Using neural nets to
recognize hand-written digits

Srikumar Ramalingam

School of Computing
University of Utah

Reference

Most of the slides are taken from the first chapter of the online book by
Michael Nielson:

* neuralnetworksanddeeplearning.com

Introduction

* Deep learning allows computational models
that are composed of multiple layers to learn
representations of data.

e Significantly improved state-of-the-art results ...
in speech recognition, visual object
recognition, object detection, drug discovery
and genomics.

“deep” comes from having
multiple layers of non-linearity

[Source: Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep Learning, Nature 2015]

Introduction

* “neural” is used because it is loosely inspired by neuroscience.

* The goal is generally to approximate some function f*, e.g., consider
a classifiery = f*(x):
We define a mapping y = (60, x) and learn the value of the parameters 6
that result in the best function approximation.

* Feedforward network is a specific type of deep neural network where
information flows through the function being evaluated from input x
through the intermediate computations used to define f, and finally
to the output .

Perceptron

T , | » ontput
/\-“f/

* A perceptron takes several Boolean inputs (x4, X, x3) and returns a
Boolean output.

0 if) . w;z; < threshold
output =
1 if), ;wjz; > threshold

* The weights (wy, w,, w3) and the threshold are real numbers.

Simplification (Threshold -> Bias)

(0 ifw-z+b<0

output = < '
1 ifw-z+b>0

w,

£
T Xb\j » output

£3

NAND gate using a perceptron

NAND is equivalent to NOT AND

It’s an old paradigm

The first learning machine:
the Perceptron

» Built at Cornell in 1960

The Perceptron was a linear classifier on top of
a simple feature extractor

‘ 1012e41X] 94Nn1ea4 ‘

The vast majority of practical applications of
ML today use glorified linear classifiers or
glorified template matching.

Designing a feature extractor requires
considerable efforts by experts.

Design the weights and thresholds for the
following truth table

When all the three Boolean variables are 1s, we output 1, \/\
otherwise we output 0. ., L outpul

When all the three Boolean variables are Os, we output 1, =3
otherwise we output O.

When two of the three Boolean variables are 1s, we output 1,
otherwise we output O.

NAND is universal for computation

* XOR gate and AND gate

L1 —e

&ry —e

} SUIm: Iy 9 Io

-

1

>37 carry bit: xix2

~

——— SuIn: I 9 Io

% » carry bit: a9

OR gate using perceptrons?

Sigmoid neuron

1o g | » output

/\,/ o(w -z + b)

* A sigmoid neuron can take real numbers (x{, x5, x3) within 0 to 1 and
returns a number within 0 to 1. The weights (w, w,, w3) and the bias
term b are real numbers.

1
1l +e =

Sigmoid function o (2)

Sigmoid neuron

\/\ 1

9 g | » output

/\j 1 + exp(— ijj:cj —b)

* A sigmoid neuron can take real numbers (x{, x5, x3) within 0 to 1 and
returns a number within 0 to 1. The weights (w, w,, w3) and the bias
term b are real numbers.

Sigmoid function

o(z) =

14+ e *

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0

sigmoid function

Sigmoid function can be seen as smoothed
step function

sigmoid function o
1.0 J— step function

0.8

0.6

IIIIIIIIIIIIIIIIIII

Small changes in parameters produce small
changes in output for sigmoid neurons

(small change in

parameters)
dout ut / 30111: 1}<
P | P Ab

Aoutput ~ Z 5
w;

J
(small change in
output)

(partial derivatives)

* Aoutput is approx. a linear function in small changes in weights and bias terms.
* Not for perceptrons!
 The outputs flip from 0 to 1 or vice versa for small change in inputs.

The architecture of neural networks

MNIST data

* Each grayscale image is of size 28x28.
* 60,000 training images and 10,000 test images
* 10 possible labels (0,1,2,3,4,5,6,7,8,9)

Digit recognition using 3 layers

IL]. L]. \'.J {8 W) 1?]_"-' L=

{rn = 15 neurons)

output layer

1 Example outputs:
¥ 3 6 ->
[0000001000Y
input laver £
(TEBd neuwrons)) -
é?:’ 6
Input normalized to x” y 7
a value between 0 g

and 1.

Compute the weights and biases for the last
layer

ocld output layer

hid den Inyver

\

1

S50 SN\
A AN
2 Q0 N SN
input leyer - < ;
* ¥

(TEd newrons

Cost function

- ..'-/
e
A
P #,{;é
= . - ol
T £l

1 AL e
Clw,b) = - lly(z) —al?

of input N\
parameters \
samples
to compute

input -> X vector output -> a

* We assume that the network approximates a function y(x) and outputs a.
* We use a quadratic cost function, i.e., mean squared error or MSE.

Cost function

e Can the cost function be negative in the above example?
* What does it mean when the cost is approximately equal to zero?

Gradient Descent

oC oC

Small changes in parameters to
AC ~ —Av, + Av, leads to small changes in output
81:1 3‘1?2

Gradient vector!

ac ac\?!
VO =
(8@1’8%"2)

Av = —nVC

Change the parameter using learning rate
(positive) and gradient vector!

v—v =v-nVC Update rule!

* Let us consider a cost function C (v, v,) that depends on two variables.

* The goal is to change the two variables to minimize the cost function.

Cost function from the network

wp — w, =w naC
k p— W — N7—
1 Owy,
Cw,b) = — > |ly(z) — aff _,

’ QHZ H bg%bﬁzbs—ﬁac

l \‘“ Ob;

of input

parameters
samples

to compute

What are the challenges in gradient descent when you have a large number of

training samples?

Gradient from a set of trainin
Ve =1 vC &
n ZT’ ¥ samples.

Stochastic gradient descent

* The idea is to compute the gradient using a small set of randomly
chosen training data.

* We assume that the average gradient obtained from the small set is
close to the gradient obtained from the entire set.

Stochastic gradient descent

Z?:lvc}fj " Z;L:VCI B

m n

vC

* Let us consider a mini-batch with m randomly chosen samples.

* Provided that the sample size is large enough, we expect the
average gradient from the m samples is approximately equal to
the average gradient from all the n samples.

Thank You

DERIVATIVE RULES

d ;. . d . . d .
dx[ﬁ:)znx ! E{mnx}zcﬂsx E(cnsx}z—smx
d, . . d d 3
dx(a-)zlna-ﬂ E(tanx]zse-:lx (cotx)=—ecsc” x
i{f(*{]- (x))=f(x)-g'(x)+ g(x)- f'(x) E{sraﬁ: x)=secxtanx i(csc x)=—cscxcotx
a8 ety A A d "
d [f{xJJ:g(x)-f{xj—fix}g(x} 4 (arosinr) = (arctanx) =L,
dx| g(x) (g(x)) dx 1— 2 dx l+x
i{f (g(x))=f"(g(x)-g'(x) i(arc secx) = J
dx , , dx ‘ xx.l'xz—l
d | d ., . d :
E{lnx)—; E{smhx)—cnshx E{cc—shx}-smhx

Source: http://math.arizona.edu/~calc/Rules.pdf

j‘x"deLx”'l +e, n#x-—1
n+1

X 1 X
a - +
I dx a C
Ina

ji{fr: 111|:1:|+c
X

—arcsinx4c

dx
2
-X

by

dx
j ——arctanx+c
1+x°

—arcsecx—+c

ji
xw,f'x?‘ —1

INTEGRAL RULES

Isinx:itz—cﬂsx+c
Icasxﬁix —sinx+c

i |
Isec“ xdx=tanx+4c¢

Isinh xdx =coshx+e¢

.
Icsc“ xdx=—cotx+c¢
Ise-::xtan xadx =secx+c
Icsc xcotxdr=—cscx+e

Icosh xadx=smhx+e¢

Source: http://math.arizona.edu/~calc/Rules.pdf

