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Inference problems and Belief Propagation

* Inference problems arise in statistical physics, computer vision, error-
correcting coding theory, and Al.

* BP is an efficient way to solve inference problems based on passing
local messages.



Bayesian networks

* Probably the most popular type of graphical model

e Used in many application domains: medical diagnosis, map learning,
language understanding, heuristics search, etc.



Probability (Reminder)

Source: Wikipedia.org

 Sample space is the set of all possible outcomes.
Example: S=1{1,2,3,4,5,6}

* Power set of the sample space is obtained by considering
all different collections of outcomes.

Example Power set = {{},{1},{2},...,{1,2},...,{1,2,3,4,5,6}}

e An eventis an element of Power set.
Example E ={1,2,3}



Probability (Reminder)

* Assigns every event E a numberin [0,1] in the following manner:
p(4) = Al
S|
* For example, let A ={2,4,6} denote the event of getting an even

number while rolling a dice once:
{2,4,6}] 3
p(A) — = —
|{1)2)3)4)5)6}| 6

1
2



Conditional Probability (Reminder)

* If Ais the event of interest and we know that the event B has already
occurred then the conditional probability of A given B:

- p(ANB)
p(A|B) = > (B)

* The basic idea is that the outcomes are restricted to only B then this
serves as the new sample space.

* Two events A and B are statisticallyindependent if
p(ANB) =p(A)p(B)
* Two events A and B are mutually independent if
p(ANB) =0




Bayes Theorem (Reminder)

* Let A and B be two events and p(B) # O.

~ p(Ap(BlA)
p(alB) ===



Reminder

Summary of probabilities
Event Probability
A P(A) € [0,1]
not A P(AE) =1- P(A)
P(AUB)=P(A)+ P(B)— P(ANB)
P(AUB) = P(A) + P(B) if A and B are mutually exclusive
P(AN B) = P(A|B)P(B) = P(B|A)P(A)
P(ANn B) = P(A)P(B) if A and B are independent

Agiven P(A|B)= - (;1(;)3) _ P(BJJ?;};(A)

AorB

A and B

Source: Wikipedia.org



A murder mystery

A fiendish murder has been committed
Whodunit?

There are two suspects:
— the Butler
— the Cook

There are three possible murder weapons:

— a butcher’s Knife ?
— a Pistol \

— a fireplace Poker

Slide Source: Christopher M. Bishop



Prior distribution

Butler has served family well for many years
Cook hired recently, rumours of dodgy history

P(Culprit = Butler) = 20%
P(Culprit = Cook) =80%

Probabilities add to 100%

This is called a factor graph

P(Culprit) (we'll see why later)

Culprit = {Butler, Cook}

Slide Source: Christopher M. Bishop



Conditional distribution

Butler is ex-army, keeps a gun in a locked drawer
Cook has access to lots of knives
Butler is older and getting frail

Pistol Knife Poker
Cook 5% 65% 30% = 100%
Butler 80% 10% 10% = 100%

P(Weapon | Culprit)

Slide Source: Christopher M. Bishop



Factor graph

Prior
/ distribution
P(Culprit)
Culprit = {Butler, Cook} Conditional

distribution

P(Weapon | Culprit)

Weapon = {Pistol, Knife, Poker}

Slide Source: Christopher M. Bishop



Joint distribution

What is the probability that the Cook committed

the murder using the Pistol? ﬁ“"%
P(Culprit = Cook) = 80% ? "0 T(/\_
P(Weapon = Pistol | Culprit = Cook) = 5% %

P(Weapon = Pistol , Culprit = Cook) = 80% x 5% = 4%

Likewise for the other five combinations of
Culprit and Weapon

Slide Source: Christopher M. Bishop



Joint distribution

Cook

Butler

Pistol Knife Poker
4% 52% 24%
16% 2% 2%

= 100%

P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit)

[ P(x,y) = P(y|x)P(x) ] Product rule

Slide Source: Christopher M. Bishop



Factor graphs

P(Culprit)
Culprit = {Butler, Cook}
P(Weapon | Culprit)

Generative model Weapon = {Pistol, Knife, Poker}

P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit)
Slide Source: Christopher M. Bishop



Generative viewpoint

" urderer | Weapon

Cook Knife
Butler Knife
Cook Pistol
Cook Poker
Cook Knife
Butler Pistol
Cook Poker
Cook Knife
Butler Pistol

Cook Knife



Marginal distribution of Culprit

Cook

Butler

Pistol Knife Poker
4% 52% 24% = 80%
16% 2% 2% =20%
4 )
Sum rule

.

PG) = ) P(x,)
y

J




Marginal distribution of Weapon

Pistol Knife Poker
Cook 4% 52% 24%
Butler 16% 2% 2%
=20% =54% =26%

[ P(x) =ZP(XJ) 1 Sum rule
y




Posterior distribution ?

We discover a Pistol at the scene of the crime

Pistol Knife Poker
Cook 4% 2% 24% = 20%
Butler 16% 2% 2%

This looks bad for the Butler!




Generative viewpoint
| Murderer | Weapon

—— ook Kmife——————————

_B'U"H'El KII;:—E
Cook Pistol
ook Peler

—Loal Kiaife
Butler Pistol

S a7 Y-\ 2 Rolkex
("nnk I(ni'Fg
Butler Pistol
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Reasoning backwards

Culprit

Weapon



Bayes’ theorem

P(x,y) = P(y|x)P(x)

likelihood —__ / prior

P P
P(yIx) = (x[y)P(y)
/ P(x)
posterior

Prior — belief before making a particular obs.

Posterior — belief after making the obs.
Posterior is the prior for the next observation

— Intrinsically incremental



Medical diagnosis problem

* We will have (possibly incomplete) information such as symptoms
and test results.

 We would like the probability that a given disease or a set of diseases
is causing the symptoms.



Fictional Asia example (Lauritzen and
Spiegelhalter 1988)

* A recent trip to Asia (A) increases the chance of Tuberculosis (T).
* Smoking is a risk factor for both lung cancer (L) and Bronchitis (B).

* The presence of either (E) tuberculosis or lung cancer can be treated
by an X-ray result (X), but the X-ray alone cannot distinguish between
them.

* Dyspnea (D) (shortness of breath) may be caused by bronchitis (B), or
either (E) tuberculosis or lung cancer.



Bayesian networks
®
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* Let x; denote the different possible states of the node i.

* Associated with each arrow, there is a conditional probability.

* p(x;|xs) denote the conditional probability that a patient has lung
cancer given he does or does not smoke.



Bayesian networks
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* p(x;|xs) denote the conditional probability that a patient has lung
cancer given he does or does not smoke.

* Here we say that “S” node is the parent of the “L” node.



Bayesian networks
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* Some nodes like D might have more than one parent.

* We can write the conditional probability as follows
p(xplxg, xp)
* Bayesian networks and other graphical models are most useful if the
graph structure is sparse.



Joint probability in Bayesian networks
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* The joint probability that the patient has some combination of the
symptoms, test results, and diseases is just the product of the
probabilities of the parents and the conditional ones:

P({x}) — P({XA, X, X7, X1,,Xg, XEg, X, XD})




Joint probability in Bayesian networks
®
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p({X}) = P({XA, Xs, XT,X1,,XB, XE, XX, XD})

= p(x)pxs)p(xrlx ) pxpxs)p(xplxs)p(xp|xr, x ) p(xx | xE) D (Xp | XE, XB)



Joint probability in Bayesian networks
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In general, Bayesian network is an acyclic directed graph with N
random variables x; that defines a joint probability function:

N
p(Xy, X, X3, e, xy) = Moy p (x| Par(x)



Marginal Probabilities

* Probability that a patient has a certain disease:
p(xy) = le sz ---Zx{N_l}P(xl;xz» o XN)

* Marginal probabilities are defined in terms of sums of all possible
states of all other nodes.

* We refer to approximate marginal probabilities computed at a node
x; as beliefs and denote it as follows:

b(x;)
* The virtue of BP is that it can compute the beliefs (at least

approximately) in graphs that can have a large number of nodes
efficiently.
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Pairwise Markov Random Fields

 Attractive theoretical model for many computer vision tasks (Geman
1984).

* Many computer vision problems such as segmentation, recognition,
stereo reconstruction are solved.



Pairwise Markov Random Fields
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* In a simple depth estimation problem on an image of size 1000 x
1000, every node can have states from 1 to D denoting different
distances from the camera center.



Pairwise Markov Random Fields
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* Let us observe certain quantities about the image y; and we are
interested in computing other entities about the underlying scene x;.

* The indices i denote certain pixel locations.

* Assume that there is some statistical dependency between x; and y;
and let us denote it by some compatibility function ¢;(x;, y;), also
referred to as the evidence.



Pairwise Markov Random Fields
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* To be able to infer anythlng about the scene, there should be some
kind of structure on Xx;.

* Ina 2D grid, x; should be compatible with nearby scene elements x;.

* Let us considera compatibility function I/Jij(xi,yj) where the
function connects only nearby pixel elements.



Pairwise Markov Random Fields
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1
p({x},{y}) = zH{ij}lpij(xi:xj)“i¢i(xi»Yi)

e Here Z is the normalization constant.

* The Markov Random fields is pairwise because the compatibility
function depends only on pairs of adjacent pixels.

* There is no parent-child relationship in MRFs and we don’t have

directional dependencies.



Potts Model

* The interaction J;; (xi,xj) between two neighboring nodes is given by

Jij (%0, %) = Intpy; (x;, %)
* The field h;(x;) at each node is given by

hi(x;) = Ing;(x;, ;)



Potts Model

* The Potts model energy is defined as below:

E({x;}) = _Ejij(xi:xj) — Eh(xi)
T i



Boltzmann’s law from statistical mechanics

* The pairwise MRF exactly corresponds to the Potts model energy at
temperature T = 1.

1 E{xi})
p({x;}) = Ee r

* The normalization constant Z is called the partition function.



ISING model

* If the number of states is just 2 then the model is called an ising
model.

* The problem of computing beliefs can be seen as computing local
magnetizationsin Ising model.

* The spin glass energy function is written below using two-state spin
variables s; = {+1, —1}:

E({s;}) = _zjij(si»sj) - zh(Si)
j i



Tanner Graphs and Factor Graphs

5 1 4

2 1

O/ We have transmitted N =
; : 2 6 bits with k = 3 parity
J)s check constraints.

* Error-correcting codes: We try to decode the information transmitted
through noisy channel.

* The first parity check code forces the sum of bits from #1, #2, and #5
to be even.



Tanner Graphs and Factor Graphs

5

2

We have transmitted N =

o

2 6 bits with k = 3 parity

J)s check constraints.

* Let y;be the received bit and the transmitted bit be given by x;.

* Joint probability can be written as follows:

*p({x,¥}) =

1
= Y124 (X1, X2, X4) Y135 (X1, X3, X5) Y236 (X0, X3, X ) p (7 | %)



Tanner Graphs and Factor Graphs

5 1 4

2 1

O/ We have transmitted N =
; : 2 6 bits with k = 3 parity
J)s check constraints.

* The parity check functions have values 1 when the bits satisfy the
constraintand O if they don’t.

* A decoding algorithm typically tries to minimize the number of bits
that are decoded incorrectly.



~actor Graphs (Using Energy or Cost
functions)

o
¢ b

Toy factor graph with one observed variable, 3 hidden variables,
and 3 factor nodes

e Factor graphs are bipartite graphs containing two types of
nodes: variable nodes (circles) and factor nodes (squares).



~actor Graphs (Using Energy or Cost
functions)

o
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Toy factor graph with one observed variable, 3 hidden variables,
and 3 factor nodes

* C(x1,%9,%x3,%4) = Cy(x1,%5,x3) + Cp(x5,x4) + Co(x3,%x4)



~actor Graphs (Using Energy or Cost
functions)
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Lowest Energy Configurations

° C(lex2)x31x4-) — Ca(x11x21x3) + Cb(x21x4-) + CC(XSJX4-)

* Finding the lowest energy state and computing the corresponding
variable assignments is a hard problem

* In most general cases, the problem is NP-hard.



Factor Graphs for Error Correction

Channel Evidence

Codeword bits

+ + + Parity Checks

A factor graph for (N=7,k=3) Hamming code, which has 7 codeword bits, of the
left-most four are information bits and the last 3 are parity bits.



Factor graph for the
medical expert system

* Here the variables are given by
Asia (A), Tuberculosis (T), Lung
cancer (L), Smoker (S), Bronchitis
(B), Either (E), X-ray (X), and D.
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Stereo reconstruction in Computer Vision
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Set up the Factor graphs

* Point matching between 2 images given the Fundamental matrix.
* Point correspondences between 2 sets of 3D points.
* The classical problem of line-labeling.



