How the backpropagation
algorithm works

Srikumar Ramalingam

School of Computing
University of Utah

Reference

Most of the slides are taken from the second chapter of the online
book by Michael Nielson:

* neuralnetworksanddeeplearning.com

Introduction

* First discovered in 1970.
* First influential paper in 1986:

Rumelhart, Hinton and Williams, Learning representations by back-
propagating errors, Nature, 1986.

Perceptron (Reminder)

0
1

w,

output = <

£

ifw:x-

-6 <0

ifw-x -

b > 0

9 >/>7 output

£3

Sigmoid neuron (Reminder)

T . . » Ot put

* A sigmoid neuron can take real numbers (x{, x5, x3) within 0 to 1 and
returns a number within 0 to 1. The weights (w, w,, w3) and the bias
term b are real numbers.

1
1l +e =

Sigmoid function o (2)

Matrix equations for neural networks

layer 1 layer 2 layer 3

“-’fm is the weight from the &*" neuron

in the (I —1)** layer to the j*" neuron
in the [*" layer

Ilj”

The indices and “k” seem a little counter-intuitive!

Layer to layer relationship

layer 1 layer 2 layer 3

« blis the bias term in the jth neuron in the Ith layer.

—

* a; is the activation in the jth neuron in the Ith layer.

~ .

* z; is the weighted input to the jth neuron in the Ith layer.

Cost function from the network

Groundtruth for

, Output activation vector for a specific
each input

training sample x.
[/
0——Zm r)|?
of input /

samples

for each input
sample

Backpropagation and stochastic gradient
descent

* The goal of the backpropagation algorithm is to compute the

ac aC
gradients — and — of the cost function C with respect to each and

ow db
every weight and bias parameters. Note that backpropagation is only

used to compute the gradients.

0——Zm 2)|?

 Stochastic gradient descent is the training algorithm.

Assumptions on the cost function

1. We assume that the cost function can be written as the average over

the cost functions from individual training samples: C = %Zx C,.The
cost function for the individual training sample is given by C,, =

~|y(x) — at ()2,

- why do we need this assumption? Backpropagation will only
allow us to compute the gradients with respect to a single training

. aC oC oC ac .
sample as given by — and —=. We then recover — and — by averaging

_ ow 0db o ow db
the gradients from the different training samples.

Assumptions on the cost function (continued)

2. We assume that the cost function can be written as a function of the
output from the neural network. We assume that the input x and its
associated correct labeling y(x) are fixed and treated as constants.

SOy
T

ol cost C' = C(al)

e

Hadamard product

* Let s and t are two vectors. The Hadamard product is given by:

CEOR?

(S) t)j — Sj.fj

HEINEI WS

Such elementwise multiplication is also referred to as schur product.

Backpropagation

: : . ac ac
* Our goal is to compute the partial derivatives ——and —;.
awjk abj

* We compute some intermediate quantities while doing so:

. oC
% = 3,
J

Four equations of the BP (backpropagation)

Summary: the equations of backpropagation
ot =V,C 0o (21 (BP1)
8 = ((w'tHTs") o o' (2Y) (BP2)
o5 = 0j (BP3)
Bul, = W O (BP4)

Chain Rule in differentiation

* In order to differentiate a function z = f(g(x)) w.r.t x, we can do the
following:

dz dz dy

lety =g(x), z=f(), L= X4,

Chain Rule in differentiation (vector case)

Let x € R™,y € R", g maps from R™ to R™, and f maps from R" to
R.Ify = g(x)and z = f(y), then

0z 0z 0y

Ox; L0y Ox,

Chain Rule in differentiation (computation
graph)

V1
0z dz 0y; O
ox Z dy; 0x /;.y\‘$
x\‘M “

j:x€Parent(y;),
yj€EAncestor (z)

at = a(z1)

BP1 o
@ C=r@h

Layer L—1 LayerlL

5t =Vv,C o o' (2F)

Here L is the last layer.

~ 9zL’ R P “* " 9al \9al’0al’ " ddk
Proof:
ac ac dak ac daj L

. 0 .
when j # k, the term a;:’,f vanishes.
J

Thus we have

[+1 [+1 l+bl+1

Z =w
BP2 O
i @
3l — ((Wz+1) 5z+1) O o' (z}) o
Proof: Layer | Layer | + 1
l aC azl+1 l+1 l+1
5 Zk azl+1 az Zk 6

l+1 Z Wl+1al +bk —Z Wl+1O_(Zl) +bk
By differentlatlng we have.
05" _ W,lJla (Zl)

az]

5].1 =Y. Wk-]l-_15l+10' (Zl)

BP3 7L = wlgl-1 + p!

O
ic @
—— =
obt O

Layer [-1 Layerl
Proof:

aC 2 (ac dzL\ 9C 0z
PYN A L Anl | — A, 13kl
Obj £4\0z, 9bj | 0z db;

_ 0wpaf + b))

J 0b:

j
_ sl
= §]

BP4 7L = wlgl-1 + p!

— ~l-1cl
Tl ay ~0;
Jt O
Proof: L I
oc 5 ac ozl Layer [-1 ayer
6le-k_ maz}naw}k
_9C 0z
- azjl OWjp
[-1 l
. 6!a(szjkak +b])
J aWJk
[-1

The backpropagation algorithm

1. Input z: Set the corresponding activation a' for the input

layer.

2. Feedforward: Foreach! = 2,3,..., L compute

zl = wla! + b’ and o' = o(2?).
3. Output error 6”: Compute the vector §* = V,C ® o'(21).

4. Backpropagate the error: Foreachl =L - 1,L —2,...,2

compute §' = ((w1)T5*) © o'(2Y).

5. Output: The gradient of the cost function is given by
2 — gl16l and & = 6.
oy, ko 7J ab; j

The word “backpropagation” comes from the fact that we compute the error vectors 5]-1 in the backward
direction.

Stochastic gradient descent with BP

1. Input a set of training examples

2. For each training example z: Set the corresponding input

activation a®!, and perform the following steps:

o Feedforward: Foreach! = 2,3,..., L compute

z;rj _ wlaxfl—l 4 bl. and a;r,f _ O_(zm,I)_

o Output error 5=l Compute the vector
5L =v,C, ® o' (2%1).

o Backpropagate the error: For each
I=L—-1,L—2,...,2 compute
5&:,! — ((wl—l)T(gz:?Hl) @ G_r(za:_,l)_

3. Gradient descent: Foreach!= L,L — 1,...,2 update the
weights according to the rule w' — w' — =3 §*!(a®"1)T, and

the biases according to the rule ' — b' — =%,

m

Gradients using finite differences

0C C(w+ eej) — C(w)

— |

awj €

Here € is a small positive number and e; is the unit vector in the jth direction.
Conceptually very easy to implement.
In order to compute this derivative w.r.t one parameter, we need to do one forward pass
— for millions of variables we will have to do millions of forward passes.

- Backpropagation can get all the gradients in just one forward and backward

pass — forward and backward passes are roughly equivalent in computations.

The derivatives using finite differences would be a million times slower!!

Backpropagation — the big picture

AC ~ Z 8C dak, Oay ! “‘&léﬂ 3%
dal, Bar~' day? dal !

mnp. . .q w gk

Awﬂ.k
j .

* To compute the total change in C we need to consider all possible paths from the
weight to the rnst

_ : I

- Z 8C 0Oak Oay! 3‘1?1 8{1’.‘.?
I L L—1 L2 " I I
Swjk 9a;, Oa;, ~ Oa; da ; awjk

mnp. . .q

* We are computing the rate of change of C w.r.t a weight w.

* Every edge between two neurons in the network is associated with a rate factor that is
just the ratio of partial derivatives of one neurons activation with respect to another
neurons activation.

* The rate factor for a path is just the product of the rate factors of the edges in the path.

* The total change is the sum of the rate factors of all the paths from the weight to the
cost.

Thank You

Chain Rule in differentiation (vector case)

Let x € R™,y € R", g maps from R™ to R™, and f maps from R" to
R.Ify = g(x)and z = f(y), then

0z 0z 0y

Ox; L0y Ox,

_ ('
V,Z = (E) Vyz
Here (%) is the n X m Jacobian matrix of g.

DERIVATIVE RULES

d ;. . d . . d .
dx[ﬁ:)znx ! E{mnx}zcﬂsx E(cnsx}z—smx
d, . . d d 3
dx(a-)zlna-ﬂ E(tanx]zse-:lx (cotx)=—ecsc” x
i{f(*{]- (x))=f(x)-g'(x)+ g(x)- f'(x) E{sraﬁ: x)=secxtanx i(csc x)=—cscxcotx
a8 ety A A d "
d [f{xJJ:g(x)-f{xj—fix}g(x} 4 (arosinr) = (arctanx) =L,
dx| g(x) (g(x)) dx 1— 2 dx l+x
i{f (g(x))=f"(g(x)-g'(x) i(arc secx) = J
dx , , dx ‘ xx.l'xz—l
d | d ., . d :
E{lnx)—; E{smhx)—cnshx E{cc—shx}-smhx

Source: http://math.arizona.edu/~calc/Rules.pdf

j‘x"deLx”'l +e, n#x-—1
n+1

X 1 X
a - +
I dx a C
Ina

ji{fr: 111|:1:|+c
X

—arcsinx4c

dx
2
-X

by

dx
j ——arctanx+c
1+x°

—arcsecx—+c

ji
xw,f'x?‘ —1

INTEGRAL RULES

Isinx:itz—cﬂsx+c
Icasxﬁix —sinx+c

i |
Isec“ xdx=tanx+4c¢

Isinh xdx =coshx+e¢

.
Icsc“ xdx=—cotx+c¢
Ise-::xtan xadx =secx+c
Icsc xcotxdr=—cscx+e

Icosh xadx=smhx+e¢

Source: http://math.arizona.edu/~calc/Rules.pdf

