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Abstract—Coverage-guided fuzzing remains today’s most suc-
cessful approach for exposing software security vulnerabili-
ties. Speed is paramount in fuzzing, as maintaining a high
test case throughput enables more expeditious exploration
of programs—leading to faster vulnerability discovery. High-
performance fuzzers exploit the Linux kernel’s customizability
to implement process snapshotting: fuzzing-oriented execu-
tion primitives that dramatically increase fuzzing throughput.
Unfortunately, such speeds remain elusive on Windows. The
closed-source nature of its kernel prevents current kernel-based
snapshotting techniques from being ported—severely limiting
fuzzing’s effectiveness on Windows programs. Thus, acceler-
ating vetting of the Windows software ecosystem demands a
fast, correct, and kernel-agnostic fuzzing execution mechanism.

We propose making state snapshotting an application-
level concern as opposed to a kernel-level concern via target-
embedded snapshotting. Target-embedded-snapshotting com-
bines binary- and library-level hooking to allow applications
to snapshot themselves—while leaving both their source code
and the Windows kernel untouched. Our evaluation on 10 real-
world Windows binaries shows that target-embedded snap-
shotting overcomes the speed, correctness, and compatibility
challenges of previous Windows fuzzing execution mechanisms
(i.e., process creation, forkserver-based cloning, and persistent
mode). The result is 7–182x increased performance.

1. Introduction

With software exploits dominating today’s cyber-threat
landscape, developers and security practitioners are in a
constant race against time to find and mitigate security bugs
before attackers can exploit them to cause harm. Over the
last decade, coverage-guided fuzzing has become the most
popular and successful technique for automatically uncover-
ing security vulnerabilities in software. At its core, fuzzing
operates by 1⃝ generating massive amounts of random test
cases, 2⃝ executing each on the target program and tracing
their code coverage, and 3⃝ triaging test cases by their
observed behaviors (e.g., code coverage and crashes).

Many academic and industrial advancements have
greatly improved fuzzing’s test case generation [1], [2],
[3] and triage [4], [5], [6] abilities. However, as fuzzing
aims to scrutinize programs with a large volume of test
cases, maintaining a high performance—and hence, a high

test case throughput—is critical to effective fuzzing. As
research shows that test case execution and code coverage
tracing are fuzzing’s most resource-intensive steps [7], many
successful fuzzing optimizations act on the coverage-tracing
level [8], [9], [10], [11]. The success in eliminating coverage
tracing overhead leaves the overarching process execution
mechanism (i.e., preparing a process for each test case) as
the current limiting factor for fuzzing speed [12], [13], [14].

To facilitate effective software fuzzing, an execution
mechanism must uphold two key properties:
1) Efficiency: avoiding re-execution of target code (e.g.,

GUI initialization) or kernel code (e.g., virtual memory
management). This increases test case throughput by
reducing time spent executing uninteresting code.

2) Correctness: ensuring execution is semantically correct
no matter the number or order of previous test cases. This
eliminates the possibility of false positives (e.g., spurious
crashes) and false negatives (e.g., missed vulnerabilities).

In recent years, the Linux fuzzing community is abandoning
slow-yet-correct process execution mechanisms (e.g., fork–
exec and AFL’s forkserver [15]) in favor of fast-and-correct
process snapshotting: fuzzing-tailored execution primitives
implemented via extensions to Linux’s open-source ker-
nel [16], [13], [17]. Snapshotting represents the fastest-
possible correct process execution in fuzzing today [17],
enabling orders-of-magnitude higher test case throughput for
expedited software vulnerability discovery.

Unfortunately, the benefits of snapshot-accelerated ex-
ecution have yet to appear in Windows software fuzzing.
The Windows kernel’s closed-source nature prevents third-
party porting of Linux-based snapshot primitives, forcing
Windows fuzzers to rely on slowest-of-all execution via
process creation (e.g., CreateProcess() [18]). Re-
cent reverse-engineering efforts expose hidden copy-on-
write process cloning primitives [19], yet their version-
specific nature leaves them incompatible with older—and
newer—kernels [20]. Worse yet, for reasons undisclosed by
Windows, existing process creation and cloning mechanisms
are up to 1,000× slower than their Linux counterparts [21],
[19]. Some fuzzers are embracing faster in-memory pro-
cess looping (e.g., WinAFL’s persistent mode [18]), yet



its inability to reset process states leads to semantically-
incorrect execution, leading to both spurious and missed
crashes. Without fast and correct execution supportive of all
Windows kernels, Windows application fuzzing will remain
impaired, impeding efforts to vet the software of one of the
world’s largest computing ecosystems.

To overcome these challenges, this paper introduces the
concept of target-embedded snapshotting: a technique to
make fuzzed Windows applications snapshot themselves.
Our approach is guided by the insight that fuzzing-relevant
program state (i.e., stack, globals, and heap) is control-
lable purely by language-level constructs—enabling the re-
sponsibility of snapshotting to be shifted from the kernel
to the fuzzed program instead. At a high level, our technique
injects snapshotting’s state restoration inside of conventional
in-memory looping, resetting program state on every pro-
gram termination (i.e., when test cases finish executing).
For stack state, we repurpose C++’s non-local jumping
construct [22] to reset the instruction, frame, and base
pointers; for global state, we copy and restore the program’s
data segment (using Windows guard pages [23] to increase
efficiency); and for heap state, we introduce a lightweight
bookkeeping mechanism to intercept dynamically-allocated
memory chunks and free them on program exit.

We design a binary-only implementation of target-
embedded snapshotting, WINFUZZ, and evaluate it against
the leading execution mechanisms used in Windows fuzzing.
Across 10 binary-only benchmarks of varying type, size,
and structure, WINFUZZ outperforms WinAFL’s process
creation and Winnie’s forkserver-based process cloning by
covering 18x and 6x more test cases, respectively, and
attaining 5% and 15% higher code coverage, respectively.

In summary, this paper contributes the following:
• We examine existing execution mechanisms’ design trade-

offs, developing a criteria of the ideal characteristics
needed to support effective Windows software fuzzing.

• We leverage this criteria to design target-embedded snap-
shotting: a fast and correct process execution mechanism
for fuzzing binary-level Windows applications.

• We show that it is possible to combine readily-available
programming language constructs with lightweight bi-
nary instrumentation to enable programs to automatically
restore their own stack, heap, and global state during
fuzzing—without needing to modify the Windows kernel.

• We implement a prototype of target-embedded snapshot-
ting, WINFUZZ, and evaluate it against current state-of-
the-art execution mechanisms available to Windows soft-
ware fuzzing. We show that WINFUZZ’s target-embedded
snapshotting facilitates fuzzing with higher test case
throughput, code coverage, and crash discovery than the
leading Windows fuzzing execution mechanisms.

• We open-source WINFUZZ, our implementation of target-
embedded snapshotting, and our evaluation artifacts at:
github.com/FoRTE-Research/winfuzz.

2. Background

In this section we introduce the topics central to target-
embedded snapshotting: coverage-guided fuzzing, process
execution state, and fuzzing process execution mechanisms.

2.1. Coverage-guided Fuzzing

Fuzzing is by far today’s most popular and successful
software testing technique for automatically discovering
software bugs and security vulnerabilities. As shown in
Figure 1, given a target program and an initial set of seed
inputs for it, the process of fuzzing encompasses three high-
level steps:
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Figure 1: A visualization of software fuzzing’s fundamental steps.

1) Generation: Batches of test cases are created by mu-
tating saved test cases or starting seed inputs. Existing
mutation techniques generally rely on injecting random
bits or bytes [15], pre-defined [24], [2] or dynamically-
learned [25], [3] input grammars, or token values ex-
tracted from the program [26].

2) Execution: The target program is run on each generated
test case, with lightweight monitoring used to flag those
that reveal unusual execution behavior (e.g., crashes).

3) Triage: Test cases are grouped based on their observed
execution behavior: those deemed interesting are saved
and prioritized for future rounds of mutation, those
deemed uninteresting are discarded, and those triggering
bugs are saved for offline analysis by practitioners.
Fuzzing’s most common form in practice is coverage-

guided fuzzing [27], [28], [14]: a strategy that aims to maxi-
mize exploration of the target’s code by mutating only those
test cases that reach previously-unexplored code regions. To
achieve this, coverage-guided fuzzers augment fuzzing’s ex-
ecution with program instrumentation (e.g., compiler instru-
mentation [27], dynamic binary translation [29], [30], [31],
or static binary rewriting [32], [33], [34]) to collect each
test case’s code coverage (e.g., basic blocks [7] or control-
flow edges [14]). Code coverage novelty is then assessed in
the triage phase: test cases reaching new coverage are saved
and fed back into test case generation, with the goal being
to mutate them and further increase the frontier of code



coverage; while test cases covering already-seen code are
merely discarded. Popular coverage-guided fuzzers include
AFL++ [14] and libFuzzer [27].

2.2. Process Execution State

At a high level, process state refers to a program’s full
execution context at any point in its execution: its active
instruction and subroutine, and the values of its variables
and other data objects. From a lower level, state spans four
fundamental constructs: local stack state, register state, heap
memory state, and global data state.

Stack State. The stack (or call stack) is a linear, last-in-
first-out data structure whose state represents a program’s
active subroutines and their corresponding local data (e.g.,
arguments, return address, variables). As subroutines are
entered during execution, they are allocated temporary stack
memory regions—called frames—at the stack’s top-most
region.1 When a subroutine returns, its frame is cleared,
and the preceding frame (i.e., the caller of the now-returned
subroutine) becomes the stack’s new top-most frame.

Register State. Execution also changes the state of sev-
eral small-yet-fast temporary storage bins called registers. In
stack frame allocation, the stack pointer and base pointer
(or frame pointer) registers take on the active subroutine’s
frame boundaries: the stack pointer (64-bit: rsp, 32-bit:
esp) is assigned the stack’s top-most address, while the
base pointer (64-bit: rbp, 32-bit: ebp) denotes the address
directly after the previous frame. As instructions are exe-
cuted, the instruction pointer register (64-bit: rip, 32-bit:
eip) is also updated to reflect the address of the current
instruction. Additionally, other general-purpose registers are
updated whenever they are used for temporary storage (e.g.,
mov rax ← 0x1234).

Heap State. The heap is a hierarchical data structure
accommodating dynamic memory allocation (e.g., using
malloc(), calloc(), realloc(), or C++’s new). At
a high level, blocks of heap memory are allocated by their
size, with pointers used to access the resulting regions. Upon
deallocation, freed regions immediately become available
for future allocation. However, while stack memory is con-
trolled by code generated by the compiler at function call
boundaries, the responsibility of managing heap state is left
entirely to the programmer.

Global State. Beyond local data, software commonly
uses global data: objects instantiated at program entry (i.e.,
non-local to any subroutines). Most executable formats (e.g.,
Windows PE32+, Linux ELF) store global data in distinct
memory regions (e.g., .bss and .data); at runtime, they
are loaded into the virtual address space, and subsequently
cleared on exit. As global program state is accessible—
and often mutable—by the entire application, it is deeply
intertwined with modern programs’ decision-making logic.

1. For brevity, we refer to the stack’s lowest address as its top.

2.3. Current Fuzzing Execution Mechanisms

Fuzzing scrutinizes programs by generating—and
executing—a massive volume of test cases. At the core of
fuzzing’s test case execution are execution mechanisms: the
machinery tasked with initiating the target process per every
incoming test case and cleaning things up after execution
completes. As shown in Figure 2, current fuzzing execution
mechanisms span four types: process creation, forkserver-
based cloning, in-memory looping, and kernel-based snap-
shotting. We discuss each below.

Process Creation. Process creation represents the flag-
ship program execution technique supported by Windows.
At a high level, process creation works as follows:
1) Load the target executable file into a new child process.
2) Initialize the child process and begin executing its code.
3) On exit, free the child process’ resources and wait for a

new incoming test case.
Since Windows 3.1, process creation is facilitated by the
CreateProcess() API [39]. In fuzzing, the steps of
process creation are performed for each generated test case.
Many Windows fuzzers support or rely on process creation,
such as WinAFL [18], Manul [35], and KillerBeez [36].

Forkserver-based Cloning. In 2014 [12], Linux-based
fuzzers began adopting forkserver-based process cloning: a
technique to initiate test case executions from after target
initialization. Forkserver-based cloning operates as follows:
1) Load the target once, creating a forkserver process.
2) Instrument a post-initialization target subroutine (e.g.,

main()) to perform copy-on-write process cloning.
3) For each test case, fork a new child and execute it.
4) On exit, free child process resources and go to Step 3.
By performing target initialization just once, forkserver-
based cloning is spared the cost of re-executing initialization
routines per test case. While the forkserver’s required copy-
on-write cloning primitives are not directly supported by
Windows, Jung et al. [19] reveal the possibility of reverse-
engineering hidden copy-on-write cloning primitives from
Windows’ closed-source kernel.

In-memory Looping. Unlike process creation and
forkserver-based execution, in-memory looping avoids
spawning processes by instead executing in a single, persis-
tent (non-exiting) child. These techniques (e.g., AFL’s per-
sistent mode [14]) interpose a loop around the subroutine(s)
targeted for fuzzing, with each loop iteration devoted to a
single test case. Its key steps are:
1) Load the target once, creating a persistent process with

the target subroutine (e.g., main()) wrapped in a loop.
2) For each test case, perform a new execution of the loop.
3) On exit, jump back to the loop’s entry from Step 2.
Many Windows fuzzers support or rely on in-memory loop-
ing, like WinAFL [18], TinyAFL [37], and Jackalope [38].

Kernel-based Snapshotting. Recent state-of-the-art
fuzzers (e.g., AFL++ [14]) are capitalizing on an emerging
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Figure 2: A high-level overview of the workflows of current process execution mechanisms used in fuzzing: process creation [18], [35], [36], forkserver-
based process cloning [19], in-memory process looping [18], [37], [38], and kernel-based process snapshotting [13], [17], [16].

Execution Mechanism Fuzzing
Implementations

Level of Efficiency Execution
Correctness

Windows Kernel
CompatibilityTarget Kernel

Process Creation
WinAFL [18],
Manul [35],

KillerBeez [36],
✗ ✗ ✔ full

Forkserver-based Cloning Winnie [19] ✔ ✗ ✔ partial

In-memory Looping
WinAFL [18],
TinyAFL [37],
Jackalope [38]

✔ ✔ ✗ full

Kernel-based Snapshotting
AFL++ LKM [17],

Xu et al. [13],
Zhao et al. [16]

✔ ✔ ✔ none

Target-embedded Snapshotting WinFuzz ✔ ✔ ✔ full

TABLE 1: A feature comparison of fuzzing execution mechanisms process creation, forkserver-based process cloning, in-memory process looping, kernel-
based snapshotting, and target-embedded snapshotting.

execution technique called snapshotting: an extension of
in-memory looping where process state is reset between
executions. At a high level, snapshotting operates as follows:
1) Load the target once, creating a persistent process with

the desired subroutine (e.g., main()) wrapped in a loop.
2) After the target is initialized, save its full process state.
3) For each test case, perform a new execution of the loop.
4) On exit, reset process state and jump back to Step 3.
Existing efforts implement their specialized snapshot prim-
itives via custom kernel extensions. Currently, all snapshot-
ting fuzzers are Linux-based (e.g., AFL++ LKM mode [17],
Xu et al. [13], Zhao et al. [16]).

3. Motivation: Inefficient, Incorrect, and In-
compatible Windows Execution Mechanisms

Achieving fast and effective fuzzing on Windows pro-
grams is challenging. We explore the challenges inherent
to Windows fuzzing and investigate the fundamental lim-
itations of existing execution mechanisms found in pop-
ular fuzzers (Table 1)—efficiency, correctness, and kernel
compatibility—distilling a criteria of the ideal design qual-
ities a Windows execution mechanism must achieve.

3.1. Limitations of Windows Fuzzing Execution

The Inefficient: Process Creation and Cloning. Effec-
tive fuzzing demands a high test case throughput. As test
case execution is shown to make up over 90% of fuzzers’
runtimes [7], a fuzzer’s speed hinges on its execution mech-
anism’s efficiency. Unfortunately, current Windows fuzzers
are restricted by the high target and kernel overheads of
process creation and initialization. Process creation’s re-
execution of the full program incurs the cost of memory
management, binary loading, dynamic linking, library ini-
tialization, and other target-specific startup routines for every
test case, making it fuzzing’s slowest execution mechanism.

Porting the Linux-based strategy of using a forkserver
(e.g., AFL [15]) is not a complete solution to Windows’
poor fuzzing performance. While forkserver-based cloning
differs from process creation in that it executes test cases
from a pre-initialized target state, both execution mecha-
nisms see significant overhead from their numerous—and
fuzzing-irrelevant—kernel procedures invoked when spawn-
ing each child process (e.g., address space initialization,
process ID assignment, resource duplication, background
memory management to support copy-on-write, and OS state
updates) [13], [16]. Additionally, forkserver-based cloning
still incurs the cost of process teardown. Worse yet, the



opaque mechanics of the Windows kernel adds further bloat
to these mechanisms’ primitives, making them over 20–
1,000x slower than their Linux counterparts [19], [21].
To uphold Windows fuzzing speed—and effectiveness—an
execution mechanism must maintain a two-fold efficiency
across both the target program and the kernel.

Criterion 1: Efficient across the target program and kernel.

The Incorrect: In-memory Looping. Fuzzing’s many
test case executions constantly change the target program’s
stack, register, heap, and global state. A corruption of tar-
get state (e.g., an instruction pointer overwrite) typically
resolves in a crash, indicating that fuzzing has uncovered a
memory safety violation (e.g., a stack buffer overflow), caus-
ing the test case to be saved for post-fuzzing vulnerability
triage. However, fuzzing’s goal of finding error-inducing test
cases is quickly derailed when process state is corrupted by
the execution mechanism: though in-memory looping offers
the most target- and kernel-efficient execution today, it does
not reset process state between test cases—overwhelming
fuzzers with false-positive crashes caused by polluted heap
and global state [19]. While modifying target programs to
reset their state themselves is easily achieved in open-source
fuzzing contexts (e.g., OSS-Fuzz [40]), the often closed-
source nature of Windows software—stripped, obfuscated,
or otherwise opaque executables—makes the requisite re-
verse engineering and binary rewriting infeasible. Thus, to
support effective Windows fuzzing, an execution mechanism
must uphold correct execution: fully and automatically
restoring process state between test cases.

Criterion 2: Fully reset program state for correctness.

The Incompatible: Cloning and Kernel Snapshot-
ting. Windows fuzzing efforts are integrating advancements
from Linux fuzzers [41], [42], [43], [44], however, reli-
ably porting Linux-based execution mechanisms to Win-
dows remains an unsolved challenge. The closed-source
nature of the Windows kernel prevents the addition of the
third-party execution primitives used by popular kernel-
based snapshotting efforts [13], [16], [17]. While Jung
et al. [19] introduce a form of forkserver-based execu-
tion to Windows by reverse-engineering hidden copy-on-
write primitives from its proprietary kernel components
(i.e., ntdll.dll, NtCreateUserProcess, and the
CSRSS subsystem), their technique is ultimately kernel-
specific—and officially unsupported beyond Windows 10
v1809 build 17763.973 [20]—requiring unscalable manual
re-tooling whenever the kernel is updated or for older ver-
sions. As the Windows kernel continues to see significant
change each year—with more than ten major updates re-
leased since 2015 [45]—expanding fuzzing’s reach across
the ever-growing Windows software ecosystem demands an
execution mechanism that is fully kernel-agnostic.

Criterion 3: Kernel-agnostic performance and effectiveness.

3.2. Towards Fast & Effective Windows Execution

Our survey of popular fuzzing execution mechanisms
(Table 1) reveals significant limitations with respect to
Windows fuzzing: process creation is easily supported
via Windows’ standard primitives, yet its per-test-case
re-execution of target initialization and kernel bookkeep-
ing procedures quickly deteriorates fuzzing’s throughput;
forkserver-based cloning sees higher speeds from avoiding
target re-initialization, but it pays many of the same heavy
kernel costs as process creation, leaving its overall per-
formance low; in-memory looping offers the least-invasive
execution, but its inability to reset process state between
test cases derails fuzzing with spurious crashes and other-
wise incorrect execution behavior; and while snapshotting
represents the best trade-off of speed and correctness, the
closed-source nature of the Windows kernel leaves both
it and forkserver-based cloning broadly incompatible with
modern Windows systems. The lack of an efficient, correct,
and fully-compatible Windows execution mechanism leaves
Windows software fuzzers orders-of-magnitude slower and
less effective than their Linux counterparts.

Impetus: To bridge the speed and effectiveness gap between
Linux and Windows fuzzing, we apply our criteria of execu-
tion mechanism design qualities. Namely, that an execution
should 1⃝ be efficient across the target program and kernel;
2⃝ maintain correctness by restoring process state between test

cases; and 3⃝ be realized in a kernel-agnostic design.

4. Target-embedded Snapshotting

We present Target-embedded Snapshotting, a new
fuzzing-oriented execution mechanism enabling efficient,
correct, and kernel-agnostic fuzzing on Windows. Target-
embedded snapshotting combines the efficiency of the
fastest execution mechanism (in-memory looping) with the
correctness of process creation by enabling fuzzing targets
to restore their own state, using only language- and API-
level functionality. The result is a fast, correct, and kernel-
agnostic execution mechanism. As stated previously, in-
memory looping is fast, but not correct, since it uses the
same process to run multiple executions of a single program,
leading to inconsistent—and semantically impossible—test
case starting states across executions. Starting from an im-
possible program state leads to both missed crashes (i.e.,
false negatives) and impossible crashes (i.e., false positives).
Missing crashes results in bugs remaining hidden, while
creating new, impossible crashes wastes programmer time
in the already human- and time-intensive task of triaging
fuzzer-found crashes.



Our solution is to harness the speed of in-memory
looping, but to reset program state between test cases—
solving the correctness problem. Where previous approaches
create an entirely new process for each test case or use
kernel support for on-demand state copying, we focus on
hooking programs at the binary level to have them track and
restore their own state. Essentially, we snapshot program
state before starting the first test case, then restore that
snapshot between all subsequent test cases. The challenges
that we solve are 1⃝ identifying program state that changes
during execution, 2⃝ efficiently tracking that state, and 3⃝
efficiently restoring all state changes between test cases.

4.1. Worked Example

To demonstrate how target-embedded snapshotting
works, imagine we want to fuzz a typical command-line
interfacing Windows program that parses files from disk,
such as tcpdump. During execution, the program uses a
global variable as a counter to iterate through its command
line arguments, as shown in Listing 1. The target also
makes several heap allocations to use as data buffers, and
subsequently frees some of them later in its execution.

In such programs, a state-unaware execution—such as
in-memory looping—creates a two-fold risk of state corrup-
tion: first, repeatedly looping over the program will clobber
written global variables (e.g., optind in Listing 1), leaving
future executions with this variable initialized incorrectly;
and second, the non-freed heap chunks will result in memory
leaks during all subsequent executions. These subtle state
corruptions will eventually cause the target process to crash,
presenting the fuzzer with what appears to be a valid bug—
despite it being a false positive.

1 while ((op = getopt_long(argc, argv,
2 SHORTOPTS, longopts, NULL)) != −1)
3 switch (op) {
4 ...

Listing 1: Command-line iterating code found in tcpdump 4.99.1. Function
getopt_long() takes global variable optind (not shown) as a counter.

To eliminate the possibility of state corruption, target-
embedded snapshotting operates as follows. After the target
initializes and reaches main(), our instrumentation creates
a snapshot of the program’s state—capturing the values of
the stack, CPU registers, and global data. To track heap state,
we hook and save the addresses of all dynamically-allocated
memory regions; and should a memory region be freed,
we stop tracking it. To reset process state for subsequent
executions, we 1⃝ restore the original stack frames, registers
values, and global variables from our snapshot; and 2⃝
free all of the target’s outstanding heap allocations. In the
following sections, we provide a finer-grained view of the
technical details behind our techniques.
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towards lower addresses, and the diagram is drawn with higher addresses
above lower addresses.

4.2. Resetting Program State

Our technique automatically tracks and restores program
state changed during fuzzing: the stack, registers, heap, and
global memory. We describe our handling of each below.

Stack. The stack is a region of a process’s memory used
to store local variables. Like a LIFO, a process only adds
or removes variables from the top of the stack, which is
an address in the underlying memory region indicated by
a special register called the stack pointer. The stack pointer
divides the stack’s memory region into two contiguous parts:
used memory and free memory. New memory is allocated by
“pushing” data to the top of the stack, which moves the stack
pointer up by the new allocation’s size, increasing the size of
the used part of the underlying memory region and reserving
memory where the new data is written. Memory is freed by
“popping” data from the top of the stack, which saves the
popped data to a register and moves the stack pointer down
by the amount of memory freed, decreasing the size of the
reserved part of the underlying memory region and allowing
the memory to be used by a subsequent push.2 This interface
enables automatic memory management for local variables,
because each function call pushes its local variables to the
stack, and is responsible for popping them off the stack
before it returns. Because the stack is used through this
interface, new memory can only be allocated at or freed
from the top of the stack. So, at any given time, anything
above the top of the stack is undefined, and anything below
the top of the stack is currently in use. Each function call
adds a new stack frame to the top of the stack, which is
used to hold the local variables existing within the scope
of that function. When a function returns, its stack frame

2. Incrementing or decrementing the stack pointer can also be used to
free or reserve new stack memory. This is equivalent to pushing or popping,
except it discards the popped values and leaves pushed values uninitialized.
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is removed from the stack, moving the stack pointer back
to the value it had before the function was called and thus
automatically freeing up the memory it used.

Resetting the Stack. To reset the stack to the state it
had before calling the target function, we erase all of the
stack frames created after our harness’s call to main()
(Figure 3). If we know the value of the stack pointer before
calling the target function, we know anything on the stack
above that point must have been created after calling the
target function. We then free all of this memory by moving
the stack pointer back to its original value. We also set
the base pointer, which points to the bottom of the current
stack frame, back to its original value, since local variable
addresses are often defined in terms of the base pointer.

Registers. Registers hold values currently being op-
erated on by a process. They change frequently during
execution, since most instruction parameters must be placed
in registers, and they also may be used to hold function
parameters or function return values.

Resetting Registers. To prepare for a new iteration, we
reset each register to its original value from the snapshot
(Figure 4). Most of these values will likely be ignored by
the target and simply overwritten. If the target does take
in register parameters, they would fall into two possible
categories: simple values or pointers. If a parameter is a
value, its meaning is self-contained in the value held by
the register, so we can safely restore it from a copy. If a
parameter is an address, its meaning is defined by some
data located elsewhere in the address space of the process.
If we allowed the target to exit the scope of the function that
calls the target function, this data could potentially be lost
to a free() or stack frame destruction. We avoid calling
any cleanup routines or destroying important stack frames
by only calling the target from injected code, so the target
returns safely to our code instead of the original binary.
This ensures that pointers existing in the scope of the target
function will not be cleaned up by the target, so we can
safely restore register state by copying and restoring register
values.

The target may also call functions that end the

process before it would return naturally, such as
TerminateProcess() or ExitProcess(). This cre-
ates another possible return path from the target function,
which will have a different stack and register state than
the more direct case in which it returns normally. If the
target function always returned naturally, we could assume
that everything it placed on the stack would be cleaned up,
since returning from a function destroys its stack frame
and any stack frames created after calling it. However,
we may have to end the iteration from within the context
of ExitProcess() or TerminateProcess(), which
makes us responsible for cleaning up stack and register
state. In this context, multiple target-created stack frames
will still be present on the stack, and registers may hold
incorrect values. We clean up stack frames by resetting
the stack and base pointers to their original value, which
automatically removes the extra data on the stack. Whether
the target function returns normally or not, some registers
might have a different state than when the target function
was first run, since functions are not always guaranteed to
preserve register values. The compiler should enforce a call-
ing convention that prevents code from relying on caller-save
registers being preserved, but for the sake of simplicity, we
restore every register whether the target returned naturally
or through ExitProcess()/TerminateProcess(),
since the overhead of doing this is minimal.

Heap. Like the stack, the heap is another region of
a process’s memory used as storage for variables. Unlike
the stack, the heap grows in size to hold large amounts
of data, and new allocations must be managed manually
by the programmer. Manual memory management allows
programmers to allocate memory without being bound to
any particular lifetime or scope, but it also makes the
programmer responsible for properly freeing allocated heap
memory. Failing to do so causes unused heap memory to
accumulate over time. A program that runs for a short period
of time may not have much reason to care about cleaning up
its heap allocations, since this will be done automatically by
the operating system once the process exits. However, in-
memory looping executes large numbers of target function
iterations in the same process, making even a small leak a
significant threat to fuzzer stability.

Resetting the Heap. We cannot assume targets will
behave correctly, especially during fuzzing, and we are
circumventing an OS feature that programmers may rely
on by reusing the process and preventing natural heap
cleanup, so we need to keep track of any heap allocations
the target makes to prevent memory leaks. We install hooks
on all functions that allocate heap memory to keep track of
allocations made by the target, and then free any unfreed
allocations at the end of each iteration (Figure 5). Also,
we prevent the target from freeing any allocations it did not
make: if a pointer was created outside the scope of the target
function (i.e., before our harness was invoked), we need to



Heap

1 Initialization 2 Target runs 3 Remaining chunks freed

Chunk list

Heap

func1(int)

b = calloc(512, 4)

main(int, char*)

free(b)
a = malloc(64) func2(buf)

return 0

...

c = realloc(a, 8192)

Chunk list

a

&a

b

&b

a. Live pointers tracked b. Pointers removed on
free

Heap

Chunk list

a

&a

b

&b

c

&c

Heap

c

Chunk list

&c

...

Figure 5: Overview of heap memory tracking. At any given time, the chunk list holds pointers to all heap chunks allocated by the target, so they can
easily be freed after the target exits.
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Figure 6: Overview of global memory restoration. Only mutable global
state is tracked, and only modified pages are restored.

preserve it across multiple iterations.
Global Memory. Global memory correctness is one of

the biggest sources of error for in-memory looping. Global
memory often contains data that influences program be-
havior (e.g., global variables), and under normal execution,
programs can safely assume they will start execution with
the global state intended by the programmer. In-memory
looping violates this assumption as soon as the target func-
tion modifies any part of global state, causing incorrect
behavior.

Resetting Global Memory. We rectify global memory
correctness issues by restoring every page of global
memory the target modifies to our known-good state
between each iteration (Figure 6). In order to maximize
efficiency, we embed snapshotting code into the target,
so that state copies are stored in the address space of the
program, and state restoration is done from within the target
process itself. This avoids the overhead of having to call
WriteProcessMemory()/ReadProcessMemory()
or an equivalent, or having to transition control to another
process. After adding some other optimizations described

in § 5.2, we retain almost all of in-memory looping’s
performance while maintaining semantic correctness.

For network-based targets, we provide function hooks to
remap the input file to data received over a socket. These
hooks also prevent corruption of process state from socket
API misuse by preventing the target from interacting with
the real socket API at all. We hook calls that open files to
manage access to files in a similar way.

This approach also considerably relaxes the restrictions
on the target function compared to simple in-memory loop-
ing. Fuzzers based on in-memory looping expect their users
to make sure the target function does not modify global
program state or leak memory, but this imposes a large
burden on security analysts, who have to either restrict
themselves to fuzzing pure functions, or manually debug
their target and create harnesses to reset problematic state
changes themselves. Target-embedded snapshotting elimi-
nates the requirement for the target function to be pure
by automatically resetting all relevant state, which enables
plug-and-play whole-program fuzzing for existing binaries.

Other Residual State. In addition to those addressed
previously, there are many other residual elements of pro-
gram state that would persist across iterations. For example,
these would include: IPC and synchronization objects (such
as mutexes, condition variables, or memory mapped files),
installed exception handlers, chosen locale, or other OS-
specific features (e.g. on Windows, registry artifacts, queued
APCs, GDI objects, COM objects, or NTFS transactions).
We did not encounter residual state from these elements in
any of our benchmarks, and they represent edge cases which
could be supported with minimal instrumentation similar to
our existing design, which tracks relevant state changes so
they can be removed later. For example, a fuzzing target
on Windows may create a mutex with CreateMutexA(),
which returns a handle to a new mutex object. To ensure
this object does not affect subsequent iterations, it must be



released with ReleaseMutex(). We would accomplish
this in the same way we clean up heap memory; with hooks
that track and remove leaked objects.

5. Implementation: WINFUZZ

To create the highest-performance Windows fuzzer,
we implement target-embedded snapshotting atop of Win-
nie [19]. Winnie is a Windows implementation of coverage-
guided tracing [7] on top of WinAFL [18], making it the
current fastest Windows fuzzer. Note that because target-
embedded snapshotting is contained within a fuzzer’s ex-
ecution mechanism, our approach is compatible with any
coverage tracing system. That is to say that our approach is
orthogonal to the coverage tracing approach.

5.1. Design Overview

Our system functions in four main steps: interposing on
the target process, taking the state snapshot, tracking state
changes, and restoring state.

Interposing on the target: The target process is created
in a suspended state using a call to CreateProcess()
with the CREATE_SUSPENDED flag set. While the process
is suspended, we use CreateRemoteThread() to run
LoadLibrary() in the target process, and pass in the path
to our injected DLL. This loads our DLL into the target pro-
cess and runs our DLLMain() function. Our DLLMain()
function installs a hook onto the target function that sets up
our target-embedded snapshotting system by installing our
state tracking hooks and taking the initial state snapshot.
We resume the target process, and let it initialize normally
until it reaches the target function hook, at which point we
install our heap memory tracking hooks and our guard page
exception handler.

Snapshotting: In addition to setting up our state tracking
hooks, we also take the initial state snapshot right after the
target function is reached. This locks-in the changes from
process initialization, while providing a rollback point to
discard state changes due to individual test cases.

Tracking state changes: During execution, our heap
hooks and guard page exception handler track changes to
the heap and global memory regions, respectively.

State restoration: Every time the fuzzer executes the
target function, we first reset the stack and heap, followed
by restoring the process’s register and global state from the
snapshot.

5.2. Achieving State Restoration

Our system for target-embedded snapshotting involves
tracking four components of program state: the stack, reg-
isters, heap memory, and global memory.

Registers and Stack. To efficiently restore the target’s
registers to their known-good values, we use the x86 assem-
bly code shown in Listing 2.

1 xor eax, eax
2 not eax
3 mov edx, eax
4 lea ecx, [xsaveData]
5 xrstor [ecx]
6 mov esp, [savedregsEsp]
7 popfd
8 popad
9 mov esp, [savedEsp]

10 call [fuzz_iter_address] // Call target
11 mov [in_target], 0 // Disable memory hooks
12 jmp [report_end] // Finish iteration

Listing 2: Injected assembly snippet for register state restoration.

This includes the registers controlling the stack, so the
stack is also reset at the same time as the other registers.
Our assembly code only assumes that you can save and
restore register values, use global variables, and jump to or
call functions, so it is portable to any major architecture,
but this implementation is architecture specific.

Heap. To prevent memory leaks, we track all heap
memory allocations the target makes using function hooks
attached with the Detours library [46]. We use a global
variable (in_target in the previous assembly code) to
denote whether or not we are currently executing the target.
Setting in_target to 0 disables all of our heap memory
hooks, to prevent our own heap allocations from being
tracked. While this flag is set, we track any heap allocations
from the target, and maintain a list of all heap allocations
the target has not freed. At the end of every iteration, we
iterate through the list of unfreed heap allocations, freeing
them.

Global memory. To ensure the correctness of global
memory, we create a master copy of any global memory
sections that the target has write permissions to. These
sections are identified by parsing the PE binary header,
which contains a list of all sections in the binary and their
permissions. On Windows, a binary will typically contain
two global data sections: a .rdata section that contains
read-only data, and a .data section that can be modified, so
for most binaries we copy and track the .data section. We
allocate the section copies on the heap of the target process,
and copy the original sections from the address specified in
the PE header using memcpy(). The address of each copy
is stored together with the address of its original section,
which we use to create a function that takes the address of
a page in a mutable global section in the target, and returns
the address of our copy. We use this function to efficiently
restore the state of global memory sections from the master
copy with another memcpy().
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Figure 7: High-level overview of WINFUZZ’s operation.

5.3. Optimizing Global Memory Restoration

To avoid restoring every mutable page in the target on
every iteration, we add a system to track which pages have
been modified, and then only restore the modified pages. At
the beginning of every iteration, guard pages [23] are placed
on all tracked sections. When these sections are accessed by
the target at runtime, a guard page exception is triggered,
which runs our guard page exception handler. The guard
page exception handler checks the address of the exception
to make sure it refers to a page we placed a guard flag
on, and then marks that page as modified. Guard pages are
automatically removed when they trigger an exception, so
no further accesses by the target will incur any performance
penalty. Finally, before the beginning of the next iteration,
these marked pages will be restored from our snapshot.
This guard page system minimizes the overhead of our
snapshotting system, since we will only restore pages that
were actually touched by the target.

Although this use of guard pages may not be supported
on all operating systems, it is possible to implement the
effect in a portable way by removing write permissions
from tracked pages, and then handling access violation ex-
ceptions. We provide an alternate implementation that does
this in our code, which can be enabled with a preproces-
sor switch (#define USER_SEGHANDLE). We use guard
pages because they are faster than using access violation
exceptions, despite the fact that they will actually mark
pages as requiring a reset on both reads and writes.

6. Evaluation

We focus our evaluation on three major criterion that
WINFUZZ improves: 1⃝ Correctness: does our new ex-
ecution mechanism maintain state correctness across test
cases? 2⃝ Performance: does WINFUZZ increase both
test case throughput and total code coverage? 3⃝ Kernel
Compatibility: how well does WINFUZZ support the ever-
changing Windows operating system?

6.1. Evaluation Setup

We evaluate our solution by comparing it to the other
state-of-the art greybox fuzzers on Windows: Winnie (high-
est performance) and WinAFL (widest adoption). We con-
figure WinAFL to use DynamoRIO instrumentation in block
coverage mode, and configure WINFUZZ and Winnie to use
their built in coverage-guided tracing instrumentation. We
use the standard C program entry point function (main())
as the target function for fuzzing, with no harness code to
enforce correct program behavior, in order to demonstrate
WINFUZZ’s ability to perform out-of-the-box whole pro-
gram fuzzing. We run all of our evaluation experiments
on Azure instances using Windows 10 Pro 21H2 (build
19044.1889) with a single Intel Xeon core running at 2.1
GHz, with 3.5 GB of RAM.

Benchmark Selection. To ensure a rigorous evaluation
of WinFuzz, we use a benchmark corpus (Table 2) repre-
sentative of real-world Windows binaries, with a wide range
of sizes, total basic blocks, and file formats. We attempted
to reuse Winnie’s benchmarks, however as detailed in the
Winnie paper, they require custom harnesses—which Win-
nie’s developers have not released (likely due to them target-
ing closed-source/commercial binaries, which may violate
the “no reverse engineering” clauses for those programs’
licenses). To match the benchmark characteristics evaluated
by Winnie—but with publicly available harnesses—we have
chosen a separate set of binaries that do not require custom
harness code, including several that are closed-source (tar,
nconvert, smpdf, and irfanview). We expect that our
more readily-harnessable benchmark set will facilitate future
Windows fuzzing research.

Issues with Coverage Generation on Winnie. Winnie
failed to generate any coverage while running certain bench-
marks, due to a bug. These benchmarks are marked as ”No
cov” in the table, meaning that the fuzzer runs, but does
not find any new paths, indicating incorrect execution or a
coverage system bug. WINFUZZ is able to find coverage
for these benchmarks using the same coverage system, so
this bug is related to Winnie’s execution mechanism. We
reported the bug to Winnie’s developers, but they could not
fix it. The developers also state that they no longer maintain



Program WINFUZZ Winnie WinAFL Source File Format Size (KB) Number of Basic Blocks
tar ✔ ✔ ✗ Proprietary .tar 606 30758
nconvert ✔ ✔ ✗ Proprietary .png 2458 91550
freetype ✔ ✔ ✔ Open Source .ttf 482 20891
audiofile ✔ ✔ ✔ Open Source .wav 45 1504
flac ✔ ✔ ✔ Open Source .flac 686 19292
nanosvg ✔ ✔ ✔ Open Source .svg 47 1966
sqlite ✔ ✔ ✔ Open Source .db 802 46758
smpdf ✔ No cov ✗ Proprietary .pdf 3379 39816
irfanview ✔ No cov ✔ Proprietary .png 1946 55187
jq ✔ No cov ✗ Open Source .json 2662 13965

TABLE 2: Overview of fuzzer compatibility with benchmarks. “No cov” indicates a benchmark that Winnie failed to produce new coverage for, and ✗
indicates a benchmark that did not run for that fuzzer.

Winnie as of January 2022 [20].

6.2. RQ1: Correctness

To verify that our state restoration system maintains
correct process state, we perform a correctness test for each
binary using a set of saved test cases from our previous
experiments (a full 24-hour fuzzing trial), because these test
cases capture all target behavior seen during fuzzing. To
check that our system restores state for each input correctly,
we compare two state snapshots taken after parsing the
input, and just before the process reports its coverage and
finishes the iteration: one from a new process, and one taken
after executing all other inputs in the queue. 3 This snapshot
includes the general purpose registers and global variables
of the target, which capture the ending point (stack pointer,
return value) and problematic global variable changes. If the
program is executing correctly, we expect it to make exactly
the same set of changes to program state in both snapshots.

Nondeterministic State. Some state may vary between
executions (e.g. timestamps, pseudorandom number gen-
erator output), and we detect these by capturing multiple
snapshots for the same input, each in a fresh process. If an
element varies between any two executions, it is marked as
nondeterministic, and excluded from the test. Of course, in
a nondeterministic value that spans multiple bytes, changes
to every byte may not be observed (e.g. only the least signif-
icant byte is affected by arithmetic operations). To mitigate
this, we consider bytes within a short distance (3 bytes) of
nondeterministic values as also being nondeterministic.

We run the correctness test using a full saved queue to
verify each of our benchmarks, and see no state correctness
issues. 4 We include the correctness test as part of our open
source implementation, so it can be used with any properly
harnessed fuzzing target to verify correct state restoration.

3. To be precise, these snapshots are taken immediately after the target
has exited into our code, and just before we report coverage to the fuzzer
process and end the iteration.

4. Queue sizes - tar: 240, nconvert: 449, freetype: 142,
audiofile: 19, flac: 216, nanosvg: 63, sqlite: 173, smpdf: 145,
irfanview: 402, jq: 102

6.3. RQ2: Test Case Throughput

Previous work shows throughput is the most important
factor in discovering new bugs [12], [13], [14], [33], so
we compare WINFUZZ’s test case throughput to the exe-
cution mechanisms offering correct execution on Windows:
Winnie’s custom forkserver implementation, and WinAFL’s
process creation. We run 5x24-hour trials for all bench-
marks that each fuzzer supports. Table 3 shows the average
throughput increase WINFUZZ provides over Winnie and
WinAFL. The results show that WINFUZZ scales to targets
of varying sizes and complexities, and outperforms both
Winnie and WinAFL.

Irfanview shows the least performance improvement
of all our benchmarks, which we determined was due
to it opening a window on every iteration, despite being
command line interfacing. This adds a significant overhead
to each execution which could have been avoided with a
more complicated harness that skips execution of the GUI
code and exposes the program’s parsing code to the fuzzer
directly, but WINFUZZ is still able to execute new test cases
more efficiently than both Winnie and WinAFL.

6.4. RQ3: Code Coverage

Discovery of new code coverage indicates the fuzzer has
generated an input that reaches new target behavior, which
is the most significant indicator a greybox fuzzer has that it
is getting closer to discovering new bugs. At a high level,
new code coverage generation is an indicator that the fuzzer
is performing well. We use the saved test cases from the
previous section’s experiments to evaluate WINFUZZ’s code
coverage generation, measured as new edges between basic
blocks covered (Figure 8). We do not consider Winnie’s
results for the benchmarks that it could not generate new
paths for in our evaluation of code coverage generation.

Differences in Code Coverage Systems. WinAFL uses
a coverage system that can track how many times each basic
block is visited, whereas the coverage-guided tracing used
in Winnie and WINFUZZ will only report new coverage
when a previously undiscovered basic block is executed.
In a comparison with coverage-guided tracing, WinAFL’s



Benchmark Winnie ρ WinAFL ρ WinAFL (No hitcounts) ρ

tar 5.83 0.004 ✗ ✗ ✗ ✗
nconvert 7.69 0.004 ✗ ✗ ✗ ✗
freetype 8.09 0.003 209.73 0.002 199.08 0.001
audiofile 8.86 0.001 221.76 0.002 220.09 0.001
flac 6.62 0.001 181.68 0.002 175.41 0.002
nanosvg 8.86 0.003 250.70 0.003 233.89 0.004
sqlite 7.24 0.004 182.83 0.007 172.73 0.002
smpdf 6.08 0.002 ✗ ✗ ✗ ✗
irfanview 1.40 0.017 49.22 0.002 44.83 0.001
jq 9.30 0.003 ✗ ✗ ✗ ✗

Average 7.00 182.65 174.34

TABLE 3: WINFUZZ’s improvement in fuzzing test case throughput relative to Winnie and WinAFL, along with statistical significance values for each
result computed with the Mann-Whitney U test.

Benchmark Winnie ρ Paths WinAFL ρ Paths WinAFL (No hitcounts) ρ Paths
tar 1.08 0.148 1.18 (202) ✗ ✗ ✗ ✗ ✗ ✗
nconvert 1.23 0.006 1.43 (408) ✗ ✗ ✗ ✗ ✗ ✗
freetype 1.32 0.003 2.99 (52) 1.28 0.002 1.72 (90) 1.33 0.001 2.98 (51)
audiofile 1.05 0.037 1.30 (16) 0.95 0.216 0.84 (25) 1.06 0.002 1.49 (15)
flac 1.02 0.016 1.12 (210) 1.09 0.002 0.90 (262) 1.01 0.27 1.77 (134)
nanosvg 1.04 0.007 1.09 (58) 0.87 0.003 0.13 (472) 1.04 0.05 0.94 (67)
sqlite 1.26 0.004 1.62 (108) 1.16 0.007 0.63 (277) 1.26 0.002 1.84 (95)
smpdf No cov ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
irfanview No cov ✗ ✗ 0.97 0.012 0.81 (501) 1.06 0.001 2.87 (142)
jq No cov ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Average 1.15 1.53 1.05 0.84 1.13 1.98

TABLE 4: Relative improvement of WINFUZZ’s edge coverage generation versus Winnie and WinAFL, including ρ-values calculated using the Mann-
Whitney U test. ρ < 0.05 indicates a statistically significant result. The ”paths” column shows WINFUZZ’s relative improvement in the number of
coverage-increasing inputs found, and the actual number of coverage-increasing inputs (queue size) in parentheses.
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Figure 8: WINFUZZ, WinAFL, and Winnie’s mean edge coverage over
time. We scale edge coverage relative to the lowest performer.

DynamoRIO-based dynamic binary instrumentation (DBI)
sacrifices performance for the ability to recognize and queue
test cases that produce new target behavior but do not hit
any new basic blocks, which coverage-guided tracing would
not recognize as potentially interesting. Coverage-guided
tracing’s goal is to maximize performance by removing all
coverage instrumentation overhead for the common case of
an input that does not encounter new code. This allows the
fuzzer to execute inputs that do not encounter new basic
blocks (the vast majority of test cases) at native speed, at the

cost of not recognizing hitcount-increasing inputs as being
potentially interesting. In summary, coverage-guided tracing
moves more quickly towards inputs that cover entirely new
regions of code, while WinAFL’s DBI remains sensitive to
smaller hitcount-only coverage changes that may be fruitful
targets for mutation, at the cost of some performance. We
also ran a set of experiments using a modified version of
WinAFL that does not track hitcounts similar to coverage-
guided tracing. This effectively negates the one benefit
of WinAFL’s slower instrumentation system, since it can
no longer recognize when an input causes a hitcount-only
coverage increase and thus discovers new target behavior,
but the results are included in Table 3, Table 4, and Figure 8
for the sake of completeness.

Results: Winnie. Compared to Winnie, WINFUZZ gen-
erates 15% more edge coverage, with every single bench-
mark averaging higher edge coverage versus Winnie. Mann-
Whitney U tests indicate a statistically significant improve-
ment (ρ < 0.05) on all but one benchmark (tar, ρ =
0.148). WINFUZZ’s improvement in number of coverage-
increasing inputs (”paths”) discovered for each trial cor-
responds to an improvement in edge coverage for each
benchmark.

Results: WinAFL. Compared to WinAFL, WINFUZZ
generates 5% more edge coverage. Mann-Whitney U tests
indicate a statistically significant improvement on 3 bench-
marks, no difference on 1, and less edge coverage on



2 benchmarks. Although WINFUZZ has a much higher
test case throughput than WinAFL, the differences in each
fuzzer’s coverage tracing system result in a large difference
in the number of new coverage producing test cases found
by each fuzzer, with WinAFL being able to recognize more
potentially interesting test cases than WINFUZZ on every
benchmark except for freetype. However, our results for
edge coverage show that these test cases do not cover as
much target behavior as the smaller number of queued test
cases generated by WINFUZZ. This is due to the differences
in coverage systems discussed earlier - WinAFL’s hitcount
sensitivity causes the fuzzer to recognize coverage increases
that are due solely to differences in the hitcount of a basic
block, which leads to more saved queue entries overall. A
hitcount-only difference could be something as simple as
running the same loop a different number of times, and does
not necessarily lead to any new edges, whereas covering an
entirely new region of code will always lead to a previously
unseen edge. Thus, it follows that focusing processor time
on discovering only new regions, as in coverage-guided
tracing, will typically lead to a higher average edge coverage
among inputs recognized as coverage-increasing compared
to a slower, hitcount-sensitive instrumentation. However,
this blinds the fuzzer to potentially interesting hitcount-
increasing inputs, and a mutation path that leads to a bug
could be missed. In the case of our experiments, we find that
the saved inputs from WINFUZZ represent a larger number
of basic block edges overall, despite being smaller on av-
erage than WinAFL’s queues. Our experiments demonstrate
that there are benefits to both coverage systems (coverage-
guided tracing is faster and has better binary compati-
bility, while DynamoRIO recognizes more interesting test
cases), and WINFUZZ’s approach can be used with either
instrumentation system or with Windows implementations
of coverage-preserving coverage-guided tracing [11].

Results: WinAFL without Hitcounts. The modified
version of WinAFL that did not recognize hitcount-only
coverage increases generated less edge coverage than stock
WinAFL on every benchmark. Given that this modification
can only decrease the number of coverage-increasing inputs
recognized and saved by the fuzzer, this is expected.

6.5. RQ4: Kernel Compatibility

To evaluate WINFUZZ’s kernel compatibility, we at-
tempted to compile and run it on several different versions
of Windows. Winnie depends on specific undocumented
kernel functions to implement its forkserver, so we evaluated
its compatibility using the same procedure. We found that
Winnie is able to compile and run on Windows 10 21H1
(build 19043.928) and 21H2 (build 19044.1826), but does
not support Windows 8.1 or any version of Windows 11 we
tested (builds 22000.856 and 22533.1001). During initial-
ization, Winnie’s custom forkserver implementation copies

OS WINFUZZ Winnie

Windows 8.1 - build 9600 ✔ ✗
Windows 10 - build 19043.928 ✔ ✔
Windows 10 - build 19044.1826 ✔ ✔
Windows 11 - build 22000.856 ✔ ✗
Windows 11 - build 22533.1001 ✔ ✗

TABLE 5: Fuzzer support for different Windows kernel versions.

Binary Category WINFUZZ Winnie WinAFL

flac Null ptr deref 12.25 s 15.6 s 243.8 s
nconvert Illegal address 2.1 hrs ✗ ✗
nconvert Invalid free 3.6 hrs ✗ ✗
nconvert Invalid ptr deref 7.2 hrs ✗ ✗
nconvert Heap overflow 8.5 hrs 15.8 hrs ✗
nconvert Illegal address ✗ 4.5 hrs ✗
nanosvg Stack overflow 1.4 min ✗ ✗
nanosvg Null ptr deref 1.8 min ✗ ✗
nanosvg Null ptr deref ✗ ✗ 21.9 hrs
audiofile Illegal Address 12 min ✗ 5.2 hrs

WINFUZZ’s speedup 1.56x 23x

TABLE 6: Time-to-bug results for each fuzzer, calculated as average time
taken by each fuzzer to find the first occurrence of each bug. WINFUZZ’s
relative improvement is calculated as the average improvement in bug
discovery time for bugs found by both fuzzers.

an array of zeros to a region of memory in ntdll.dll,
in order to prevent later calls to the CSRSS subsystem from
crashing. The structure of ntdll.dll is not the same on
Windows 8.1 as it is on Windows 10, and this causes the
forkserver library to use an incorrect value for the size of
this internal Windows structure. On a 32-bit system, the
forkserver fails to compile. Compiling for a 64-bit system
generates a call to memcpy() with a negative integer passed
in place of an unsigned size_t parameter, which causes
the forkserver to crash during initialization. On Windows
11, the forkserver library compiles and runs normally, but
crashes while injecting the forkserver DLL into the target
process. As shown in Table 5, WINFUZZ supports every
version of Windows we tested, including Windows 11.

6.6. RQ5: Bug Discovery Time

The ultimate goal of fuzzing is to find crashing inputs for
a program that expose a bug, allowing an analyst to identify
and fix the bug. We evaluate WINFUZZ’s ability to find new
bugs by running 5x24-hour trials for each fuzzer to collect
inputs that expose unique bugs, and comparing the time each
fuzzer takes to find each bug. Our experiments found 10
unique bugs, with both Winnie and WinAFL finding 3, and
WINFUZZ finding 8. Most of the bugs that WINFUZZ found
were not discovered by WinAFL or Winnie, although they
did find one bug each that WINFUZZ did not find. WINFUZZ
achieved an average 1.56x and 23x faster bug discovery time
versus Winnie and WinAFL, respectively (Table 6).



6.6.1. 0-day Bugs and Bug Disclosure. Of the bugs found
during our original evaluation experiments, one was a 0-
day (unpatched) bug, found in nconvert. This bug is an
access violation, which causes the program to crash. We
notified nconvert’s author of the bug on January 18, 2023,
and received a response on January 26. To demonstrate the
practical value of WINFUZZ, we also ran additional fuzzing
trials solely for the purpose of finding new bugs, which
discovered 8 additional 0-day bugs (see Table 7 for details
of all bugs). This led to the discovery of the other bugs in
Table 7, including the infinite loop in AudioFile, which
was triggered by setting a field in the file to a value (−8)
that would cancel out the other additions to the counter of
a for loop. This for loop would only terminate when the
counter had reached a certain value, but because the counter
could never progress, the loop would never terminate. We
notified the author and submitted a patch to fix the bug on
March 12, 2023, we received a response on April 4, and the
patch was merged on April 17. All of the additional bugs
caused a unique crash in the fuzzer, and were verified in
a memory error checking tool (Dr. Memory). For example,
the invalid pointer write in gpmf-parser was caused by
a value parsed from the file leading to the size passed to
malloc() being zero, which then leads to an invalid write
(heap overflow) later in the code when an 8-byte value is
written to the address returned by malloc(0). The authors
of jhead, flvmeta, gpmf-parser, and pdf2json
were all notified of their respective bugs on June 2, 2023.

Results: WinAFL. We also ran experiments using
WinAFL to see if it could find the bugs found during
our additional testing. WinAFL was given the same ex-
perimental setup as WINFUZZ: a desktop machine running
Windows 10, with an 8-core Intel i7-9700K and 64GB of
RAM, running 8 trials lasting 24 hours for every bench-
mark. WinAFL was able to find two of the same bugs
that WINFUZZ found; one in gpmf-parser and one in
pdf2json. Given that the only difference between Winnie
and WINFUZZ is execution speed, we expect that Winnie
would also be able to find these bugs, but after a much
longer amount of time, similar to what was observed in our
time-to-bug results.

7. Discussion

In addition to efficiency and correctness, one of the
requirements for our design was portability. Our current im-
plementation is Windows-specific, but our approach applies
to other operating systems and architectures.

7.1. Supporting Other Operating Systems

In addition to language-level primitives, implement-
ing target-embedded snapshotting requires support for
code injection and function hooking. These features

Binary Description

nconvert 2 invalid ptr reads, 3 invalid ptr writes
audiofile Infinite loop
jhead Invalid ptr read
flvmeta 2 invalid ptr reads
gpmf-parser 1 invalid ptr read, 1 invalid ptr write
gpmf-parser Invalid ptr write
pdf2json Stack buffer overrun (ntdll.dll)
pdf2json Stack buffer overrun (pdf2json.exe)
pdf2json Stack overflow

Total 0-day bugs: 9

TABLE 7: Table of all previously undiscovered bugs found by WINFUZZ
during all fuzzing experiments.

exist on other major operating systems. On Linux,
the LD_PRELOAD environment variable could be used
with a shared object to inject target-embedded snap-
shotting code into a process and hook functions. The
C standard library’s setjmp()/longjmp() functions
would be used for non-local jumping in place of
GetThreadContext()/SetThreadContext(), and
registers would be saved and restored using the same as-
sembly instructions we use on Windows. Thus, we expect
similar performance improvements on Linux as we see
compared to Winnie.

7.2. Supporting Other Architectures

Only small parts of WINFUZZ involve assembly level
code. In addition to the assembly described in § 5.2, we
use a single line of assembly in each heap memory hook to
check the origin of the call:

1 mov [stack_pointer], ebp

These code snippets have equivalents on non-x86 archi-
tectures. For example, the ARM version looks like:

1 mov [stack_pointer], sp

7.3. Addressing Edge Cases

Our experiments on a diverse set of binaries show that
WINFUZZ offers a significant and scalable performance
improvement over the other fuzzers we evaluated. These
experiments also demonstrate support for the most common
state semantics seen in programs, but there are some edge
cases that we did not encounter in our testing, which we
leave for future work.

Modifying heap-allocated parameters created outside the
scope of the target function will result in incorrect behavior.
The contents of these pointers are not restored between
executions, which was not a problem for our evaluation,
because we only targeted the main() function for all
of our harnesses, meaning that anything outside the target



function’s scope was part of the CRT, and would not usually
be modified by the program. To support fuzzing library
functions with harnesses, we would need to add support for
restoring heap allocations made outside the target function,
since modification of heap-allocated parameters would be
more common in library functions. This could be done
efficiently using an exception handler approach like the one
we used to track changes to global memory.

Calls to VirtualAlloc() may not allocate new
memory, and instead reserve some portion of the process’
virtual address space. Future calls to VirtualAlloc()
may then allocate memory for pages in that reserved region.
We did not encounter this behavior in any of the binaries
we tested, and did not implement proper support for this
feature. Instead, we assume calls to VirtualAlloc()
always reserve and allocate memory at the same time.

We did not encounter any binaries that used
HeapCreate()/HeapDestroy(), so we do not clean
up custom heaps created by a process. HeapAlloc() and
HeapFree() are supported.

7.4. Harnessing Deeper than main()

To highlight WINFUZZ’s ability to address the state
correctness issues that often prevent persistent mode from
working without a specialized harness, all of the bench-
marks in our corpus were fuzzed using a harness that
does nothing more than expose the address of the main()
function to the fuzzer as the target function for fuzzing.
However, WINFUZZ is still capable of using other func-
tions as entry points for fuzzing. For example, the shared
library version of the FLAC library contains an API for
parsing files in the FLAC format. A harness for this binary
would load the DLL with LoadLibrary(), and then use
GetProcAddress() to find pointers to any functions
it needs to use (e.g, FLAC__stream_decoder_new(),
FLAC__stream_decoder_init_file()). It would
then use these saved function pointers in its own function
that invokes the FLAC library and parses the input, which
would be exposed to the fuzzer in the same way our current
harnesses expose the main() function.

8. Related Work

WINFUZZ builds upon previous advancements aimed at
making fuzzing more effective for Windows programs and
more general techniques for increasing fuzzing performance.

8.1. Windows Application Fuzzing

While Linux is home to many industrial and academic
fuzzing efforts, the Windows fuzzing ecosystem is much
smaller—even though the application ecosystem is much

larger. Attempts to fuzz Windows applications on non-
Windows kernels (e.g., on Linux via WINE [47]) are far
too error-prone to be reliably used, leaving on-Windows
fuzzing the only realistic option for Windows software
fuzzing. To this end, WinAFL [18] remains today’s most
popular Windows fuzzer, bringing many successful features
from the original Linux-based AFL [15] to the Windows
environment. TinyAFL [37] and Jackalope [38] leverage
the power of Google’s fast TinyInst [48] instrumentation.
Winnie accelerates WinAFL [19] with forkserver execu-
tion via reverse-engineered copy-on-write cloning primi-
tives. Many emerging Windows fuzzing efforts are extend-
ing traditionally Linux-only fuzzing enhancements to the
WinAFL platform. WinAFLFast incorporates the mutation
scheduling of AFLFast [49], while WinAFL-PowerMopt
adds that of MOPT [50]; WinAFL-IntelPT integrates Intel-
Processor-Trace-based code coverage tracing seen in Linux-
based fuzzers such as PTrix [51] and PTfuzz [52]; and
NetAFL [44] adds support for stateful networking appli-
cations like that in AFLNet [53]. As fast test case execu-
tion is critical to fuzzing, target-embedded snapshotting can
strengthen current and future Windows fuzzers.

8.2. Orthogonal Fuzzing Optimizations

Many prior efforts accelerate fuzzing with optimiza-
tions to its test case execution and code coverage tracing
steps. UnTracer [7], Zeror [10], and HeXcite [11] intro-
duce code coverage oracles to restrict coverage tracing to
only coverage-increasing test cases, eliminating the over-
head of tracing redundant-coverage test cases. InsTrim [8]
uses control-flow analysis to intelligently minimize the set
of program locations where coverage-tracing is performed.
RIFF [9] and CollAFL [54] rewrite coverage-tracing instru-
mentation to use fewer overall instructions. RetroWrite [15],
StochFuzz [55], and ZAFL [33] develop fast static binary
rewriting to accelerate coverage tracing in binary-only con-
texts. As these efforts all increase fuzzing speed, we believe
that combining them with target-embedded snapshotting will
yield synergistic improvements in fuzzing performance.

9. Conclusion

WINFUZZ is the fastest and most effective fuzzer for
Windows applications. WINFUZZ interposes on program
binaries to enable fast and correct in-memory looping by
tracking and resetting program state changes. Pushing the
responsibility of program state cleanup between test cases
down to the application level, fast and effective OS-invariant
fuzzing is possible. Our evaluation with real-world Windows
binaries shows that, compared to the other state-of-the-art
grey-box Windows fuzzers, WINFUZZ achieves up to 32%
better code coverage and 72x better performance on average
across ten benchmarks, while maintaining compatibility with
current and future versions of Windows.
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