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A personal introduction

University of Michigan,
Computer Science
– Network science

Summer @ Microsoft Research
– Early work on hard problem

– Please ask me questions
– WWW 2016
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Predicting success on Twitter?

Bakshy, Hofman,   
Mason, Watts (2011):
How viral will my  
tweet be?

“Cascades are 
unpredictable!”
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Incomplete history of�
cascade prediction

Who	 Predic+ng	 Features	 Metric	 Conclusion	

HongD	10	 Is	item	
retweeted?	

Topic	Models	 F1=0.47	 Be>er	than	
baseline	

JendersKN	13	 Will	item	reach	
some	size	T?	

Content	 F1>0.9	 High	accuracy	

TanLP	14	 Which	of	two	
does	be>er?	

Wording	 Accu=65.6%		 Computers	are	
OK	

ChengADKL	14	 Will	cascade	
double?	

Temporal	 AUC=0.88	 Predictable	

Lerman,	Yang,	Petrovic,	Romero,	Kupavskii,	Ma,	Weng,	Zhao,	Yu,	etc	
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‘Predictable’ needs a definition

1.  A framework for predictability
2.  Explore the predictability of information 

cascades (Twitter) within this framework
3.  Simulation results
4.  Future ideas for measuring predictability
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Unpredictable: imperfect prediction 
with perfect model

Our two approaches for information cascades:
1.  (Empirical) Does prediction performance 

plateau with better models and data?
2.  (Simulation) Is performance highly sensitive 

to noise?
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Why Twitter

•  If we can’t predict things on Twitter, can we in 
the real world?
– Lots of data

– Fully observable spread

•  Information cascades
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Our task
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•  Predict final # retweets of tweets with urls
•  Filter to 100 popular domains
•  February 2015:
•  Features:
– Tweet information
– User information

•  Optimize R2

–  (MSE, reduction in variance)



Random forest features
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Prediction limit on twitter

14

Basic user info

Past user success



How can you prove a limit?

•  Results robust to other ML models
– Decision tree, linear regression

•  Consistent with prior work
•  Asymptote, dependency between features
•  Can’t rule everything out
– Simulation
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Simulation

•  SIR disease model
•  Scale free network similar to Twitter
– 7M users, 𝛼 = 2.05
– 8B simulated cascades

•  Quality: R0 = average neighbors infected
– p(infect over edge) x mean-degree

•  Prediction task
– Given (possibly noisy) estimate of R0 and the seed 

node, predict cascade size
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Increasingly heterogeneous quality
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Increasing noise
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Conclusion

1.  Unifying framework for skill vs luck
2.  Most extensive study of Twitter
–  Apparent limit to prediction

3.  Simulation shows sensitivity to               
noise, heterogeneity
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More ideas

1.  In some cases randomness averages out
– How/why are cascades different? 

2.  Are there any controlled or natural 
experiments we can do?

3.  Better measurements of prediction goodness
– R2 is sensitive to outliers

4.  More features, time dependence
–  How independent are Twitter features?

5.  More realistic simulation models
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Thanks!
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travisbm@umich.edu
arxiv.org/abs/1602.01013

travismart.com


