of shapes is to somehow estimate the sample mean shape and the variability in
shape from this sample set. In general, the number of shape parameters is also not
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Figure 2.1. A sample population of torus shapes that are randomly drawn from a
bivariate Gaussian distribution parameterized by large radius R and small radius
r.
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known in advance. If we hypothesize that there are a finite number of “true” shape
parameters that describe variability, as is the case with the tori, then an additional
goal for shape analysis is often to estimate these underlying parameters.

2.1.2 Shape Representation
In biomedicine, shape analysis is applied to discrete anatomical objects whose

geometry is defined by either interfaces between tissue types or by functional sub-
regions of tissue. Sometimes, both considerations may be factors. Some examples
include bones, such as the metacarpal and carpal bones of the hand, muscles, such
as the diaphragm, and internal organs like the liver or heart. Of course, anatomical
geometry is not often well described by a two-parameter representation, as in
the contrived example of Figure 2.1, and therefore a more general mathematical
representation for shape must be employed.

Shape representations for computational purposes typically fall into one of
two categories: surface representations and region representations. Algorithms
that consider shape as embedded in images, such as voxel-based morphometry
and the di↵eomorphic methods (Section 1.2), are examples of region-based shape
representations. A region-based approach is typically used when geometric features
of the interior of the shape are of interest, such as with functional brain imaging
studies or in other cases where explicit descriptions of the surfaces of anatomical
objects are di�cult to formulate or are not important for the analysis. By contrast,
a surface-based representation of shape only models shape surface geometry. This
dissertation is concerned with models of the surfaces of shapes, which are well suited
for studying many important classes of biomedical problems, especially those for
which the traditional morphometric techniques were originally developed.

A surface, for the purposes of this dissertation, is mathematically defined as a
smooth manifold of co-dimension one, embedded in a Euclidean vector space. The
current discussion assumes a closed surface. Open surfaces are discussed in the
next chapter. The dimensionality of the embedding space is typically either two or
three. In R3, for example, the surface manifold has a dimension of 2, and in R2 it
has a dimension of 1, where it is often referred to as a contour. This dissertation is
primarily concerned with modeling the shape of the surfaces of objects embedded in
three-dimensional space, but some examples will be given for models of the contours
of objects in two dimensions. It should also be noted, however, that there is a class
of biomedical problems for which higher dimensional shape modeling is of interest,
such as the analysis of shape variability in four-dimensional time-series data.

A surface may be either closed or open, depending on whether or not the mani-
fold has a boundary. A closed surface is a manifold with no boundary, and contains
only a single connected component. Spheres and tori are good examples of closed
surfaces. A biological example of a closed surface is a bone, or a brain structure
such as the putamen or caudate. An open surface is a manifold with a boundary,
such as a disk, which is a two-dimensional region with a circular boundary. Open
surface boundaries in biology are sometimes defined by a functional subregion of
a larger structure, such as a section of the cortical surface. Another example of
an open surface is the head of a bone. The concepts of open and closed surfaces
are illustrated in Figure 2.2, which compares a closed surface representation of a
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Figure 2.2. A comparison of closed bone surface (top panel) with an open bone
surface (bottom panel).
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complete femur bone structure (top panel) with an open surface representation of
the head of the femur (bottom panel). In the open surface, the boundary is defined
by a contour around the bone shaft that is specified as the intersection of a cutting
plane with the closed bone surface in the top panel.

2.1.3 Surface Description
A surface must be mathematically described, or encoded, in order to be used

computationally. Typically, the geometry of a structure in an image is derived
by a process of annotating the structure’s interior or boundary in the space of
the image, thus di↵erentiating the object from the background and surrounding
structures. The annotation process is known as image segmentation, and may be
fully automated or incorporate various degrees of human supervision. The output
of a segmentation process is a geometric description of the surface of the object of
interest, but the format of the description varies, depending on the algorithm. Some
segmentation algorithms produce parametric descriptions of the surface geometry,
but image-based descriptions, such as label masks, are more common. Label masks
are binary images whose coordinate grid matches that of the original image and
whose pixel values are labeled as either the foreground or the background of the
object of interest. In a label mask, the surface geometry is described implicitly as
the interface between the foreground and the background.

Often, a surface representation produced by a segmentation process cannot be
used as direct input to a shape analysis algorithm. As discussed in Section 1.4,
most state-of-the-art methods require preprocessing steps to construct a parametric
description, such as spherical harmonics, medial-axis representations, or meshes. In
general, label mask segmentations are also not directly useful because they are not
suitable representations for finite numerical calculations of surface geometry and
features, which assume the image is a sampling of a smooth function. However, a
related surface representation, the signed distance transform of the label mask, does
satisfy this criterion [67]. A distance transform is a graded, membership function,
or fuzzy classification of the pixels within an object, with a surface implicitly
defined as the zero level set [67]. In particular, distance transforms are useful for
constructing particle-based representations of surfaces, which is discussed further
in Section 2.1.4.

Like the label mask, the signed distance transform is an implicit, image-based
surface representation that retains the grid coordinate system of the original image.
Instead of “inside” and “outside” labels for the pixels, however, each position x in
the d-dimensional image is given a scalar value f(x) of its distance from the implicit
surface. The implicit surface � is given by the locations where f = 0. The inside
of the surface is defined by f < 0 and the outside where f > 0. A distance
transform can be easily converted back to a label mask format by simply labeling
all pixels less than zero as “inside” and all pixels greater than zero as “outside”.
Fast algorithms also exist for constructing mesh-based surface visualizations from
distance transforms, such as marching cubes [75]. Figure 2.3 is an illustration of
the concepts of a label mask segmentation and an associated distance transform
image. The left-most panel shows a single slice of a segmentation of a bone structure
from a volume. The middle panel depicts the same slice of a distance transform
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representation of the structure. The right-most panel shows a marching cubes
rendering of the zero level set of the distance transform. For the surface rendering,
the binary volume was first processed by an algorithm to remove aliasing artifacts,
which is discussed in more detail in Section 2.4.

When properly constructed, a distance transform has nice properties for finite
numerical methods for computing surface features and geometry [67]. Several well-
known algorithms have been proposed for constructing smooth distance transforms
from label masks. The fast-marching method from Sethian, et al. [95], for example,
is one of the most common methods. The fast marching method solves the boundary
value problem

|rf(x)|S = 1, (2.1)

where f = 0 on the surface �. This equation models the propagation of the surface
as it moves in its normal direction with speed S. Solving the equation for f gives the
arrival time of the surface at a particular location, which is the distance transform
function encoded in the image.

2.1.4 Particle Systems for Surface Representation
A related technology to distance transforms, is the work from the computer

graphics literature on particle-system surface representations. Particle systems
can be used to manipulate or sample implicit surfaces by constructing dynamic,
point-set representations. Originally, static point-set surfaces were developed in
the context of surface visualization as an alternative to mesh-based representations.
In many contexts, point sets allow more flexible control over the accuracy of the
representation and the speed of the rendering process [3, 38]. Another advantage of
point-set surfaces is that they do not require a specific parameterization and do not
impose topological limitations; surfaces can be locally reconstructed or subdivided
as needed [10]. Witken and Heckbert introduced the idea of modeling a point
set as a system of interacting particles that are constrained to lie on an implicit
surface. Particles interact with one another with mutually repelling forces, such
as electrostatic charge, so that they find distributions that optimally cover, and
therefore describe, the surface geometry [115]. Meyer, et al. proposed numerically
robust extensions to this approach, including a new class of radial-basis energy
functions and methods for curvature-adaptive surface sampling [79].

The method for shape correspondence proposed in this dissertation uses the idea
of the particle system surface representation first proposed by Witkin and Heckbert
and adapts the numerical approaches of Meyer, et al. The PBM algorithm proposed
in this dissertation uses a set of interacting particle systems, one for each shape in
the sample, to produce optimal sets of surface correspondences. Adopting a point-
based surface representation avoids many of the problems inherent in parametric
representations (see Section 1.4.1), such as the limitation to specific topologies and
processing steps necessary to construct parameterizations. Another advantage is
that, unlike representations that rely on surface meshes, particles do not have fixed
neighbors and are free to move past one another to form di↵erent neighborhood
configurations during the optimization process. This property means that the result
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Figure 2.3. An illustration of a single slice from a segmentation (left), the
corresponding slice of the distance transform (middle), and an antialiased surface
rendering of the zero level set of the distance transform (right).
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is less constrained by the initialization and can potentially produce a less biased,
more fully optimized model.

Figure 2.4 illustrates the concept of a particle system representation of an
implicit surface, in this case, the bone shape from from Figure 2.2. The panels
from left to right show an increasing number of particles placed on the surface and
the resulting surface reconstruction from the particles. The surface reconstruction
is done using the method for unorganized sets of points given by Hoppe, et al.
[54]. Particles are placed using the method that is described in Section 2.3.3. The
number of particles doubles in each panel (256, 512, and 1024). As the particle
count increases, so does the detail of the corresponding surface reconstruction.

2.2 Correspondence Shape Models

2.2.1 Correspondences
Correspondence-point models describe shape variation by choosing a discrete set

of comparable, or corresponding, sets of points on shape surfaces whose relative po-
sitions can be analyzed. The correspondence model is defined as follows. Consider a

Figure 2.4. An illustration of surface representation using particle systems. From
left to right, increasing the number of particles results in an increased accuracy of
the surface reconstruction.
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statistical sample of N surface representations drawn from a population of surfaces.
The surface representations are embedded in a d-dimensional Cartesian space. A
model for shape variation is constructed by choosing a set of M , d-dimensional
points on each of the N surfaces. Each of the points is called a correspondence
point. Collectively, the set of M points is known as the configuration, after Dryden
and Mardia [34], and the space of all possible configurations is the configuration
space. The configuration matrix, C, is the M ⇥ d matrix of Cartesian coordinates
in a configuration. The ordering of the points in the N configurations, and the
rows in the configuration matrices, implies correspondence among the surfaces.
Row k <= M in configuration matrix i, for example, corresponds to row k in
configuration matrix j. The variation in the rows of the configuration matrices
describes geometric variation in shape.

Each configuration can be mapped to a single point X in a d⇥M -dimensional
shape space by concatenating the correspondence coordinate positions into a single
vector. The mapping to the dual shape space is invertible. The sample set
forms a distribution in shape space, whose statistical properties can be estimated.
Figure 2.5 illustrates the mapping from configuration space to shape space and
shows a cartoon depiction of the resulting distribution in the high-dimensional
shape space. The top of the figure shows a sample set of N hand contours. At
the bottom-left of the figure, a configuration for one of the hand contours (sample
i) is shown along with its mapping to the shape space vector. The bottom-right
corner of the figure shows the (hypothetical) position of sample i relative to the
(hypothetical) distribution of the other samples in the shape space. Note that while
this cartoon depiction of shape space is two-dimensional, the true shape space has
dM dimensions (and is therefore very hard to visualize on a page).

For analysis, sets of configurations are usually aligned within a common d-
dimensional coordinate frame by a rotation, translation, and scaling to remove
the geometric information unrelated to shape variation. Goodall’s model of shape
[45, 91] describes each of these nonshape components and the residual variation
around the mean correspondence configuration. For configuration matrix C

i

, the
model is given by

C
i

= a
i

µ + E
i

R
i

+ 1t
i

, (2.2)

where a
i

is a scalar representing the relative size of specimen i relative to the mean
size, E

i

are the residuals from the mean configuration µ, R
i

is a rotation matrix
describing the orientation of sample i, 1 is a d-dimensional vector of 1s, and t

i

is a
translation vector describing the locational information for sample i.

The most common method for estimating µ, and the nonshape components R
i

,
t
i

, and a
i

is generalized Procrustes analysis (GPA) [68, 47, 9, 34]. When trans-
formed using GPA, correspondences are said to be in Procrustes space. Statistical
analysis is commonly done in Procrustes space because, for reasonably similar sets
of shapes, distance measures between Procrustes coordinates have been shown to
be good linear approximations to the geodesic distances in Kendall’s shape space
[34, 65]. GPA and the statistical analysis of correspondence models is discussed
further in Chapter 4.

Correspondence models are distinct from parametric models in that they consist
only of a relatively sparse set of correlated points. Recall from Section 1.4.1, that
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Figure 2.5. An illustration of the relationship between configuration space and
shape space.
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a parametric surface is explicitly defined using a set of mathematical functions.
Parametric shape models allow for continuous mappings between surfaces, but
are not concerned with choosing specific correspondences. Correspondence among
parametric surfaces is therefore implicitly defined and can be sampled on the
mappings from the parametric model. Another process, however, is required in
order to determine how to choose optimal sets of correspondences.

2.2.2 Optimized Correspondences
As discussed in the preceding chapter, a correspondence model that is optimized

with respect to its information content represents an important advance in shape
modeling technology. The goals for optimized model construction are consistent
with standard approaches in the statistics literature: to choose a model that
e�ciently explains the sample data while avoiding overfitting to that data [50, 105].
The result is often a model with fewer parameters and greater statistical power
than one chosen by an ad-hoc process [50]. The PBM algorithm proposed in this
dissertation is an optimized modeling method. It is inspired by several key ideas
from the literature that are discussed in this section.

The problem of how to choose correspondence configurations with minimal
information content, so that they e�ciently explain the sample data, was first
addressed by Kotche↵ and Taylor. In [70], they propose the idea of manipulating
correspondence configurations through an optimization process on their resulting
shape-space distribution. This basic strategy is illustrated in Figure 2.6. From left
to right, the top of the figure shows a change in single configuration for a hand
contour. A cartoon depiction of the resulting movement of its position in shape
space is shown from left to right at the bottom of the figure. The bottom of the
figure also shows the hypothetical change in the distribution of the hand shape
samples after some optimization process. In this case, the distribution has been
modified by the optimization process to have less variance.

Specifically, the method of Kotche↵ and Tayor given in [70] applies to shape
contours in two dimensions, and minimizes a function of the magnitude of the
covariance of the shape space distribution. The method represents a population of
shape contours with a set of M correspondences, initialized at equal intervals along
the contour. Each shape is then treated as a point in a 2M -dimensional shape
space, with an associated covariance ⌃. Correspondence configurations are then
manipulated along the contours so that they minimize a cost function

X

k

log(�
k

+ ↵), (2.3)

where �
k

are the eigenvalues of ⌃. The parameter ↵ is a regularization parameter
that prevents the very thinnest modes (smallest eigenvalues) from dominating the
process. This process is the same as minimizing

log |⌃ + ↵I|, (2.4)

where I is the identity matrix and | · | denotes the matrix determinant. Thus, we
can see that this is e↵ectively a minimization of the total variation associated with
the model.
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Davies, et al. [30] propose a similar cost function for two-dimensional shapes
based on minimum description length (MDL). The model is optimized by min-
imizing the cost of transmitting a principal component model of the correspon-
dences. They use quantization arguments to limit the e↵ects of thin modes, and
to determine the optimal number of components that should influence the process.
They propose a piecewise linear reparameterization and a hierarchical minimiza-
tion scheme. In [29] they describe a three-dimensional extension to the MDL
method. The extension relies on spherical parameterizations and subdivisions of
an octahedral base shape. Correspondence positions are manipulated through the
parameterization using smoothed updates represented as Cauchy kernels. The
parameterization must be obtained through another process such as [15], which
relaxes a spherical parameterization onto each input mesh from the sample set.

In Figure 2.6, the correspondence configurations before and after optimization
are depicted as equally valid representations of the hand contour. A di�cult
problem, however, is how to e↵ectively regularize the optimization so that this
condition holds. There is often an inherent tradeo↵ between the compactness of
the model in shape space and the accuracy of the shape representations. This
trade-o↵ is illustrated in Figure 2.7, which shows a degenerate, optimized case
without regularization. In the figure, two-dimensional contours of a set of star
shapes are shown overlaying one another. The correspondences have converged
after an optimization process to lie only near the intersection points of the contours.
The resulting model is compact, but probably not useful, given that it fails to
represent the geometry of the samples. Several regularization strategies to avoid
this problem in the basic MDL formulation have been proposed [29, 103], but they
entail additional free parameters and assumptions about the quality of the initial
parameterizations. One strategy, for example, constrains the solution so that it
remains close to an anchor shape [29], which artificially limits the minimization
process and biases the solution towards the anchor shape.

Despite concerns with the regularization strategies, however, the MDL approach
to constructing correspondence models has been demonstrated to be e↵ective for
certain classes of shapes and represents the state-of-the-art in optimized correspon-
dence modeling. Styner et al. [96] describe an empirical study that shows MDL
improves correspondences relative to pure geometric regularization and notes that
its performance is similar to that of min-log |⌃ + ↵I|.

2.3 Particle-Based Modeling for

Shape Correspondence

2.3.1 Motivation
It follows from the discussion in the previous section that there are several

important challenges in advancing the state-of-the-art for optimized correspondence
models. First, existing methods are specifically designed for closed shapes with
spherical topologies. Many applications in biomedicine, however, require analysis of
more diverse classes of shapes, such as shapes with boundaries, toroidal topologies,
and collections of multiple, disconnected sets of surfaces (see Chapter 3). A second
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Figure 2.7. An illustration of the tradeo↵ between model compactness and the
quality of shape representation.
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challenge is how to limit the numbers of free parameters that must be tuned for
modeling. This second consideration is important for the overall ease-of-use of the
method and the reproducibility of the results. A third challenge is how to avoid
ad-hoc regularization strategies, such as the minimum description length (MDL)
approach that constrains solutions to be near an initial template shape [29, 103].
Finally, the overall complexity of the modeling algorithm a↵ects the ease with which
it can be implemented and the processing time that it requires to produce results.

The particle-based modeling (PBM) algorithm, which is described in this sec-
tion, addresses the challenges outlined above through a new formulation of the idea
of optimized correspondences. In this new formulation, surfaces are modeled non-
parametrically as collections of dynamic particle systems, which are not constrained
to a specific topology and can be applied to open surfaces. The particle system
approach also avoids the algorithmic complexity and parameter tuning associated
with constructing parameterizations. In the PBM approach, correspondences are
modeled as freely moving particles in a system, without defining local topology
or neighborhood connectivies. Their positions can therefore be directly optimized,
instead of indirectly manipulated through a parameterization. In order to avoid
assumptions about the initial quality of sample surface representations and ad-
hoc approaches to regularizing the optimization, the PBM algorithm explicitly
constructs good representations during the optimization procedure. The surface
representations are constructed by an entropy measure on their distributions, which
is the same criteria used to construct compact distributions of the samples in shape
space.

The remainder of this section describes the PBM optimization process in more
detail. The next section presents a brief overview of the algorithm. Sections 2.3.3-
2.3.7 present the strategy for constructing surface representations during the op-
timization procedure. Section 2.3.8 describes the entropy minimization process in
shape space that produces a compact statistical model. The section concludes with
a discussion of the free parameters in the optimization.

2.3.2 Algorithm Overview
The PBM algorithm models correspondence positions as sets of dynamic parti-

cles that are constrained to lie on the surface of the sample set, as in the surface
sampling methods described in Section 2.1.4. The optimization is based on the idea
of treating correspondence position in configuration space as a random variable,
while simultaneously treating correspondence configuration as a random variable.
Correspondence positions are optimized by gradient descent on an energy function
that balances the negative entropy of the distribution of particles in configuration
space with the positive entropy of the distribution of the configurations in shape
space.

More specifically, and with reference to Figure 2.5, the method is to consider
z
k

2 <dM , k = {1, 2, . . . , N} both as observations on a dM ⇥ 1 vector random
variable Z and as N samples of M observations on N, d⇥1 vector random variables
X

k

. The optimization to establish correspondence minimizes the energy function
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Q = H(Z)�
NX

k=1

H(X
k

), (2.5)

where H is an estimation of di↵erential entropy. Minimization of the first term in Q
produces a compact distribution of samples in shape space, while the second term
seeks uniformly-distributed correspondence positions on the shape surfaces for ac-
curate shape representation. Each term is given in commensurate units of entropy,
avoiding the need for a separate regularization strategy. Because correspondence
points in this formulation are not tied to a specific parameterization, the method
operates directly on volumetric data and extends easily to arbitrary shapes, even
nonmanifold surfaces. It also avoids the additional complexity and processing time
required by the parameterizations in methods such as MDL.

2.3.3 Surface Representation
Consider a single configuration for a shape surface S ⇢ <d. The configuration

consists of a discrete set of M points, which are the correspondence positions. The
PBM formulation represents these positions with a set of particles, whose positions
are considered a sample on a vector random variable X 2 <d, with an associated
probability density function describing their distribution. This probability density
function p(X = x) gives the probability of an observation x on X, denoted as
p(x). In the limit, the amount of information contained in the sample on X is the
di↵erential entropy of p(X),

H(X) = �
Z

S

p(X) log p(X)dx = �E{log p(X)}, (2.6)

where E{·} is the expectation. When there are a su�cient number of points sampled
from p, the expectation can be approximated by the sample mean [23], which gives

H(X) ⇡ � 1

M

MX

i=1

log p(x
i

). (2.7)

The PBM algorithm manipulates particle positions using a gradient-descent
optimization on a cost function C, that is an approximation of negative entropy,

C(x
1

, . . . ,x
M

) ⇡ �H(X). (2.8)

The optimization problem is given by

z = arg min
z

C(x
1

, . . . ,x
M

) s.t. x
1

, . . . ,x
M

2 S, (2.9)

and uses a Gauss-Seidel update with forward di↵erences. Each particle therefore
moves with a time parameter and positional update,

x
i

 x
i

� �
@C

@x
i

, (2.10)
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where � is a time step. The partial gradient of C for particle i is
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)
. (2.11)

The gradient requires estimates of the probability p(X = x
j

). For distributions
of particles on surfaces, a density function may be quite complex, which suggests
a nonparametric, kernel-based approach. The PBM algorithm uses a Parzen win-
dowing density estimation [86] that is based on the particle configurations. The
probability of the position of a particle in this formulation is given by the mixture
of multivariate Gaussian kernels,

p(x, �) ⇡ 1

M

MX

j=1

G(x� x
j

, �), (2.12)

where G(x� x
j

, �) is a d-dimensional, isotropic Gaussian with standard deviation
�. When j = i in 2.11, the partial derivative of p with respect to particle position
is
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When i 6= j, the derivative is
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Substituting 2.13 and 2.14 into 2.11 gives,
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The computational complexity for Equation 2.15 is O(M2), since the entire
density function p must be recomputed for each particle update. To simplify the
computation, the PBM formulation instead considers p to be fixed for a given
particle update: for j 6= i in 2.15, the estimation of the density function at j is
allowed to lag behind the update of particle position i. Under this assumption,
@

@xi
p(x

j

, �
j

) = 0, and the second term in 2.15 drops out, simplifying the gradient
computation to only O(M).
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After dropping the second term, the final approximation to the gradient of
particle positional entropy is given by
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where w
ij

are Gaussian weights based on interparticle distance and
P

j

w
ij

= 1. To
minimize C, the particles must move away from each other. Thus, we have a set of
particles moving under a repulsive force and constrained to lie on the surface, with
� < �2 in 2.10 for stability. The motion of each particle is away from all of the
other particles, but interactions are e↵ectively local for su�ciently small �, where
w

ij

vanishes with increasing interparticle distance.

2.3.4 Adaptive Distributions on Surface Features
The preceding minimization produces a uniform sampling of a surface. For

some applications, a strategy that samples adaptively in response to higher order
shape information is more e↵ective for several reasons. From a numerical point
of view, the minimization strategy relies on a degree of regularity in the tangent
planes between adjacent particles, which argues for sampling more densely in high
curvature regions. Geometric features such as high curvature are are also considered
more interesting than flat regions as important landmarks for biological shapes. To
this end, the above uniform sampling method can be extended to adaptively sample
more densely in high-curvature regions. This is done by modifying the Parzen
windowing in Eqn. 2.12 as follows:
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where k
j

is a scaling term proportional to the curvature magnitude computed at
each neighbor particle j. The e↵ect of this scaling is to warp space in response to
local curvature. A uniform sampling based on maximum entropy in the warped
space translates into an adaptive sampling in unwarped space, where points pack
more densely in higher curvature regions. The extension of Eqn 2.16 to incorporate
the curvature-adaptive Parzen windowing is straightforward to compute. Since k

j

is not a function of x
i

, the modified gradient is
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There are many possible choices for the scaling term k. Meyer, et al. [78]
describe an adaptive surface sampling that uses the scaling,

k
i

=
1 + ⇢

i

( s

2⇡

)
1

2

s cos(⇡/6)
, (2.19)

where 
i

is the root sum-of-squares of the principal curvatures at surface location
x
i

. The user-defined variables s and ⇢ specify the ideal distance between particles
on a planar surface and the ideal density of particles per unit angle on a curved
surface, respectively. Note that the scaling term in this formulation could easily be
modified to include surface properties other than curvature.

2.3.5 Surface Constraint
The surface constraint in both the uniform and adaptive optimizations is spec-

ified by the zero set of a scalar function F (x). This constraint is maintained, as
described in several papers [79], by projecting the gradient of the cost function
onto the tangent plane of the surface, as prescribed by the method of Lagrange
multipliers. The projection operator is given by

I� n⌦ n, (2.20)

where I is the identity matrix, n is the normal to the surface, and ⌦ denotes
the outer, or tensor, product. The tangent-plane projection is followed by iter-
ative reprojection of the particle onto the nearest root of F by the method of
Newton-Raphson. Principal curvatures are computed analytically from the implicit
function, as described in [67].

2.3.6 The Kernel Width � for PDF Estimation
Finally, the kernel width � of the Parzen windowing estimation of particle

density must be chosen at each particle. This is done automatically, before the
positional update, using a maximum likelihood optimality criterion. The contri-
bution to C of the ith particle is simply the probability of that particle position.
Optimizing that quantity with respect to � therefore gives a maximum likelihood
estimate of � for the current particle configuration. Using Newton-Raphson, the
strategy is to find � such that

@p(x, �)/@� = 0, (2.21)

which typically converges to machine precision in several iterations. For the adap-
tive sampling case, we find � such that

@p̃(x, �)/@� = 0, (2.22)

so that the optimal � is scaled locally based on the curvature. The iteration is
given by
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and the first derivative of p with respect to �, from 2.12, is
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where r
j

= (x � x
j

)T (x � x
j

) is the distance from x to x
j

. The second derivative
follows from 2.24, and is given by
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2.3.7 Numerical Considerations
There are a few important numerical considerations in computing the particle-

based surface representation. First, the Gaussian kernels must be truncated. For all
of the results presented in this dissertation, kernels are truncated so that G(x, �) =
0 for |x| > 3�. This means that each particle has a finite radius of influence, and a
spatial binning structure to identify neighboring particles can be used to reduce the
computational burden associated with particle interactions. A second consideration
is the case where � for a particle is too small to allow the particle to interact with
its neighbors, and updates of � or position cannot be computed. When � is small,
kernel size is updated using �  2 ⇥ �, until � is large enough for the particle
to interact with its neighbors. A final numerical consideration is that the system
must include bounds �

min

and �
max

to account for anomalies such as bad initial
conditions or too few particles. These are not critical parameters, and as long as
they are set to include the minimum and maximum resolutions, the system operates
reliably.

One final aspect of the particle formulation to consider is that it computes
the Euclidean distance between particles, rather than the geodesic distance on the
surface. The PBM algorithm therefore assumes su�ciently dense samples so that
nearby particles lie in the tangent planes of the zero sets of F . This is an important
consideration; in cases where this assumption is not valid, such as highly convoluted
surfaces, the distribution of particles may be a↵ected by neighbors that are outside
of the true manifold neighborhood. Limiting the influence of neighbors whose
normals di↵er by some threshold value (e.g., 90 degrees) does limit these e↵ects.
The question of particle interactions with more general distance measures remains
for future work and may be important for more e↵ectively addressing applications
to highly convoluted surfaces, such as the cortical surface of the brain.
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2.3.8 Correspondence: Entropy Minimization

in Shape Space
A sample set, E , is a collection of N surfaces, each with their own set of M

particles mapped to a single, dM -dimensional vector in shape space, i.e. E =
z1, . . . , zN . The sample set in vector form may be collected into a single matrix P =
zk
j

, with particle positions along the rows and shape samples across the columns.
Modeling zk 2 <dM as an instance of random variable Z, the PBM method for
correspondence minimizes the combined sample and shape cost function

Q = H(Z)�
NX

k=1

H(Xk), (2.26)

which favors a compact representation of the sample, and is balanced against a
uniform distribution of particles on each surface.

For this discussion we assume that the complexity of each shape is greater
than the number of samples, and so normally dM > N . Given the low number of
examples relative to the dimensionality of the space, the density estimation requires
some assumptions. The PBM algorithm therefore assumes a normal distribution
and models p(Z = z) parametrically using an anisotropic Gaussian with covariance
⌃. The entropy is then given by

H(Z) ⇡ 1

2
log |⌃| =

1

2

dMX

j=1

log �
j

, (2.27)

where e
k

, �
k

, j = 1, . . . , dM are the eigenvalues of ⌃.
In practice, ⌃ will not have full rank, in which case the entropy is not finite.

The problem must therefore be regularized with the addition of a diagonal matrix
↵I to introduce a lower bound on the eigenvalues. The covariance is estimated from
the data, and is given by

⌃ = (dMN � 1)�1YYT , (2.28)

where

yk = zk � µ, and µ =
1

N

NX

k=1

zk. (2.29)

Thus, Y denotes the matrix of sample vectors P minus the sample mean µ, i.e.
Y = P � µ1T , where 1 is a dM ⇥ 1 vector of ones. Because N < dM , the
eigenanalysis in 2.27 is done on the dual space of the N ⇥ N covariance matrix
⌃T = (dMN�1)�1YTY. The nonzero eigenvalues of ⌃ can be obtained from ⌃T by
noting the following relationships (see also [29]). For eigenvalues and eigenvectors
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and premultiplying each side by P, gives
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which is equivalent to
⌃(Ye0
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Thus, e
k

= Ye0
k

, and �
k

= �0
k

, for nonzero eigenvectors of ⌃. The covariances |⌃|
and |⌃T | are therefore equivalent (up to a constant factor of ↵), and the final cost
function G associated with the sample entropy is given by

G(P) =
1

2
log |⌃| =

1

2
log

����
1

dMN � 1
YTY + ↵I

���� . (2.33)

To compute the gradient of G, we follow a similar logic to that used in the
derivation of 2.15, and allow the estimation of the mean µ of the distribution Z to
lag behind the updates @G

@P

. This allows for the simplifying assumption @G

@P

⇡ @G

@Y

.
This approximation becomes more accurate as the number of shape samples is
increased, and changes in individual particle positions have increasingly less of an
e↵ect on the sample mean. The matrix of partial derivatives of G with respect to
Y is derived as follows.
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Adding the regularization to the covariance, we have the following equation for the
updates

@G

@P
⇡ Y(YTY + ↵I)�1. (2.35)

The regularization ↵ on the inverse of YTY can now be seen to account for the
possibility of a diminishing determinant. The negative gradient �@G/@P gives
a vector of updates for the entire system, which is recomputed once per system
update. This term is added to the shape-based updates described in the previous
section to give the update of each particle:

zk
j

 �
⇥�@G/@zk

j

+ @Ek/@zk
j

⇤
. (2.36)

The stability of this update places an additional restriction on the time steps,
requiring � to be less than the reciprocal of the maximum eigenvalue of (YTY +
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↵I)�1, which is bounded by ↵. Thus, we have � < ↵ and note that ↵ has the
practical e↵ect of preventing the system from slowing too much as it tries to reduce
the thinnest dimensions of the sample distribution. This also suggests an annealing
approach for computational e�ciency in which ↵ starts o↵ somewhat large (e.g.,
the size of the shapes) and is incrementally reduced as the system iterates. The
annealing approach has been used for all studies described in this dissertation.

The choice of a Gaussian model for p(Z = z) is not critical for the proposed
method. The framework easily incorporates either nonparametric, or alternate
parametric models. In this case, the Gaussian model allows us to make direct
comparisons with the MDL method, which contains the same assumptions. The
Gaussian assumption also allows for an equivalent, maximum-likelihood formulation
and subsequent extension to regression modeling (see Section 3.4). Research into
alternative models for Z is outside the scope of this dissertation, but remains of
interest for future work.

2.3.9 Setting Parameters
The mechanism that has been described in this section is a self tuning system of

particles that distribute themselves across the shape surface using repulsive forces
to achieve optimal distributions. Particles may also optionally adjust their sampling
frequency locally in response to surface curvature. Free parameters of the system
are limited to the choice of the number of particles (M), and the parameters s and
⇢ from 2.19, if adaptive sampling is used. For all of the results presented in this
dissertation, the adaptivity parameters are determined empirically based on the
data under analysis. To choose the number of particles, the system is initialized
using the splitting strategy until the resulting representation is deemed to captured
enough detail for the given application (see, for example, Figure 2.4).

In order to explicitly manage the tradeo↵ between model compactness and the
geometric regularization, an additional free parameter � may be introduced into
Equation 2.5 as follows:

Q = H(Z)� �
NX

k=1

H(X
k

), (2.37)

Empirical results, however, suggest that the two terms in this function are already
well balanced and � = 1 represents a good default setting. To generate all of the
results presented in this dissertation, for example, � is set to 1 with good results
in each case.

2.4 A Shape Modeling Pipeline
This section describes a full process for shape modeling using the PBM algo-

rithm, including preprocessing considerations, initialization of the particle systems,
and setting system parameters. A typical data-flow “pipeline” for establishing
correspondences from binary image volume inputs is outlined in Figure 2.8. The
preprocessing steps in the pipeline establish an initial alignment of the segmenta-
tions and generate suitable distance transforms. The optimization phase consists
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of initializing the particle system, running the PBM optimization, and iteratively
refining the alignment using the Procrustes algorithm to remove residual nonshape
data. Iterations of the correspondence optimization are interleaved with alignment
steps until convergence. The remainder of this section discusses each of these steps
in more detail and then concludes with a description of the software implemen-
tation of the PBM framework that was used to generate all of the results in this
dissertation.

2.4.1 Preprocessing Binary Segmentations
Any set of implicitly defined surfaces, such as a set of binary segmentations,

is appropriate as input to the PBM algorithm. The algorithm, however, can be
applied directly to to binary segmentation volumes, which are often the output of
a manual or automated segmentation process. Binary volumes contain an implicit
shape surface at the interface of the labeled pixels and the background. Any suitably
accurate distance transform from that interface may be used to form the implicit
surface necessary for the particle optimization.

Segmentation data typically requires some processing to remove aliasing ar-
tifacts in the binary mask. Aliasing artifacts can adversely a↵ect numerical ap-
proximations of surface features and the computations required to maintain the
surface constraint in the PBM algorithm. One e↵ective method for antialising
binary volumes is given by Whitaker in [112], who describes a method for fitting
an antialiased, level-set surface to a binary volume through an iterative relaxation
process. The process uses curvature flow of the surface, with constraints on the
flow dictated by the binary voxel locations of the segmentation. Another e↵ective
antialiasing method is the r-tightening algorithm given by Williams et al. [114].
The surface tightening method follows a similar approach to that of Whitaker, but
constrains the level-set relaxation process using binary volumes that result from
morphological opening and closing of the targeted binary surface. This method
has proven to be particularly e↵ective at removing aliasing artifacts without com-
promising the precision of the segmentation. As a final preprocessing step, the

Antialias
Distance 
Transform

Align Initialize Optimize Align

Preprocessing PBM Algorithm

Figure 2.8. A typical shape modeling pipeline of operations using the PBM
correspondence optimization algorithm.
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distance transform is typically followed by a slight Gaussian blurring to remove the
high-frequency artifacts that can occur as a result of numerical approximations.

2.4.2 Initialization and Optimization
There are number of possibilities for initializing the particle systems on the

sample shapes, including manual specification of points and regular surface sam-
pling. One particularly e↵ective approach, however, is to use an iterative, particle
splitting strategy. The splitting strategy proceeds as follows. First, the PBM
system is initialized with a single particle on each shape that finds the nearest
zero of F . This single particle is then split to produce a new, nearby particle. The
two-particle (per shape) system is then optimized for correspondence until a steady
state is reached. The splitting process, followed by optimization, is then repeated
until a specific number of particles have been produced. Thus, the initialization
proceeds simultaneously with the optimization in a multiscale fashion, generating
progressively more detailed correspondence models with each split. Figure 2.9
illustrates the splitting process on a single sphere.

For all the experiments that are described in this dissertation, the parameters for
the PBM optimization are set automatically as follows. The numerical parameter
�
min

is set to machine precision and �
max

is set to the size of the domain. The
annealing parameter ↵ starts with a value roughly equal to the diameter of an
average shape and is reduced to machine precision over several hundred iterations.
Particles are initialized on each shape using the splitting procedure described above.
These default settings have been found to produce reliably good results that are
very robust to the initialization.

Processing time for the PBM algorithm on a 2GHz desktop machine averages
around 1/8000 second/particle per iteration. This translates to full optimization
times that scale linearly with the number of particles in the system and are on the
order of minutes for small systems of only a few thousand particles to several hours
for larger systems of tens-of-thousands of particles. Optimizations of very large
systems of hundreds-of-thousands of particles may take processing times of several
dozen hours.

Figure 2.9. A system of 100 particles on a sphere, produced by a particle splitting
algorithm.
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2.4.3 Alignment of Shape Surfaces
A collection of shape segmentations must often be aligned in a common coor-

dinate frame for modeling and analysis. Where no information exists to specify a
correct alignment, one approach is to first align segmentations with respect to their
centers of mass and the orientation of their first principal eigenvectors. Then, during
the optimization, the PBM method may optionally further align shapes with respect
to rotation, translation, and scale using generalized Procrustes analysis (GPA) [45].
The GPA alignment is applied at regular intervals after particle updates in order to
remove any residual, nonshape information from the model. GPA alignment during
the optimization process is only enabled once the full set of M particles have been
initialized on all surfaces. Where the true shape alignments are known, however,
the GPA iterations may be omitted. A subset of the GPA alignment parameters
may also be applied, such as only the rotational and translational components,
leaving the scale una↵ected.

2.4.4 Software Implementation
All of the results for experiments described in this dissertation were computed

using a C++ software implementation of the PBM algorithm. Because the PBM
algorithm is completely generalizable to higher dimensions, shapes in two and three
dimensions were processed using the same software, templated on dimension. The
software consists of a core library of code for managing particle systems, associated
libraries for the numerical optimizations, and a set of user interfaces for interactively
optimizing and visualizing correspondences. The code was constructed in part from
components of the Insight Toolkit (ITK), an open-source image processing toolkit
for medical imaging applications [60]. Visualization components were constructed
using code from the open-source Visualization Toolkit (VTK) [93]. All of the PBM
algorithm code produced for this dissertation is freely available for download as the
ShapeWorks software package, which is released through the SCI Institute at the
University of Utah [17].

2.5 Preliminary Evaluation
This section details several experiments designed as a preliminary evaluation

of the PBM correspondence optimization method. Further studies on clinical data
are described in Chapter 5. First, models generated using the particle method are
compared with models generated using MDL for two synthetic, two-dimensional
datasets. Next, a simple experiment on tori illustrates the applicability of the
method to nonspherical topologies and illustrates how the method is capable of
finding underlying, true parameters in a synthetic system. Finally, the PBM
method is applied to a full statistical shape analysis of several three-dimensional
neuroanatomical structures from published clinical datasets.

2.5.1 Comparison with MDL
This experiment compares results from the PBM algorithm on closed curves in a

two-dimensional plane with results from the two-dimensional open-source Minimum
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Description Length (MDL) implementation given by Thodberg [103]. In the first
half of the experiment, we used the proposed, particle method to optimize 100
particles per shape under uniform sampling on 24 “box-bump” shapes, similar to
those described in [103]. Each shape was constructed as a fast-marching distance
transform from a set of boundary points using cubic b-splines with the same
rectangle of control, but with a bump added at a random location along the top
of its curve. This example is interesting because we would, in principle, expect a
correspondence algorithm that is minimizing information content to discover this
single mode of variability in the sample set.

MDL correspondences were computed using 128 nodes and mode 2 of Thodberg’s
Matlab software, with all other parameters set to their defaults (see [103] for
details). Principal component analysis (PCA) identified a single dominant mode
of variation for each method, but with di↵erent degrees of leakage into orthogonal
modes. MDL lost 0.34% of the total variation from the single mode, while the
proposed method lost only 0.0015%. Figure 2.10 illustrates the mean and three
standard deviations of the first mode of the two di↵erent models. Shapes from the
particle method remain more faithful to those described by the original training set,
even out to three standard deviations where the MDL description breaks down. A
striking observation from this experiment is how the relatively small amount of
variation remaining in the minor modes of the MDL case produce such a significant
e↵ect on the results of shape deformations along the major mode.

The second part of the MDL comparison was conducted on the set of 18 hand
shape contours described in [30], again applying both the particle method and
MDL using the same parameters as described above. Distance transforms from
spline-based contour models again form the inputs. In this case, results were also
compared to a set of manually selected correspondences, which introduce some
anatomical knowledge of the digits by selecting landmarks at known homologous
locations, such as the tips of the fingers. Figure 2.11 compares the three resulting
models in the top three modes of variation to ±3 standard deviations. A detailed
analysis of the principal components shows that the proposed particle method and
the manually selected points both produce very similar models, while MDL di↵ers
significantly, particularly in first three modes. This observation is supported by
Figure 2.12, which compares the cumulative percentage of total variance for the first
10 modes. It is clear that the particle method discovers a set of correspondences
for this data set that conform more closely to the anatomical relationships.

2.5.2 Nonspherical Topologies
Existing three-dimensional MDL implementations rely on spherical parameter-

izations and are therefore only capable of analyzing shapes that are topologically
equivalent to a sphere. The particle-based method does not have this limitation.
This section presents an experiment illustrating the use of the PBM algorithm on
a sample set of 40 randomly chosen tori. The tori were parameterized by the small
radius r and the large radius R (see also the example given in Figure 2.1) and were
chosen from a distribution with mean r = 1, R = 2 and �

r

= 0.30, �
R

= 0.15. A
rejection policy was used to exclude invalid tori (e.g., r > R). Correspondences were
optimized using 1024 particles per shape, and a uniform sampling (no adaptivity).
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Figure 2.10. The “box-bump” experiment.



42

-3 +3 -3 +3 -3 +3

1

2

3

MANUAL PARTICLE METHOD MDL

Figure 2.11. The mean and ±3 standard deviations of the top 3 modes of the
hand models.
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Figure 2.12. Comparison of the percentage of total variance in PCA modes of the
hand experiment.

Figure 2.13. An illustration of particle correspondences on several tori from a
random distribution on r and R. Corresponding particle positions across the three
shapes are indicated by glyphs with matching colors.
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Figure 2.13 shows the particle system distribution across several of the torus
shapes in the sample set with 1024 correspondences. Correspondence positions
are indicated by spherical glyphs and correspondence across shapes is indicated
by the color of the glyph. Surface reconstructions for each sample were done
using the correspondence positions and the algorithm given by Hoppe, et al. for
collections of unorganized points [54]. A principal component analysis (PCA) of
the resulting correspondence positions indicates that the particle system method
discovered two pure modes of variation. Only the top two modes of the PCA
exhibit significant variation. PCA 1 contains 69.7870% of total variation and PCA
2 contains 30.2076% of total variation. Less than 0.006% of total variation is
accounted for in the smaller, “error” modes.

Empirical observation of the top two PCA modes suggests that they correspond
well to variation in r and R from the parametric model that was used to generate
the sample data. Figure 2.14 shows the mean correspondence positions from the
model moved along each of the top two PCA modes. Torus shapes along each
mode are reconstructed from �3 to +3 standard deviations from the mean. The
top row illustrates variation in PCA 1, which corresponds to r, and the bottom
row indicates variation in PCA 2, which corresponds to R. In this experiment, the
PBM method appears to have estimated the true orthogonal modes of variation of
the shape sample.

2.5.3 Shape Analysis of Neuroanatomical Structures
As a further validation of the PBM algorithm, this section describes hypothesis

testing of group shape di↵erences on data from two published clinical studies in
neuroanatomy. The first study addresses the shape of the hippocampus in patients
with schizophrenia. The data consist of left and right hippocampus shapes from
56 male adult patients versus 26 healthy adult male controls, segmented from MRI
using a template-based semi-automated method [100]. The second study addresses
the shape of the caudate in males with schizo-typal personality disorder. The data
consist of left and right caudate shapes from 15 patients and 14 matched, healthy
controls that were manually segmented from MRI brain scans of the study subjects
by clinical experts [74]. In each study, variation in overall subject size is controlled
for by normalizing the segmentation volumes with respect to intercranial volume.

The raw binary segmentations from each study were aligned and processed as
described in Section 2.4, including Procrustes registration. Correspondence models
were optimized using the PBM method, with 1024 correspondence points per shape
and the curvature-adaptive sampling strategy. Separate models were created for left
and right structures using the combined data from patient and normal populations.
Models were generated without knowledge of the shape classifications so as not to
bias the correspondences to one class or the other, an important consideration for
statistical analysis that is discussed further in Chapter 3. On inspection, all of
the resulting models appear to be of good quality; each major mode of variation
describes some plausible pattern of variation observed in the training data. As an
example, Figure 2.15 shows several surface meshes of shapes generated from the
correspondence point sets of the right hippocampus model.
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�3 �2 �1 mean +1 +2 +3

Figure 2.14. The top two PCA modes of variation for the torus shape model,
shown in the first and second rows, respectively. Surface reconstructions are from
the correspondence positions moved along the axis of each principal component at
positions �3 to +3 standard deviations from the mean shape. PCA 1 (top row)
corresponds to r and PCA 2 (bottom row) correspondence to R.

�3 mean +3

Figure 2.15. Right hippocampus model mean and ±3 standard deviations in the
top two PCA modes (top and bottom rows, respectively).
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After computing the models, separate statistical tests for di↵erences in cor-
respondence positions were applied to every correspondence index. The specific
test used is a nonparametric permutation test of the Hotelling T 2 metric, with
false-discovery-rate (FDR) correction for multiple comparisons. This is a method
described by Styner, et al. [98] that is useful for identifying and visualizing localized
regions of significant shape di↵erences. The statistical results were computed using
an open-source implementation of the algorithm [98], with 20, 000 permutations
among groups and an FDR bound set to 5%. The null hypothesis for these tests is
that the distributions of the locations of corresponding sample points are the same
regardless of group. The point-wise hypothesis test was chosen for this analysis,
because it has also been applied to several other published studies of this data
[100, 81] and thus provides a basis for comparison of the results.

Figure 2.16 shows the raw and FDR-corrected p-values for the left and right
hippocampi from the schizophrenia study. Areas of significant group di↵erences
(p <= 0.05) are shown in red. Areas with insignificant group di↵erences (p > 0.05)
are shown in blue. The right hippocampus shows significant di↵erences in the mid-
region and the tail, even after FDR-correction. The left hippocampus appears to
exhibit few group di↵erences, with none detected after FDR correction. Di↵erences
in the tail, especially on the right structure were also observed by Styner et al. in
[96]. These results also correlate with those reported for the spherical harmonics
method (SPHARM) [100] and spherical wavelet analysis [81].

Raw p-values for the caudate analysis are shown at the bottom of Figure 2.16.
No significant di↵erences on either shape were found after FDR correction. The
raw p-values, however, suggest that both structures may exhibit group di↵erences
in the tail and that the right caudate contains more group di↵erences than the left,
an observation that agrees with results given in [98], [74], [100], and [81].
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Figure 2.16. P-value maps for the hippocampus and caudate shape analyses,
shown on the mean shape. Red (dark in grayscale) indicates significant group dif-
ferences (p <= 0.05), and blue indicates no significant group di↵erences (p > 0.05).



CHAPTER 3

MODELING EXTENSIONS

This chapter describes several mathematical extensions of the particle-based
modeling (PBM) algorithm that are designed to make it more robust to realistically
complex shape analysis problems. The work in this chapter is motivated by the
needs of the biomedical research community for tools to model more complicated
anatomical shapes and statistical designs than the basic examples presented in the
previous chapter. The first set of extensions allows the PBM algorithm to operate
on more complicated surface geometries. A second set of extensions provide for
more flexible notions of correspondence by generalizing the underlying statistical
optimization. These tools represent an important contribution to the shape analysis
literature because, to date, proposed correspondence optimization methods have
mainly focused on closed, manifold surfaces with spherical topologies. Statisti-
cal optimization criteria has also received a fairly narrow treatment, with most
correspondence methods considering only structural information in the absence of
confounding or explanatory variables.

Many anatomical structures of interest to clinical and biological research are
not well represented as closed, manifold surfaces. Some examples include regions
of the brain and the heads of bones. A region of the brain may be defined more
by functional information than by structural considerations and therefore requires
a boundary specification. Similarly, the extent of the bone that comprises its head
must also be specified by a boundary. The head of a bone may also be part of a
larger complex of structures, one that includes a socket, for example, as in a knee
or elbow joint. Such a complex of structures is a shape that consists of a collection
of multiple, disconnected surfaces. Other examples of shape complexes are sets of
bones in the hands and feet and collections of brain structures.

In many cases, the geometric features of an anatomical object are not su�cient
to properly establish correspondence. Some anatomy is highly variable across sub-
jects and additional information, such as functional data, is helpful in determining
how surface regions correspond. One such example, that I will examine in more
detail in Chapter 5, is the cortical surface. Because of the highly variable folding
patterns on the cortex, neuroanatomists typically rely on other information, such as
sulcal depths and vascular connectivity, for correspondence [84]. Another common
situation that requires additional information for proper correspondence is when
the shape of anatomy is correlated with one or more independent variables. Most
clinical studies, for example, control for subject age, and require a regression model
that properly accounts for variability explained by age.

The remainder of this chapter presents modifications to the PBM algorithm
to manage the scenarios outlined above. This chapter is organized as follows. In
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Section 3.1, I remove the closed surface requirement for the PBM algorithm, and
present an extension for modeling open surfaces, or surfaces with boundaries. The
open surface method allows an arbitrary boundary to be defined as the intersection
of a closed surface with a set of shape primitives. Section 3.2 describes how the PBM
algorithm can be used to optimize correspondence among shapes that consist of
multiple anatomical objects. This capability is important in the study of shape co-
variance among anatomy that is functionally or structurally correlated. Section 3.3
describes a generalization of the PBM optimization criteria to correspondence in
arbitrary, multivariate functions of position, rather than only considering positional
information. This approach is useful for problems where there is data other than
geometric information that indicates correspondence, such as multimodal imaging
studies, and studies with functional imaging data. Finally, Section 3.4 describes
a methodology for including a regression model on independent variables into the
PBM correspondence optimization. Shape regression modeling is important for
examining, or controlling for, correlations between shape and certain factors such
as age or clinical variables. This chapter discusses the motivation, theory, and
implementation of each of the extensions. Examples of their application to scientific
studies are given in Chapter 5.

3.1 Modeling Shape with Open Surfaces
As discussed in Section 2.1.2, there are many important anatomical structures

that require an open surface representation for shape analysis. Some examples
include flat structures such as the diaphragm, functional subregions of the cortical
surface, and the head of a bone (see Figure 2.2). In Chapter 5, I will present an
application of the PBM algorithm to neonatal head shape data, which requires a
specification of the boundary of the cranium. This section describes an extension
to the basic PBM algorithm to optimize correspondence on surfaces with open
boundaries.

Conceptually, there are two ways to handle the surface boundary when estab-
lishing correspondences. The first approach is to explicitly represent and model the
boundary. To properly model the boundary, correspondences must be allowed to
lie on the boundary, and the optimization must track particle movement on and o↵
of the boundary. This approach is appropriate for applications where the boundary
shape is of specific interest to the problem. In many cases, however, it is not
important, or even desirable, to model the variation in the shape of the boundary.
A segmentation, for example, may contain noise in the boundary shape due to
ambiguities in its specification during the segmentation process. In this situation,
where the boundary is considered noisy, it can simply be treated as a constraint on
the particle optimization, which is the approach developed in this section.

The proposed algorithm for correspondence on open surfaces represents the
surface boundary as the intersection of a closed surface (e.g., S in 2.3.3) with a
set of geometric primitives, such as cutting planes and spheres. The boundary
representation is then used to influence the entropy maximization of the PBM
algorithm particle position (Section 2.3.3), so that it indirectly constrains the
positions of particles to lie within the surface boundary. The goal of the open surface
modeling algorithm is to formulate particle interactions with the boundaries so that
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the positions of the constraints have as little influence as possible on the statistical
shape model. This approach is consistent with the idea that the boundary shape
may contain noise, and we wish to minimize the influence of this noise on the model.

The algorithm proceeds as follows. For each geometric primitive in the surface
boundary representation, the algorithm constructs a virtual particle distribution
that consists of all of the closest points on its surface to the particles with positions
x
j

on S. During the gradient descent optimization, particles x
j

interact with the
virtual particles, and are therefore e↵ectively repelled from the geometric primitives,
and thus from the open surface boundary. The virtual distributions are updated
after each iteration, as the particles on S redistribute under the optimization.
Because the virtual particles are allowed to factor into the Parzen windowing kernel
size estimation (Equation 2.12), particles x

i

maintain a distance from the boundary
proportional to their density on the surface S. In this way, features near the
boundary may be sampled, but particles are never allowed to lie on the boundary
itself, limiting the e↵ect of errors in the boundary specification on the configuration.
Note that the virtual particle distributions are also not used in the correspondence
optimization term (the sample entropy from Equation 2.27) and therefore do not
directly a↵ect the distribution of samples in shape space.

Figure 3.1 illustrates a particle configuration using the method outlined above
for open surfaces, and shows the e↵ect of increasing the number of particles. In the
figure, the open surface boundary is defined by the intersection of an implicit bone
surface, a cutting plane, and a sphere. As the number of particles is increased, the
distribution samples regions of the bone closer and closer to the surface bound-
ary. Note, however, that the particle distribution never touches or crosses the
boundaries. For another example of PBM optimizations on open surfaces, see the
experiment for head shape regression that is given in Section 5.4.

3.2 Modeling Shape Complexes
This section presents an extension of the PBM algorithm for shape model-

ing of multiple, disconnected anatomical surfaces, or shape complexes. Like the
open surface method from the previous section, this extension allows the PBM to
operate on more diverse classes of shape. In many areas of clinical psychiatric
and neurological research, the joint analysis of di↵erent anatomical structures is of
increasing interest. Certain spectrum disorders, such as autism, for example, are
thought to represent a confluence of several underlying abnormalities, impacting
the relationships between brain regions [20]. Statistical models that capture those
relationships are important to gain insight into the mechanisms and development
of such diseases. Shape models of anatomical complexes are also important tools
for geneticists and developmental biologists, who study the covariation of shape
for complexes of anatomical structures in small animal models (e.g., [31]). Another
important set of applications are biomechanical studies of bone and joint complexes,
where shape correlations can provide insight into the origin and progression of
diseases such as hip dysplasia (e.g., [107]).

A multiobject complex is defined as a set of solid shapes, each representing a
single, connected biological structure. The complex of structures are assembled
into a scene within a common coordinate frame. Each structure in a multiobject



51

Figure 3.1. An example of distributing increasing numbers of particles on an
open surface, where the boundary is defined by the intersection of an implicit bone
surface with a sphere and a cutting plane.
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complex contains shape, pose, scale, and positional information. Some examples
include the segmentations of multiple brain structures from a single MRI of a
patient and sets of bones segmented from a CT scan. The proposed correspondence
method for establishing correspondence on multiobject complexes is novel in that
it optimizes correspondence positions in the full, joint shape space of the object
complex. Researchers have previously only considered the correspondence problem
separately for each structure, thus ignoring the interstructural shape correlations
in the optimization process. By explicitly modeling the correlations among vari-
abilities, however, optimization in the joint space may produce more compact
distributions for correspondences, resulting in fewer model parameters and greater
statistical power.

State-of-the-art methods for correspondence optimization that rely on parame-
terized surface representations and assume a spherical or toroidal topology are not
suitable for multiobject complexes, which consist of disconnected sets of discrete
surfaces. Some parametric methods have been applied to shape complexes by
finding correspondences for each structure independently and then treating those
correspondences as the marginal distributions of the full shape complex model [46].
This particular approach however ignores any covariation in shape across structures
during the optimization, which is typically the variation of special interest for
the model. Parametric approaches in general may be limited for shape complex
modeling because the reliance on individual anchor shapes for regularization would
restrict the degree to which parameterizations of di↵erent objects in the sample set
could interact.

The particle-based correspond method described in Chapter 2 can be directly
applied to multiobject complexes by treating all of the objects in the complex as
defining a single surface. However, if the objects themselves have distinct identities
(i.e., object-level correspondence is known a priori), we can assign each particle to
a specific object, decouple the spatial interactions between particles on di↵erent
shapes, and constrain each particle to its associated object. In this way, each
correspondence is guaranteed to stay on a particular anatomical structure, and
the surface sampling is not influenced by regions where structures in the complex
happen to be near to one another. The shape-space statistics using this method,
however, remain coupled, and the covariance ⌃ (Eqn. 2.27) includes all particle
positions across the entire complex, so that optimization takes place on the joint,
multiobject model.

As with the single-object framework, any set of implicitly defined surfaces is
appropriate as input to the multiobject framework, with similar preprocessing
considerations as those discussed in Section 2.4. In the case of binary segmentations,
the input is now a set of N segmentations of K-object complexes, which contains
N ⇥K distinct, volumetric label masks. The optimization can be initialized using
the splitting strategy described in Section 2.4, starting with a single particle on
each structure in the complex, and splitting until a specified number of particles
per structure is reached. Additional particles can then be placed on individual
structures within the complex as necessary, using the splitting strategy for individ-
ual objects, but under the joint correspondence optimization.

An example application of the multiobject PBM algorithm to a study of clinical
brain structure data is given in Section 5.2. In the study, I demonstrate group
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di↵erences between autism subjects and typical controls in the shape of a complex
of ten subcortical brain structures. I also demonstrate how the joint optimization
produces a model with better group discrimination than a collection of ten separate
models.

3.3 Correspondence Based on

Functions of Position
The previous two sections describe methods that extend the PBM algorithm

to more complex geometries. As I discussed in the introduction to this chapter,
however, the geometric features of an anatomical object are often not su�cient
to properly establish correspondence. The basic PBM algorithm (Chapter 2) only
considers particle position, which is the geometric, or structural, information of the
shape surface. Thus, we need a way to incorporate additional information about
correspondence into the optimization process.

This section describes an extension to the basic PBM algorithm to establish
correspondence by minimization of the entropy of arbitrary, vector-valued functions
of position. This more general method is useful in cases where the notion of
correspondence is not well defined by the surface geometry, but can be described
by other metrics. Correspondence for cortical surfaces of the brain, for example, is
di�cult to establish structurally because of the high variability of cortical folding
patterns across subjects. Neuroanatomists therefore often rely on other information
for correspondence, such as cortical thickness and functional imaging data [36].
Many other biomedical studies involve multiple imaging modalities, such as CT
imaging combined with MRI, or SPECT. Because it incorporates more information
about the targeted anatomy, a correspondence model based on data from multiple
modalities may be more accurate than a model using only structural information.

The extension to the PBM algorithm to incorporate functional data, which
I will refer to as the generalized PBM algorithm, is straightforward. It consists
of substituting the entropy estimation of the matrix of particle positions with an
entropy estimation on an arbitrary, vector-valued function of the particle position.
From Section 2.3, the energy term for the basic PBM optimization is given by

Q = H(Z)� �

NX

k=1

H(X
k

), (3.1)

where H is an estimation of entropy, X
k

is a vector random variable with the
distribution of particle configuration k, and Z is the vector random variable with
the distribution of the shape samples in the dM -dimensional shape space. The
extension to the generalized PBM algorithm only modifies the correspondence
term H(Z). The entropy associated with individual correspondence configurations,
H(X

k

), is not modified, and still operates on positional information. In other
words, particles are still constrained to lie on the surface of the shape and distribute
themselves across shape surfaces using the maximization of positional entropy, but
their correspondence is established using a function of positional information. Note
that a function of position could be designed to also include particle position, so
that both structural and functional data influence the correspondences.
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Recall from 2.3.8, that the entropy estimation of the sample distribution in
shape space is given by

H(Z) ⇡ 1

2
log |⌃|, and ⌃ = (dMN � 1)�1YYT , (3.2)

where ⌃ is the covariance matrix, and Y is the dM ⇥N data matrix P of sample
vectors zk, k = {1, . . . , N}, minus the sample mean µ, and each vector zk consists
of the positional information from M particles on shape surface k. In the case of
computing entropy of vector-valued functions of the correspondence positions, the
extension to functional data considers the more general case where columns of the
data matrix are instead given by

p̃k =

2
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where xk

j

is the positional information of particle j for shape k, and f : <d ! <q.

The matrix Y now becomes a matrix Ỹ of the function values at the particle
points, minus the means of those functions at the points. Columns of Ỹ are given
by
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The new cost function G̃ is the estimation of entropy of the samples ỹk. With
the same assumption of a Gaussian distribution in shape space, by the same logic
as the derivation of the cost function G in 2.33, we have

G̃(z̃) = log
���cỸT Ỹ,

��� , (3.5)

with c a constant.

Let Q = (ỸT Ỹ + ↵I)�1. By the chain rule, the partial derivative of G̃ with
respect to the data yk becomes

� @G̃

@P̃k

= JT

k

Qk, (3.6)

where J
k

is the Jacobian of the functional data for shape k. The matrix J
k

has
the structure of a block diagonal matrix with M ⇥M blocks, with diagonal blocks



55

the q ⇥ d submatrices of the function gradients at particle j. Specifically, for each
shape k, we have function data

yk =
⇥
f 0
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, f 0
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, . . . , f 0

q
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and a diagonal submatrix block of the Jacobian J
k

= r
z

kyk has the structure
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where j = {0, 1, 2, . . . , M � 1} is the block number, which corresponds to a single
particle, and {x

1

, x
2

, . . . , x
dM

} are the directional components of the full set of
M particles. The correspondence optimization proceeds by gradient descent, as
described in Section 2.3, with the substitution of the gradient of the new cost
function G̃ for the original cost function G in Eqn. 2.36.

In summary, the generalized PBM algorithm replaces the entropy of positional
information with entropy of an arbitrary function of positional information. This
modification o↵ers a much more generalized framework for optimizing the statistical
properties of an ensemble of shapes. Note that the standard PBM algorithm from
Chapter 2 is a special case of the generalized PBM algorithm, where f(z) = z.
In Section 5.3, I present an application of the generalized PBM algorithm to the
problem of correspondence on cortical surfaces.

3.4 Correspondence with Regression Against

Explanatory Variables
In general, the design of a scientific study in biology or medicine cannot control

for all confounding variables. The variability in shape due to such factors as age,
di↵erential growth rates, or clinical variables, for example, must be accounted for
during the analysis phase. In other cases, this variability is the specific focus of the
study, and researchers want to examine the correlation of an explanatory variable
with shape. A typical experiment, for example, might examine the correlation of
disease progression with the shape of anatomical structures or the change in the
shape of anatomy with age. If such correlations can be established, they may lead
to new diagnostic protocols or interventional planning.

This section extends the PBM algorithm to the problem of establishing corre-
spondence in the presence of confounding variables and examining the correlation
of shape with explanatory variables. Like the previous section, this method allows
for a more general notion of correspondence that takes into account additional
information about the data under study. The algorithm works by expanding the
point-based correspondence model from Section 2.2 to include a regression against
the independent variables. The optimization of correspondence position is then
done on the residual to the regression model. The theory behind this approach is
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the same principle of parsimony behind the basic PBM formulation: to minimize
model parameters and maximize statistical power.

Under the assumption of a Gaussian distribution for the random variable Z
from Equation 2.37, which is the distribution of shape samples in shape space, we
can write the generative statistical model

z = µ + ✏, ✏ ⇠ N (0, ⌃) (3.9)

for particle correspondence positions, where ✏ is normally-distributed error. Re-
placing µ in this model with a function of an explanatory variable t gives the more
general, regression model

z = f(t) + ✏̂, ✏̂ ⇠ N (0, ⌃̂). (3.10)

The optimization described for the basic PBM algorithm minimizes the entropy
associated with ✏, which is the di↵erence from the mean. In this section, the goal
is to optimize correspondences under the regression model in Eqn. 3.10 by instead
minimizing entropy associated with ✏̂, the residual from the regression model. For
the simple case where particle correspondence is a linear function of t, given as
f(t) = a + bt, parameters a and b must be estimated to compute ✏̂. These
parameters are estimated with a least-squares fit to the correspondence data,

arg min
a,b

E(a,b) =
1

2

X

k

[(a + bt
k

)� z
k

]T ⌃�1 [(a + bt
k

)� z
k

] . (3.11)

Setting �E
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= �E
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= 0 and solving for a and b, we have
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The proposed regression model optimization algorithm proceeds as follows.
Correspondences are first optimized under the nonregression model (Eqn 3.9) to
minimize the entropy associated with the total error ✏. This process also establishes
an initial estimate for a and b. The next step is to optimize under the regression
model, which proceeds by gradient descent on H(Z) ⇡ 1

2

log |⌃̂| + H(P k). In
other words, the method follows the same optimization procedure as the basic
PBM framework (Section 2.3), but replaces the covariance of the model with the
covariance of the underlying residual, relative to the generative model. The two
estimation problems are interwoven: the parameters a and b are re-estimated after
each iteration of the gradient descent on the particle positions.

As an example of a correspondence optimization, the method was applied to a
set of N = 40 tori. To generate each torus, the large radius R was randomly drawn
from a Gaussian distribution R ⇠ N (35, 3), and small radius r randomly drawn
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t = 5 t = 10

t = 15 t = 20

Figure 3.2. Shape regression on an explanatory variable t correlated with the
small radius of a set of tori with r ⇠ U(5, 20).
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from a uniform distribution r ⇠ U(5, 20). An explanatory variable t
i

= r
i

+ ✏,
with ✏ ⇠ N (0, .3), was assigned to each shape sample i 2 {1, . . . , 40} to establish
a good correlation with variation in the small torus radius. Correspondences
were optimized using 1024 particles per shape and the PBM regression algorithm
outlined above. In the resulting correspondences, variation in the residuals to
the regression line exhibits one major mode that empirically corresponds to r.
Empirical observation of the regression line, which is shown in Figure 3.2 suggests
good correlation with R.

A further example of the PBM regression algorithm is given in Section 5.4,
where I apply the method to compute a model of the change in neonatal head
shape with age. The analysis of the statistical significance of regression models
from this method is discussed in Section 4.5.



CHAPTER 4

STATISTICS AND INTERPRETATION

This section describes methods for statistical analysis of correspondence po-
sitions. These methods are tools developed specifically for use with the PBM
framework and its extensions, but are generally applicable to any method for
dense landmark or correspondence-based shape modeling. There are two major
challenges for statistical analysis of shape models that I address in this chapter.
The first challenge is the very high dimensionality of the shape space, coupled
with relatively low numbers of shape samples. The second challenge is how to
visualize the significant geometric variation identified by statistical tests. This
latter consideration is important in order for researchers to interpret statistical
results in the context of biological hypotheses.

To date, research in computationally-derived shape modeling has focused mainly
on the construction of representative models, and the field has not reached a
consensus regarding the best approach to statistical analysis. For this dissertation, I
therefore propose to adapt well-established multivariate methods from the statistics
literature and the geometric morphometrics community to correspondence models.
These methods require careful application and interpretation in the context of the
high dimensionality of the correspondences in order to produce valid results. New
methods for visualizing the statistical significance of the results are also required.

The chapter is organized as follows. First, I describe computation of the sample
mean and median, and the rationale behind statistical analysis using distance
among Procrustes-aligned correspondences. Next, I discuss group-wise hypothesis
testing with correspondences and propose a principled approach that avoids the
di�culties inherent in high-dimensional, low-sample size models. This approach
is based on multivariate methods from the statistics literature that are commonly
used and understood by biomedical researchers, an important consideration for its
practicality in real scientific studies. I also present ideas for visualizing statistically
significant shape variation. Next, I discuss more complex analysis scenarios, such
as the analysis of variance, and special considerations for significance in optimized
regression analysis. Finally, I describe the analysis of object pose and scale, which
are metrics related to shape that are often examined in studies of anatomical
variability.

4.1 Summary Statistics
Recall from Section 2.2 that correspondence-based modeling methods, such as

the PBM algorithm, represent shape by sampling each shape surface in a consis-
tently ordered fashion so as to define homologous object surface points. Thus, we
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have a statistical sample of N surface representations drawn from a population
of surfaces, and the model of shape variation is the variation in a set of M ,
d-dimensional points on each of the N surfaces. The set of positions for all M
correspondences on a shape can be mapped to a dM -dimensional shape vector.
The positions of the vectors in the dM -dimensional shape space give rise to the
statistical analysis.

In order to assess statistical di↵erences among positions in shape space, it is
necessary to first define a metric for the distance between positions. The pioneering
work of David Kendall and others has shown that the true distance between shapes
in shape space is nonlinear because shapes actually lie on a complex manifold
within the dM -dimensional, Euclidean shape space [64]. Because the true, non-
linear distances are di�cult to compute in practice, however, and statistics using
nonlinear metrics is not generally well understood, researchers in the geometric
morphometrics community have developed linear distance approximations that are
currently in widespread use. One standard approach to landmark-based shape
statistics, for example, has been described by Bookstein, Goodall, Kent, and others
and uses linear distance in a local tangent plane of the Kendall shape space man-
ifold, which is computed around the mean sample shape [57, 66, 45]. The mean
sample shape is computed as the Procrustes mean of the landmarks, obtained by
Generalized Procrustes Analysis (GPA) [47, 9, 45], which places the mean landmark
configuration on the Kendall shape space manifold [45, 34].

In this dissertation, I propose to use the Euclidean distance between Procrustes-
aligned points in dM -dimensional shape space as an approximate distance measure.
The rationale behind this choice is as follows. The Procrustes mean has been shown
to be equivalent to the Euclidean mean of the Procrustes-aligned landmark points
[66, 45, 34]. When the variation among shapes in a sample is small, statistical
metrics that rely on Euclidean distances to the mean are therefore reasonable
approximations to the tangent-space approaches proposed by Bookstein, et al., with
the error in the approximation limited to the residual distance from the tangent
plane (see also [34]). Furthermore, since the statistical methods developed in this
dissertation are linear, other distance approximations can be easily substituted,
provided that they are also linear. Thus, the choice of a specific distance metric is
not critical to the research discussed in this dissertation and only depends on the
linearity of the metric.

From the arguments above, it follows that a good choice for the sample mean
of the correspondence positions is the Euclidean mean of the Procrustes-aligned
points, which is given by

µ =
1

N

NX

k=1

zk, (4.1)

where zk are the mappings of the correspondence positions to the dM -dimensional
shape space, as described in Section 2.2. The median shape is computed as the
L
1

multivariate median (e.g., [111]), with all distances between shapes weighted
equally. The problem equates to finding the sample with the minimum sum of
its Euclidean distances to all other samples. Thus, we have a cost function and a
minimization problem given by
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C(z) =
NX

k=1

kz� zkk, and z
median

= arg min C(z) : z 2 {z1, z2, . . . , zN}. (4.2)

For the applications described in this dissertation, the sample size N is small enough
to find z

median

by “brute force”, that is, simply computing C for every sample and
choosing the sample with the smallest C.

4.2 Principal Component Analysis
Generalized Procrustes analysis, as discussed in the previous section, describes

a mean shape and a space in which linear approximations to the nonlinear shape-
space distances are defined. Another important consideration for shape analysis,
however, is to characterize the variability of shape. One widely used approach is
principal component analysis (PCA) [87]. PCA identifies a set of no more than
N � 1 orthogonal basis vectors that describe the distribution of the N samples in
shape space. Each basis vector is chosen to minimize the sum-of-squares residual
error in the data; thus, the bases are optimal in the least-squares sense. For
a correspondence model, these basis vectors account for the correlations among
correspondence positions and thus describe the independent modes of variation of
shape. Shape space coordinates projected onto individual PCA modes, or PCA
loadings, are useful for visualizing variation and for dimensionality reduction in
statistical analysis (see Chapter 4).

PCA has been widely used in landmark-based shape analysis for both visual-
ization and dimensionality reduction. Kent, for example, describes PCA in the
Procrustes tangent space [66], and Cootes, et al. discuss PCA for correspondence
models [21]. A generalization of PCA to nonlinear distances on manifolds, called
principal geodesic analysis (PGA), has been developed by Fletcher, et al. [39].
While PGA o↵ers a much more accurate approach by accounting for the true
nonlinear distances between shape samples, multivariate statistical methods on
PGA loadings are not as well understood by researchers, and standard PCA remains
the most common approach.

For this dissertation research, I propose to use standard PCA on the correspon-
dence positions of Procrustes-aligned points to describe shape variability. This
approach follows from the choice of the linear distance approximation described in
the previous section. I will also use PCA for dimensionality reduction in statistical
analysis, as described in Section 4.3.1. Note that the error in this approximation
increases with the distance from the Procrustes mean. As an example of the error,
consider the “box-bump” shapes in Figure 2.10. Shapes at larger distances from
the mean (e.g., 3�) are noticibly distorted, relative to the shapes in the training
set. The distortion is due, at least in part, to the error in the linear distance
approximation.

Principal component analysis is a linear transformation of data into a new coor-
dinate space, in which each coordinate axis, or component, represents a decreasing
amount of variability in the data. The first component is the axis describing the
greatest amount of variability in the data, the second component describes the
second greatest amount of variability, and so on. PCA can be computed by an
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eigenanalysis of the covariance of the data (see, for example, [21]). Thus, a principal
component analysis for PBM correspondence models is given by the eigenvectors
and eigenvalues of the matrix

⌃ = (dMN � 1)�1YYT , (4.3)

which is the covariance of the correspondence positions from Equation 2.27. Be-
cause N < dM , the eigenanalysis is computed in the dual space of ⌃T , as described
in Section 2.3.8. The eigenvectors represent the principal component axes, and the
magnitudes of the eigenvalues indicate the relative amounts of variation in each
component. Examples of visualization and statistical analysis of PCA loadings are
given in Sections 2.5.1 and throughout Chapter 5.

4.3 Hypothesis Testing
In the introductory material for this dissertation, I discussed how statistical

shape models can be powerful tools for describing anatomical structures and are
increasingly being used in a wide variety of clinical and biological contexts. One
of the promising applications of this technology is the quantification of anatomical
shape di↵erences between control and study populations and the visualization of
those group di↵erences. The geometric morphometrics community has established
some standard approaches to statistical analysis for small collections of landmarks
that rely on traditional multivariate statistical methods [34, 1]. The statistical
analysis of higher-dimensional, computationally-derived models, however, is more
di�cult due the larger numbers of degrees of freedom and the challenge of obtaining
su�cient numbers of subjects to ensure statistical power. This problem is known in
the statistics literature as the high-dimension, low sample-size (HDLSS) problem
[2]. Another challenging aspect of HDLSS models is how to visualize the statistical
significance of geometric variation. In other words, biomedical researchers need to
understand not only whether there are significant group di↵erences, but also what
those di↵erences look like. This section discusses these issues in the context of
HDLSS correspondence models and proposes a hypothesis testing and visualization
framework based on standard approaches in multivariate statistics.

4.3.1 Challenges
In the context of point-based models, or surface samplings obtained from pa-

rameterized models, one approach to shape statistics is point-wise analysis of corre-
spondences, which are elements of R3, for shapes in three dimensions. These data
are drawn from the correspondence configurations (Section 2.2) and are marginal
distributions of the full shape space. The mean shape is the Euclidean averages
of correspondence positions, as described in the previous section, and point-wise
di↵erences in correspondence positions define local shape variation [98]. Hypothesis
tests, in this case, reveal regions of significant di↵erences between groups, which can
be directly visualized as p-value maps on the mean shapes. Styner [98], for example,
proposes a statistical analysis of the correspondence positions using a nonparametric
permutation test with the Hotelling T 2 metric, followed by a false-discovery rate
(FDR) correction for the multiple-comparison problem inherent in the analysis.
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a. Uncorrected P-values b. FDR Correction

Figure 4.1. Point-wise hypothesis test results for the putamen in a pediatric
autism study.
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Figure 4.1 is an illustration of point-wise hypothesis testing as proposed in [98]
on a model of the right putamen from normal control subjects and autism patients.
The data are taken from an ongoing longitudinal pediatric autism study [51]. For
the test, there are 10 autism structures and 15 matched normal controls. The
PBM algorithm was used to optimize 1024 correspondence points, and the analysis
included 20,000 test permutations. The correspondences were computed without
knowledge of group by including both autism and normal controls in a single model
optimization. The p-values before FDR correction that indicate significance at the
5% level are colored in red on the mean normal putamen surface in Figure 4.1a
and suggest several distinct areas of shape di↵erences. Figure 4.1b shows that
in this case, however, which is not uncommon in neurological shape analysis, no
significant p-values remain after FDR correction (using a 5% bound). This example
illustrates a major di�culty encountered in point-wise analysis: the large number of
comparisons results in a very conservative correction of the hypothesis test results,
significantly reducing the statistical power of the test.

To avoid the multiple-comparisons problem, the shape model can be analyzed
directly in the dM -dimensional shape space. The analysis in this case, however,
is also di�cult because traditional statistical metrics no longer apply with small
sample sizes [2]. At issue is the fact that the convergence of any estimator in very
high dimensional space is prohibitively slow with the respect to the number of
samples. We would need many more samples than are practical for clinical studies
in order to reliably estimate distances between, for example, population means. A
common solution is to employ dimensionality reduction by choosing a subspace of
the dM -dimensional space in which to project the data for traditional multivariate
analysis. If this subspace is linear, this entails the selection of a set of basis vectors,
and we can easily evaluate the loss of information by projecting the population onto
the k-dimensional subspace and evaluating the residual.

Principal components analysis (PCA) [105] is an attractive choice for dimension-
ality reduction. The basis vectors derived by PCA are orthogonal and determined
solely from the data. Thus, they provide an e↵ective means of visualizing the
major modes of shape variation. PCA in the Procrustes tangent space, for example,
has been widely used by biomedical researchers for landmark-based shape analysis
[34, 66]. With PCA, we can find no more than N � 1 modes that have nonzero
variance, meaning that the problem is reduced to k < N without loss of information.
Other basis functions such as wavelets [81] have also been used for dimensionality
reduction, with the di↵erence being that they impose an a-priori choice of how the
space of the model should be decomposed.

In a suitably low-dimensional shape space, such as basis vectors from PCA, we
can apply traditional statistical methods such as the Hotelling T 2 test [105]. There
are two major challenges for dimensionality reduction in shape analysis, however.
First, is the the model selection problem of how many basis vectors to choose,
which can be hard to resolve when the choice of di↵erent numbers of components
leads to di↵erent statistical results. The second challenge is how to visualize group
di↵erences, which is important for researchers in order to relate the outcomes of
statistical tests to scientific hypotheses regarding the growth and form of anatomy.
Visualization is discussed further in Section 4.3.3. The remainder of this section
describes the dimensionality reduction problem.
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Figure 4.2. Hotelling T 2 test results with increasing numbers of PCA modes for
the amygdala brain structure from a pediatric autism study.
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Figure 4.3. Hotelling T 2 test results with increasing numbers of PCA modes for
the putamen brain structure from a pediatric autism study.
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Figure 4.4. Hotelling T 2 test results with increasing numbers of PCA modes for
the hippocampus brain structure from a pediatric autism study.
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To illustrate the challenge in choosing an appropriate subspace for analysis, Fig-
ures 4.2–4.4 show the p-value results of Hotelling T 2 tests using increasing numbers
of PCA modes on three brain structures from the pediatric autism study referenced
in Figure 4.1 above. Several trends can be observed that pose a challenge for the
analysis. First, is the trend at higher numbers of modes towards increasing p-values,
which is likely due to the cumulative e↵ects of noise in the these lower-variance
modes of the PCA. The second trend is that the p-value curves are not monotonic,
that is, they do not smoothly decrease to a minimum value. It is therefore possible
to choose a variety of inconsistent interpretations of significance simply by choosing
di↵erent numbers of modes. The challenge for this type of analysis is to choose as
many modes as possible that contain meaningful variation, i.e. variation that is
distinguishable from noise, with the caveat that too few modes may result in the
loss of information that is useful for group discrimination. I will refer to this
challenge as the number-of-bases problem.

Many methodologies have been proposed to address the number-of-bases prob-
lem and good reviews, such as [35], are available. Methodologies range from
simple conventions, such as choosing only PCA modes that account for at least
5% of the total variance, to more systematic approaches that attempt to model
the problem based on its dimensionality and sample sizes. Notable among these
latter approaches, parallel analysis is commonly recommended as the best method
for determining modes with variance that is distinguishable from noise [43].

4.3.2 Hypothesis Testing Framework
The previous section analyzed several important challenges for hypothesis test-

ing with correspondence shape models and suggested that a systematic approach
to dimensionality reduction, followed by standard multivariate tests, will avoid the
HDLSS problem. In this section, I outline a specific approach in more detail. The
remaining challenge of how to present an intuitive visualization of hypothesis test
results is left for the next section.

The first step for hypothesis testing is to compute a single correspondence model
using the combined data from all of the groups. I will refer to this model as the
combined group model. It is important that the model is constructed without
knowledge of the group classifications, or the results of the test will be biased. If
the analysis compares two separate correspondence models, they will typically show
a very high probability of group di↵erences, even if the data was originally drawn
from the same shape distribution. Consider two models for the same set of spherical
shapes, for example. An infinite number of equally-optimal correspondence models
can be found by simply rotating all of the correspondences around the sphere
centers. Thus, it is possible to find group di↵erences where none exist, unless
group statistics are measured within a single, unified model.

For a correspondence point model of shapes embedded in a d-dimensional space,
we have a dM ⇥ N shape matrix P, where columns of P are the shape vectors of
correspondence points for the set of all samples. After the optimization of the
combined model, dimensionality is reduced by projecting P onto the basis vectors
determined by PCA analysis, i.e., P̃ = EP, where columns of E are the eigenvectors
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of the covariance matrix of correspondences, in decreasing order of the magnitude
of their eigenvalues.

Following the PCA, the next step is to choose the number of PCA bases to
retain using parallel analysis. In the context of principal components analysis of
N , vector-valued data samples of dimensionality dM , the goal of parallel analysis is
to identify the subset of the components that contain variation distinguishable from
the expected variation resulting from noise, where noise is modeled by an isotropic,
multivariate unit Gaussian, i.e. a random dM�vector X ⇠ N (0, I). To make this
distinction, we need an estimator E for the expected values of the variances in
the ordered PCA modes of random samplings on X, given the fixed sample size N .
Because PCA reorders modes based on their percentage of the total variation, there
is no obvious closed-form expression for E, so it is estimated using Monte Carlo
simulation. Many random sample sets of size N are independently drawn from X,
followed by PCA on each sample set and ordering of the associated eigenvalues.
The ordered eigenvalues are then averaged to produce an estimate of the Gaussian
noise variance profile across modes. Note that the eigenvalues in this case quantify
variance, and the percentage of total variance for a PCA mode is equivalent to the
ratio of its eigenvalue to the sum of all eigenvalues.

In order to determine the number of modes to use from parallel analysis, the
percent-total-variance profiles, or scree plots, from the Monte Carlo simulation and
the PCA of the true data are compared. Only the modes where the percent-
total-variance in the true data is greater than the simulation data are retained.
Figure 4.5, for example, is a scree plot of the percent-variances associated with
shape data of a putamen brain structure (N = 25, dM = 3000) [18] (solid line) and
the variances from the Monte Carlo noise variance simulation (dashed line). The
two lines intersect just before mode 6, and so we would consider only modes 1-5 in
the analysis.

Once we have chosen the set of k PCA basis vectors by parallel analysis, the
next step for hypothesis testing is to project the correspondence data onto the bases
to give a set of k, principal component loadings. Standard multivariate statistics
are now possible on the PCA loadings. A widely used approach to multivariate
hypothesis testing is the parametric Hotelling T 2 test [105], which is the method
used for all results reported in this dissertation. The null hypothesis for the test
is that the two groups under comparison are drawn from the same distribution. A
low p-value therefore provides evidence for rejection of the null hypothesis. The
Hotelling T 2, two-sample metric is given by

T 2 =
(n

a

n
b

)(n
a

+ n
b

� 2)

n
a

+ n
b

(µ
a

� µ
b

)Tw,

w = (⌃
a

+ ⌃
b

)�1(µ
a

� µ
b

),
(4.4)

where µ
a

and µ
b

are the means, ⌃
a

and ⌃
b

are the covariances, and n
a

and n
b

are
the sample sizes of the two groups, respectively.

To illustrate the application of proposed hypothesis testing method, I present an
analysis of the brain structure models for the pediatric autism study introduced in
the previous section. The hypothesis test p-value results for the amygdala, putamen,
and hippocampus models from Figures 4.2–4.4, respectively, are 0.003, 0.046, and
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Figure 4.5. Parallel analysis for the putamen data
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0.100, with the number of PCA modes chosen as 5, 6, and 5. Of particular interest
is the fact that the result for the putamen indicates group di↵erences at the 5%
significance level, while the point-wise hypothesis tests shown in Figure 4.1 indicate
no significant di↵erences. This di↵erence illustrates the increased statistical power
of the proposed testing method, which avoids the multiple-comparisons problem.

4.3.3 Visualizing Significant Group Di↵erence
In contrast to the point-wise statistical method illustrated in Figure 4.1, a signif-

icant drawback of hypothesis testing in a PCA subspace is that the group di↵erences
in this space are not necessarily easy to visualize and interpret from an anatomical
perspective. The hypothesis test poses the question of whether there is evidence
for significant group di↵erences. The next logical question that researchers may
ask is what those group di↵erences look like. This section proposes two methods
for visualizing group di↵erences. The first approach is a direct visualization of the
linear discriminant implicit in the Hotelling T 2 hypothesis test metric. I also discuss
how this approach di↵ers from the group mean di↵erences, which does not confer
any information regarding statistical significance. Secondly, I propose an approach
to visualizing mean di↵erences using strain tensors from a deformation between the
group means that is analogous a standard method used for landmark data by the
geometric morphometrics community.

To gain some insight into the geometric di↵erences that are most statistically
significant between groups, one approach is to transform the group di↵erences
measured in the PCA space back into the full shape space where they can be
visualized on the mean shape surfaces. Implicit in the Hotelling T 2 metric is a
linear discriminant vector which indicates the direction in the PCA space along
which the maximum group di↵erence is observed. The discriminant vector w
(Equation 4.4) is also known as Fisher’s linear discriminant and is the line along
which the between-group variance is maximized with respect to within-group vari-
ance [105]. The Hotelling T 2 metric is therefore a scaled projection of the group
di↵erence onto the discriminant line. The most significant group di↵erences are
therefore seen by transforming w back from PCA space into the full-dimensional
shape space, i.e. ŵ = E�1w̃, where w̃ is w padded to n-dimensions with n�k zeros.
The components of the dM -vector ŵ can then be mapped onto a visualization of
mean correspondence point positions. One possible visualization is a surface mesh
reconstruction from the correspondence points of group a. The resulting linear
discriminant analysis (LDA) visualization indicates group di↵erences in shape that
the test metric identified as the most e↵ective for discrimination. The di↵erences
are shown on the mean shape for a, in the direction of the mean shape for b.

Figure 4.6 is an example of an LDA visualization for the putamen data intro-
duced in Section 4.3.1. The discriminant vector is shown on the the mean control
population correspondence points, with arrows indicating the direction from patient
to the normal control populations. The visualization indicates a shortening of the
anterior and posterior regions of the putamen, with a thickening in the medial
region.

One common approach to empirical evaluation of group di↵erences is to visualize
the point-wise di↵erence vectors between group mean shapes. This visualization,
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Figure 4.6. LDA visualization of the right putamen from an autism study

Figure 4.7. A comparison of the linear discriminant visualization (left) with a
visualization of the mean group di↵erence (right) on a PBM correspondence model
of the left putamen in a shape study of autism versus normal control.
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however, does not give any indication of statistical significance unless it is accom-
panied by a point-wise hypothesis test method (see Section 4.3.1). It is possible, of
course, that the group mean di↵erence vector may be similar to the discriminant
vector, especially in cases where group shape di↵erences are pronounced. In many
other cases, however, the LDA visualization can be very di↵erent. Figure 4.7
compares the two approaches for a PBM model of the left putamen from the autism
study described in Section 4.3.1. Note that the group mean di↵erences in this case
are very di↵erent from the linear discriminant.

Though group mean di↵erences do not indicate statistical significance, they
are still a traditional approach to empirical evaluation of shape data. The most
common method for empirical evaluation of group di↵erences in two-dimensional
landmark models are visualizations of a thin-plate spline deformation between the
group means [11]. Visualizations of deformations indicate regions of expansion and
contraction of the surface, which better reflect a model of biological growth than
simple directional vectors. Note that this type of analysis is very similar to the
voxel-based morphometry approaches reviewed in Section 1.2.

A similar approach to the thin-plate spline methods for landmark models can
be applied in the context of correspondence models of three-dimensional shapes.
To visualize deformations between the group mean shapes, we can compute metrics
on the displacement field describing the mapping from points x on one group mean
to corresponding points x0 on the another. Using the set of correspondence points,
a smooth transformation T (x) = x0 may be computed using a thin-plate spline
interpolation. Details for computing T (x) are omitted here, as good descriptions
can be readily obtained elsewhere (e.g., [11, 113]). To describe mean di↵erences,
I propose a visualization of strain, which is a measure on the Jacobian J of the
deformation field x � T (x), and describes the local stretching and compression
caused by the deformation. The Lagrangian strain tensor is a symmetric, second
order tensor given by

E =
1

2
(J + JT + JTJ). (4.5)

The eigenvectors of E indicate the principal directions of strain, and the eigenvalues
of E indicate the unit elongations in those directions. An e↵ective visualization for
the strain tensor is an ellipsoid with principal axes given by the eigenvalues and
oriented along the eigenvector directions.

Figure 4.8 is a visualization of the strain tensors computed from a thin-plate
spline deformation of the mean patient shape to the mean normal control shape
for the putamen data. In the figure, the three principal axes of each ellipsoid are
scaled by the three principal eigenvalues of the strain tensor at each correspondence
position and oriented according to their corresponding eigenvectors. Ellipsoids and
the surrounding surface are colored according to the value of the first principal
eigenvector (the longest axis), with yellow indicating negative (compression) and
blue indicating positive (stretching). While a clinical interpretation of this result
is beyond the scope of this analysis, this visualization may o↵er a more detailed
insight into how groups di↵er than a mean di↵erence visualization. Note, however,
that this visualization also gives no indication of the statistical significance of these
di↵erences.
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Figure 4.8. Strain tensors for the right putamen from an autism study. Tensor
scale is exaggerated for visualization purposes.
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4.4 Linear Models and Regression
Many studies in biomedicine must account for variables, such as age, that are

independent of shape, but that are somehow correlated with shape, either directly
or indirectly through a common factor. These variables are called explanatory
variables and often cannot be completely controlled for by the experimental design.
This section illustrates how standard multivariate methods may be used on the PCA
loadings from the previous section to apply the PBM correspondence framework to
statistical analysis in the presence of explanatory variables.

A common approach to controlling for explanatory variables is to model the
outcome variables (e.g., shape) as a linear function of the explanatory variables and
analyze the residual variation from this model. A model of outcome as a function
of explanatory variables is known as a regression model, and it is important to
assess whether the regression is a significantly better estimate of the data than
the sample mean. Significance is commonly assessed by comparing the ratio of the
residual variation in the regression model to the total variation in the data [105].
A common test statistic for significance is

T =
R2/(p� 1)

(1�R2)/(N � p)
, (4.6)

where R2 is Pearson’s coe�cient of regression, generally defined as R2 = 1� SS
err

SS
tot

.
The constant p is the number of parameters in the regression model, N is the
number of data points, SS

err

is the sum-squared residual error in the regression
model, and SS

tot

is the total variance in the data. In general, R2 can be related
to the unexplained variance of the generated model and is also commonly used to
measure the goodness-of-fit for the regression model. When the residuals of the
linear model are independently and identically-distributed Gaussian, the statistic
T follows an F -distribution with N

1

� 1 and N
2

�N
1

degrees of freedom under the
null hypothesis [105]. The significance of the correlation is therefore estimated as
the probability of T under the F -distribution.

For univariate shape parameters, such as single PCA loadings, we can perform
a simple regression analysis with significance assessed as described above. In the
context of hypothesis testing, a group comparison with the residuals to the regres-
sion line can be done using standard analysis of covariance (ANCOVA) methods.
ANCOVA introduces the group label as an explanatory variable and tests the
significance of its influence on the variance of the model. When including a group
factor, it is also important to establish that there is no significant correlation, or
interaction, between the group variable and the explanatory variables, otherwise
the simple regression model cannot be considered valid.

As an example of an ANCOVA analysis, consider the case of a single explanatory
variable a 2 < and a two-group comparison with group variable g 2 {0, 1}. The
interaction model is given by

y = �
1

a + �
2

g + �
3

ag + ✏, (4.7)

where ✏ is the residual, and y is the response variable. The response variable y
might represent, for example, a single shape PCA loading, and the variable a might
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indicate test subject age. To test whether the interaction term ag is significant,
we can use a t-statistic to test the hypothesis that �

3

= 0, following standard
approaches from the statistics literature (for example, [105]). If the interaction
term �

3

is not found to be significant, then we drop the term ag and test the
significance of �

2

in the regression model

y = �
1

a + �
2

g + ✏, (4.8)

under the assumption that the response y in both groups varies in the same way
with a.

The linear models in 4.7 and 4.8 can be extended to vector-valued response
variables (e.g., multiple correspondence PCA loadings), and significance of vector-
valued parameters �

i

assessed following a similar logic to the ANCOVA analysis.
The extension of the ANCOVA model to multiple response variables is known
as multiple analysis of covariance (MANCOVA), which determines significance
by comparing metrics on the covariance of vector-valued residuals to the fitted
models. For the results presented in this dissertation, the above understanding of
the statistical analysis of linear models is su�cient. For more detail, however, the
reader is referred to the many comprehensive texts on the subject (for example,
[53]).

To visualize shape variation in linear regression models, I propose to compute
predicted response variables from estimated model parameters using the linear
regression equation

ŷ = �̂
1

a + �̂
2

g. (4.9)

The fitted k-vectors ŷ represent PCA loadings of the mean shapes for each group
at a given value of a. The PCA loadings can be rotated back to the full dM -
dimensional shape space, as described for the linear discriminant vector w in Sec-
tion 4.3.2, and added to the Euclidean mean correspondences for visualization
purposes. Some examples of this type of visualization are given in Section 5.1.
Visualizing reconstructed shapes along the regression line allows for empirical inves-
tigation of both shape change with explanatory variables and how group di↵erences
change with explanatory variables.

4.5 Statistical Significance of Regression
While regression analysis can be done in the PCA space using standard linear

regression and multivariate metrics, as outlined in the preceding section, the PBM
algorithm extension described in Section 3.4 proposes a method for computing
regression in the full shape space and an optimization of the correspondence posi-
tions with respect to the regression model. In order to understand the statistical
significance of the optimized model, we need a systematic, unbiased method for
testing the correlations. This section describes such an approach and is joint
research with Manasi Datar, at the University of Utah.

In this case where the outcome variables are correspondence-optimized shape
parameters, the underlying assumptions of the parametric F -test of the statistic
T in Equation 4.6 may not hold. Furthermore, optimization with knowledge of
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the underlying parameter could lead to optimistic estimates of significance, be-
cause we are explicitly minimizing the residual. To overcome this, we propose a
nonparametric permutation test for significance. A permutation test repeatedly
permutes the values of the explanatory variables, systematically constructing a
histogram of the resulting test statistics. The histogram is thus an estimation of
the distribution of the test statistic under the null hypothesis that the explanatory
variable has no relationship to the dependent variable. Given data (z

i

, t
i

), we
generate the kth permuted data set as (z

i

, t
⇡k(i)

), where ⇡
k

is a permutation of
1, . . . , n. For each permutation we compute a test statistic T

k

using Equation 4.6.
Then comparing our unpermuted test statistic T to the distribution of T

k

, we can
compute the p-value as the percentage of T

k

that are greater than T . In the case of
regression-optimized correspondences, described in Section 3.4, the correspondence
optimization is performed on each permutation separately, and thus the results of
the permutation test are not biased by the correspondence method.

To illustrate the regression analysis, this section concludes with an experiment
on a several sets of 40 synthetically generated tori, parameterized by the small
radius r and the large radius R. The values for the shape parameters were chosen
as independent functions of a uniformly distributed explanatory variable t. The
definition of R2 in the test statistic described in the preceding section (4.4 is
extended to include the two independent variables for this experiment:

R2 = 1� (SS
err

)
r

+ (SS
err

)
R

(SS
tot

)
r

+ (SS
tot

)
R

. (4.10)

Two sets of time-dependent shapes with p-values {0.01, 0.1} were generated in
order to examine the performance of the system with and without significant
correlation. To construct these example data sets, a known value for the statistic
T was used to generate a target R2. The values of r and R were chosen so
that R2 for the generated set was approximately equal to the target R2 for that
experiment. Along with explicit correspondences generated from the standard torus
parameterization, we optimized 256 correspondences using the PBM regression
method from Section. 3.4, and also standard PBM optimization without regression
for comparison. An analysis of the resulting models showed that both sets of
correspondences exhibited two, essentially pure modes of variation corresponding
empirically to variation in r and R.

For the analysis of the test of statistical significance of the correlations, we
constructed a histogram of T -statistic values using 1000 permutations of the ex-
planatory variable t. Test statistics were computed using the two dominant PCA
modes as the r and R values in 4.10. The p-values were then estimated from the
permutation test histogram. Table 4.1 shows the results of the two permutation
tests for the explicit correspondences and correspondences generated using the
proposed methods. A comparison of the parametric p-value with the p-values
obtained by the permutation tests confirms that the proposed methods preserve
the relationship between the explanatory variable and the dependent variables.
The correspondence-based approaches, particularly with the regression model, show
greater significance than the parametric case. This might be an inherent property of
the statistic, or it could be an artifact due to the limited number of example datasets
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and the limited number of permutations. Future work is warranted to investigate
these questions, including simulations with more datasets, more permutations, and
a bootstrapping procedure to analyze variability of the p-values computed by the
various methods.

4.6 Analysis of Nonshape Components:

Pose and Scale
In Section 3.4, the shape of an object was defined as all geometric informa-

tion distinct from translation, orientation, and overall size. This is the common
definition introduced by Kendall, Bookstein, and other pioneers in shape analysis
[65, 11, 45, 34]. Typically, however, a biomedical study is often also interested in
the nonshape components that describe geometric variability in an object. Thus,
it is important to establish a definition of object size and briefly discuss how the
size and the orientation, or pose, of biological structures can be examined.

For this dissertation, the size of an object is given by the normalizing scale
computed by Generalized Procrustes Analysis (GPA) and the pose of the object
by the registration transforms computed by GPA. These are natural definitions
that are compatible with the proposed use of the Procrustes mean and distances
among Procrustes-aligned correspondences (see Section 4.1). Procrustes scale for
a given dM -dimensional shape vector zk is determined by an iterative process
that alternates groupwise least-squares, rigid registrations of all N correspondence
configurations, with a scale normalization step determined by

s
k

=

 P
N

i=1

kẑ
i

k2
kẑ

k

k

! 1

2

, (4.11)

where ẑ
i

represent the partially-optimized configurations. After convergence of
the GPA algorithm, the final scale normalization represents Procrustes scale and
the final rigid registration transforms represent the pose parameters. For a more
complete description of Generalized Procrustes Analysis, the reader is referred to
the original papers [9, 47] and the many subsequent review works [45, 34].

Hypothesis testing on Procrustes scale parameters is done using a standard,
two-tailed parametric t-test. The group di↵erences in relative position, which are
the translational components of the rigid Procrustes alignment parameters, can

Table 4.1. Results of permutation tests (1000 permutations)

p-value
(theory)

p-value
(parametric)

Correspondence Type
Explicit Min. Entropy Regression-based

0.01 0.011 0.011 0.007 0.004
0.1 0.095 0.095 0.067 0.066
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be analyzed with a parametric Hotelling T 2 test. The analysis of rotational pose
parameters requires a general, nonparametric hypothesis test for metric spaces [49],
which relies only on pairwise distances between the data and geodesic distances in
the rotation group.

In a multiobject complex setting (Section 3.2), where each of the N shape
samples consists of K > 1 structures, we must decide the level of granularity
at which to align shapes in order to analyze pose and scale. Previous work [46,
42] employs a hierarchical strategy, with a global coordinate frame for the entire
complex, followed by a set of local coordinate frames for each object. The global
frame is established by alignment of the entire complex, resulting in N sets of
global pose parameters. Remaining pose discrepancies among the individual objects
constitute the local coordinate frames, which are determined through GPA on the
set of N individual structures within the complex, resulting in a set of K local pose
parameters for each of the N complexes.

Finally, it should be noted that the role size and pose play in shape analysis may
vary with the study design and the data under consideration. To be consistent with
established definitions of shape, distinct from pose and orientation, I have proposed
an iterative application of GPA during the PBM optimization process (Section 2.4).
The PBM algorithm can, however, also accommodate a definition of shape that
includes scale. This is accomplished in one of two ways: either by omitting the
GPA entirely during the optimization or by re-introducing the Procrustes scale
into the Procrustes-space correspondence positions after optimization with GPA.
As a general rule, I propose the latter approach because it produces correspondences
that are more interpretable with respect to established definition of shape.



CHAPTER 5

APPLICATIONS

This chapter presents applications of the particle-based modeling (PBM) algo-
rithm, its extensions, and the statistical analysis tools that are developed in the pre-
ceding chapters. The methods are applied to six di↵erent studies in neuroanatomy
and genetics. These studies represent validation of the specific contributions of
the dissertation, which are to develop a more robust and unified framework for
addressing the wide variety of challenging shape analysis problems in biomedicine
(Section 1.5). Using the PBM tools, the studies in this chapter provide new scientific
insights into current biomedical problems and suggest new hypotheses for further
investigation.

The application areas in this chapter are neurobiology, with a focus on clinical
psychiatry, and genetic phenotyping of mouse models of human disease and devel-
opment. As discussed in Section 1.3, these two fields of basic research increasingly
rely on statistical models of shape to characterize normal shape variation and to
quantify shape di↵erences between populations. The neurobiology studies presented
here focus on basic insights into the process of neurodevelopment and investigate
the possibility of new diagnostic measures of individuals against normative models.
The mouse phenotyping experiments described in this chapter are among the first
applications of correspondence models to phenotyping, for which the state-of-the
art is still empirical evaluation and landmarking methods. The phenotyping ex-
periments are designed to investigate gene function in the normal patterning and
development of skeletal structures and provide insights into normal human growth
and development, with implications for important questions in anthropology.

Neurobiology and phenotyping each pose special challenges for shape analysis,
which are among the topics addressed in this chapter and the motivation for much of
the work in the preceding chapters. Brain structures often exhibit subtle variation
in shape and require methods with su�cient statistical power to examine di↵erences
among populations. By contrast, anatomical features in genetically modified mice
can change dramatically when mutated. Features are also typically irregularly
shaped. Correspondence in mutated specimens is therefore even more di�cult to
assign and the statistical challenge is how to detect subtle group di↵erences in the
presence of such large anatomical variation. As discussed in the preceding chapters,
many problems in biomedicine also require assessment of the covariation in shape
among discrete structures. Some brain structures, such as the cortical surface,
exhibit a great deal of geometric variability among normal subjects and require
additional information to reliably assign correspondence.

In light of the variety of challenges for shape analysis in biomedicine, the results
in this chapter are a demonstration of the e�cacy of the PBM algorithm in ad-
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dressing diverse shape analysis problems with a uniform statistical approach and a
minimum of parameter adjustment and preprocessing considerations. For all of the
results presented in this chapter, I have followed the same shape analysis pipeline
procedures described in Section 2.4 to prepare and process the segmentation data,
with any modifications in the the PBM optimization given by the relevant algo-
rithm extensions described in Chapter 3. Only the curvature-adaptivity parameters
required empirical adjustment for di↵erent datasets; these parameters were set
according to the criteria outlined in Section 2.4. No other free parameters are
required for the PBM correspondence optimization.

A few notes on the software for statistical analysis and visualization are war-
ranted for the presentation to follow. For statistical analysis, I have used the freely
available GNU R project software, which includes implementations of standard
methods for univariate and multivariate hypothesis testing, estimation of linear
model parameters, and the analysis of model variance [90]. To reconstruct surfaces
from correspondence positions, I have used the method of Hoppe, et al. [54]
for surface reconstruction from a collection of unorganized points, which operates
directly on the set of correspondence point position, and is implemented in the open
source Visualization Toolkit (VTK) [93]. I have also used VTK to construct most
of the visualizations presented in this chapter.

The remainder of this chapter is organized as follows. The first section presents
a group comparison of the caudate between populations of normal and autistic
children, with age as a covariate. The second section describes a shape analysis of
a complex of ten subcortical brain structures and a groupwise comparison between
autism and normal controls. The third section presents a test of the e↵ectiveness of
the PBM algorithm for establishing correspondence among cortical surfaces, using
sulcal depth to drive the correspondence. The fourth experiment is an examination
of the change in pediatric head shape with age. The chapter concludes with two
mouse phenotyping studies: The first study examines the patterning of forelimb
bones in a Hoxd11-knockout mouse. The second mouse phenotyping study examines
shape changes in the cranial base of a Pax7 mutant mouse.

5.1 Group Comparison of the

Caudate in Autism

5.1.1 Introduction
In vivo imaging of brain anatomy, particularly magnetic resonance imaging

(MRI), has made shape analysis a feasible tool for the study of many problems
in neuroanatomy. In clinical psychiatry, one important new application for shape
analysis is the study of autism and its relationship to the morphology of subcor-
tical brain structures. The study presented in this section focuses specifically on
the shape of the caudate. The overall size of the caudate has previously been
observed to correlate with autism diagnoses [20, 72]. It is therefore reasonable to
hypothesize that significant shape di↵erences might also be observed. If significant
relationships can be observed among brain structure shape and autism diagnosis,
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they may suggest new diagnostic procedures and standards for quantification of
disease progression.

The study in this section is a preliminary examination of caudate shape and
its relationship to autism diagnosis. This research was conducted in collaboration
with Martin Styner and Heather Hazlett from the University of North Carolina
(UNC), Chapel Hill. Using the PBM correspondence algorithm, I examine brain
structure data taken from an ongoing study in pediatric autism that is currently
underway at UNC [51]. The results of this study provide some preliminary evidence
for patterns of correlation with shape and suggest that further, more exhaustive
investigations are warranted. The caudate study also provides a nice illustration
of the application of the PBM algorithm and statistical methods to a realistically
complex clinical study design.

5.1.2 Methods
The data for this study consist of segmentations of the left and right caudates

from MRI brain scans of autistic subjects (AUT), typically-developing controls
(TC), developmentally-delayed subjects (DD), and pervasive developmentally de-
layed subjects (PDD). The latter two categories are present in the study to control
for the e↵ects of developmental disorders unrelated to autism. The segmentations
were done by trained experts using semi-automated procedures [46]. The UNC
data includes subjects at both two and four years of age and includes multiple MRI
scans for some subjects that were acquired at di↵erent ages. For this study, where
multiple MRI scans exist for a chosen subject, only one was selected, and the choice
of scans was made in an e↵ort to balance the overall distribution of subject age.

A total of 51 subjects were selected for the study. Subject age is clustered
around two timepoints with means T

1

= 33.55 months and T
2

= 45.66 months,
with standard deviations �

1

= 5.86 and �
2

= 5.62, respectively. The four group
classifications are pooled into two categories for the statistical analysis. The first
group (TC+DD) consists of 19 typical controls and 4 developmentally-delayed
subjects. The second group (AUT+PDD) consists of 22 autism subjects and 6
pervasive developmentally-delayed subjects. In the TC+DD group, there are 10
subjects clustered around time T

1

and 9 subjects clustered around time T
2

. In the
AUT+PDD group, there are 10 subjects clustered around time T

1

and 12 subjects
clustered around T

2

.
Correspondence models of both the right and left caudate structures were com-

puted using the PBM algorithm to optimize 512 correspondence points per shape
simultaneously on all N = 51 subjects, without knowledge of group classification.
The optimization procedure employed a curvature-adaptive sampling (Section 2.3.3)
and iterative alignment and scaling by the generalized Procrustes analysis.

5.1.3 Results and Discussion
Hypothesis testing was done using a MANCOVA analysis (Section 4.4) of the top

5 principal component loadings from a PCA of the correspondence data. The left
caudate and the right caudate models were each analyzed separately. The number
of components was chosen using parallel analysis, as described in Section 4.3.2. The
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null hypothesis for the test is that caudate shapes for the AUT+PDD and TC+DD
groups are drawn from the same distribution. Including age as an explanatory
variable, the p-values for the group⇥age interaction term of the MANCOVA models
are p = 0.076 for the right caudate and p = 0.445 for the left caudate. Subsequent
analysis of the MANCOVA models without the interaction terms gives F = 2.64
and p = 0.041 for the left caudate and F = 1.37 and p = 0.260 for the right caudate.
Thus, there is evidence at the 5% significance level for group di↵erences in shape in
the left caudate, but there is no evidence for group di↵erence in the right caudate.
The relatively low p-value on the interaction term, however, suggests that there
may be some interaction between age and group in the right caudate.

In order to gain further insight into the possible interaction between group and
age in the right caudate, I performed a second analysis of the data for this structure
at each time point T

1

and T
2

separately. Using the same PCA component loadings
as above, MANCOVA analysis at T

1

indicates no significant interaction with group
(p = 0.956) and a significant di↵erence in the shape components, with F = 3.373
and p = 0.0358. At T

2

there is also no evidence for group interaction (p = 0.856),
but no evidence for significant di↵erences in group shape, with F = 0.250 and
p = 0.933.

Figure 5.1 summarizes the hypothesized relationship between shape, age, and
group in the right caudate. The figure shows a cartoon depiction of the sample
distributions in the five-dimensional (5-D) shape space. The actual regression in
the 5-D space would be di�cult to visualize, and the cartoon regression lines in
the figure are used instead to illustrate the main hypotheses resulting from the
MANCOVA analysis. The group levels in the analysis are g = 0 for TC+DD and
g = 1 for AUT+PDD, thus the regression line for the AUT+PDD level is shown
above in red and the regression line for TC+DD is shown below in blue. The
samples are clustered around time points T

1

and T
2

. A visualization of the mean
group di↵erence at T

1

is shown on the left. Group di↵erence at T
2

is shown on the
right. The group di↵erence is computed as the Euclidean di↵erence between shapes
in the 5-D space along the true regression at for the average times T

1

and T
2

and
visualized as arrow glyphs in the normal direction to the mean TC+DD surface.
From the figure, it is clear that the group di↵erences are larger at T

1

than T
2

, which
may account for the better group discrimination at T

1

.
Figure 5.2 illustrates the change in shape with respect to age within the two

groups. The caudate shapes illustrate the change in shape from T
1

= 33.55 to
T
2

= 45.66 along the each of the TC+DD (left image) and AUT+PDD (right
image) regressions. In both cases, the change in shape from T

1

to T
2

is in a similar
direction in shape space, but the magnitude of the change is much larger in the
TC+DD group. This analysis suggests the hypothesis that the right caudate in the
AUT+PDD group may develop faster than the TC+DD, with the group di↵erences
at T

1

in part due to the di↵erence in developmental rates.
A similar analysis to that given for the right caudate in Figures 5.1–5.2 is

illustrated for the left caudate in Figures 5.3–5.4. In contrast to the right caudate,
MANCOVA of the left caudate indicates significant group di↵erence when both
T
1

and T
2

are considered together, but no significant di↵erences when analyzed
separately at T

1

(p = 0.122) and T
2

(p = 0.723). This suggests that there may be
systematic group di↵erences in shape regardless of age, but that a larger sample
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Shape 
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Figure 5.1. Hypothesized relationships among shape, age, and group in the right
caudate.



85

  

T1 T2

(similar 
direction)

TC+DD:
Larger change
with Age

AUT+PDD:
Smaller change
with Age

Shape 
(5-D)

AUT+PDD

TC+DD

Figure 5.2. Shape change with respect to age within TC+DD group and the
AUT+PDD group for the right caudate.
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Figure 5.3. Hypothesized relationships among shape, age, and group in the left
caudate.
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Figure 5.4. Shape change with respect to age within the TC+DD group and the
AUT+PDD group for the left caudate.
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size than is available at any single timepoint is required for su�cient statistical
power to reveal those di↵erences. Note that Figure 5.4 also shows how there is only
a relatively small change in shape with age in both groups.

In conclusion, the PBM analysis of the caudate reveals group shape di↵erences
between autism and control groups in the left caudate, regardless of subject age. A
more detailed analysis of the right caudate suggests that there may be significant
di↵erences in younger subjects that decrease with age. These results represent only
a preliminary investigation and are not su�cient to draw clinical conclusions. They
do, however, suggest interesting new hypotheses for investigation. Further research
on this data that includes a much larger sample size is currently underway.

5.2 Multiobject Analysis of 10 Subcortical

Structures in Autism

5.2.1 Introduction
This section presents results from a PBM analysis of a multiobject shape com-

plex. Recall from Section 3.2 that a multiobject complex is defined as a set of
solid shapes, each representing a single, connected biological structure. The shape
complexes for this study are segmentations of 10 subcortical brain structures, taken
from the clinical study of pediatric autism at the University of North Carolina,
Chapel Hill that was introduced in the previous section [51]. For autism, the
joint analysis of multiobject complexes is of special interest because the disor-
der is thought to represent a confluence of several underlying abnormalities and
thus it potentially impacts the relationships between brain structures[20]. The
PBM analysis presented in this section finds significant group di↵erences in shape
between normal and patient populations that have not been seen previously in
the UNC data and demonstrates how an optimized joint model can yield results
with a higher statistical power than a model constructed by simply optimizing
the correspondences on individual structures. These results are a proof-of-concept
example of the applicability of the multiobject PBM extension (Section 3.2) to a
non-trivial and compelling clinical application.

5.2.2 Methods
The data in this study consist of the multiobject segmentations taken from

the UNC autism study, which includes MRI brain scans of autistic subjects and
typically-developing controls at time points of 2 and 4 years of age. Using a
semi-automated procedure, trained experts produced binary segmentations of 10
subcortical structures, which consist of the right and left caudate, globus pallidus,
amygdala, putamen, and hippocampus [46]. For this analysis, we used 10, 2-year
old male typical normal (TC) controls and chose 15 age-matched autism (AUT)
subjects for comparison. Multiobject correspondences were computed from the
segmentations as described in Section 3.2 to produce a combined model of both
groups. We sampled each complex of segmentations with 10,240 correspondence
points, using 1024 particles per structure. For comparison, we also computed point-
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correspondence models for each of the 10 structures separately and concatenated
their correspondences together to form a marginally optimized joint model.

5.2.3 Results and Discussion
Scale and pose were calculated for structures in the complex as described in

Section 4.6. A hypothesis test indicates significant group di↵erences in scale only
for the right and left amygdala, with p-values of 0.0017 and 0.018, respectively.
These results are consistent with previous observations in the literature of volume
di↵erences in structures from autistic and normal brains (e.g., [46]), although the
analysis does not indicate significant scale di↵erences for other structures that
were reported in that work. Hotelling T 2 tests on relative structure positions do
not suggest any di↵erences between the groups, with p > 0.05 for all structures.
Similarly, group di↵erences in pose are not indicated by the statistical pose analysis,
with p > 0.05 for all structures. This result for pose is also consistent with results
given in [46], who similarly did not observe significant pose di↵erences in this data.

The hypothesis test method outlined in Section 4.3.2 results in a highly signifi-
cant p-value of 0.0087, with 8 PCA modes chosen by parallel analysis. This result
is the first evidence shown for these data for group di↵erences in shape alone. Gorc-
zowski [46] reports group di↵erences when scale is included with shape, but reports
insignificant shape discrimination between groups when the shapes are normalized
to the same size, as in this study. Parallel analysis of the marginally-optimized
model indicates that the first six modes should be used, which gives a p-value of
0.0480. While the test still suggests group di↵erences at the 5% significance level,
note that the result is an order of magnitude lower in statistical power.

To illustrate the morphological di↵erences that are driving the shape result, the
direction and magnitude of the linear discriminant vector in the Hotelling T 2 test
(w in Equation 4.4) is visualized by the colormap in Figure 5.5. The length in the
surface normal direction of each of the point-wise discriminant vector components
is given by the colormap. Yellow indicates a negative (inward) direction and blue
indicates a positive (outward) direction. The right amygdala for the normals is
shown in Figure 5.6 as a more detailed example, with the vectors depicted as
arrows. This type of visualization gives an indication of the group di↵erences in
shape that the hypothesis test statistic identified as the most e↵ective for group
discrimination. Note the clear trend towards a shortening of the anterior end of the
amygdala in the autistic versus the normal population.

Previous work in shape analysis has suggested hypothesis testing on individual
correspondence point positions instead of working in the full dimensional shape
space [98]. For comparison, I ran statistical tests at every correspondence point
location, using an open-source implementation of the nonparametric Hotelling T 2

method described in [98], with 20,000 permutations among groups and an FDR
bound set to 5%. Uncorrected p-values show widespread di↵erences, but no sig-
nificance remains after FDR correction. This result is in contrast to the global
shape result and underscores one of the di�culties with point-based shape analysis
at a local feature scale: the unavoidable reduction in statistical power due to the
necessary correction for multiple comparisons (see also Section 4.3.1).
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Figure 5.5. Mean brain structure complexes with average pose. Colormap
indicates the magnitude and direction of the linear discriminant.

+- 0

Figure 5.6. Detail of the right amygdala from Figure 5.5, with the linear
discriminant visualized as vectors.
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Figure 5.5 shows the mean shape surfaces for the normal and autistic groups,
as reconstructed from the Euclidean averages of the correspondence points. Each
structure is displayed in its mean orientation, position, and scale in the global
coordinate frame. The average orientation for each structure was computed using
methods for averaging in curved spaces [39]. I used the arithmetic mean of position
and the geometric mean of scale. Mean pose di↵erences between the two groups
appear small, as might be expected from their statistical analyses.

In summary, our results suggest that the multiobject PBM algorithm and the
proposed statistical analysis framework can e↵ectively analyze group di↵erences
in the autism data that have not been seen with other methods. Furthermore,
greater statistical power is obtained in this case by optimization in the joint space
than by optimization in the marginal space. This analysis, however, is only a
proof-of-concept example of how the particle method may be applied to multiobject
data. A more rigorous study, which remains for future work, is required in order to
draw clinical conclusions from the autism data.

5.3 Cortical Thickness Analysis with

Correspondence Based on

Sulcal Depth

5.3.1 Introduction
This section explores the feasibility of constructing correspondence models of the

human cortical surface using the generalized PBM algorithm, which is the extension
developed in Section 3.3 for establishing correspondence based on functions of posi-
tion. The correspondence computation on the cortex is a very challenging problem
due to the convoluted geometry of the brain and the high variability of folding
patterns across subjects. Correspondence based solely on the surface geometry is
therefore generally considered unreliable. The generalized PBM algorithm allows
data that are coregistered with the surface geometry to drive the correspondence.
Incorporating data such as sulcal depth maps, di↵usion tensor imaging connectivity
maps, or vascular information from magnetic resonance angiography images, may,
in theory, improve the quality of the correspondence.

The experiment described in this section was conducted by Ipek Oguz and
Martin Styner at the University of North Carolina, Chapel Hill, with the author as a
collaborator. The experiment is a proof-of-concept demonstration of the generalized
PBM framework to a di�cult correspondence problem. This section presents a
summary of their results. In the study, sulcal depth maps are used to drive
the cortical correspondence optimization and evaluate the results by comparing
the variance of sulcal depth and cortical thickness measures at correspondence
positions. The complete study description and results are published in Oguz, et al.
[84]. Further, related cortical correspondence work from Oguz and Styner that uses
the generalized PBM method and probabilistic fiber connectivity data is published
in Oguz, et al. [85].
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5.3.2 Methods
The data for this study consist of 9 cortical surface representations, derived

from from T1 magnetic resonance image (MRI) scans of healthy subjects. Surface
representations were constructed from the MRI data using the FreeSurfer system,
which provides an entire framework for the segmentation, surface reconstruction,
topology correction, inflation and spherical parameterization of the cortex [94, 25,
36]. Correspondences were optimized on the cortical surfaces using the generalized
PBM algorithm, with sulcal depth as the functional data.

The cortical surface presents a significant challenge for the PBM algorithm
due to the complexity of the folding patterns and their variability across subjects.
Because of the tangent plane assumption in the formulation of spatial interactions
among particles, good distributions over highly convoluted surfaces are di�cult to
achieve with the current PBM implementation. In addition, the high variability
in geometric information leads to many possible local minima in the optimization.
Ideas for extending the PBM algorithm to more complicated surfaces like the cortex
are discussed further in Chapter 6. To resolve this issue for the for the cortical
thickness study, a cortex “inflation” technique was used to smooth the convolutions.
The particles were then easily distributed on the smoothed surface.

Two additional sets of correspondence positions were constructed for comparison
with the correspondences constructed via sulcal depth. The first was constructed
using the standard PBM optimization and was therefore based only on spatial posi-
tion. The second set of correspondences was constructed by the FreeSurfer system,
which uses a pair-wise, semirigid alignment to an average parameterized cortex
shape, according to the algorithm given in [36]. Because there is no ground truth
to assess the quality of the optimized correspondence positions, the results were
evaluated based on how well they reduced the local variability of both sulcal depth
and cortical thickness. The local variances of sulcal depth and cortical thickness
were measured around correspondence positions before and after optimization, with
a lower variability among the optimized positions considered to be more desirable.

5.3.3 Results
The mean sample variances for both the cortical thickness and sulcal depth

measurements are summarized in Table 5.1. For sulcal depth measurements, the
generalized PBM algorithm reduces variance almost 75-fold over initial data and
almost 25-fold over the FreeSurfer results. For cortical thickness, the generalized
PBM method has considerable improvement over initial data, but a slightly higher
average variance than FreeSurfer. An inspection of the distribution of this mean
variance over the surface is shown in Figure 5.7. The colormap in the figure shows
increasing (normalized) variance from green = 0 to red = 1. The figure reveals
that FreeSurfer has a higher variance across the entire surface, whereas the PBM
method has only a localized high variance around the temporal lobe (which was
not perfectly reconstructed by FreeSurfer due to input image noise) and performs
much better in other areas of the cortical surface. It should be noted that both
the PBM method and FreeSurfer use the sulcal depth information as part of the
correspondence optimization process and therefore the sulcal depth evaluation is
biased. Also note that the higher degree of remaining variability in cortical thickness
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Table 5.1. Mean sample variance for cortical thickness and sulcal depth.

Correspondence Method Sulcal Depth Cortical Thickness
Initial Data 0.2276 0.3349
PBM (positional entropy) 0.2196 0.3417
generalized PBM (sulcal depth entropy) 0.0035 0.3108
FreeSurfer 0.0756 0.3034
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Figure 5.7. Comparison of the variance of cortical thickness at correspondences
from the generalized PBM method (left) and to FreeSurfer (right). Figure by Ipek
Oguz.
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can be largely attributed to intersubject variability, as cortical thickness patterns
tends to vary largely among individuals.

5.4 A Regression Model of Pediatric

Head Shape with Age

5.4.1 Introduction
The analysis of shape as a function of explanatory variables, or shape regression,

promises to be an important tool to study the relationship between anatomy and
underlying clinical or biological parameters, such as age. In developmental analyses,
such as pediatric neurodevelopment, shape regression analysis formulates aggregate
models of growth, with variability. These models give not only basic insights
into the process of development, but also allow comparisons of individuals against
normative models.

Quantitative magnetic resonance imaging (MRI) has significantly advanced our
understanding of brain development during childhood and adolescence. Courchesne,
et al. [22], for example, describe an imaging study that looks at di↵erences in growth
patterns in autism compared to controls in children over four years in age. Data
measured in infants from birth to 4 years, however, are mostly volumetric mea-
surements, such as intracranial volume and volumes of brain lobes and subcortical
structures [69], and there has been little work to date examining the change in
shape with age in early childhood brain development.

This section describes an application of the PBM shape regression algorithm
from Section 3.4 to the problem of correlating head shape with age in children.
The work in this section was conducted with Manasi Datar, at the University of
Utah. In this study, the PBM regression algorithm is used to model the shape
variability in a set of neonatal head shape boundaries extracted from MRI images.
The children in this study are between 2 and 5 years of age, which is a time of rapid
brain growth and development. Current clinical practice characterizes growth by
head circumference, a metric correlated with the overall size of the head. In this
work we examine whether overall head shape, independent of size, is a significant
indicator of developmental progress and whether the PBM regression algorithm is
suitable for examining that relationship. We also test the e↵ectiveness of the open
surface modeling extensions from Section 3.1.

5.4.2 Methods
The PBM regression optimization was applied to structural MRI data ob-

tained from clinical studies spanning the age range from neonate to five year olds.
The 40 clinical cases include 1.5T, T1-weighted MRI scans with resolutions of
1mm⇥1mm⇥1mm and 0.4mm⇥0.4mm⇥3.6mm. The scans were segmented using
a semiautomated procedure to obtain binary volume representations of the head
surfaces. These segmentations were preprocessed according to the methods outlined
in Section 2.4 to produce distance transform inputs to the PBM optimization
process. The PBM regression optimization was run on the segmentations using 500
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particles per shape sample. The optimization took roughly 40 minutes to complete
on a standard 2GHz desktop machine.

Manually placed landmarks on the bridge of the nose and the openings of the left
and right ear canals specify a cutting plane and a pair of spheres, which define the
boundary of the surface, as in Section. 3.1. During the optimization, the boundary
repels the correspondences in order to restrict the analysis to the cranium, which is
the most interesting from a neurological point of view. Shape in the neck, face, and
ears is not hypothesized to correspond with brain growth and adding the variability
of these structures to the model may reduce statistical power and complicate the
analysis. Figure 5.8 is an illustration of the correspondences on one of the head
shapes after optimization.

5.4.3 Results and Discussion
Head size, measured in volume or circumference is well known to correlate with

age and is confirmed by our own study of the Procrustes scale of the correspondence
models. A linear regression plot of Procrustes scale versus log of age, with p <
2⇥ 10�16, is shown in Figure 5.9. The correlation is highly significant.

Changes in head shape versus log of age are shown in Figure 5.10. The figure
is a set of reconstructed surfaces from correspondences along the linear regression
line in shape space, with shape versus log of age (see Section 3.4). Note the relative
lengthening of the head and the narrowing at the temples with increasing age.
These shape changes are consistent with clinical observations that neonatal brain
growth proceeds more rapidly in the forebrain. These results tie head shape to
age in the paediatric setting. A test for significance of the correlation was done
using the method from Section 4.5, with 1000 permutations run in multiple small
batches of parallel processes. None of the permutations gave a better correlation
than the input data, resulting in an e↵ective p-value of zero. While this result
is not conclusive, it does give strong evidence for significance. Future work that
includes more permutations is probably warranted to more accurately evaluate
the significance. At 40 minutes per optimization, however, increasing numbers of
permutations represent a significant amount of processing time.

Results from this study of head shape growth indicate that the PBM regres-
sion optimization can be e↵ectively applied to quantitative characterization of the
relationship between age and head shape in young children. Expanded analyses
thus o↵er potential for understanding of growth beyond the currently established
standard of the head circumference index. Moreover, this type of analysis will
generate normative data as a continuous growth model of shape, which can be
useful in building optimal MRI head coils for young infants. The continuous shape
model could also find use in population studies where two groups are compared
with respect to growth trajectory, rather than di↵erences at individual time points.
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Figure 5.8. An illustration of correspondences on the cranial surface for the
neonatal head shape study.
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Figure 5.9. Changes in head scale with log of age.



99

0.0 (1.0)

1.5 (2.8)

3.0 (8.0)

4.5 (22.6)

6.0 (64.0)
TOP VIEW log age (age) SIDE VIEW

Figure 5.10. Overview of head shape regression: Changes in head shape with log
age. Age is given in months.
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5.5 Phenotyping in Hoxd11-deficient Mice

5.5.1 Introduction
In cooperation with researchers from the Mario Capecchi lab at the University

of Utah, we applied the PBM shape modeling framework to a phenotypic study
of several of the forelimb bones of mice with a targeted disruption of the Hoxd11
gene. The hypothesis for this study is that the underexpression of Hoxd11 a↵ects
the growth of forelimb bones, resulting in changes in their shape. Research has
previously suggested a systematic shortening of several of these bones in mutant
mice, but a characterization of overall shape di↵erences is necessary in order to
characterize more subtle e↵ects of Hoxd11 deficiency. In this work, the PBM
algorithm is shown to be an e↵ective tool for characterizing those shape di↵erences.
This study also is among the first to use high-dimensional, point-based shape
modeling and analysis for small animal phenotyping, which is traditionally the
domain of landmarking methods and simple, univariate metrics such as length and
volume.

The Hox complex of genes is known to play an important role in the proper
development of the mouse and a better understanding of the function of these
genes may o↵er important insights into the cause of certain human birth defects.
Through a series of gene targeting experiments, Boulet, Davis and Capecchi have
previously shown that the Hoxd11 gene in particular is especially important for the
normal development and patterning of the appendicular skeleton [31, 13]. In [31], for
example, Davis prepared murine newborn pup skeletons with alizarin red stain and
measured the lengths of the autopod bones under digital light microscopy, a method
of phenotype characterization that is the current standard for phenotyping studies
[76]. From these length measures, Davis, et al. hypothesize that mice deficient in
the Hoxd11 gene show significant di↵erences in the average length of specific bones
of the mouse forelimb. In our study, we are interested in assessing what shape
changes are present that account for these length di↵erences and whether there are
more subtle variations that can be seen.

5.5.2 Methodology
Twenty male mice homozygous for targeted disruption of the Hoxd11 gene

were bred from an existing colony of Hoxd11-/- female and Hoxd11+/- male mice.
(Male Hoxd11-/- mice are infertile for unknown reasons.) Details on creation of
Hoxd11 mice by construction of a targeting vector and establishing a targeted ES
cell line are described in [31]. Hoxd11-/- was confirmed by PCR analysis and gel
electrophoresis using tail DNA from each of the mice. Twenty C57BL/6 (wildtype)
male mice were used as the control group phenotype. Mice were sacrificed by
carbon dioxide asphyxiation at 10 weeks and immobilized in a 50 mL centrifuge
tube before scanning in order to minimize motion artifact and provide consistency
in mouse position and placement for all scans. The eXplore Locus Small Animal
MicroCT Scanner (GE Healthcare), which utilizes a 3500 x 1750 CCD detector
and Feldkamp cone-beam reconstruction, was used to perform high resolution, 360
degree volumetric CT of each mouse. All mouse specimens were bred and scanned
at the Eccles Institute for Human Genetics at the University of Utah.
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Following the breeding and imaging of the mice, three forelimb bones were
segmented from the CT volumes by experts: the metacarpal (MC), the first pha-
lange (P1), and the second phalange (P2) of digit 2 of the right forepaw of the
mouse. These bones were chosen because the were identified in [31] as exhibit-
ing significantly di↵erent average lengths in mutant and normal mice. The right
humerus bone was also segmented as a variable to use in controlling for development
rate, as indicated by [31]. Several experts in the relevant anatomy performed
volumetric segmentations of the bones from the micro-CT images using the Seg3D
volume segmentation software [33]. The segmentation procedure consisted of a
region-growing segmentation of the entire complex of forepaw bones, followed by a
manual delineation of the boundaries between specific bones of interest.

The collection of bone segmentations required an initial alignment into a com-
mon coordinate frame for modeling and analysis. The segmentations were first
automatically aligned with respect to their centers of mass and the orientation
of their first principal eigenvectors. The automatic alignment was followed by
a manual adjustment, using a tool constructed in VTK for this purpose that
visualizes overlays of surface renderings, allowing the user to adjustment their
relative orientations. Using this tool, orientation was adjusted around the principal
axis until characteristic features were in rough alignment with a reference bone
shape. During the correspondence computation phase, this rough alignment was
automatically refined with respect to rotation and translation using the Procrustes
algorithm, as described in Section 2.4. Combined group models for each of the
three bones of interest were then computed by the PBM algorithm, with 1024
correspondence points per shape. Each optimization took approximately two hours
on a standard 2GHz desktop machine.

5.5.3 Results and Discussion
For the mouse data, we have a clear biological hypothesis as to the group di↵er-

ences between mutant and normal mouse strains. Specifically, the work of Boulet,
Davis, and Capecchi has suggested length di↵erences in the P1, P2, and MC bones
of the right forepaw. For this study, I analyzed the PBM correspondence models
for those same three bones using the multivariate hypothesis testing procedure
from Section 4.3.2. Parallel analysis indicates using 2, 2, and 3 modes for the P1,
P2, and MC bones, respectively. Hotelling T 2 tests on the PCA loadings show
highly significant p-values in each case (p ⌧ 0.01), indicating significant shape
di↵erences probably do exist between the two groups. Figure 5.11 depicts the
linear discriminant from the Hotelling T 2 test for the P1 bone. The discriminant is
shown on the mean wildtype shape in the direction of the mutant shape. The linear
discriminant visualization reveals two clear morphological di↵erences: a reduction
in bone “length” and an increase in bone “thickness” in the Hoxd11-deficient
population. Empirical analyses of the P2 and MC bones each show very similar
patterns.

The relationship between dominant shape variable (PC1) and the morphometry-
based shape variable (bone length) from the literature [31] is of key interest in this
study, because length di↵erences were the main hypotheses coming from the original
phenotyping studies of the Hoxd11 mouse. This relationship can be analyzed
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Figure 5.11. LDA visualization of the P1 bone for the HoxD11 phenotype study
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through linear regression of PC1 on bone length and an analysis of the correlation
between the two measures. Correlation between bone lengths and the PC1 measures
is high for each of the bones and statistically significant p ⌧ 0.01, results that
support the hypothesis presented in [31] that reduced bone length is the dominant
morphological e↵ect of Hoxd11-deficiency. A univariate hypothesis test was done
as a further analysis of group di↵erences in PC1. To account for variability in the
rates of development of each mouse, we tested group di↵erence with an analysis
of covariance (ANCOVA) model that included the length of the humerus bone as
a covariate, a bone not hypothesized to be a↵ected by the Hoxd11 gene. For the
univariate hypothesis tests on PC1, we found no significant interaction between
group classification and humerus length and significant di↵erences in the group
means for all bones, with p ⌧ 0.01 in each case. Figure 5.12, for example, shows
this analysis for the P2 bone. Similar results were obtained for the MC and P1
bones.

In conclusion, the Hoxd11 PBM analysis has quantified and statistically vali-
dated one of the major conclusions from empirical studies of the Hoxd11 gene, as
well as revealing a new significant phenotypic e↵ect. These results are significant
in that they represent one of the first applications of computationally-derived
point-based models to genetic phenotyping. Additionally, in contrast to the more
exploratory nature of the neuroanatomy shape studies from previous sections, this
study poses a specific biological hypothesis for which the PBM analysis has provided
new evidence and further insight. Thus, it represents a strong validation of the
usefulness of the PBM algorithm in scientific work.

5.6 Analysis of the Cranial Base

in Pax7 Mutant Mice

5.6.1 Introduction
This study presents the results of a second phenotyping analysis of a genetically

engineered mouse. It applies the PBM correspondence method to the analysis of
shape di↵erences in the cranial base of newborn wildtype mice and mice geneti-
cally deficient for Pax7 [77]. Specifically, the analysis focuses on the basioccipital
bone. The basioccipital bone varies subtly for Pax7 mutant mice in a way that
is analogous to the changes in shape that occur within the hominin fossil record
in connection with the adoption of an upright posture [82]. In our analysis, we
detected a statistically significant antero-inferior inflection of the posterior edge
of the basioccipital, among other shape di↵erences. This study was conducted
in collaboration with Lisa Nevell, Charles Keller, and Suresh Prajapati from the
Greehey Children’s Cancer Research Institute, University of Texas Health Science
Center.

Craniofacial development is of increasing interest to computational biologists
and developmental and evolutionary biologists alike [73]. The cranial base is espe-
cially interesting because its shape defines physiological parameters characteristic of
species taxonomies [56]. The basioccipital bone is part of the midline of the cranial
base and forms the anterior and lateral aspects of the foramen magnum, where
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Figure 5.12. ANCOVA for the PC1 measurements on the P2 bone. Wildtypes
are shown as squares and mutants as triangles.
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the spinal cord exits the cranium. In hominin evolution, the forward (anterior)
placement of the foramen magnum is a key di↵erence between upright hominins
and primates [82]. Therefore, the methods described here are applicable not only
to phenotyping genetically-engineered mice, but also to the study of the evolution
of the hominin cranial base.

5.6.2 Methodology
Data for this experiment were generated at the Greehey Children’s Cancer

Research Institute and consist of micro computed tomography (micro-CT) scans of
mice with a LacZ gene insertion interrupting the native Pax7 gene. Twenty-four
mutant mice pups at postnatal day 0 were euthanized and imaged at 27 µm
isometric resolution. For comparison, 24 postnatal day 0 wildtype C57BL/6 pups
were also scanned using the same protocol. In the mutant mouse sample set, geno-
typing revealed 18 mice to be heterozygous for the LacZ mutation Pax7(LacZ/WT)
(WT=wildtype) and 6 mice as homozygous for the mutation Pax7(LacZ/LacZ).

We performed volumetric segmentations of each the basioccipital bones from
the CT image volumes. Segmentations were done by several expert observers using
manual delineation. The software used for the segmentations was the freely avail-
able open source Seg3D image processing tool [33]. Antialiased distance transforms
were produced for input to the PBM algorithm using the methods outlined in
Section 2.4.

We computed three correspondence models on the segmented data using the
PBM algorithm: a homozygous model with the combined data from the wildtype
and Pax7(LacZ/LacZ), a heterozygous model with the combined data from the
Pax7(LacZ/WT) and wildtype groups, and a combined mutant model with the
combined data from the Pax7(LacZ/LacZ) and Pax7(LacZ/WT) groups. Each
model was computed with 1024 correspondence positions and curvature-adaptive
sampling. Run times for each optimization using a C++ implementation on stan-
dard 2GHz PC desktop hardware were approximately one hour.

For comparison with the PBM analysis, we also conducted a simple morphome-
tric analysis of the basioccipital segmentations using four metrics: the maximum
widths in each of the sagittal, coronal, and axial directions and the volume. To
compute the maximum widths, we first coregistered the segmentations into the same
coordinate frame using the rotation transforms from the generalized Procrustes
analysis (without scaling). Following alignment, the width along a desired direction
was automatically measured at all two-dimensional coordinates in the remaining
two directions and the maximum of these widths recorded. Width was measured
by counting the number of voxels inside the segmented object along the desired
direction and multiplying by the voxel spacing in that direction. Volume was
measured by iterating over the entire image volume, counting the number of voxels
inside the segmented object, and scaling that number by the cubic volume of an
image voxel.
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Figure 5.13. Volume renderings of micro-CT scans of wildtype Pax7(WT/WT),
homozygous Pax7(LacZ/LacZ), and heterozygous Pax7(LacZ/WT) median speci-
mens. Images created by Suresh Prajapati.
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5.6.3 Results and Discussion
Volume rendering visualizions of the micro-CT scans for representative speci-

mens from the wildtype Pax7(WT/WT), homozygous Pax7(LacZ/LacZ) and het-
erozygous Pax7(LacZ/WT) groups are shown in Figure 5.13. The figure depicts the
neonate animal with the median shape for each group, where the median is com-
puted as the L

1

multivariate median of the correspondence positions (Section 4.1).
Row 1 depicts the neonatal skullbase, with the temporo-parietal bones cropped
away. Row 2 is a closer view of the cranial base and the basioccipital bone. Row
3 compares the overall jaw and skull lengths. Side-view images for the sagittal
hemi-sections of each sample are shown in Row 4 and images looking on to lower
jaws from bottom are given in Row 5. Row 6 compares craniofacial features of the
front side of the skull. These images were created by Suresh Prajapati using the
freely available open source ImageVis3D volume rendering software (ImageVis3D,
http://www.sci.utah.edu/cibc/software).

Key phenotypic di↵erences by inspection in Figure 5.13 include lengthening of
the mandible and an increase in the overall anteroposterior length (Row 3). Row
2 indicates gross structural changes are present in the basioccipital. While more
overt changes to the mandible and anteroposterior dimension are present, we focus
on the basioccipital bone of the cranial base because of the evolutionary interest in
the basioccipital in relationship to the placement of the foramen magnum.

Figure 5.14 shows superior views of the group mean shapes, reconstructed from
the mean PBM correspondence positions. Note the similarity between the homozy-
gous and heterozygous mean shapes. The mean correspondence positions are shown
as red sphere glyphs. Table 5.2 summarizes the results of the multivariate, Hotelling
T 2 statistical test for di↵erences in the mean shapes from Figure 5.14, along with the
number of PCA loadings determined by parallel analysis. For the homozygous and
heterozygous models, the results indicate highly significant shape di↵erences from
the wildtype group (p⌧ 0.001). No significant di↵erences between homozygous and
heterozygous groups are indicated. We also conducted Welch two-sample t-tests for
mean di↵erences in Procrustes scale for each cohort in the analysis, which gave no
indication of any significant di↵erences.

Figure 5.15 shows the linear discriminant vector from the Hotelling T 2 test
between homozygous and wildtype cohorts and the heterozygous and wildtype
cohorts. In each case, the discriminant vector is shown on the mean wildtype shape,
in the direction of the mutant shape. Qualitatively these images give an indication
of how the wildtype shapes would change if they were to increase their probability of
being part of the mutant cohort; thus, these visualizations represent the local shape
di↵erences that are statistically significant. Larger arrows indicate local regions that
exhibit more shape change between groups and smaller arrows indicate relatively
smaller shape di↵erences. Note that the linear discriminants are very similar for
the homozygous and heterozygous cases. In these representations, the di↵erences
in basioccipital shape include antero-inferior inflection of the posterior edge (which
forms the anterior boundary of the foramen magnum), lateral-superior outgrowth
of the lateral prominences, anterior elongation in the midline, and flattening of the
posterior 1

3

inferior surface.
In addition to the multivariate statistical analysis, univariate statistical tests

(Welch 2-sample t-test for mean di↵erence) for each of the first five principal com-
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Mean Wildtype Mean Homozygous Mean Heterozygous

Figure 5.14. A visual comparison of the group mean shapes. Shape surfaces are
reconstructed from the Euclidean means of the correspondence positions for each
group. Mean correspondence positions are indicated by spheres.

Table 5.2. Multivariate hypothesis test results for group di↵erences in mean shape
for PacZ(LacZ/LacZ), PacZ(LacZ/WT), and combined mutant groups.

Correspondence model Hotelling T 2 test (# PC modes)
Homozygous (LacZ/LacZ vs WT) T 2 = 95.33, p⌧ 0.001 (5)
Heterozygous (LacZ/WT vs WT) T 2 = 150.16, p⌧ 0.001 (4)
Combined mutant (LacZ/LacZ vs LacZ/WT) T 2 = 1.54, p = 0.852 (4)
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TOP: Homozygous vs. wildtype linear discriminant

BOTTOM: Heterozygous vs. wildtype linear discriminant

Figure 5.15. Visualization of the linear discriminant from the Hotelling T 2 test
for the homozygous shape model (TOP ROW) and the heterozygous shape model
(BOTTOM ROW). Arrows indicate direction from the wildtype distribution to the
mutant distribution.
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ponent (PC) loadings help quantify and visualize local shape di↵erence. Table 5.3
shows the results of these univariate t-tests for each of the five principal components.
Table 5.4 shows the percentage of the total shape variation represented by each of
the principal component modes. The univariate tests for individual modes show
significant di↵erences among groups, with the di↵erence between means in the
third principal component (PC3) as the most significant. Figure 5.16 illustrates
the shape variation described by each of the principal component modes in the
homozygous model at ±1, 2 and 3 standard deviations from the mean. Variation
in the heterozygous model modes appears similar.

The results of the morphometric analysis are given in Tables 5.5-5.6. Table 5.5
shows the mean widths and volumes, along with their standard deviations, for each
study group. Table 5.6 presents a groupwise comparison of the morphometrics. The
results consist of Welch two-sample t-tests for group di↵erences in the means for
each of the univariate measures of width and volume and a multivariate Hotelling
T 2 test using all four metrics together. Each group is compared with every other
group. The results suggest some evidence (at the 5% significance level) for group
di↵erences in width in the sagittal direction between the Pax7(LacZ/WT) and the
Pax7(WT/WT) groups. No other evidence of significant di↵erences is indicated,
however.

The results of the simple morphometric analysis of width and volume, which
indicate little or no significant di↵erences in morphometric features between groups,
are in stark contrast to the highly significant shape di↵erences revealed by the
the PBM correspondence analysis. In general, given su�cient sample size, we
would expect a shape analysis method that better represents the geometry of the
anatomy to have more statistical power. In this case, the correspondence analysis
has revealed shape di↵erences that are too subtle for the more traditional univariate
shape features to capture.

In summary, the PBM analysis has demonstrated highly significant group dif-
ferences in the basioccipital bone due to the Pax7 mutation. Significant changes
include an antero-inferior inflection of the posterior edge of the basioccipital, which
is the anterior boundary of the foramen magnum, a landmark whose relative place-
ment in hominins has been associated with bipedalism. By contrast, a more
traditional morphometric analysis, which uses a collection of univariate metrics,
found only weak significance in one length measure of the data. This analysis thus
not only serves as further validation of increased statistical and descriptive power of
the PBM method over traditional methodologies, but also strengthens the interplay
of reverse genetics in model organisms to paleoanthropology.
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Table 5.3. Welch two-sample t-tests for mean shape di↵erences in the first 5
principal component loadings for Pax7 cohorts.

PCA Loading Homozygous Heterozygous Combined mutant
PC 1 t = �0.20, p = 0.847 t = �1.37, p = 0.182 t = �1.25, p = 0.236
PC 2 t = �1.29, p = 0.195 t = 2.53, p = 0.018 t = 0.29, p = 0.775
PC 3 t = 5.83, p⌧ 0.001 t = 5.81, p⌧ 0.001 t = 0.27, p = 0.793
PC 4 t = �0.81, p = 0.446 t = 0.33, p = 0.747 t = �0.37, p = 0.720
PC 5 t = �0.68, p = 0.516 t = 1.77, p = 0.088 t = 1.32, p = 0.230
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Table 5.4. The percentage of total shape variation represented by each of the first
5 principal modes of variation.

Correspondence model PC 1 PC 2 PC 3 PC 4 PC 5
Homozygous 42% 19% 12% 11% 6%
Heterozygous 40% 28% 8% 8% 7%
Combined mutant 37% 24% 20% 7% 3%
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Figure 5.16. Variation in each of the top 5 principal components of the
homozygous basioccipital model. Shape (yellow surface) is reconstructed from
correspondence positions (green points) at ±1, 2, and 3 standard deviations (�)
from the mean shape.
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Table 5.5. The mean (µ) and standard deviation (�) in millimeters of the
maximum widths for each group of basioccipittal bone segmentations.

LacZ/LacZ LacZ/WT WT/WT
Metric µ � µ � µ �

Sagittal Width 1.9907 0.0423 2.0401 0.0686 1.9769 0.0595
Coronal Width 1.9941 0.1084 2.0217 0.1268 1.9544 0.0621
Axial Width 0.3761 0.0530 0.3726 0.0482 0.3623 0.0428

Volume 0.8205 0.1822 0.8144 0.2019 0.7861 0.1343
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Table 5.6. Hypothesis test results for the groupwise comparison of the simple
morphometrics. The metrics used are the maximum widths of the segmentations
in the sagittal, coronal, and axial directions, along with the segmentation volume.
The multivariate Hotelling T 2 test was conducted using all four metrics together.

Homozygous Heterozygous Combined Mutant
Metric t p t p t p

Sagittal Width 0.5667 0.5801 2.6813 0.0126 2.0922 0.0546
Coronal Width 0.8304 0.4349 1.9304 0.0645 0.5165 0.6167
Axial Width 0.5535 0.5944 0.6170 0.5427 0.1411 0.8913

Volume 0.4101 0.6928 0.4613 0.6481 0.0688 0.9466
Hotelling T 2 1.7338 0.8379 16.5015 0.0172 8.0020 0.1855



CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter concludes the presentation of my dissertation research with a
brief summary of its contributions and early scientific impact. I also discuss some
technical limitations and possible future research directions. The main contribution
of this work is the particle-based modeling (PBM) framework and its extensions,
which I summarize in Section 6.1. The PBM framework a novel, well-validated
framework for statistical shape modeling and analysis that is more robust to a
wider variety of applications than existing technologies. The reception of the
PBM framework in the biomedical research community has thus far been very
encouraging, and in Section 6.2, I describe several of the research projects for which
it is currently in use. While the PBM algorithm o↵ers some significant advantages,
there are still limitations to this work. I discuss some of these limitations in
Section 6.3, along with possible solutions and other ideas for future work.

6.1 Research Contributions
In this dissertation, I have described a new computational framework called

particle-based modeling (PBM) for constructing statistical representations of sets
of similar shapes. The PBM algorithm produces a distribution of a large set of
surface-point correspondences using a fast, entropy-based optimization process.
The optimization balances the simplicity of the model (compactness) with the accu-
racy of the shape representations by using two commensurate entropy metrics and
a minimum of free parameters. The work in this dissertation significantly advances
the state-of-the-art in shape analysis by overcoming many of the limitations of
existing methods, including the reliance on spherical representations and ad-hoc
regularization strategies.

The PBM algorithm has proven to be a robust analysis tool for a wide variety
of shapes and applications. The method works directly on binary segmentation
volumes, requires very little parameter tuning, and generalizes easily to accommo-
date alternate sampling strategies such as curvature adaptivity. I have presented
extensions of the basic algorithm to handle open surfaces and complexes of surfaces,
which are common to many important biomedical research applications. Addition-
ally, I have extended the PBM framework to accommodate more general notions
of correspondence, including correspondence based on functions of surface location
and correspondence in the presence of explanatory variables (regression analysis).
The PBM algorithm and extensions have been shown to produce results that
compare favorably to the state-of-the-art, and statistical analysis of several clinical
datasets yields results consistent with those seen in the literature. Additionally, I
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have demonstrated results on data that could not be analyzed with existing shape
analysis methods, due to its topological complexity.

In this dissertation, I have also presented an extensive evaluation of the PBM
framework in the context of six, novel scientific studies in the areas of neurobiology
and genetic phenotyping. For the statistical analysis and visualization of the results,
I adapted existing multivariate methods from the geometric morphometrics liter-
ature to correspondence modeling. The results of these studies have underscored
existing scientific hypotheses and produced new hypotheses for future study. These
results therefore represent a strong validation of the engineering contributions in
this dissertation work.

6.2 Scientific Impact
The PBM shape modeling framework is currently impacting several areas of

biomedical research, including neurobiology, cardiology, orthopedics, and evolu-
tionary biology. Several preliminary studies using PBM are either planned or
ongoing in several university and clinical research laboratories. By maintaining and
distributing ShapeWorks, the open-source distribution of the PBM implementation
[17], the Scientific Computing and Imaging Institute is facilitating the use of these
tools by the community. This section lists some of the ongoing studies that are
using the PBM algorithm, which are evidence of some early scientific impact of this
dissertation work.

In the area of neurobiology, the work of Oguz, et al., from the University
of North Carolina, has already produced additional results for improved cortical
surface correspondence using the generalized PBM method. In [85], they incorpo-
rate probabilistic connectivity data into the optimization, which reflects the fiber
structures between the cortical surface and various regions of interest, such as the
corpus callosum and the internal capsule.

In cardiology, several research e↵orts are beginning to make use of the PBM
algorithm. The Comprehensive Arrhythmia Research and Management Center
(CARMA), at the University of Utah, is an interdisciplinary team of scientists
and cardiologists who are pioneering new treatments for cardiac arrhythmias. The
CARMA group is investigating the feasibility of using the PBM algorithm to create
population models of the left and right atria. Because the shapes of the atria are
known to vary in patients with atrial fibrillation, shape is one of the promising
metrics for image-based assessment of disease progression.

In collaboration with Raimond Winslow and Laurent Younes from the Johns
Hopkins University, Manasi Datar and Ross Whitaker at the University of Utah
are investigating shape changes in the ventricles of the heart in patients with
ischemic conditions. They are currently comparing PBM results with voxel-based
morphometry analysis (e.g., [4]). While the concave shape and thin walls of the
ventricle are challenging features to model, Figure 6.1 (courtesy of Manasi Datar)
illustrates some preliminary results from this study that suggest PBM algorithm
will be an e↵ective tool. The figure illustrates several views of a mean left ventricle
shape.

At the University of Utah Department of Orthopedics, researchers are investi-
gating the role of the shapes of the femur and hip joint in hip dysplasia. This project
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Fig. 1. JHU Heart: di↵erent views of the mean shape
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Figure 6.1. Preliminary results from a PBM study of ventricle shapes. Images
courtesy of Manasi Datar.

is led by Je↵ Weiss and Andy Anderson, also in collaboration with Manasi Datar
and Ross Whitaker. The PBM algorithm for open surfaces has already proven
e↵ective in modeling the femoral head, as shown in Figure 6.2, which illustrates
the mean shape of a normal control population. Further research will model femur
covariation with the hip joint shape, in order to understand the relationship between
these two structures in both normal and patient populations.

6.3 Limitations and Future Work
While the PBM algorithm and its extensions are proving to be a robust approach

to statistical shape modeling for a variety of biomedical problems, there are some
technical issues that impose limitations on its use. Two issues that limit its
application to more complex surface geometries, for example, are the tangent
plane assumption in the particle distribution formulation (Section 2.3.7) and the
need for a more robust initialization strategy. Another issue, with implications
for hypothesis testing and statistics, is the Gaussian assumption for the sample
distributions in shape space (Section 2.3.8). In this section, I briefly describe these
issues and suggest some future research that may help address them.

Complicated surfaces that consist of multiple ridges and valleys remain a chal-
lenge for the PBM optimization. Recall from Section 2.3.7 that the numerical
implementation for distributing particles across shape surfaces relies on a degree
of regularity in the tangent planes between adjacent particles. For particles on
ridges and in valleys, this assumption is not satisfied, and distributions can become
“stuck” in these regions, having achieved a false local minimum by e↵ectively losing
track of their true neighbors. A variable sampling density that is proportional to
surface curvature (Section 2.3.4) can somewhat alleviate this problem, but is not
su�cient in general. Conceptually, the most straightforward way to handle this
problem is to remove the tangent plane approximations and use geodesic distances
between particles. Unfortunately, this approach is very computationally expensive
and would severely impact the speed of the algorithm. As an alternative to geodesics
on the implicit surface representation, however, the algorithm could be modified
so that the surface constraint is maintained on a mesh-based representation. The
geodesic distances between vertices on the meshes could then be precomputed, and
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Di↵erent views of the mean shape of a femur built with the ShapeWorks software.
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model captures the variability of the population

10

Figure 6.2. Preliminary results from a PBM study of femur shapes. Images
courtesy of Manasi Datar.
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distances between particle positions quickly interpolated from those values during
the optimization.

For all of the examples and applications of the PBM algorithm in this disserta-
tion, I have successfully used the splitting strategy described in Section 2.4.2. The
splitting method, however, is susceptible in some cases to producing poor configura-
tions from which the optimization cannot recover. Specifically, the problem is that
corresponding particles sometimes find their way onto opposite sides of ridges or
opposite sides of flat shapes (i.e. the basioccipital bone). While a geodesic distance
formulation of PBM would likely alleviate this problem, there are probably simpler
solutions to be found. One idea for a more robust initialization strategy is to relax
the surface constraint during the initialization, so that particles are allowed to move
o↵ of the surfaces. The constraint can then be gradually phased back in, so that
particles once again find the surface. I have done some preliminary tests of this
strategy for the basioccipital bone data (Section 5.6) with good results. These tests
suggest that an added benefit may be a significant speedup of the initialization
process. This approach also suggests a new optimization metric that adjusts a
particle’s a�nity for the surface based on the likelihood of its position, given the
positions of all of its corresponding particles. Under such an approach, “outlier”
particles would be allowed to move with increased degrees of freedom towards better
correspondence, while movement of particles already in good correspondence would
remain constrained on the surface.

Recall from Section 2.3.8 that, due to the limited sample size, the current imple-
mentation of the PBM algorithm assumes a Gaussian distribution for the samples in
shape space when estimating entropy. It is possible that this assumption may bias
the results of group-wise hypothesis tests by favoring optimized configurations that
resemble a single Gaussian configuration, rather than a multimodal distribution.
Because the Gaussian assumption is not critical to the general correspondence
method, a nonparametric estimation of sample density, such as a kernel-based
method, could be used instead to remove this bias. As with other challenges for
statistical analysis of correspondences (Section 4.3.1), however, the di�culty in
estimating the distribution lies in the high dimensionality of the model and the low
numbers of samples. One solution may may be to estimate the sample entropy in a
lower-dimensional subspace of the model and, perhaps, also employ a bootstrapping
method to compute confidence intervals for estimates under this model.

Many other expansions and optimizations of the PBM framework can be also
be considered. The algorithm is, for example, very easy to parallelize by parti-
tioning the problem into one surface sample per processor, with the covariance
calculation in Equation 2.33 being the only point of synchronization among the
processes. Image segmentation using PBM correspondences is another interesting
area for possible future research. Segmentation could be done, for example, using
an approach analogous to active shape models [21]. Finally, because the flexibility
of the PBM framework makes it relatively easy to adapt to new classes of shapes
and optimization criteria, I look forward to seeing future applications to problems
in fields beyond biomedicine, such as industrial engineering and computer graphics.
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deformation metric mappings via geodesic flows of di↵eomorphisms. Int. J.
Comput. Vision, 61(2):139–157, 2005.

[9] J. T. Berge. Orthogonal procrustes rotation for two or more matrices.
Psychometrika, 42:267–276, 1977.

[10] J.-D. Boissonnat and S. Oudot. Provably good sampling and meshing of
surfaces. Graphical Models, 67:405–451, 2005.

[11] F. Bookstein. Principal warps: Thin plate splines and the decomposition of
deformations. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 11(6), 1989.

[12] F. Bookstein. Biometrics, biomathematics, and the morphometric synthesis.
Bulletin of Mathematical Biology, 58:313–365, 1996.



122

[13] A. M. Boulet and M. R. Capecchi. Duplication of the hoxd11 gene causes al-
terations in the axial and appendicular skeleton of the mouse. Developmental
Biology, 249:96–107, 2002.

[14] F. O. Bower. Size and form in plants. Nature, 126(3175):355–361, 1930.

[15] C. Brechbuhler, G. Gerig, and O. Kubler. Parametrization of closed surfaces
for 3-d shape description. Computer Vision Image Understanding CVIU,
61:154–170, 1995.

[16] M. R. Capecchi. Generating mice with targeted mutations. Nat Med,
7(10):1086–1090, October 2001.

[17] J. Cates, 2009. ShapeWorks [Computer Software]. Scientific Computing and
Imaging Institute (SCI).

[18] J. Cates, P. T. Fletcher, M. Styner, H. C. Hazlett, and R. Whitaker. Particle-
based shape analysis of multi-object complexes. In MICCAI ’08: Proceed-
ings of the 11th international conference on Medical Image Computing and
Computer-Assisted Intervention - Part I, pages 477–485, Berlin, Heidelberg,
2008. Springer-Verlag.

[19] X. J. Chen, N. Kovacevic, N. J. Lobaugh, J. G. Sled, R. M. Henkelman,
and J. T. Henderson. Neuroanatomical di↵erences between mouse strains as
shown by high-resolution 3d mri. NeuroImage, 29:99–105, 2005.

[20] R. Chultz and D. Robins. Handbook of autism and pervasive developmen-
tal disorders (3rd Ed.), chapter Functional neuroimaging studies of autism
spectrum disorders, pages 515–533. J Wiley and Sons, 2005.

[21] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape
models-their training and application. Computer Vision and Image Under-
standing, 61(1):38–59, January 1995.

[22] E. Courchesne, C. M. Karns, H. R. Davis, R. Ziccardi, R. A. Carper, Z. D.
Tigue, H. J. Chisum, P. Moses, and K. Pierce. Unusual brain growth patterns
in early life in patients with autistic disorder: An mri study. Neurology,
57:245–254, 2001.

[23] T. Cover and J. Thomas. Elements of Information Theory. Wiley and Sons,
1991.

[24] P. Dalal, B. C. Munsell, S. Wang, J. Tang, K. Oliver, H. Ninomiya, X. Zhou,
and H. Fujita. A fast 3d correspondence method for statistical shape mod-
eling. Computer Vision and Pattern Recognition, IEEE Computer Society
Conference on, 0:1–8, 2007.

[25] A. M. Dale, B. Fischl, and M. I. Sereno. Cortical surface-based analysis: I.
segmentation and surface reconstruction. NeuroImage, 9(2):179 – 194, 1999.



123

[26] C. Darwin. The Origin of Species. Gramercy, 1995.

[27] R. Davies, C. Twining, P. Allen, T. Cootes, and C. Taylor. Shape discrimi-
nation in the hippocampus using an MDL model. In Information Processing
in Medical Imaging, pages 38–50, 2003.

[28] R. H. Davies, C. J. Twining, P. D. Allen, T. F. Cootes, and C. J. Taylor.
Shape discrimination in the hippocampus using an mdl model. In IPMI,
pages 38–50, 2003.

[29] R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J. Taylor.
3d statistical shape models using direct optimisation of description length. In
ECCV (3), pages 3–20, 2002.

[30] R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton, and C. J. Taylor.
A minimum description length approach to statistical shape modeling. IEEE
Trans. Med. Imaging, 21(5):525–537, 2002.

[31] A. Davis and M. Capecchi. Axial homeosis and appendicular skeleton defects
in mice with targeted disruption of hoxd-11. Development, 120:2187–2198,
1995.

[32] B. C. Davis, P. T. Fletcher, E. Bullitt, and S. C. Joshi. Population shape
regression from random design data. In Proceedings of the 10th International
Conference on Computer Vision (ICCV 2007), 2007.

[33] M. Davis, 2009. Seg3D: Volumetric Image Segmentation and Visualization
[Computer Software]. Scientific Computing and Imaging Institute (SCI).

[34] I. Dryden and K. Mardia. Statistical Shape Analysis. John Wiley and Sons,
1998.

[35] L. R. Fabrigar, D. T. Wegener, R. C. MacCallum, and E. J. Strahan.
Evaluating the use of exploratory factor analysis in psychological research.
Psychological Methods, 4:272–299, 1999.

[36] B. Fischl, M. I. Sereno, and A. M. Dale. Cortical surface-based analysis:
Ii: Inflation, flattening, and a surface-based coordinate system. NeuroImage,
9(2):195 – 207, 1999.

[37] R. A. Fisher. The Design of Experiments. Oliver and Boyd, 1935.

[38] S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva. Progressive point set
surfaces. ACM Trans. Graph., 22(4):997–1011, 2003.

[39] P. Fletcher, C. Lu, S. Pizer, and S. Joshi. Principal geodesic analysis for the
study of nonlinear statistics of shape. IEEE Trans. Med. Imaging, 23(8):995–
1005, 2004.

[40] G. Galilei. Dialogues Concerning Two New Sciences. Dover, 1960.



124

[41] J. Gayon. History of the concept of allometry. American Zoologist, 40(5):748–
758, 2000.

[42] G. Gerig, S. Joshi, T. Fletcher, K. Gorczowski, S. Xu, S. Pizer, and M. Styner.
Statistics of populations of images and its embedded objects: Driving appli-
cations in neuroimaging. In IEEE Symp. on Biomed. Imaging ISBI, pages
1120–1123, 2006.

[43] L. W. Glorfeld. An improvement on horn’s parallel analysis methodology for
selecting the correct number of factors to retain. Educational and Psycholog-
ical Measurement, 55:377–393, 1995.

[44] P. Golland, W. Grimson, M. Shenton, and R. Kikinis. Detection and analysis
of statistical di↵erences in anatomical shape. Medical Image Analysis, 9:69–
86, 2005.

[45] C. Goodall. Procrustes methods in the statistical analysis of shape. J. R.
Statistical Society B, 53:285–339, 1991.

[46] K. Gorczowski, M. Styner, J. Jeong, J. Marron, J. Piven, H. Hazlett, S. Pizer,
and G. Gerig. Statistical shape analysis of multi-object complexes. In Pro-
ceedings of IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE, 2007.

[47] J. Gower. Generalized procrustes analysis. Psychometrika, 40:33–50, 1975.

[48] J. S. Gregory, D. Testi, A. Stewart, P. E. Undrill, D. M. Reid, and R. M.
Aspden. A method for assessment of the shape of the proximal femur and its
relationship to osteoporotic hip fracture. Osteoporosis Int., 15(1):5–11, 2004.

[49] P. Hall and N. Tajvidi. Permutation tests for equality of distributions in
high-dimensional settings. Biometrika, 89(2):359–374, 2002.

[50] M. Hansen and B. Yu. Model selection and the principle of minimum descrip-
tion length. Journal of the American Statistical Association, 96(454):746–774,
June 2001.

[51] H. Hazlett, M. Poe, G. Gerig, R. Smith, J. Provenzale, A. Ross, J. Gilmore,
and J. Piven. Magnetic resonance imaging and head circumference study of
brain size in autism: Birth through age 2 years. Arch Gen Psych, 62:1366–
1376, 2005.

[52] P. A. Helm, L. Younes, M. F. Beg, D. B. Ennis, C. Leclercq, O. P. Faris,
E. McVeigh, D. Kass, M. Miller, and R. L. Winslow. Evidence of struc-
tural remodeling in the dyssynchronous failing heart. Circulation Research,
98(1):125–132, 2006.

[53] K. Hinkelmann and O. Kempthorne. The Design and Analysis of Experi-
ments. Wiley, 2008.



125

[54] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface
rconstruction from unorganized points. In ACM SIGGRAPH 1992 Confer-
ence Proceedings, pages 71–78, 1992.

[55] H. Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24:417–441, 1933.

[56] D. A. Hoyte. A critical analysis of the growth in length of the cranial base.
Birth Defects Orig Artic Ser, 11:255–282, 1975.

[57] J. R. Hurley and R. B. Cattell. The procrustes program: producing direct
rotation to test a hypothesised factor structure. Behavioural Science, 7:258–
262, 1962.

[58] J. Huxley. Problems of relative growth. New York,L. MacVeagh, The Dial
Press,, 1932.

[59] J. S. Huxley and G. Teissier. Terminology of relative growth. Nature,
137:780–781, 1936.

[60] L. Ibanez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide.
Insight Consortium, 2003.

[61] P. Jolicoeur. The generalization of the allometry equation. Biometrics,
19:497–499, 1963.

[62] S. Joshi, B. Davis, M. Jomier, and G. Gerig. Unbiased di↵eomorphic atlas
construction for computational anatomy. Neuroimage, 23:S150–S160, 2004.

[63] D. G. Kendall. The di↵usion of shape. Adv. Appl. Probab., 9:428–430, 1977.

[64] D. G. Kendall. Shape-manifolds, procrustean metrics and complex projective
spaces. Bulletin of the London Mathematical Society, 16:81–121, 1984.

[65] D. G. Kendall. Shape and Shape Theory. Wiley, 1999.

[66] J. T. Kent. The complex bingham distribution and shape analysis. Journal
of the Royal Statistical Society, Series B, 56:285–299, 1994.

[67] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller. Curvature-based
transfer functions for direct volume rendering. In Proceedings of IEEE
Visualization 2003, pages 512–520, 2003.

[68] C. P. Klingenberg. Morphometrics and the role of the phenotype in studies
of the evolution of developmental mechanisms. Gene, 287:3–10, 2002.

[69] R. C. Knickmeyer, S. Gouttard, C. Kang, D. Evans, K. Wilber, J. K. Smith,
R. M. Hamer, W. Lin, G. Gerig, and J. H. Gilmore. A structural mri study of
human brain development from birth to 2 years. J. Neurosci., 28(47):12176–
12182, November 2008.



126

[70] A. Kotche↵ and C. Taylor. Automatic Construction of Eigenshape Models
by Direct Optimization. Medical Image Analysis, 2:303–314, 1998.

[71] F. P. Kuhl and C. R. Giardina. Elliptic fourier features of a closed contour.
Computer Graphics and Image Processsing, 18(3):236–258, 1982.

[72] M. Langen, S. Durston, W. Staal, S. Palmen, and H. van Engeland. Caudate
nucleus is enlarged in high-functioning medication-naive subjects with autism.
Biological Psychiatry, 62:262–266, 2007.

[73] S. M. Leach, H. Tipney, W. Feng, W. A. Baumgartner, Jr., P. Kasliwal, R. P.
Schuyler, T. Williams, R. A. Spritz, and L. Hunter. Biomedical discovery
acceleration, with applications to craniofacial development. PLoS Comput
Biol, 5(3):e1000215, 03 2009.

[74] J. Levitt, C.-F. Westin, P. Nestor, R. Estepar, C. Dickey, M. Voglmaier,
L. Seidman, R. Kikinis, F. Jolesz, R. McCarley, and M. Shenton. Shape of
caudate nucleus and its cognitive correlates in neuroleptic-naive schizotypal
personality disorder. Biol. Psychiatry, 55:177–184, 2004.

[75] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. Computer Graphics, 21(4):163–169, July 1987.

[76] S. L. Mansour, K. R. Thomas, and M. R. Capecchi. Disruption of the prot-
oncogene int-2 in mouse embryo derived stem cells: a general strategy for
targeting mutations to non-selectable genes. Nature, 336:348–352, 2004.

[77] A. Mansouri, A. Stoykova, M. Torres, and P. Gruss. Dysgenesis of cephalic
neural crest derivatives in pax7-/- mutant mice. Development, 122:831–838,
1996.

[78] M. Meyer, B. Nelson, R. Kirby, and R. Whitaker. Particle systems for
e�cient and accurate high-order finite element visualization. Visualization
and Computer Graphics, IEEE Transactions on, 13(5):1015–1026, Sept.-Oct.
2007.

[79] M. D. Meyer, P. Georgel, and R. T. Whitaker. Robust particle systems
for curvature dependent sampling of implicit surfaces. In Proceedings of the
International Conference on Shape Modeling and Applications, pages 124–133,
June 2005.

[80] B. C. Munsell, P. Dalal, and S. Wang. Evaluating shape correspondence
for statistical shape analysis: A benchmark study. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 30(11):2023–2039, 2008.

[81] D. Nain, M. Styner, M. Niethammer, J. Levitt, M. Shenton, G. Gerig,
A. Bobick, and A. Tannenbaum. Statistical shape analysis of brain structures
using spherical wavelets. In Biomedical Imaging: From Nano to Macro, 2007.
ISBI 2007. 4th IEEE International Symposium on, pages 209–212, April 2007.



127

[82] L. Nevell and B. Wood. Cranial base evolution within the hominin clade.
Journal of Anatomy, 212(4):455–468, 2008.

[83] B. J. Nieman, A. M. Flenniken, S. L. Adamson, R. M. Henkelman, and J. G.
Sled. Anatomical phenotyping in the brain and skull of a mutant mouse
by magnetic resonance imaging and computed tomography. Physiological
Genomics, 24:154–162, 2006.

[84] I. Oguz, J. Cates, P. T. Fletcher, Z. Warnock, R. Whitaker, D. Cool, S. Ayl-
ward, and M. Styner. Cortical correspondence using entropy-based particle
systems and local featrues. In Proc. 5th IEEE International Symposium on
Biomedical Imaging (ISBI ’08), pages 1637–1640, 2008.

[85] I. Oguz, M. Neithammer, J. Cates, R. Whitaker, P. T. Fletcher, C. Vachet,
and M. Styner. Cortical correspondence with probabilistic fiber connectivity.
In Information Processing in Medical Imaging (IPMI 2009), LNCS 5636,
pages 651–663, 2009.

[86] E. Parzen. On estimation of a probability density function and mode. The
Annals of Mathematical Statistics, 33(3):1065–1076, 1962.

[87] K. Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2(6):559–572, 1901.

[88] E. Persoon and K. S. Fu. Shape discrimination using fourier descriptors.
IEEE Trans. Systems, Man and Cybernetics SMC, 7(3):388–397, 1977.

[89] S. M. Pizer, J.-Y. Jeong, C. Lu, K. E. Muller, and S. C. Joshi. Estimating the
statistics of multi-object anatomic geometry using inter-object relationships.
In Deep Structure, Singularities, and Computer Vision, volume 3753 of LNCS,
pages 60–71, 2005.

[90] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.

[91] F. J. Rohlf. Bias and error in estimates of mean shape in geometric morpho-
metrics. Journal of Human Evolution, 44:665–683, 2003.

[92] M. Rousson, N. Paragios, and R. Deriche. Implicit active shape models for
3d segmentation in mr imaging. In Medical Image Computing and Computer-
Assisted Intervention MICCAI 2004, pages 209–216, 2004.

[93] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit, An
Object Oriented Approach to 3D Graphics. Prentice-Hall, 1998.

[94] F. Segonne, A. M. Dale, E. Busa, M. Glessner, D. Salat, H. K. Hahn,
and B. Fischl. A hybrid approach to the skull stripping problem in mri.
NeuroImage, 22(3):1060 – 1075, 2004.

[95] J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge
University Press, 1996.



128

[96] M. Styner, J. Lieberman, and G. Gerig. Boundary and medial shape analysis
of the hippocampus in schizophrenia. In MICCAI, pages 464–471, 2003.

[97] M. Styner, J. A. Lieberman, D. Pantazis, and G. Gerig. Boundary and medial
shape analysis of the hippocampus in schizophrenia. Medical Image Analysis,
2004.

[98] M. Styner, I. Oguz, S. Xu, C. Brechbuhler, D. Pantazis, J. Levitt, M. Shenton,
and G. Gerig. Framework for the statistical shape analysis of brain structures
using SPHARM-PDM. The Insight Journal, 2006.

[99] M. Styner, K. T. Rajamani, L.-P. Nolte, G. Zsemlye, G. Székely, C. J.
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