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ABSTRACT  

The forensic process relies on the scientific method to scrutinize recovered evidence that either supports or 
negates an investigative hypothesis. Currently, analysis of digital evidence remains highly subjective to the 
forensic practitioner. Digital forensics is in need of a deterministic approach to obtain the most judicious 
conclusions from evidence. The objective of this paper is to examine current methods of digital evidence 
analysis. It describes the mechanisms for which these processes may be carried out, and discusses the key 
obstacles presented by each. Lastly, it concludes with suggestions for further improvement of the digital 
forensic process as a whole. 
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1. INTRODUCTION 

As the use and complexity of digital devices 
continues to rise, the field of digital forensics 
remains in its infancy. The investigative process is 
currently faced with a variety of problems, ranging 
from the limited number of skilled practitioners, to 
the difficulty of interpreting different forms of 
evidence. Investigators are challenged with 
leveraging recovered evidence to find a 
deterministic cause and effect. Without reliable 
scientific analysis, judgments made by investigators 
can easily be biased, inaccurate and/or unprovable. 
Conclusions drawn from digital evidence can vary 
largely due to differences in their respective 
forensic systems, models, and terminology. This 
persistent incompatibility severely impacts the 
reliability of investigative findings as well as the 
credibility of the forensic analysts. Evidence 
reasoning is a fundamental part of investigative 
efficacy, however, the digital forensic process 
currently lacks the scientific rigor necessary to 
function in this capacity.  This paper presents an 
overview of several recent methods that propose a 
deterministic approach to reasoning about digital 
evidence. Section 2 examines past discussion on the 
digital forensic process. Section 3 discusses the 
application of differential analysis. In section 4, we 
review several popular probabilistic reasoning 

models. Section 5 discusses the formalization of 
event reconstruction. In section 6, we consider a 
model that combines probabilistic reasoning with 
event reconstruction. Lastly, section 7 holds our 
conclusions and suggestions for additions to the 
field. 

2. BACKGROUND 

The standard for the admissibility of evidence 
stems from the Daubert trilogy, which establishes 
the requirements of relevancy and reliability [25]. 
NIST describes the general phases of the forensic 
process as: collection, examination, analysis and 
reporting [23]. Formalization is necessary to ensure 
consistent repeatability for all investigative 
scenarios. In recent years, literature has addressed 
the need for formalization of the digital forensic 
process, but primarily focused on evidence 
collection and preservation [2]. Ieong [24] 
highlights the need for an explicit, unambiguous 
representation of knowledge and observations. 
While a pedagogical investigative framework 
exists, there is yet to be a congruous system for 
digital evidence reasoning within the examination 
and analysis phases. Currently, digital forensic 
analysts use a variety of methods to develop 
conclusions about recovered evidence, yet the 
results are often marred with conflicting bias or are 
shrouded in a veil of uncertainty. There have been 
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numerous proposed reasoning frameworks, 
typically relying on applied mathematics, statistics 
& probabilities as well as, logic. However, before 
we can employ any particular methodology, there is 
a need to examine, review and explore all options 
in order to carry out the investigative process with 
the utmost precision.  

3. IFFERENTIAL ANALYSIS 

Differential analysis is described as a method of 
data comparison used for reporting differences 
between two digital objects. Historically, it has 
been part of computer science for quite some time. 
Unix’s diff command was implemented in the early 
1970’s, and is commonly used for fast comparison 
of binary and text files [3]. Continued 
advancements in hashing and metadata have since 
paved the way for more thorough differential 
analysis. It is flexible and adaptable to nearly all 
types of digital objects; Windows Registry hives, 
binary files, and disk images can all be compared 
for evidence of modification or tampering [4]. Non-
forensic applications include security procedures of 
operating systems, such as Windows’ use of file 
signatures to verify integrity of downloaded driver 
packages [5].  

Modern investigative tools such as EnCase [6], 
FTK [7] and SleuthKit [8] have incorporated 
modules for streamlining differential analysis of 
collected evidence, although each require 
significant training to become competent with the 
software features. Garfinkel et al. [3] formalize a 
model for differential analysis in the context of 
digital evidence; two collected objects – a baseline 
object and a final object – are compared for 
evidence of modification both before and after 
events of interest. Ideally, the process will highlight 
the most significant changes made from baseline ! 
to final !, assuming those transformations resulted 
from actions taken by the suspect in question. In 
this context, differential analysis is often used to 
detect malware, file and registry modifications [3].  

While the strategy of differential analysis is 
fundamentally the same regardless of which system 
level is being examined, each level possesses a 
certain degree of noise. In discussing differential 
analysis, will define “noise” as information 
resulting from comparison between baseline and 
final that is wholly irrelevant to the investigation. 

As the context of investigation is expanded, so does 
the difficulty to identify noise [9]. 

 

Figure 1. Knowledge management understanding 
hierarchy [9]. 

A potential form of noise presents itself as benign 
modifications made to digital objects resulting from 
normal operation of a system. For example, an 
investigator may wish to examine the presence of a 
suspicious binary on a particular system apart of an 
enterprise network. The investigator selects a disk 
image of an identical, unmodified system from the 
same enterprise network to serve as the baseline for 
comparison. Differential analysis may reveal that 
the image of the system in question is incredibly 
anomalous compared to the baseline. This could 
potentially lead to the injudicious assumption that 
“the most anomalous system is the most malicious” 
[4], when in reality, it might have only been the 
result of benign modifications arising from 
differences in installed software. While files at the 
kernel level are generally protected from tampering, 
files in user directories are much more vulnerable 
to modification. 

Although noise is often assumed to be 
unintentional, it is very possible that it could be 
inserted on purpose. When dealing with instances 
of steganography, differential analysis compares 
objects that are known to be hiding information 
with those that do not. Fiore [10] describes a 
framework by which “selective redundancy 
removal” can be used to prepare HTML files for 
carrying out linguistic steganography. Since the 
information is being hidden through the otherwise 
normal process of HTML file optimization, 
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differential analysis will only appear to reveal 
benign occurrences, such as differences in HTML 
tag styling.  

Future research is needed to expand metrics for 
identifying and accounting for different forms of 
noise in digital evidence. Mead [1] explains the 
National Software Reference Library’s effort to 
create a library of hashes of commercial software 
packages. Through combining hashing with 
differential analysis, investigators can drill-down 
the scope of inquiry by cross-referencing evidence 
with a database of known hash values. Eliminating 
evidence matching existing hashes can reduce the 
amount of noise arising from benign objects that is 
commonly problematic when dealing with larger 
systems, and better isolates the few remaining 
questionable objects. Further improvement of such 
databases, robust hashing algorithms, and perhaps a 
formal technique would be of benefit to 
investigators.  

4. PROBABILISTIC MODELS 

Conventional forensic analysis has long included 
models of statistical inference to assess the degree 
of certainty for which hypotheses and 
corresponding evidence can be causally linked [11]. 
This casual linkage is expressed by the following: if 
a cause ! is responsible for effect !, and ! has 
been observed, then ! must have occurred [12]. For 
example, researchers know that the probability of 
two identical DNA fingerprints belonging to two 
different individuals is close to one in one billion 
[13]. If holding an item leaves fingerprints on it, 
and fingerprints found on the weapon at a murder 
scene match the suspect’s own, then investigators 
can conclude there is over 99% certainty that the 
suspect held that weapon. Because criminal 
investigations are ultimately abductive, 
probabilistic techniques have become widely 
accepted in the forensic reasoning process [14] 
[12].  

4.1 CLASSICAL PROBABILITY 

Several recent criminal investigations have seen 
classical probability used to reason about 
contradicting scenarios regarding the presence of 
incriminating digital evidence. Examining two 
cases originating in Hong Kong, Overill et al. [15] 
reasoned the likelihood that the respective 

defendants intentionally downloaded various forms 
of child pornography versus accidentally 
downloading it among other benign content. In 
each case, the amount of child pornography seized 
was very small compared to the total amount of 
miscellaneous benign content, and in both instances 
were found to have been downloaded over a long 
period of time. In each case, it was determined that 
the probability of unintentionally downloading a 
small amount of child pornography is significantly 
below 10% [15].   

While this method can indeed provide a 
quantitative assessment of the likelihood of guilt, it 
is limited to investigations where only few 
characteristics of the evidential traces are known. In 
both examples above, the defendants pleaded 
guilty, and thus metadata was disregarded [15]. It 
was assumed that the incriminating files had been 
downloaded over long periods of time, but had 
metadata been collected, the original hypothesis 
may have changed entirely. An example would be 
the offending content timestamped to a one-hour 
browsing period, thus invalidating the original 
hypothesis of accidental download. The growing 
importance of preserving metadata creates the need 
for probabilistic models that can integrate it into 
reasoning.  

4.2 BAYESIAN NETWORKS 

In the last decade, Bayesian inference has gained 
popularity in the scientific community. Unlike 
Frequentist inference that reasons with frequencies 
of past events, Bayesian inference reasons with 
“subjective beliefs estimations”, and allows room 
for new evidence to revise these beliefs [12]. Kwan 
et al. [14] introduced the idea of reasoning about 
digital evidence in the form of Bayesian networks: 
directed acyclic graphs whose leaf nodes represent 
observed evidence and interior nodes represent 
unobserved causes. The root node represents the 
central hypothesis to which all unobserved causes 
serve as sub-hypotheses. The model uses Bayes’ 
theorem to determine the conditional probability of 
evidence E resulting from hypothesis !:  

!(!|!) = !(!)!(!|!);!
!(!) is the prior probability of evidence !; !(!)!is 
the prior probability of ! when no evidence exists; 
!(!|!) is the posterior probability such that ! has 
occurred when ! is detected. 
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Figure 2. Bayesian network connections: (a) Serial; (b) 

Diverging; (c) Converging [14]. 
 

The construction of a Bayesian model begins with 
the defining of a root hypothesis. An example 
would be “The seized computer was used to send 
this malicious file.” The possible states of the 
hypothesis – Yes, No, and Uncertain – are assigned 
equal probabilities. As more evidence is 
discovered, sub-hypotheses and their corresponding 
probabilities are added beneath the root hypothesis. 
The process is repeated until refinement produces a 
most likely hypothesis.  

 

However, Bayesian networks are dependent on the 
assignment of prior probabilities to posterior 
evidence [14]. In scenarios where uncertainty is 
present, fuzzy logic methodology is incorporated to 
quantify likelihood as a value between 1 (absolute 
truth) and 0 (false) [16]. The case study presented 
in [14] based its prior probabilities on results from 
questionnaires sent to several law enforcement 
agencies. Since human-computer interactions are 
non-deterministic, there is no systematic way to 
reason posterior evidential probabilities with 
complete certainty; conditional probabilities 
inferred from demonstrably normal behavior of one 
network might differ with those from another. 
Discrepancies in prior evidential probabilities can 
significantly impact the overall outcome of the 
Bayesian network, and thus, there is difficulty in 
soundly applying this method to digital forensic 
investigations.  

4.3 DEMPSTER-SHAFER THEORY 

One of the limiting factors of using Bayesian 
analysis in security is that it requires the assignment 
of prior and conditional probabilities for the nodes 
in the reasoning model. Often times, the numbers 
are very hard to obtain.  For example, how does one 
compute the prior probability for a particular 

registry key being modified? As another example, 
how does one compute the conditional probability 
of a particular registry key being modified given 
that the malware did not gain privileged access? 
Bayesian analysis works very well when the 
reasoning structure is well known and the 
probabilities are easy to obtain. In the real world, it 
is very hard to obtain those numbers and there is a 
high degree of uncertainty in the obtained evidence. 

Dempster-Shafer theory (DST) is a reasoning 
technique that provides a way to encode uncertainty 
more naturally [17]. Contrasting with Bayesian 
analysis, DST does not require one to provide a 
prior probability for the hypothesis of interest. DST 
also does not require the use of conditional 
probabilities thus addressing the other major 
limitation of Bayesian analysis techniques. The 
presence of certain evidence during forensic 
analysis does not necessarily indicate a malicious 
activity. For example, a change in registry key 
could be either due to a malware or by a benign 
application. There is always a degree of uncertainty 
in the obtained evidence at any given stage of the 
forensic analysis process. DST enables one to 
account for this uncertainty by assigning a number 
to a special state of the evidence “don’t know”. For 
example, a sequence of registry key modifications 
might indicate that a malware of specific family 
might have been downloaded. Based on empirical 
evidence, let us assume one believes that with 10% 
confidence. A probabilistic interpretation would 
then mean that one would believe that there is a 
90% chance that the malware was not 
downloaded—which is not intuitive. When using 
DST one would assign 10% to the hypothesis that 
the malware was downloaded and 90% to the 
hypothesis that I am not sure.    

One can explain the difference between DST and 
probability theory using a coin toss example. When 
tossing a coin with unknown bias probability theory 
will assign a probability value of 0.5 to both the 
outcomes Head and Tail. This representation does 
not capture the inherent uncertainty in the outcome. 
DST, on the other hand, will assign 0 to the 
outcomes {Head} and {Tail} while assigning a 
value of 1 to the set {Head, Tail}. This exactly 
captures the reasoning process of a human in that 
when you toss a coin (with unknown bias) the only 
thing you are sure about the outcome is that it could 
be either Head or Tail. In general, when calculating 
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the likelihood of a hypothesis DST allows 
admittance of ignorance on the confidence of 
evidence. DST provides rules for combining 
multiple evidences to calculate the overall belief in 
the hypothesis. The challenge of using DST is 
analogous to Bayesian analysis, though much 
better, in that no prior values have to be assigned to 
evidences. 

5. EVENT RECONSTRUCTION MODELS 

The ability to reconstruct events is of great 
importance to the digital forensic process. Al-
Kuwari and Wolthusen [18] proposed a general 
framework to reconstruct missing parts of a target 
trace. This can be used for various areas of an 
investigation. This algorithm graphs a multi-modal 
scenario, determining all of possible routes 
connecting the gaps of a specific trace. Additional 
information may be included in the graph and 
marked appropriately. The broadcast algorithm 
used to determine all possible routes may require 
exponential time, suggesting that the search area 
should be bounded [18]. 

This approach relies on a specific target and would 
best be used to determine if an attack on a system 
occurred. However, this approach poses problems 
for the algorithm if a specific target is not 
identified. Event reconstruction is not unique to 
digital forensics, and the ability to apply existing 
techniques could yield effective results. 

5.1 FINITE STATE MACHINES 

Modern computer systems are often modeled as a 
series of finite states, graphically presented as a 
Finite State Machine (FSM). It is expressed as the 
quintuple !=(!, !, !, !0, !), where:  

• Q is the finite, non-empty set of machine states  
• Σ is the finite, non-empty alphabet of event 

symbols  
• !: ! × !→! is the transition function mapping 

events  between machine states in Q for each 
event symbol in Σ   

• s0�! is the starting state of the machine   
• !⊆! is the set of final machine states  
• Nodes represent possible system states 
• Arrows represent transitions between states 

[19] 

Gladyshev and Patel [20] introduced a 

formalization of this model into digital forensics. 
By back-tracing event states, investigators are 
presented with a reconstruction of events and can 
thus select the timeline most relevant to the 
available evidence. 

For finite state machine models to perform 
accurately comprehensive event reconstruction, 
investigators must be able to account for all 
possible system states. Complex events, such as 
those resulting from advanced persistent threats, are 
incredibly difficult to analyze. In addition, 
changing factors such as software updates may 
affect the resulting machine states. Carrier [19] 
proposes the development of a central repository 
for hosting information about machine events. 
Likening it to existing forensic databases on gun 
cartridges, an exhaustive, continuously updated 
library of system events would be of invaluable 
aide to investigators performing event 
reconstruction. However, an investigator may wish 
to explore other characteristics of events, such as 
the odds of a particular investigative hypothesis, or 
the real time distributions of reconstructed events. 
To compute answers to such questions, the 
formalization of event reconstruction must be 
extended with additional attributes that describe 
statistical and real-time properties of the system 
and incident [20]. 

6. COMBINING PROBABILITY WITH 
EVENT RECONSTRUCTION 

Attack graphs are typically used for intrusion 
analysis, where each path represents a unique 
method of intrusion by a malicious actor. It is 
possible to use attack graph techniques in the event 
reconstruction process. Attack graphs are directed 
graphs where nodes represent pre and post 
conditions of machine events, and directed edges 
are conditions met between these nodes; the root 
node represents the singular event of interest to 
which all other nodes serve as precursors [21].  

While attack graphs are helpful in identifying 
mechanisms of intrusion, their lacking of any 
probabilistic inference hinders their usefulness in 
quantitative evidential reasoning. Investigators 
presented with attack graphs must select the most 
probable attack scenarios, but there are currently no 
clear metrics for assessing likelihood. To address 
this, Xie et al. [22] combined attack graphs with 
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Bayesian networks. By transferring attack graphs 
into acyclic Bayesian networks, this method utilizes 
conditional probability tables for nodes with 
parents, and prior probabilities for nodes without 
parents.  

Like in regular Bayesian networks, this approach 
relies on the investigator supplying accurate 
conditional and prior probabilities for each event. 
Estimating prior probabilities has traditionally 
relied on feedback from the community in the form 
of surveys. This becomes incredibly difficult as 
scale increases; a large attack graph would require 
that the investigator survey and obtain probability 
information for every unique event, making 
analysis costly.  

7. FUTURE DIRECTION AND 
CONCLUSIONS 

Evidence reasoning models are an important part of 
the forensic process. Unlike traditional forensic 
sciences, digital forensics deals almost exclusively 
with objects of nondeterministic nature; there is 
great difficulty in analyzing and scrutinizing digital 
evidence. Fundamental flaws hinder current 
evidence analysis models in their ability to assess 
accurately the likelihood of crime occurrence. 
Furthermore, conclusions based on probabilities 
complicate explanations in the courtroom, as 
demonstrated in the legal arguments surrounding 
Shonubi I-V [26]. These flaws must be identified 
and understood to avoid the possibility of 
injudicious assumptions resulting from the forensic 
process.  

Differential analysis of digital evidence becomes 
difficult when the scope of investigation is 
widened; unintentional noise in the form of benign 
modifications may lead to dubious conclusions 
about system integrity. Furthermore, recent 
obfuscation techniques have successfully averted 
detection by traditional methods. Event 
reconstruction models are limited in their ability to 
provide investigators with clear attack scenarios, 
because they rely on the exhaustive identification of 
possible machine states; there is yet to be a resource 
providing such information. Probabilistic reasoning 
models rely on prior probabilities known to the 
investigator, which have so far mainly been 
determined from surveying others in the field. 
Besides the obvious expenditure of time and effort 

in conducting such surveys, it is reckless to 
underestimate the potential for entropy and reason 
that small samples of observed probabilities hold 
true for all investigations. It can be concluded that 
each of these techniques is only applicable to a 
small niche of forensic scenarios. 

The increasing rate of software development places 
a burden on forensic examiners to keep up with the 
latest software packages, both commercial and free. 
Each of the models discussed in this paper lacks a 
comprehensive database of information to conduct 
analysis with the highest accuracy. We highlight 
the need for a community-driven, updated 
catalogue of file hashes, machine states, and 
probability metrics for use in forensic analysis. The 
changing nature of technology and software 
necessitates that researchers and law enforcement 
collaborate to ensure the digital forensic process is 
as reliable as possible.  
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