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Predicting success on Twitter?

Bakshy, Hofman,
Mason, Watts (201 1):

How viral will my
tweet be!?

“Cascades are
unpredictable!”

Mason Porter @masonporter - Jan 19

i | | took a brief break from work. :)

We abhor vacuums. PAGE 181



Incomplete history of
cascade prediction

Predicting Features Metric Conclusion
HongD 10 Is item Topic Models F1=0.47 Better than
retweeted? baseline
JendersKN 13 Will item reach  Content F1>0.9 High accuracy
some size T?
TanLP 14 Which of two Wording Accu=65.6% Computers are

does better?

OK

ChengADKL 14 Will cascade
double?

Temporal

AUC=0.88

Predictable

Lerman, Yang, Petrovic, Romero, Kupavskii, Ma, Weng, Zhao, Yu, etc




‘Predictable’ needs a definition

|. A framework for predictability

2. Explore the predictability of information
cascades (Twitter) within this framework

3. Simulation results

4. Future ideas for measuring predictability



Distinguishing model error

from randomness

Empirical Observation
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Unpredictable: imperfect prediction

with perfect model

Our two approaches for information cascades:

|. (Empirical) Does prediction performance
plateau with better models and data?

2. (Simulation) Is performance highly sensitive
to noise!



Why Twitter

* If we can’t predict things on Twitter, can we in
the real world?

— Lots of data

— Fully observable spread

* Information cascades



Cascade
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Cascade size vs degree
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# tweets vs degree
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 Predict final # retweets of tweets with urls

* Filter to 100 popular domains

. February 2015: Users Tweets Retweets

51.6M 8H52M 1.806B
 Features:

— Tweet information

— User information
» Optimize R?

— (MSE, reduction in variance)



Random forest features
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Prediction limit on twitter
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How can you prove a limit!?

Results robust to other ML models

— Decision tree, linear regression

Consistent with prior work

Asymptote, dependency between features

Can’t rule everything out

— Simulation




 SIR disease model

* Scale free network similar to Twitter
— /M users, a = 2.05
— 8B simulated cascades

* Quality: R, = average neighbors infected
— p(infect over edge) x mean-degree

* Prediction task

— Given (possibly noisy) estimate of R, and the seed
node, predict cascade size



Increasingly heterogeneous quality
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Increasing noise
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Conclusion

|. Unifying framework for skill vs luck

2. Most extensive study of Twitter

— Apparent limit to prediction

3. Simulation shows sensitivity to
noise, heterogeneity



More ideas

|. In some cases randomness averages out
— How/why are cascades different?

2. Are there any controlled or natural
experiments we can do!

3. Better measurements of prediction goodness
— R? is sensitive to outliers

4. More features, time dependence
— How independent are Twitter features?

5. More realistic simulation models
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Thanks!

travisbm@umich.edu
arxiv.org/abs/1602.0101 3
travismart.com
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