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Reference

Most of the slides are taken from the first chapter of the online book by
Michael Nielson:

* neuralnetworksanddeeplearning.com



Introduction

* Deep learning allows computational models
that are composed of multiple layers to learn
representations of data.

e Significantly improved state-of-the-art results ...
in speech recognition, visual object
recognition, object detection, drug discovery
and genomics.

“deep” comes from having
multiple layers of non-linearity

[Source: Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep Learning, Nature 2015]



Introduction

* “neural” is used because it is loosely inspired by neuroscience.

* The goal is generally to approximate some function f*, e.g., consider
a classifiery = f*(x):
We define a mapping y = (60, x) and learn the value of the parameters 6
that result in the best function approximation.

* Feedforward network is a specific type of deep neural network where
information flows through the function being evaluated from input x
through the intermediate computations used to define f, and finally
to the output .



Perceptron
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* A perceptron takes several Boolean inputs (x4, X, x3) and returns a
Boolean output.

0 if ) . w;z; < threshold
output =
1 if ), ;wjz; > threshold

* The weights (wy, w,, w3) and the threshold are real numbers.



Simplification (Threshold -> Bias)
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NAND gate using a perceptron

NAND is equivalent to NOT AND



It’s an old paradigm

# The first learning machine:
the Perceptron

» Built at Cornell in 1960

# The Perceptron was a linear classifier on top of
a simple feature extractor
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# The vast majority of practical applications of
ML today use glorified linear classifiers or
glorified template matching.

# Designing a feature extractor requires
considerable efforts by experts.




Design the weights and thresholds for the
following truth table

When all the three Boolean variables are 1s, we output 1, \/\
otherwise we output 0. ., L outpul

When all the three Boolean variables are Os, we output 1, =3
otherwise we output O.

When two of the three Boolean variables are 1s, we output 1,
otherwise we output O.



NAND is universal for computation

* XOR gate and AND gate
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OR gate using perceptrons?



Sigmoid neuron
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* A sigmoid neuron can take real numbers (x{, x5, x3) within 0 to 1 and
returns a number within 0 to 1. The weights (w, w,, w3) and the bias
term b are real numbers.

1
1l +e =

Sigmoid function o (2)



Sigmoid neuron
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* A sigmoid neuron can take real numbers (x{, x5, x3) within 0 to 1 and
returns a number within 0 to 1. The weights (w, w,, w3) and the bias
term b are real numbers.




Sigmoid function
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Sigmoid function can be seen as smoothed
step function
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Small changes in parameters produce small
changes in output for sigmoid neurons

(small change in

parameters)
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(partial derivatives)

* Aoutput is approx. a linear function in small changes in weights and bias terms.
* Not for perceptrons!
 The outputs flip from 0 to 1 or vice versa for small change in inputs.



The architecture of neural networks




MNIST data

* Each grayscale image is of size 28x28.
* 60,000 training images and 10,000 test images
* 10 possible labels (0,1,2,3,4,5,6,7,8,9)



Digit recognition using 3 layers
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Compute the weights and biases for the last
layer
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Cost function
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input -> X vector output -> a

* We assume that the network approximates a function y(x) and outputs a.
* We use a quadratic cost function, i.e., mean squared error or MSE.



Cost function

e Can the cost function be negative in the above example?
* What does it mean when the cost is approximately equal to zero?



Gradient Descent
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Small changes in parameters to
AC ~ —Av, + Av, leads to small changes in output
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Gradient vector!

ac ac\?!
VO =
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Av = —nVC

Change the parameter using learning rate
(positive) and gradient vector!

v—v =v-nVC Update rule!

* Let us consider a cost function C (v, v,) that depends on two variables.

* The goal is to change the two variables to minimize the cost function.



Cost function from the network
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What are the challenges in gradient descent when you have a large number of

training samples?

Gradient from a set of trainin
Ve =1 vC &
n ZT’ ¥ samples.



Stochastic gradient descent

* The idea is to compute the gradient using a small set of randomly
chosen training data.

* We assume that the average gradient obtained from the small set is
close to the gradient obtained from the entire set.



Stochastic gradient descent
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* Let us consider a mini-batch with m randomly chosen samples.

* Provided that the sample size is large enough, we expect the
average gradient from the m samples is approximately equal to
the average gradient from all the n samples.



Thank You



DERIVATIVE RULES
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Source: http://math.arizona.edu/~calc/Rules.pdf
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INTEGRAL RULES
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Source: http://math.arizona.edu/~calc/Rules.pdf



