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Practical Feedback and Instrumentation Enhancements for
Performant Security Testing of Closed-source Executables

Stefan Nagy

(ABSTRACT)

The Department of Homeland Security reports that over 90% of cyberattacks stem from

security vulnerabilities in software, costing the U.S. $109 billion dollars in damages in 2016

alone according to The White House. As NIST estimates that today’s software contains

25 bugs for every 1,000 lines of code, the prompt discovery of security flaws is now vital

to mitigating the next major cyberattack. Over the last decade, the software industry has

overwhelmingly turned to a lightweight defect discovery approach known as fuzzing: auto-

mated testing that uncovers program bugs through repeated injection of randomly-mutated

test cases. Academic and industry efforts have long exploited the semantic richness of open-

source software to enhance fuzzing with fast and fine-grained code coverage feedback, as well

as fuzzing-enhancing code transformations facilitated through lightweight compiler-based

instrumentation. However, the world’s increasing reliance on closed-source software (i.e.,

commercial, proprietary, and legacy software) demands analogous advances in automated

security vetting beyond open-source contexts.

Unfortunately, the semantic gaps between source code and opaque binary code leave fuzzing

nowhere near as effective on closed-source targets. The difficulty of balancing coverage

feedback speed and precision in binary executables leaves fuzzers frequently bottlenecked

and orders-of-magnitude slower at uncovering security vulnerabilities in closed-source soft-

ware. Moreover, the challenges of analyzing and modifying binary executables at scale leaves

closed-source software fuzzing unable to fully leverage the sophisticated enhancements that

have long accelerated open-source software vulnerability discovery. As the U.S. Cybersecu-



rity and Infrastructure Security Agency reports that closed-source software makes up over

80% of the top routinely exploited software today, combating the ever-growing threat of cy-

berattacks demands new practical, precise, and performant fuzzing techniques unrestricted

by the availability of source code.

This thesis answers the following research questions toward enabling fast, effective fuzzing

of closed-source software:

1. Can common-case fuzzing insights be exploited to more achieve low-overhead, fine-

grained code coverage feedback irrespective of access to source code?

2. What properties of binary instrumentation are needed to extend performant fuzzing-

enhancing program transformation to closed-source software fuzzing?

In answering these questions, this thesis produces the following key innovations:

A. The first code coverage techniques to enable fuzzing speed and code coverage greater

than source-level fuzzing for closed-source software targets. (chapter 3)

B. The first instrumentation platform to extend both compiler-quality code transforma-

tion and compiler-level speed to closed-source fuzzing contexts (chapter 4)
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The Department of Homeland Security reports that over 90% of cyberattacks stem from

security vulnerabilities in software, costing the U.S. $109 billion dollars in damages in 2016

alone according to The White House. As NIST estimates that today’s software contains

25 bugs for every 1,000 lines of code, the prompt discovery of security flaws is now vital

to mitigating the next major cyberattack. Over the last decade, the software industry has

overwhelmingly turned to lightweight defect discovery through automated testing, uncovering

program bugs through the repeated injection of randomly-mutated test cases. Academic and

industry efforts have long exploited the semantic richness of open-source software (i.e., soft-

ware whose full internals are publicly available, interpretable, and changeable) to enhance

testing with fast and fine-grained exploration feedback; as well as testing-enhancing program

transformations facilitated during the process by which program executables are generated.

However, the world’s increasing reliance on closed-source software (i.e., software whose in-

ternals are opaque to anyone but its original developer) like commercial, proprietary, and

legacy programs demands analogous advances in automated security vetting beyond open-

source contexts.

Unfortunately, the challenges of understanding programs without their full source infor-

mation leaves testing nowhere near as effective on closed-source programs. The difficulty

of balancing exploration feedback speed and precision in program executables leaves testing

frequently bottlenecked and orders-of-magnitude slower at uncovering security vulnerabili-

ties in closed-source software. Moreover, the challenges of analyzing and modifying program



executables at scale leaves closed-source software testing unable to fully leverage the sophisti-

cated enhancements that have long accelerated open-source software vulnerability discovery.

As the U.S. Cybersecurity and Infrastructure Security Agency reports that closed-source

software makes up over 80% of the top routinely exploited software today, combating the

ever-growing threat of cyberattacks demands new practical, precise, and performant software

testing techniques unrestricted by the availability of programs’ source code.

This thesis answers the following research questions toward enabling fast, effective fuzzing

of closed-source software:

1. Can common-case testing insights be exploited to more achieve low-overhead, fine-

grained exploration feedback irrespective of access to programs’ source code?

2. What properties of program modification techniques are needed to extend performant

testing-enhancing program transformations to closed-source programs?

In answering these questions, this thesis produces the following key innovations:

A. The first techniques enabling testing of closed-source programs with speed and explo-

ration higher than on open-source programs. (chapter 3)

B. The first platform to extend high-speed program transformations from open-source

programs to closed-source ones (chapter 4)
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Chapter 1

Introduction

Software vulnerabilities represent one of the greatest threats to the connected world, cost-

ing the global economy hundreds of billions of dollars in damages each year [124]. As the

software ecosystem continues expand at a rapid pace, vetting the security of software has

become more and more tedious; today’s increasingly large and complex software has ren-

dered previous-generation approaches like manual analysis and formal verification infeasible.

Instead, software developers and bug-hunters are overwhelmingly embracing a lighter-weight

automated testing strategy known as coverage-guided grey-box fuzzing.

Fuzzing uncovers software flaws through the aggressive, high-volume injection of randomly-

generated test cases. Having exposed tens of thousands of critical vulnerabilities over the

last two decades, fuzzing has become the de-facto standard technique for security auditing

both throughout and beyond the software development life cycle. Today, software companies

dedicate entire server farms to fuzzing at cloud scale, with Google’s having found over 16,000

bugs in the Chrome browser alone [49] and Microsoft’s revealing one third of all critical

Windows 7 vulnerabilities [17]. Moreover, a number of community-driven efforts continue to

make fuzzing more powerful and accessible to all [41, 107, 108, 119].

Though developers have the ability to audit their own software’s source code, today’s com-

puting world is increasingly closed-source. Modern commodity software is either fully or

partially proprietary, with many formerly open-source projects becoming closed-source for

intellectual property reasons [35, 39, 42]. Legacy software also poses a challenge as it was

1
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written in esoteric languages by defunct companies, leaving its source code seldom available.

Lastly, many of the software platforms that society depends on (e.g., Microsoft Windows

and Apple MacOS) have long remained closed-source since their inceptions decades ago. As

industry research shows that closed-source software makes up 65% of all software [58]—and

contains nearly 20% more security vulnerabilities [80]—mitigating this high-value attack

surface demands fast and effective automated security testing.

Unfortunately, fuzzing has not yet caught up in closed-source use cases. Binary executables

are significantly harder to analyze due to their opaque semantics, restricting closed-source

software fuzzers to orders-of-magnitude slower techniques for obtaining the code coverage

feedback that is critical to effective fuzzing; and worse yet, efforts to introduce compiler-based

fuzzing enhancements to closed-source fuzzing contexts are overshadowed by the enormous

overheads of current binary instrumenters, leaving vulnerability discovery on closed-source

codebases no better than previous-generation techniques. Without resolving the feedback

and instrumentation asymmetries that impede fuzzing in closed-source domains, the fuzzing

community’s many advancements will stay confined to the open-source ecosystem, leaving

security practitioners powerless at fighting the critical, high-value vulnerabilities in closed-

source commercial, proprietary, and legacy code that wreak havoc across cyberspace.

1.1 Problem Definition

My work in this thesis is motivated by the following four feedback and instrumentation

asymmetries that uniquely hinder the effectiveness of closed-source software fuzzing:

Asymmetry 1: Low-overhead Coverage Guidance. The ability to retrieve runtime

feedback of the program being fuzzed is critical to effective fuzzing. Most fuzzers
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today adopt a coverage-guided search policy: monitoring each program execution to

extract the code coverage of every generated test case, with the goal being to maximize

exploration of the program by focusing mutation on only the subset of test cases

which exercise previously-unexplored program functionality. While open-source fuzzing

contexts have long benefited from low-overhead code coverage collection through the

use of efficient, compiler-based instrumentation, compiler instrumentation cannot be

applied to binary executables (i.e., pre-compiled software), restricting closed-source

software fuzzing to techniques incurring upwards of 10,000% more overhead.

Asymmetry 2: Fine-grained Coverage Guidance. The success of code coverage as a

feedback for guiding fuzzers’ exploration has led it to become an essential feature of

modern fuzzer design. Previous-generation fuzzers tracked code coverage at the gran-

ularity of basic blocks: the nodes of a program’s control-flow graph representation.

While basic block coverage benefits from the fastest coverage collection speed, it is no

longer a desired coverage metric today. Most current fuzzers adopt edge coverage—the

transitions between basic blocks—to capture interesting paths that would otherwise

be missed by a basic-block-level coverage granularity; as well as hit counts—the ex-

ecution frequencies of edges or basic blocks—to track progress made on exploring a

program’s loops or cycles. Unfortunately, tracking these finer-grained coverage metrics

requires more invasive program monitoring than basic block coverage, and thus brings

far higher coverage-collection overhead per program execution. While this overhead

has little impact on open-source fuzzing due to its already-fast compiler instrumen-

tation, closed-source fuzzing’s only options for retrieving fine-grained code

coverage are burdened by orders-of-magnitude more overhead.

Asymmetry 3: Low-overhead Program Transformation. Recent innovations in open-

source software fuzzing make extensive use of compilers’ code transformation abilities
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to modify programs and make them easier or faster to fuzz. Yet, while many instru-

mentation tools for binary executables offer similar program transformation capabili-

ties, their orders-of-magnitude higher baseline overheads smother any potential benefits

of porting fuzzing-enhancing program transformations to closed-source fuzzing con-

texts. Thus, existing instrumenters’ inability to match compiler-quality trans-

formation capabilities and compiler-level speed leaves fuzzing significantly

less effective at uncovering vulnerabilities in closed-source software.

Asymmetry 4: Scalable Program Transformation. Modern compiler toolchains such

as GCC and LLVM support an ever-growing variety of software languages (e.g., C,

C++), platforms (e.g., MacOS, Linux, Windows), and architectures (e.g., x86-64,

ARM), making it easy to extend compiler-based fuzzing enhancements from one open-

source ecosystem to another. Yet, because binary instrumenters are restricted to only

pre-compiled binary executables, they face significant challenges in maintaining scal-

ability to multiple software formats. For example, Linux and Windows are both x86

platforms, yet their binary executable formats—ELF and PE32, respectively—vary

greatly in semantics (e.g., sections, code/data interleaving, etc.), making it non-trivial

to port fuzzing-enhancing program transformations from Linux- to Windows-based

closed-source software. Beyond this, many closed-source software developers adopt

countermeasures to make third-party analysis of their software as difficult as possible

(e.g., debug information stripping, code obfuscation, software anti-tamper), creating

further roadblocks for closed-source software fuzzing enhancements. Without scal-

able, robust, and format-agnostic binary instrumentation, effective fuzzing

will only be possible on a subset of the closed-source software ecosystem.
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1.2 Contributions of This Thesis

Through the following contributions, my work empowers security practitioners to uncover

vulnerabilities hidden in today’s complex, opaque software more efficiently and effectively

than ever before—enabling the outperforming of even current open-source fuzzing techniques—

while operating purely from the semantically-limited granularity of binary-only code:

A. UNTRACER and HEXCITE (chapter 3): A suite of practical techniques to optimize

fuzzing’s core coverage feedback strategy, enabling closed-source fuzzing to attain speed

and code coverage higher than coverage techniques for open-source software fuzzing.

B. ZAFL (chapter 4): A binary instrumentation platform attaining compiler-quality code

transformation and compiler-level instrumentation speed, enabling porting of compiler-

based fuzzing enhancements to closed-source fuzzing contexts at minimal cost.



Chapter 2

Literature Review

This section provides an overview of the topics related to the contributions of this thesis:

fuzzing, code coverage, and tracing performance.

2.1 An Overview of Fuzzing

Fuzzing is one of the most efficient and effective techniques for discovering software bugs and

vulnerabilities. Its simplicity and scalability have led to its widespread adoption among both

bug hunters [119, 146] and the software industry [17, 108]. Fundamentally, fuzzers operate

by generating enormous amounts of test cases, monitoring their effect on target binary

execution behavior, and identifying test cases responsible for bugs and crashes. Fuzzers are

often classified by the approaches they use for test case generation and execution monitoring

(Figure 2.1).

Fuzzers generate test cases using one of two approaches: grammar-based [36, 46, 68, 85]

or mutational [104, 107, 118, 119, 146]. Grammar-based generation creates test cases con-

strained by some pre-defined input grammar for the target binary. Mutational generation

creates test cases using other test cases; in the first iteration, by mutating some valid “seed”

input accepted by the target binary; and in subsequent iterations, by mutating prior iter-

ations’ test cases. For large applications, input grammar complexity can be burdensome,

and for proprietary applications, input grammars are seldom available. For these reasons,

6
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most popular fuzzers are mutational. Thus, coverage-guided tracing focuses on mutational

fuzzing.

Most mutational fuzzers leverage program analysis to strategize which test cases to mutate.

Directed fuzzers [15, 44] aim to reach specific locations in the target binary; thus they

prioritize mutating test cases that seem to make progress toward those locations. Coverage-

guided fuzzers [104, 107, 119, 146] aim to explore the entirety of the target binary’s code;

thus they favor mutating test cases that reach new code regions. As applications of directed

fuzzing are generally niche, such as taint tracking [137] or patch testing [15], coverage-guided

fuzzing’s wider scope makes it more popular among the fuzzing community [107, 108, 119,

146]. Coverage-guided tracing is designed to enhance coverage-guided fuzzers.

Fuzzers are further differentiated based on the degree of program analysis they employ.

Black-box fuzzers [36, 85, 131] only monitor input/output execution behavior (e.g., crashes).

White-box fuzzers [20, 21, 27, 47, 48, 117, 137] use heavy-weight program analysis for fine-

grained execution path monitoring and constraint solving. Grey-box fuzzers [14, 15, 59, 104,

107, 119, 146] are a trade-off between both—utilizing lightweight program analysis (e.g.,

code coverage tracing). Coverage-guided grey-box fuzzers are widely used in practice today;

examples include VUzzer [104], Google’s libFuzzer [107], honggfuzz [119], and AFL [146].

2.1.1 Coverage-Guided Fuzzing

Coverage guided fuzzing aims to explore the entirety of the target binary’s code by maxi-

mizing generated test cases’ code coverage. Figure 2.2 highlights the high-level architecture

of a coverage-guided mutational fuzzer. Given a target binary and some initial set of input

seeds, S, fuzzing works as follows:
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target binary
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Figure 2.2: High-level architecture of a coverage-guided mutational fuzzer.

1. Queue all initial seeds1 s ∈ S for mutation.

2. Test case generation: Select a queued seed and mutate it many times, producing

test case set T .

3. Execution monitoring: For all test cases t ∈ T , trace their code coverage and look

for crashes.

4. If a test case is coverage-increasing, queue it as a seed, and prioritize it for the next

round of mutation. Otherwise, discard it.

5. Crash triage: Report any crashing test cases.

6. Return to step 2 and repeat.

Coverage-guided fuzzers trace code coverage during execution via binary instrumentation

[107, 119, 146], system emulation [59, 105, 146], or hardware-assisted mechanisms [105, 119,

147]. To maximally vet the target application, coverage-guided fuzzing collects a test case’s

dynamic code coverage and subsequently mutates only those which attain new coverage.
1Seeds refers to test cases used as the basis for mutation. In the first iteration, the seeds are generally

several small inputs accepted by the target binary.
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2.2 Fuzzing’s Code Coverage Metrics

In my efforts to understand fuzzing’s current coverage landscape, I survey 27 of today’s state-

of-the-art coverage-guided fuzzers (Table 2.1) and identify three universal coverage metrics:

basic blocks, edges, and hit counts. I discuss these coverage metrics in detail below.

Name Cov Hit Name Cov Hit Name Cov Hit
AFL [146] ä 4 EnFuzz [26] ä 4 ProFuzzer [142] ä 4

AFL++ [41] ä 4 FairFuzz [77] ä 4 QSYM [143] ä 4

AFLFast [14] ä 4 honggFuzz [119] ä 7 REDQUEEN [7] ä 4

AFLSmart [99] ä 4 GRIMORE [13] ä 4 SAVIOR [25] ä 4

Angora [22] ä 4 lafIntel [1] ä 4 SLF [141] ä 4

CollAFL [43] ä 4 libFuzzer [107] ä 4 Steelix [79] ä 4

DigFuzz [148] ä 4 Matryoshka [23] ä 4 Superion [133] ä 4

Driller [117] ä 4 MOpt [82] ä 4 TIFF [67] n 4

Eclipser [28] ä 4 NEUZZ [110] ä 4 VUzzer [104] n 4

Table 2.1: A survey of recent coverage-guided fuzzers and their coverage metrics
(edges/blocks and hit counts). Key: ä (edges), n (blocks).

Basic Block Coverage: Basic blocks refer to straight-line (i.e., single entry and exit)

instruction sequences beginning and ending in control-flow transfer (i.e., jumps, calls, or

returns), and comprise the nodes of a program’s control-flow graph. Tracking basic block

coverage necessitates instrumenting each to record their execution in some data structure

(e.g., an array [103] or bitmap [146]). Two modern fuzzers that employ basic block coverage

are VUzzer [104] and its successor TIFF [67].

Edge Coverage: Edges refer to block-to-block transitions, and offer a finer-grained approx-

imation of paths taken. As Table 2.1 shows, most fuzzers rely on edge coverage; AFL [146]

and its many derivatives [41] record edges as hashes of their start/end block tuples in a

bitmap data structure; while LLVM SanitizerCoverage-based [123] fuzzers honggFuzz and
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IF (x==1) 
  foo();

IF (y==2) 
  bar();

return;
IF(y==2)

foo();x≠1

bar();

Source 
Code

Basic 
Blocks 

y=2

y≠2

return; 

x=1

IF(x==1)

Figure 2.3: An example of basic blocks in C code.

libFuzzer track edges from the block level by splitting critical edges (edges whose start/end

blocks have at least two outgoing/incoming edges, respectively).

Hit Count Coverage: Hit counts refer to block/edge execution frequencies, and are com-

monly tracked to reveal progress in state exploration (e.g., iterating on a loop). libFuzzer,

AFL, and AFL derivatives approximate hit counts using 8-bit “buckets”, with each bit rep-

resenting one of eight ranges (0–1, 2, 3, 4–7, 8–15, 16–31, 32–127, 128+); test cases are

seeded if they jump from one bucket to another for any block/edge. While tracking exact hit

counts (e.g., VUzzer and TIFF) reveals finer-grained state changes, it risks over-saturating

the fuzzer seed pool with needless test cases (e.g., one per new loop iteration), and is hence

seldom used.
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2.3 Coverage Tracing Performance

Contingent on the ability to instrument a target program from source, fuzzing is divided

into two distinct worlds: compiler-based and binary-only. Most modern fuzzers turn to

compiler instrumentation as its low runtime overhead supports high fuzzing throughput.

AFL accomplishes this through custom GCC and Clang wrappers. honggfuzz and libFuzzer

also provide their own Clang wrappers. More recent state-of-the-art efforts also leverage

compilers’ ability to apply complex program transformations. Researchers have shown that

such transformations improve fuzzing effectiveness by enhancing performance [43, 65] or

introspection [1, 22, 41, 70].

Fuzzing black-box (source-unavailable) binaries is far more challenging, as having no access

to source code requires costly reconstruction of binary control-flow. VUzzer [104] uses PIN

[81] to dynamically (during run-time) instrument black-box binaries. AFL’s QEMU user-

mode emulation also instruments dynamically, but as my experiments show (section 3.5),

it incurs overheads as high as 1000% compared to native execution. To address the weak-

ness of dynamic rewriting having to translate basic blocks in real-time—potentially multiple

times—Cisco-Talos provides a static binary rewriter AFL-Dyninst [120]. While previous

work shows AFL-Dyninst significantly outperforms AFL-QEMU on select binaries [93], re-

sults in section 3.5 suggest that the performance gap is much narrower.



Chapter 3

Fast and Fine-grained Coverage for

Closed-source Software Fuzzing

3.1 Introduction

Software vulnerabilities remain one of the most significant threats facing computer and

information security [94]. Real-world usage of weaponized software exploits by nation-states

and independent hackers continues to expose the susceptibility of society’s infrastructure

to devastating cyber attacks. For defenders, existing memory corruption and control-flow

safeguards offer incomplete protection. For software developers, manual code analysis does

not scale to large programs. Fuzzing, an automated software testing technique, is a popular

approach for discovering software vulnerabilities due to its speed, simplicity, and effectiveness

[17, 108, 119, 146].

At a high level, fuzzing consists of (1) generating test cases, (2) monitoring their effect on

the target binary’s execution, and (3) triaging bug-exposing and crash-producing test cases.

State-of-the-art fuzzing efforts center on coverage-guided fuzzing [14, 79, 104, 107, 119, 146],

which augments execution with control-flow tracking apparatuses to trace test cases’ code

coverage (the exact code regions they execute). Tracing enables coverage-guided fuzzers to

focus mutation on a small set of unique test cases (those that reach previously-unseen code

regions). The goal being complete exploration of the target binary’s code.

13
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Code coverage is an abstract term that takes on three concrete forms in fuzzing literature:

basic blocks, basic block edges, and basic block paths. For white-box (source-available)

binaries, code coverage is measured through instrumentation inserted at compile-time [107,

119, 146]. For black-box (source-unavailable) binaries, it is generally measured through

instrumentation inserted dynamically [104, 146] or statically through binary rewriting [120],

or through instrumentation-free hardware-assisted tracing [105, 119, 147].

Tracing code coverage is costly—the largest source of time spent for most fuzzers—and the

resulting coverage information is commonly discarded, as most test cases do not increase

coverage. As my results in section 3.5 show, AFL [146]—one of the most popular fuzzers—

faces tracing overheads as high as 1300% for black-box binaries and as high as 70% for

white-box binaries. These overheads are significant because, as experiments in section 3.2

show, over 90% of the time spent fuzzing involves executing and tracing test cases. The

problem with spending all this effort on coverage tracing is that most test cases and their

coverage information are discarded; because, for most benchmarks in my evaluation, less

than 1 in 10,000 of all test cases are coverage-increasing. Thus, the current practice of

blindly tracing the coverage of every test case is incredibly wasteful.

3.1.1 Coverage-guided Tracing

This work introduces the idea of Coverage-guided Tracing, and its associated implementation

UNTRACER, targeted at reducing the overheads of coverage-guided fuzzers. Coverage-guided

Tracing’s goal is to restrict tracing to test cases guaranteed to increase code coverage. It

accomplishes this by transforming the target binary so that it self-reports when a test case

increases coverage. I call such modified binaries interest oracles. Interest oracles execute

at native speeds because they eliminate the need for coverage tracing. In the event that
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the interest oracle reports a test case is coverage-increasing, the test case is marked as

coverage-increasing and conventional tracing is used to collect code coverage. Portions of

the interest oracle are then unmodified to reflect the additional coverage and the fuzzing

process continues. By doing this, Coverage-guided Tracing pays a high cost for handling

coverage-increasing test cases (about 2x the cost of tracing alone in my experiments), for the

ability to run all test cases (initially) at native speed. To validate Coverage-guided Tracing

and explore its tradeoffs on real-world software, I implement UNTRACER. UNTRACER leverages

the black-box binary instrumenter Dyninst [96] to construct the interest oracle and tracing

infrastructure.

I evaluate UNTRACER alongside several coverage tracers used with the popular fuzzer AFL [146].

For tracing black-box binaries, I compare against the dynamic binary rewriter AFL-QEMU [146],

and the static binary rewriter AFL-Dyninst [96]. For tracing white-box binaries, I compare

against AFL-Clang [146]. To capture a variety of target binary and tracer behaviors, I em-

ploy a set of eight real-world programs of varying class and complexity (e.g., cryptography

and image processing) that are common to the fuzzing community. In keeping with previous

work, I perform evaluations for a 24-hour period and use 5 test case datasets per bench-

mark to expose the effects of randomness. My results show UNTRACER outperforms blindly

tracing all test cases: UNTRACER has an average run time overhead of 0.3% across all bench-

marks, while AFL-QEMU averages 612% overhead, AFL-Dyninst averages 518% overhead,

and AFL-Clang averages 36% overhead. Experimental results also show that the rate of

coverage-increasing test cases rapidly approaches zero over time and would need to increase

four orders-of-magnitude to ameliorate the need for UNTRACER—even in a white-box tracing

scenarios. I further integrate UNTRACER with the state-of-the-art hybrid fuzzer QSYM [143].

Results show that QSYM-UNTRACER averages 79% and 616% more executed test cases than

QSYM-Clang and QSYM-QEMU, respectively.
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In summary, this work makes the following contributions:

• I introduce Coverage-guided Tracing: an approach for reducing fuzzing overhead by

restricting tracing to coverage-increasing test cases.

• I quantify the infrequency of coverage-increasing test cases across eight real-world

applications.

• I show that, for two coverage-guided fuzzers of different type: AFL (“blind” test case

generation) and Driller (“smart” test case generation), they spend a majority of their

time on tracing test cases.

• I implement and evaluate UNTRACER; UNTRACER is my coverage-guided tracer based

on the Dyninst black-box binary instrumenter. I evaluate UNTRACER against three

popular, state-of-the-art white- and black-box binary fuzzing tracing approaches: AFL-

Clang (white-box), AFL-QEMU (black-box, dynamic binary rewriting), and AFL-

Dyninst (black-box, static binary rewriting), using eight real-world applications.

• I integrate UNTRACER with the state-of-the-art hybrid fuzzer QSYM, and show that

QSYM-UNTRACER outperforms QSYM-Clang and QSYM-QEMU.

• I open-source my evaluation benchmarks [88], experimental infrastructure [87], and an

AFL-based implementation of UNTRACER [90].

3.1.2 Coverage-preserving Coverage-guided Tracing

I further tackle the challenge of extending CGT to fuzzing’s most ubiquitous coverage

metrics—edges and hit counts—making high-performance, fine-grained code coverage trac-

ing available for all existing (and future) fuzzers. At the core of my efforts are binary-level



3.1. INTRODUCTION 17

and fuzzing enhancements that broaden CGT’s coverage while maintaining its orders-of-

magnitude speedup: for edge coverage, I introduce a zero-overhead strategy called jump

mistargeting that addresses the most common (statically and dynamically) form of critical

edges while keeping control flow intact. To maintain completeness of edge coverage, I back

jump mistargeting with a low-overhead binary-only implementation of a control-flow trans-

formation that eliminates critical edges through block insertion called branch splitting (e.g.,

LLVM’s SanitizerCoverage [123]). To extend CGT to hit count coverage, I exploit the ob-

servation that execution frequency changes are highly localized to loops, devising a bucketed

unrolling strategy to encode them with a minimally-invasive hit count tracking mechanism

congruent with current fuzzers [41, 146].

I implement my coverage-preserving Coverage-guided Tracing, HEXCITE, and evaluate it

against the current block-coverage-only CGT implementation UnTracer [89]; the leading

binary-only fuzzing coverage tracers QEMU [146], Dyninst [61], and RetroWrite [32]; and

the popular source-level coverage tracing via AFL-Clang [146]. In evaluations across 12 di-

verse real-world binaries (8 open- and 4 closed-source), HEXCITE attains a throughput near

identical to UnTracer’s; 3–24× that of conventional always-on binary-only tracers QEMU,

Dyninst, and RetroWrite; and 2.8× that of source-level tracing with AFL-Clang. HEXCITE’s

coverage-preserving transformations further enable it to find 12–749% more unique bugs

than UnTracer as well as always-on binary- and source-level tracers in standard coverage-

guided grey-box fuzzing integrations—while finding 16 known bugs and vulnerabilities in

32–52% less time.

Through the following contributions, this work enables the use of the fastest tracing approach

in fuzzing—Coverage-guided Tracing—by the majority of today’s fuzzers:

• I introduce jump mistargeting: a control-flow redirection strategy which alters the
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common-case of edge instructions such that they self-report edge coverage at native

speed.

• I introduce bucketed unrolling: a technique which clones loop conditions at discrete

intervals, enabling the self-reporting of loop hit-count coverage at near-native speed.

• I demonstrate that with these techniques, my coverage-preserving CGT eclipses block-

only CGT—and conventional always-on binary- and source-level tracers—in edge cov-

erage, loop coverage, and bug-finding fuzzing effectiveness.

• I show that coverage-preserving CGT’s speed is nearly indistinguishable from that of

block-only CGT, and—despite being a binary-only technique—is >2× the speed of

even source-level tracing approaches.

• I open-source HEXCITE, my implementation of binary-only coverage-preserving CGT,

and my evaluation benchmarks at: https://github.com/FoRTE-Research/HeXcite.

3.2 Impact of Discarded Test Cases

Traditional coverage-guided fuzzers (e.g., AFL [146], libFuzzer [107], and honggfuzz [119])

rely on “blind” (random mutation-based) test case generation; coverage-increasing test cases

are preserved and prioritized for future mutation, while the overwhelming majority are

non-coverage-increasing and discarded along with their coverage information. To reduce

rates of non-coverage-increasing test cases, several white-box and grey-box fuzzers employ

“smart” test case generation. Smart mutation leverages source analysis (e.g., symbolic execu-

tion [117], program state [79], and taint tracking [22, 104]) to generate a higher proportion of

coverage-increasing test cases. However, it is unclear if such fuzzers spend significantly more
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time on test case generation than on test case execution/coverage tracing or how effective

smart mutation is at increasing the rate of coverage-increasing test cases.

In this section, I investigate the performance impact of executing/tracing non-coverage-

increasing test cases in two popular state-of-the-art fuzzers—AFL (blind test case generation)

[146] and Driller (smart test case generation) [117]. I measure the runtime spent by both

AFL and Driller on executing/tracing test cases across eight binaries, for one hour each,

and their corresponding rates of coverage-increasing test cases. Below, I highlight the most

relevant implementation details of both fuzzers regarding test case generation and coverage

tracing, and my experimental setup.

AFL

AFL [146] is a “blind” fuzzer as it relies on random mutation to produce coverage-increasing

(coverage-increasing) test cases, which are then used during mutation.1 AFL traces test

case coverage using either QEMU-based dynamic instrumentation for black-box binaries

or assembly/compile-time instrumentation for white-box binaries. I cover both options by

evaluating AFL-QEMU and AFL-Clang.

Driller

Driller [117] achieves “smart” test case generation by augmenting blind mutation with selec-

tive concolic execution—solving path constraints symbolically (instead of by brute-force). In-

tuitively, Driller aims to outperform blind fuzzers by producing fewer non-coverage-increasing

test cases; its concolic execution enables penetration of path constraints where blind fuzzers

normally stall. I evaluate Driller-AFL (aka ShellPhuzz [111]). Like AFL, Driller-AFL also
1A second, less-relevant factor influencing AFL’s test case mutation priority is test case size. For two test

cases exhibiting identical code coverage, AFL will prioritize the test case with smaller filesize [146].
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utilizes QEMU for black-box binary coverage tracing.

3.2.1 Experimental Setup

For AFL-Clang and AFL-QEMU I use the eight benchmarks from my evaluation in sec-

tion 3.5. As Driller currently only supports benchmarks from the DARPA Cyber Grand

Challenge (CGC) [30], I evaluate Driller-AFL on eight pre-compiled [112] CGC binaries. I

run all experiments on the same setup as my performance evaluation (section 3.5).

To measure each fuzzer’s execution/tracing time, I insert timing code in AFL’s test case

execution function (run_target()). As timing occurs per-execution, this allows me to also

log the total number of test cases generated. I count each fuzzer’s coverage-increasing test

cases by examining its AFL queue directory and counting all saved test cases AFL appends

with tag +cov—its indicator that the test case increases code coverage.

3.2.2 Results

As shown in Table 3.1, both AFL and Driller spend the majority of their runtimes on test

case execution/coverage tracing across all benchmarks: AFL-Clang and AFL-QEMU average

91.8% and 97.3% of each hour, respectively, while Driller-AFL averages 95.9% of each hour.

Table 3.2 shows each fuzzer’s rate of coverage-increasing test cases across all one-hour trials.

On average, AFL-Clang and AFL-QEMU have .0062% and .0257% coverage-increasing test

cases out of all test cases generated in one hour, respectively. Driller-AFL averages .00653%

coverage-increasing test cases out of all test cases in each one hour trial. These results show

that coverage-guided fuzzers AFL (blind) and Driller (smart)—despite adopting different

test case generation methodologies—both spend the majority of their time executing and

tracing the coverage of non-coverage-increasing test cases.
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bsdtar
cert-basic

cjson
djpeg

pdftohtml
readelf

sfconvert
tcpdump

avg.
A
FL-C

lang
1.63E−5

4.47E−5
2.78E−6

4.30E−5
1.42E−4

7.43E−5
8.77E−5

8.55E−5
6.20E−5

A
FL-Q

E
M
U

3.34E−5
4.20E−4

1.41E−5
1.09E−4

6.74E−4
2.28E−4

4.25E−4
1.55E−4

2.57E−4

CADET_1
CADET_3

CROMU_1
CROMU_2

CROMU_3
CROMU_4

CROMU_5
CROMU_6

avg.
D
riller-A

FL
2.70E−5

4.00E−4
2.06E−5

2.67E−5
2.33E−5

8.65E−7
1.61E−5

8.45E−6
6.53E−5

Table3.2:Per-benchm
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in
onehourby

A
FL-C

lang
and

A
FL-Q

EM
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(“blind”
fuzzing),and
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riller-A

FL
(“sm

art”
fuzzing).
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3.3 Coverage-guided Tracing

Current coverage-guided fuzzers trace all generated test cases to compare their individual

code coverage to some accumulated global coverage. Test cases with new coverage are re-

tained for mutation and test cases without new coverage are discarded along with their

coverage information. In section 3.2, I show that two coverage-guided fuzzers of different

type—AFL (“blind”) and Driller (“smart”)—both spend the majority of their time execut-

ing/tracing non-coverage-increasing test cases. Coverage-guided Tracing aims to trace fewer

test cases by restricting tracing to only coverage-increasing test cases.

3.3.1 Overview

Coverage-guided Tracing introduces an intermediate step between test case generation and

code coverage tracing: the interest oracle. An interest oracle is a modified version of the

target binary, where a pre-selected software interrupt is inserted via overwriting at the start

of each uncovered basic block. Interest oracles restrict tracing to only coverage-increasing

test cases as follows: test cases that trigger the oracle’s interrupt are marked coverage-

increasing, and then traced. As new basic blocks are recorded, their corresponding interrupts

are removed from the oracle binary (unmodifying)—making it increasingly mirror the original

target. As this process repeats, only test cases exercising new coverage trigger the interrupt—

thus signaling them as coverage-increasing.

As shown in Figure 3.1, Coverage-guided Tracing augments conventional coverage-guided

fuzzing by doing the following:

1. Determine Interesting: Execute a generated test case against the interest oracle. If

the test case triggers the interrupt, mark it as coverage-increasing. Otherwise, return
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Figure 3.1: Visualization of how Coverage-guided Tracing augments the workflow of a con-
ventional coverage-guided grey-box fuzzer (e.g., AFL [146]). Coverage-guided Tracing can
also be similarly adapted into coverage-guided white-box fuzzers (e.g., Driller [117]).

to step 1.

2. Full Tracing: For every coverage-increasing test case, trace its full code coverage.

3. Unmodify Oracle: For every newly-visited basic block in the test case’s coverage,

remove its corresponding interrupt from the interest oracle.

4. Return to step 1.

3.3.2 The Interest Oracle

In Coverage-guided Tracing, interest oracles sit between test case generation and coverage

tracing—acting as a mechanism for filtering-out non-coverage-increasing test cases from be-

ing traced. Given a target binary, an interest oracle represents a modified binary copy with

a software interrupt signal overwriting the start of each basic block. A test case is marked

coverage-increasing if it triggers the interrupt—meaning it has entered some previously-

uncovered basic block. Coverage-increasing test cases are then traced for their full coverage,
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and their newly-covered basic blocks are unmodified (interrupt removed) in the interest or-

acle.

Interest oracle construction requires prior identification of the target binary’s basic block

addresses. Several approaches for this exist in literature [71, 74, 125], and tools like angr [113]

and Dyninst [96] can also accomplish this via static analysis. Inserting interrupts is trivial,

but bears two caveats: first, while any interrupt signal can be used, it should avoid conflicts

with other signals central to fuzzing (e.g., those related to crashes or bugs); second, interrupt

instruction size must not exceed any candidate basic block’s size (e.g., one-byte blocks cannot

accommodate two-byte interrupts).

3.3.3 Tracing

Coverage-guided Tracing derives coverage-increasing test cases’ full coverage through a sep-

arate, tracing-only version of the target. As interest oracles rely on block-level binary mod-

ifications, code coverage tracing must also operate at block-level. Currently, block-level

tracing can support either block coverage [104], or—if all critical edges are mitigated—edge

coverage [107, 119]. Thus, Coverage-guided Tracing is compatible with most existing tracing

approaches.

3.3.4 Unmodifying

Coverage-guided Tracing’s unmodify routine removes oracle interrupts in newly-covered basic

blocks. Given a target binary, an interest oracle, and a list of newly-covered basic blocks,

unmodifying overwrites each block’s interrupt with the instructions from the original target

binary.
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IF (x==3) 
  foo();

IF (y==14) 
  bar();

IF (z==58) 
  bug();

IF(y==14)
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INT;
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IF(y==14)

foo();
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IF(y==14)

foo();

bar();

IF(z==58) 

bug();
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01 
x=3 
y=0 
z=0 

02 
x=3 
y=14 
z=0 

03 
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y=14 
z=58 

100 
x=3 
y=14 
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IF(x==3)IF(x==3)
INT;

IF(x==3)

Figure 3.2: An example of the expected evolution of a Coverage-guided Tracing interest
oracle’s basic blocks alongside its original source code. Here, INT denotes an oracle interrupt.
For simplicity, this diagram depicts interrupts as inserted; however, in Coverage-guided
Tracing, the interrupts instead overwrite the start of each basic block. Unmodifying basic
blocks consists of resetting their interrupt-overwritten byte(s) to their original values.

3.3.5 Theoretical Performance Impact

Over time, a growing number of coverage-increasing test cases causes more of the oracle’s

basic blocks to be unmodified (Figure 3.2)—thus reducing the dissimilarity between oracle

and target binaries. As the oracle more closely resembles the target, it becomes less likely

that a test case will be coverage-increasing (and subsequently traced). Given that non-

coverage-increasing test cases execute at the same speed for both the original and the oracle

binaries, as fuzzing continues, Coverage-guided Tracing’s overall performance approaches 0%
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overhead.

3.4 Implementation: UNTRACER

Here I introduce UNTRACER, my implementation of Coverage-guided Tracing. Below, I offer

an overview of UNTRACER’s algorithm and discuss its core components in detail.

3.4.1 UNTRACER Overview

UNTRACER is built atop a modified version of the coverage-guided grey-box fuzzer, AFL

2.52b [146], which I selected due to both its popularity in the fuzzing literature [14, 15,

59, 78, 79, 98, 117, 132] and its open-source availability. My implementation consists of

1200 lines of C and C++ code. UNTRACER instruments two separate versions of the target

binary—an interest oracle for identifying coverage-increasing test cases, and a tracer for

identifying new coverage. As AFL utilizes a forkserver execution model [144], I incorporate

this in both UNTRACER’s oracle and tracer binaries.

algorithm 1 shows the steps UNTRACER takes, as integrated with AFL. After AFL completes

its initial setup routines (e.g., creating working directories and file descriptors) (line 1),

UNTRACER instruments both the oracle and tracer binaries (lines 2–3); the oracle binary gets

a forkserver while the tracer binary gets a forkserver and basic block-level instrumentation

for coverage tracing. As the oracle relies on block-level software interrupts for identifying

coverage-increasing test cases, UNTRACER first identifies all basic blocks using static analysis

(line 5); then, UNTRACER inserts the interrupt at the start of every basic block in the oracle

binary (lines 6–8). To initialize both the oracle and tracer binaries for fuzzing, UNTRACER

starts their respective forkservers (lines 9–10). During AFL’s main fuzzing loop (lines 11–23),
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Algorithm 1: The UnTracer algorithm integrated in AFL.
Input: P : the target program
Data: b: a basic block

B: a set of basic blocks
i: an AFL-generated test case
Φ: the set of all coverage-increasing test cases

1 AFL_SETUP()
// Instrument oracle and tracer binaries

2 PO ← INSTORACLE(P )
3 PT ← INSTTRACER(P )

// Find and modify all of oracle's blocks
4 B = ∅
5 B ← GETBASICBLOCKS(P )
6 for b ∈ B do
7 MODIFYORACLE(b)
8 end

// Start oracle and tracer forkservers
9 STARTFORKSERVER(PO)

10 STARTFORKSERVER(PT )
11 // Main fuzzing loop
12 while 1 do
13 i← AFL_WRITETOTEST CASE()
14 if PO(i)→ INTERRUPT then

// The test case is coverage-increasing
15 Φ.ADD(i)

// Trace test case's new coverage
16 Btrace ← GETTRACE(PT (i))

// Kill oracle before unmodifying
17 STOPFORKSERVER(PO)

// Unmodify test case's new coverage
18 for b ∈ Btrace do
19 UNMODIFYORACLE(b)
20 end

// Restart oracle before continuing
21 STARTFORKSERVER(PO)
22 AFL_HANDLECOVERAGEINCREASING()
23 end
24 end
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UNTRACER executes every AFL-generated test case (line 12) on the oracle binary (line 13). If

any test case triggers an interrupt, UNTRACER marks it as coverage-increasing (line 14) and

uses the tracer binary to collect its coverage (line 15). I then stop the forkserver (line 16) to

unmodify every newly-covered basic block (lines 17-19)—removing their corresponding oracle

interrupts; this ensures only future test cases with new coverage will be correctly identified

as coverage-increasing. After all newly-covered blocks have been unmodified, I restart the

updated oracle’s forkserver (line 20). Finally, AFL completes its coverage-increasing test

case handling routines (e.g., queueing and prioritizing for mutation) (line 21) and fuzzing

moves onto the next test case (line 12). Figure 3.3 depicts UNTRACER’s architecture.

3.4.2 Forkserver Instrumentation

During fuzzing, both UNTRACER’s oracle and tracer binaries are executed many times; the

oracle executes all test cases to determine which are coverage-increasing and the tracer exe-

cutes all coverage-increasing test cases to identify new coverage. In implementing UNTRACER,

I aim to optimize execution speeds of both binaries. Like other AFL tracers, UNTRACER in-

corporates a forkserver execution model [144] in its tracer binary, as well as in its oracle

binary. By launching new processes via fork(), the forkserver avoids repetitive process

initialization—achieving significantly faster speeds than traditional execve()-based execu-

tion. Typically, instrumentation first inserts a forkserver function in a binary’s .text region,

and then links to it a callback in the first basic block of function <main>. In the tracer bi-

nary, I already use Dyninst’s static binary rewriting for black-box binary instrumentation,

so I use that same technique for the forkserver.

For the oracle binary, my initial approach was to instrument it using Dyninst. Unfortunately,

preliminary evaluations revealed several performance problems.2 Since the oracle executes
2I made Dyninst developers aware of several performance issues—specifically, excessive function calls (e.g.,
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every test case, it is performance critical. To avoid Dyninst’s limitations, I leverage AFL’s

assembly-time instrumentation to insert the forkserver in the oracle binary, since it closely

mimics the outcome of black-box binary rewriters.

3.4.3 Interest Oracle Binary

The oracle is a modified version of the target binary that adds the ability to self-report

coverage-increasing test cases through the insertion of software interrupts at the start of

each uncovered basic block. Thus, if a test case triggers the interrupt, it has exercised some

new basic block and is marked as coverage-increasing. Oracle binary construction requires

prior knowledge of the target binary’s basic block addresses. I leverage Dyninst’s static

control-flow analysis to output a list of basic blocks, then iterate through that list in using

binary file IO to insert the interrupts. To prevent interrupts triggering before forkserver

initialization, I do not consider functions executed prior to the forkserver callback in <main>

(e.g., <_start>, <_libc_start_main>, <_init>, <frame_dummy>).

I use SIGTRAP for my interrupt for two reasons: (1) it has long been used for fine-grain

execution control and analysis (e.g., gdb [18, 116] and kernel-probing [63, 72]); and (2) its

binary representation—0xCC—is one byte long, making it possible to overwrite basic blocks

of all sizes.

3.4.4 Tracer Binary

If the oracle determines a test case to be coverage-increasing, UNTRACER extracts its new

code coverage by executing it on a separate tracer binary—a coverage tracing-instrumented

to __dl_relocate_object) after exiting the forkserver function. While they confirmed that this behavior
is unexpected, they were unable to remedy these issues before publication.
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version of the target binary. I utilize Dyninst to statically instrument the tracer with a

forkserver for fast execution, and coverage callbacks inserted in each of its basic blocks for

coverage tracing. Upon execution, a basic block’s callback appends its corresponding basic

block address to a trace file located in UNTRACER’s working directory.

In an early version of UNTRACER, I observed that coverage traces containing repeatedly-

executing basic blocks add significant overhead in two ways: first, recording individual blocks

multiple times—a common occurrence for binaries exhibiting looping behavior—slowed UN-

TRACER’s trace writing operations; second, trace reading is also penalized, as subsequent

block-level unmodification operations are forced to process any repeatedly-executing basic

blocks. To mitigate such overhead, I optimize tracing to only record uniquely-covered basic

blocks as follows: in the tracer forkserver, I initialize a global hashmap data structure to

track all covered basic blocks unique to each trace; as each tracing child is forked, it inherits

the initial hashmap; upon a basic block’s execution, its callback utilizes hashmap lookup

to determine if the block has been previously covered in the current execution; if not, the

callback updates the current trace log and updates the hashmap. With this optimization,

for each coverage-increasing test case, UNTRACER records a set of all uniquely-covered basic

blocks, thus reducing the overhead resulting from logging, reading, and processing the same

basic block multiple times.

3.4.5 Unmodifying the Oracle

When a test case triggers the oracle’s software interrupt, it is marked as coverage-increasing

and UNTRACER removes its interrupts from its newly-covered basic blocks to ensure no future

test case with the non-new coverage is marked coverage-increasing. For each newly-covered

basic block reported in an coverage-increasing test case’s trace log, UNTRACER replaces the
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inserted interrupt with the original byte found in the target binary—effectively resetting it

to its pre-modified state. Doing so means any future test cases executing this basic block will

no longer trigger the interrupt and subsequently not be misidentified as coverage-increasing.

I observe that even coverage-increasing test cases often have significant overlaps in coverage.

This causes UNTRACER to attempt unmodifying many already-unmodified basic blocks, re-

sulting in high overhead. To mitigate this, I introduce a hashmap data structure for tracking

global coverage. Much like the hashmap used for per-trace redundant basic block filtering,

before unmodifying any basic block from the trace log, UNTRACER determines if the block

has been seen in any previous trace via hashmap lookup. If so, the basic block is skipped.

If not, its interrupt is removed, and the basic block is added to the hashmap. Thus, global

coverage tracking ensures that only newly-covered basic blocks are processed.

3.5 Tracing-only Evaluation

My evaluation compares UNTRACER against tracing all test cases with three widely used

white- and black-box binary fuzzing tracing approaches—AFL-Clang (white-box) [146], AFL-

QEMU (black-box dynamically-instrumented) [146], and AFL-Dyninst (black-box statically-

instrumented) [120] on eight real-world benchmarks of different type.

My experiments answer the following questions:

1. How does UNTRACER (Coverage-guided Tracing) perform compared to tracing all test

cases?

2. What factors contribute to UNTRACER’s overhead?

3. How is UNTRACER’s overhead impacted by the rate of coverage-increasing test cases?
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3.5.1 Evaluation Overview

I compare UNTRACER’s performance versus popular white- and black-box fuzzing tracing

approaches: AFL-Clang, AFL-QEMU, and AFL-Dyninst. These tracers all work with the

same fuzzer, AFL, and they cover the tracing design space including working with white-

and black-box binaries as well as static and dynamic binary rewriting. My evaluations

examine each tracer’s overhead on eight real-world, open-source benchmarks of different

type, common to the fuzzing community. Table 3.3 provides benchmark details. To smooth

the effects of randomness and ensure the most fair comparison of performance, I evaluate

tracers on the same five input datasets per benchmark. Each dataset contains the test cases

generated by fuzzing that benchmark with AFL-QEMU for 24 hours. Though my results

show UNTRACER has less than 1% overhead after one hour of fuzzing, I extend all evaluations

to 24 hours to better match previous fuzzing evaluations.

I configure AFL to run with 500ms timeouts and leave all other parameters at their defaults.

I modify AFL so that all non-tracing functionality is removed (e.g., progress reports) and

instrument its run_target() function to collect per-test case timing. To address noise from

the operating system and other sources, I perform eight trials of each dataset. For each set

of trials per dataset, I apply trimmed-mean de-noising [6] on each test case’s tracing times;

the resulting times represent each test case’s median tracing performance.

All trials are distributed across two workstations—each with five single-core virtual machines.

Both host systems run Ubuntu 16.04 x86_64 operating systems, with six-core Intel Core i7-

7800X CPU @ 3.50GHz, and 64GB RAM. All 10 virtual machines run Ubuntu x86_64 18.04

using VirtualBox. I allocate each virtual machine 6GB of RAM.3

3Across all trials, I saw no benchmarks exceeding 2GB of RAM usage.
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3.5.2 Experiment Infrastructure

To narrow my focus to tracing overhead, I only record time spent executing/tracing test cases.

To maintain fairness, I run all tracers on the same five pre-generated test case datasets for

each benchmark. For dataset generation, I implement a modified version of AFL that dumps

its generated test cases to file. In my evaluations, I use QEMU as the baseline tracer (since

my focus is black-box tracing) to generate the five datasets for each benchmark.

My second binary—TestTrace—forms the backbone of my evaluation infrastructure. I im-

plement this using a modified version of AFL—eliminating components irrelevant to tracing

(e.g., test case generation and execution monitoring). Given a benchmark, pre-generated

dataset, and tracing mode (i.e., AFL-Clang, AFL-QEMU, AFL-Dyninst, or none (a.k.a.

baseline)), TestTrace: (1) reproduces the dataset’s test cases one-by-one, (2) measures time

spent tracing each test case’s coverage, and (3) logs each trace time to file. For UNTRACER, I

include both the initial full-speed execution and any time spent handling coverage-increasing

test cases.

3.5.3 Benchmarks

My benchmark selection is based on popularity in the fuzzing community and benchmark

type. I first identify candidate benchmarks from several popular fuzzers’ trophy cases4 and

public benchmark repositories [50, 102, 108, 119, 146]. To maximize benchmark variety, I

further partition candidates by their overall type—software development, image processing,

data archiving, network utilities, audio processing, document processing, cryptography,

and web development. After I filter out several candidate benchmarks based on incompat-

4A fuzzer’s “trophy case” refers to a collection of bugs/vulnerabilities reportedly discovered with that
fuzzer.
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ibility with my tracers (e.g., Dyninst-based instrumentation crashes on openssl), I select

one benchmark per category: bsdtar (archiv), cert-basic (crypto), cjson (web), djpeg

(image), pdftohtml (doc), readelf (dev), sfconvert (audio), and tcpdump (net).

For each benchmark, I measure several other metrics with potential effects on tracing over-

head: number of basic blocks; and average number of generated test cases, average rate of

coverage-increasing test cases, and average number of 500ms timeouts in 24 hours. Bench-

mark basic block totals are computed by enumerating all basic blocks statically using Dyninst

[96]. For counting timeouts, I examined the statistics reported by afl-fuzz-saveinputs

during dataset generation; using my specified timeout value (500ms), I then averaged the

number of timeouts per benchmark among its datasets. Lastly, for each benchmark, I

counted and averaged the number of test cases generated in all of its 24-hour datasets.

I compile each benchmark using Clang/LLVM, with all compiler options set to their respec-

tive benchmark-specific defaults. Below, I detail my additional tracer-specific benchmark

configurations.

Baseline: AFL’s forkserver-based execution model (also used by UNTRACER’s interest oracle

and tracer binaries) adds a substantial performance improvement over execve()-based ex-

ecution [144]. As each fuzzing tracer in my evaluation leverages forkserver-based execution,

I design my “ground-truth” benchmark execution models to represent the fastest known ex-

ecution speeds: a statically-instrumented forkserver without any coverage tracing. I use a

modified copy of AFL’s assembler (afl-as) to instrument baseline (forkserver-only) bench-

mark versions. In each benchmark trial, I use its baseline execution speeds as the basis for

comparing each fuzzing tracers’ overhead.

AFL-Clang: As compiling with AFL-GCC failed for some binaries due to changes in GCC,

I instead use AFL-Clang.
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AFL-QEMU: I only need to provide it the original uninstrumented target binary of each

benchmark in my evaluation.

AFL-Dyninst: For my AFL-Dyninst evaluations, I instrument each binary using AFL-

Dyninst’s instrumenter with configuration parameters:

• bpatch.setDelayedParsing set to True;

• bpatch.setLivenessAnalysis set to False; and

• bpatch.setMergeTramp set to False.

I leave all other configuration parameters at their default settings.

3.5.4 Timeouts

Coverage tracing is affected by pre-defined execution timeout values. Timeouts act as a “hard

limit”—terminating a test case’s tracing if its duration exceeds the timeout’s value. Though

timeouts are necessary for halting infinitely-looping test cases, small timeouts prematurely

terminate tracing. For long-running test cases, this results in missed coverage information.

In cases where missed coverage causes coverage-increasing test cases to be misidentified as

non-coverage-increasing, this will have cascading effects on test case generation. As coverage-

guided fuzzers explore the target binary by mutating coverage-increasing test cases, exclusion

of timed-out—but otherwise coverage-increasing—test cases results in a higher likelihood of

generated test cases being non-coverage-increasing, and thus, slowing coverage indefinitely.

Small timeouts, when hit frequently, distort tracers’ overheads, making their performance

appear closer to each others’. In early experiments with timeouts of 100ms (AFL’s default),

I observed that, for some datasets, my worst-performing tracers (e.g., AFL-Dyninst, AFL-
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QEMU) had similar performance to otherwise faster white-box-based tracing (i.e., AFL-

Clang). Upon investigating each tracer’s logs, I found that all were timing-out on a signifi-

cant percentage of the test cases. This was striking given that the baseline (forkserver-only)

benchmark versions had significantly fewer timeouts. Thus, a 100ms timeout was too re-

strictive. I explored the effect of several different timeout values, with the goal of making

each tracer’s number of timeouts close to the baseline’s (assumed ground truth).

3.5.5 UNTRACER versus Coverage-agnostic Tracing

I examine my evaluation results to identify each fuzzing tracer’s overhead per benchmark.

For each tracer’s set of trials per benchmark dataset, I employ trimmed-mean de-noising

(shown to better reveal median tendency [6]) at test case level—removing the top and bottom

33% outliers—to reduce impact of system interference on execution speeds. I then take the

resulting five trimmed-mean dataset overheads for each tracer-benchmark combination and

average them to obtain tracer-benchmark overheads. Lastly, I convert all averaged tracer-

benchmark overheads to relative execution times with respect to baseline (e.g., a relative

execution time of 1.5 equates to 50% overhead).

In the following sections, I compare the performance of UNTRACER to three popular coverage-

agnostic tracing approaches. I first explore the performance of two black-box binary fuzzing

tracers: AFL-QEMU (dynamic) and AFL-Dyninst (static). Secondly, I compare UNTRACER’s

performance against that of the white-box binary fuzzing tracer AFL-Clang (static assembler-

instrumented tracing).
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Black-box binary tracing

As shown in Figure 3.4, I compare UNTRACER’s performance to two popular black-box bi-

nary fuzzing tracers—AFL’s dynamically-instrumented tracing via QEMU user-mode emu-

lation (AFL-QEMU) [145], and Dyninst-based static binary rewriting-instrumented tracing

(AFL-Dyninst) [120]. For one benchmark (sfconvert), AFL-QEMU and AFL-Dyninst have

similar relative execution times (1.2 and 1.22, respectively) to UNTRACER (1.0); however; by

looking at the different datasets for sfconvert, I observe a clear trend between higher

number of timeouts and lower tracing overheads across all tracers (Table 3.3). In my evalu-

ations, a 500ms test case timeout significantly overshadows a typical test case execution of

0.1–1.0ms.

AFL-Dyninst outperforms AFL-QEMU in three benchmarks (bsdtar, readelf, tcpdump),

but as these benchmarks all vary in complexity (e.g., number of basic blocks, execution times,

etc.), I am unable to identify which benchmark characteristics are optimal for AFL-Dyninst’s

performance. Across all benchmarks, UNTRACER achieves an average relative execution time

of 1.003 (0.3% overhead), while AFL-QEMU and AFL-Dyninst average relative execution

times of 7.12 (612% overhead) and 6.18 (518% overhead), respectively. The average Rel-

ative Standard Deviation (RSD) for each tracer was less than 4%. In general, my results

show UNTRACER reduces the overhead of tracing black-box binaries by up to four orders of

magnitude.

Mann Whitney U-test scoring: Following Klees et al.’s [75] recommendation, I utilize

the Mann Whitney U-test to determine if UNTRACER’s execution overhead is stochastically

smaller than AFL-QEMU’s and AFL-Dyninst’s. First I compute all per-dataset execution

times for each benchmark5 and tracer combination; then for each benchmark dataset I apply

5I ignore sfconvert in all statistical evaluations as its high number of timeouts results in all tracers
having similar overhead.
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Figure 3.4: Per-benchmark relative overheads of UNTRACER versus black-box binary tracers
AFL-QEMU and AFL-Dyninst.

the Mann Whitney U-test with 0.05 significance level on execution times of UNTRACER versus

AFL-QEMU and UNTRACER versus AFL-Dyninst. Averaging the resulting p-values for each

benchmark and tracer combination is less than .0005 for UNTRACER compared (pair-wise) to

AFL-QEMU and AFL-Dyninst. Given that these p-values are much smaller than the 0.05

significance level, I conclude there exists a statistically significant difference in the median

execution times of UNTRACER versus AFL-QEMU and AFL-Dyninst.

Vargha and Delaney Â12 scoring: To determine the extent to which UNTRACER’s execu-

tion time outperforms AFL-QEMU’s and AFL-Dyninst’s, I apply Vargha and Delaney’s Â12
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statistical test [129]. For all comparisons among benchmark trials the resulting Â12 statistic

is 1.0—exceeding the conventionally large effect size of 0.71. Thus I conclude that the dif-

ference in execution times between UNTRACER versus either black-box tracer is statistically

large.

White-box binary tracing

In Figure 3.5, I show the benchmark overheads of UNTRACER, and AFL’s white-box binary

(static assembly-time instrumented) tracer AFL-Clang. AFL-Clang averages a relative exe-

cution time of 1.36 (36% overhead) across all eight benchmarks, while UNTRACER averages

1.003 (0.3% overhead) (average RSD for each tracer was less than 4%). As is the case for

black-box binary tracers AFL-QEMU and AFL-Dyninst, in one benchmark with a large

number of timeouts—sfconvert—AFL-Clang’s performance is closest to baseline (nearly

matching UNTRACER’s).

Mann Whitney U-test scoring: On average per dataset, the resulting p-values ranged

from .00047 to .015—though only in one instance did the p-value exceed .0005. Thus I

conclude that there is a statistically significant difference in median execution times of UN-

TRACER versus AFL-Clang.

Vargha and Delaney Â12 scoring: Among all trials the resulting Â12 statistics range from

0.76 to 1.0. As the minimum of this range exceeds 0.71, I conclude UNTRACER’s execution

time convincingly outperforms AFL-Clang’s.

Figure 3.6 shows the distributions of overheads for each tracer on one dataset of the cjson

benchmark. The coverage-increasing test cases (red dots) are clearly separable from the

non-coverage-increasing test cases for UNTRACER, with the coverage-increasing test cases

incurring double the overhead of tracing with AFL-Dyninst alone.
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Figure 3.5: Per-benchmark relative overheads of UNTRACER versus white-box binary tracer
AFL-Clang.

Figure 3.7 shows how UNTRACER’s overhead evolves over time and coverage-increasing test

cases. Very early in the fuzzing process, the rate of coverage-increasing test cases is high

enough to degrade UNTRACER’s performance. As time progresses, the impact of a single

coverage-increasing test case is inconsequential and UNTRACER gradually approaches 0%

overhead. In fact, by 1000 test cases, UNTRACER has 90% of the native binary’s performance.

This result also shows that there is an opportunity for a hybrid Coverage-guided Tracing

model, where initial test cases are always traced until the rate of coverage-increasing test

cases diminishes to the point where UNTRACER becomes beneficial.
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Figure 3.6: Distribution of each tracer’s relative execution time averaged per-test case for
one 24-hour cjson dataset. The horizontal grey dashed line represents the average baseline
execution speed. Red dots represent coverage-increasing test cases identified by UNTRACER.

3.5.6 Dissecting UNTRACER’s Overhead

While Untracer achieves significantly lower overhead compared to conventional coverage-

agnostic tracers (i.e., AFL-QEMU, AFL-Dyninst, AFL-Clang), it remains unclear which

operations are the most performance-taxing. As shown in algorithm 1, UNTRACER’s high-

level workflow comprises the following: (1) starting the interest oracle and tracer binary

forkservers; (2) identifying coverage-increasing test cases by executing them on the oracle;

(3) tracing coverage-increasing test cases’ code coverage by executing them on the tracer;
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Figure 3.7: Averaged relative performance of all tracers over the percentage of test cases
processed for one 24-hour bsdtar dataset. Here, 1.0 refers to baseline (maximum) perfor-
mance. Each grey dashed vertical line represents a coverage-increasing test case.

(4) stopping the oracle’s forkserver; (5) unmodifying (removing interrupts from) basic blocks

in the oracle; and (6) restarting the oracle’s forkserver. Since UNTRACER identifies coverage-

increasing test cases as those which trigger the oracle’s interrupt, non-coverage-increasing test

cases—the overwhelming majority—exit the oracle cleanly without triggering any interrupts.

Thus, executing non-coverage-increasing test cases on the oracle is equivalent to executing

them on the original (baseline) binary. Based on this, UNTRACER’s only overhead is due to

processing coverage-increasing test cases.

In my evaluation of UNTRACER’s overhead, I add timing code around each component run
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for every coverage-increasing test case: coverage tracing with the tracer (trace), stopping

the oracle’s forkserver (stop fsrvr), unmodifying the oracle (unmodify), and restarting

the oracle (start fsrvr). I average all components’ measured execution times across all

coverage-increasing test cases, and calculate their respective proportions of UNTRACER’s total

overhead. Figure 3.8 shows the breakdown of all four components’ execution time relative to

total overhead. The graph shows that the two largest components of UNTRACER’s overhead

are coverage tracing and forkserver restarting.
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Figure 3.8: Visualization of the overheads per UNTRACER’s four components related to
coverage-increasing test case processing for each benchmark.

Tracing: Unsurprisingly, coverage tracing (trace) contributes to the almost 80% of UN-
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TRACER’s overhead across all benchmarks. My implementation relies on Dyninst-based

static binary rewriting-instrumented black-box binary tracing. As my evaluation results

(Figure 3.4) show, in most cases, Dyninst adds a significant amount of overhead. Given

UNTRACER’s compatibility with other binary tracers, there is an opportunity to take ad-

vantage of faster tracing (e.g., AFL-Clang in a white-box binary tracing scenario) to lower

UNTRACER’s total overhead.

Forkserver restarting: Restarting the oracle’s forkserver (start fsrvr) is the component

with second-highest overhead. In binaries with shorter test case execution times (e.g., cjson,

readelf, and tcpdump), the proportion of tracing time decreases, causing more overhead to

be spent on forkserver restarting. Additionally, in comparison to UNTRACER’s constant-time

forkserver-stopping operation (stop fsrvr), forkserver-restarting relies on costly process

creation (e.g., fork(), execve()) and inter-process communication (e.g., pipe(), read(),

write()). Previous work looks at optimizing these system calls for fuzzing [139], but given

UNTRACER’s low overhead in my evaluation, further optimization adds little performance

improvement. However, I can imagine niche contexts where such approaches would yield

meaningful performance improvements.

3.5.7 Overhead versus Rate of Coverage-increasing Test Cases

Below, I discuss the potential performance advantage of a hybrid approach combining

coverage-guided and coverage-agnostic tracing (e.g., AFL [146], libFuzzer [107], honggFuzz

[119]). In contrast to existing fuzzing tracers, which face high overhead due to tracing all gen-

erated test cases, UNTRACER achieves near-zero overhead by tracing only coverage-increasing

test cases—the rate of which decreases over time for all benchmarks (Figure 3.9). Com-

pared to AFL, UNTRACER’s coverage tracing is slower on average—largely due to its trace
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reading/writing relying on slow file input/output operations. Thus, as is the case in my eval-

uations (Table 3.3), Coverage-guided Tracing offers significant performance gains when few

generated test cases are coverage-increasing. For scenarios where a higher percentage of test

cases are coverage-increasing (e.g., fuzzers with “smarter” test case generation [22, 79, 104]),

my approach may yield less benefit.
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Figure 3.9: The rates of coverage-increasing test cases encountered over the total number of
test cases processed, per benchmark.

In such cases, overhead may be minimized using a hybrid fuzzing approach that switches be-

tween coverage-guided and coverage-agnostic tracing, based on the observed rate of coverage-

increasing test cases. I first identify a crossover threshold—the rate of coverage-increasing



3.5. TRACING-ONLY EVALUATION 49

test cases at which Coverage-guided Tracing’s overhead exceeds coverage-agnostic tracing’s.

During fuzzing, if the rate of coverage-increasing test cases drops below the threshold,

Coverage-guided Tracing becomes the optimal tracing approach; its only overhead is from

tracing the few coverage-increasing test cases. Conversely, if the rate of coverage-increasing

test cases exceeds the threshold, coverage-agnostic tracing (e.g., AFL-Clang, AFL-QEMU,

AFL-Dyninst) is optimal.
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Figure 3.10: Model of the relationship between coverage-increasing test case rate and UN-
TRACER’s overhead per test case. For all rates left of the leftmost dashed vertical line,
UNTRACER’s overhead per test case is less than AFL-Clang’s. Likewise, for all rates left of
the rightmost dashed vertical line, it is less than AFL-QEMU’s and AFL-Dyninst’s. Not
shown is the average rate of coverage-increasing test cases observed during my evaluations
(4.92E-3).
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To develop a universally-applicable threshold for all tracing approaches, I average the over-

heads of coverage-increasing test cases across all trials in my tracer-benchmark evaluations.

I then model overhead as a function of the rate of coverage-increasing test cases; I apply this

model to identify the coverage-increasing test case rates where UNTRACER’s overhead exceeds

AFL-Clang’s, and AFL-QEMU’s and AFL-Dyninst’s. As shown in Figure 3.10, for all rates

of coverage-increasing test cases below 2% (the leftmost dashed vertical line), UNTRACER’s

overhead per test case is less than AFL-Clang’s. Similarly, UNTRACER’s overhead per test

case is less than AFL-QEMU’s and AFL-Dyninst’s for all rates less than 50% (the rightmost

vertical dashed line).

3.6 Hybrid Fuzzing Evaluation

State-of-the-art hybrid fuzzers (e.g., Driller [117] and QSYM [143]) combine program-directed

mutation (e.g., via concolic execution) with traditional blind mutation (e.g., AFL [146]).

Hybrid approaches offer significant gains in code coverage at the cost of reduced test case

execution rate. In this section, I compare UNTRACER, Clang [146] (white-box tracing), and

QEMU [146] (black-box dynamically-instrumented tracing) implementations of the state-of-

the-art hybrid fuzzer QSYM on seven of my eight benchmarks.6 Exploring the benefit of

UNTRACER in a hybrid fuzzing scenario is important as hybrid fuzzers make a fundamental

choice to spend less time executing test cases (hence tracing) and more time on mutation.

While I provide an estimate of the impact hybrid fuzzing has on Coverage-guided Tracing’s

value in section 3.2, this section provides concrete data on the impact to UNTRACER of a

recent hybrid fuzzer.

6I exclude sfconvert from this evaluation since the QEMU-based variant of QSYM crashes on all eight
experimental trials.
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Implementing QSYM-UNTRACER

I implemented [90] QSYM-UNTRACER in QSYM’s core AFL-based fuzzer, which tracks cov-

erage (invoked by run_target()) in several contexts: test case trimming (trim_case()),

test case calibration (calibrate_case()), test case saving (save_if_interesting()), hy-

brid fuzzing syncing (sync_fuzzers()), and the “common” context used for most test cases

(common_fuzz_stuff()). Below I briefly discuss design choices specific to each.

Trimming and calibration: test case trimming and calibration must be able to identify

changes in a priori coverage. Thus the interest oracle is unsuitable since it only identifies

new coverage, and I instead utilize only the tracer binary.

Saving timeouts: A sub-procedure of test case saving involves identifying unique timeout-

producing and unique hang-producing test cases by tracing and comparing their coverage to a

global timeout coverage. Since AFL only tracks this information for reporting purposes (i.e.,

timeouts and hangs are not queued), and using an interest oracle or tracer would ultimately

add unwanted overhead for binaries with many timeouts (e.g., djpeg (Table 3.3)), I configure

UNTRACER-AFL, AFL-Clang, and AFL-QEMU to only track total timeouts.

For all other coverage contexts I implement the UNTRACER interest oracle and tracer execu-

tion model as described in section 3.4.

3.6.1 Evaluation Overview

To identify the performance impact from using UNTRACER in hybrid fuzzing I incorporate

it in the state-of-the-art hybrid fuzzer QSYM and evaluate its against existing Clang- [146]

and QEMU-based [146] QSYM implementations. My experiments compare the number of

test cases executed for all three hybrid fuzzer variants for seven of the eight benchmarks
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from section 3.5 (Table 3.3) with 100ms timeouts. To account for randomness, I average the

number of test cases executed from 8, 24-hour trials for each variant/benchmark combination.

To form an average result for each variant across all benchmarks, I compute a per-variant

geometric mean.
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Figure 3.11: Per-benchmark relative average executions in 24 hours of QSYM-UNTRACER
versus QSYM-QEMU and QSYM-Clang.

I distribute all trials across eight virtual machines among four workstations. Each host is a

six-core Intel Core i7-7800X CPU @ 3.50GHz with 64GB of RAM that runs two, two-CPU

6GB virtual machines. All eight virtual machines run Ubuntu 16.04 x86_64 (as opposed to

18.04 for previous experiments due to QSYM requirements). Figure 3.11 presents the results
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for each benchmark and the geometric mean across all benchmarks scaled to my baseline of

the number of test cases executed by QSYM-QEMU.

3.6.2 Performance of UNTRACER-based Hybrid Fuzzing

As shown in Figure 3.11, on average, QSYM-UNTRACER achieves 616% and 79% more test

case executions than QSYM-QEMU and QSYM-Clang, respectively. A potential problem

I considered was the overhead resulting from excessive test case trimming and calibration.

Since my implementation of QSYM-UNTRACER defaults to the slow tracer binary for test

case trimming and calibration, an initial problem I considered was the potential overhead

resulting from either operation. However, my results show that the performance advantage

of interest oracle-based execution (i.e., the “common case”) far outweighs the performance

deficit from trimming and calibration tracing.

3.7 A Coverage-preserving Coverage-guided Tracing

Though CGT enables orders-of-magnitude higher binary-only fuzzing throughput, it is cur-

rently incompatible with all of the state-of-the-art coverage-guided fuzzers I surveyed in

Table 2.1: whereas CGT presently supports only a basic block coverage level, 25/27 fuzzers

instead rely on edge coverage, and 26/27 further track hit counts. Allowing the broad spec-

trum of coverage-guided fuzzers to obtain the performance benefits of CGT necessitates an

answer to this disparity in code coverage metrics.

To address this incompatibility, I observe how CGT achieves lightweight coverage tracking at

the control-flow level; and devise two new techniques exploiting this paradigm to facilitate

finer-grained coverage—jump mistargeting (for edge coverage) and bucketed unrolling (for
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hit counts)—without compromising CGT’s minimally-invasive nature. Below I discuss the

inner workings of jump mistargeting and bucketed unrolling, and the underlying insights and

observations that motivate them.

(a) bsdtar (b) cert-basic

(c) clean_text (d) jasper

Figure 3.12: Visualization of the proportion of critical edges by transfer type encountered
throughout fuzzing.
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3.7.1 Supporting Edge Coverage

AFL and its derivatives utilize hash-based edge coverage, instrumenting each basic block

to dynamically record edges as hashes of their start/end blocks. However, as CGT’s key

speedup comes from replacing per-block instrumentation with far cheaper interrupts, it is

thus incompatible with AFL-style hash-based edge coverage.

libFuzzer and honggFuzz track edges using LLVM’s SanitizerCoverage instrumentation,

which forgoes hashing to instead infer edges from the set of covered blocks. For example,

given a control-flow graph with edges # »ab and # »bc, covering blocks a and b implies covering

edge # »ab; and subsequently covering c implies # »bc. However, such block-centric edge coverage

does not suffice if there exists a third edge # »ac. In this case, covering blocks a, b, and c

implies edges # »ab and # »bc; but since c has already been covered, there is no way to detect # »ac.

Formally, these problematic edges are referred to as critical edges: edges whose start/end

blocks have two or more incoming/outgoing edges, respectively [123].

Program Total Edges Crit. Edges Prop.
bsdtar 42911 9867 0.23
cert-basic 7544 1642 0.22
clean_text 8762 1592 0.18
jasper 21637 5878 0.27
readelf 30959 7301 0.24
sfconvert 8358 2022 0.24
tcpdump 36200 7312 0.20
unrtf 2505 465 0.19

Mean 22%

Table 3.4: Proportion of critical edges in eight real-world programs.

Diving deeper into critical edges: Supporting block-centric edge coverage requires re-

solving all critical edges. LLVM’s SanitizerCoverage achieves this by splitting each critical



56 CHAPTER 3. FAST AND FINE-GRAINED COVERAGE FOR CLOSED-SOURCE SOFTWARE FUZZING

Type Example
Conditional target (e.g., jle 0x100’s True branch)
Conditional fall-through (e.g., jle 0x100’s False branch)
Indirect jump (e.g., jmp %eax)
Indirect call (e.g., call %eax)
Return (e.g., ret)

Table 3.5: Examples of x86 critical edge instructions by transfer type.

Program CndTarg CndFall IndJmp IndCall Ret
bsdtar 1.00 0.00 0.00 0.00 0.00
cert-basic 0.84 0.10 0.02 0.00 0.05
clean_text 0.87 0.02 0.00 0.01 0.10
jasper 0.97 0.03 0.00 0.00 0.00
readelf 0.70 0.03 0.01 0.12 0.14
sfconvert 0.84 0.02 0.00 0.00 0.13
tcpdump 0.98 0.01 0.00 0.00 0.01
unrtf 0.94 0.03 0.00 0.00 0.02

Mean 89.3% 2.9% 0.4% 1.6% 5.7%

Table 3.6: Proportion of encountered critical edges by transfer type.

edge with a “dummy” block, creating two new edges. Continuing example subsection 3.7.1,

dummy d will split critical edge # »ac into # »ad and # »dc, thus permitting path #    »adc to be differen-

tiated from #    »abc. But while such approach is indeed compatible with CGT’s block-centric,

interrupt-driven coverage, my analysis of eight real-world binaries shows over 1 in 5 edges

are critical (Table 3.4), revealing that splitting every critical edge with a new block leaves a

significant control-flow footprint—and inevitably, a higher baseline binary fuzzing overhead.

To understand the impact of critical edges on fuzzing, I instrument the same eight real-world

binaries and dynamically record their instruction traces.7 In conjunction with the statically-
7I limit instruction tracing to one hour of fuzzing due to the massive size of the resulting trace data

(ranging from 200GB to 7TB per benchmark).
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generated control-flow graphs, I analyze each trace to measure the occurrences of critical

edges; and further quantify them by transfer type, which on the x86 ISA takes on one of five

forms (shown in Table 3.5).8

As shown in Figure 3.12 and Table 3.6, my findings reveal that conditional jump target

branches make up an average of 89% of all dynamically-encountered critical edges.

Observation 1: Conditional jump target branches make up the vast majority of critical

edges encountered during fuzzing.

Jump Mistargeting

Splitting critical edges with dummy blocks adds a significant number of new instructions

to each execution, and with it, more runtime overhead—slowing binary-only fuzzing down

even further. For the common case of critical edges (conditional jump target branches), I

observe that the edge’s destination address is encoded within the jump instruction itself, and

thus can be statically altered to direct the edge elsewhere. My approach, jump mistargeting,

exploits this phenomena to “mistarget” the jump’s destination so that it resolves into a CGT-

style interrupt—permitting a signaling of the critical edge’s coverage without any need for a

dummy block (i.e., identifying edge # »ac in subsection 3.7.1’s example without the additional

dummy block d).

An overview of jump addressing: The x86 ISA has three types of jumps: short, near

(or long), and far. Short and near jumps achieve intra-segment transfer via program counter

(PC)-relative addressing: short jumps use 8-bit signed displacements, and thus can reach

up to +127/-128 bytes relative to the PC; while near jumps use much larger 16–32-bit

8As critical edges are, by definition, one of at least two outgoing edges from their starting block, transfers
with at most one destination (direct jumps/calls and unconditional fall-throughs) can never be critical edges.
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signed displacements. In contrast, far jumps achieve inter-segment transfer via absolute

addressing (i.e., to a fixed location irrespective of the PC). All three jumps share the common

instruction layout of an opcode followed by a 1–4 byte destination operand (an encoding of

the relative/absolute address). Since the adoption of position-independent layouts, most

x86/x86-64 code utilizes relative addressing.

Redirecting jumps to interrupts: Jump mistargeting alters conditional jump target

critical edges to trigger interrupts when taken. When used in CGT, its effect is identical to

combining interrupts with conventional (yet more invasive) edge splitting—while avoiding the

associated cost of inserting new blocks. I envision two possible jump mistargeting strategies

(Figure 3.13): one leveraging embedded interrupts, and another with zero-address interrupts.

Figure 3.13: A visualization of jump mistargeting via embedded (left) and zero-address
interrupts (right).

1. Embedded Interrupts. The simplest mistargeting approach is to replace each jump’s

destination with a garbage address, ideally resolving to an illegal instruction (thus in-

terrupting the program). However, as many instructions have one-byte opcodes, a

carelessly-chosen destination may very well initiate an erroneous sequence of instruc-

tions.

A more complete strategy is to instead redirect the jump to a location where an in-

terrupt opcode is embedded. For example, the byte sequence [00 CC] at address
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0x405500 normally resolves to instruction [add %cl,%ah]; but as 0xCC is itself an op-

code for interrupt int3, it suffices to redirect the target critical edge jump to 0x405501,

which subsequently fetches and executes 0xCC, thus triggering the interrupt instruc-

tion. A key challenge (and bottleneck) of this approach is scanning the bytespace in

the jump’s displacement range to pinpoint embedded interrupts.

2. Zero-address Interrupts. As nearly all x86/x86-64 code is position-independent

and hence uses PC-relative addressing, an alternative and less analysis-intensive mis-

targeting approach is to interrupt the program by resolving the jump’s displacement

to the zero address (i.e., 0x00). For example, taking the conditional jump represented

by byte sequence [0F 8F 7C 00 00 00] at address 0x400400 normally branches to

address 0x400400+6+0x0000007C (i.e., the PC + instruction length + displacement);

but to resolve it to the zero address merely requires the displacement be rewritten to

0xFFBFFBFA (i.e., the negative sum of the PC and instruction length). As 8–16 bit

displacements do not provide enough “room” to cover the large virtual address space

of modern programs, zero-address mistargeting is generally restricted to jumps with

32-bit displacements, however, most x86-64 branches fit this mold.

Technique 1: Jumps’ self-encoded targets can be rewritten to resolve to addresses that

result in interrupts, enabling binary-level CGT edge coverage at native speed (i.e., without

needing to insert additional basic blocks).

3.7.2 Supporting Hit Counts

Most fuzzers today adopt AFL-style [146] bucketed hit count coverage, which coarsely tracks

changes in block/edge execution frequencies over a set of eight ranges: 0–1, 2, 3, 4–7, 8–

15, 16–31, 32–127, and 128+. Unfortunately, CGT’s interrupt-driven coverage currently
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only supports a binarized notion of coverage (i.e., taken/not taken), and thus requires a

fundamentally new approach to support finer-grained frequencies.

Diving deeper into hit counts: In exploring the importance of hit counts, I observe

that most new hit count coverage is localized to loops (e.g., for(), while()). As Rawat

and Mounier [104] demonstrate that as many as 42% of binary code loops induce buffer

overflows (e.g., by iterating over user-provided input with strcpy()), it is imperative to track

hit counts as a means of assessing—and prioritizing—fuzzer “progress” toward higher loop

iterations. However, inferring a loop’s iteration count is achievable purely from monitoring

its induction variable—eliminating the expense of tracking hit counts for every loop block

(as AFL and libFuzzer do).

Observation 2: Hit counts provide fuzzing a notion of loop exploration progress, but

need only be tracked once per loop iteration.

Bucketed Unrolling

AFL-style [146] hit count tracking adds counters to each block/edge to dynamically update

their respective hit counts in a shared memory coverage bitmap. However, this approach

is fundamentally incompatible with the binarized nature of CGT’s block-centric, interrupt-

driven coverage. While a naive solution is to instead add CGT’s interrupts following the

application of a loop peeling transformation—making several copies of the loop’s body and

stitching them together with direct jumps (e.g., head → body1 → ... → bodyn → tail)—

the resulting binary will be exceedingly space inefficient due to excessive code duplication—

especially for nested loops.

In search of a more performant solution, I develop bucketed unrolling—drawing from compiler

loop unrolling principles to encode the functionality of AFL-style bucketed hit counts as a
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series of binarized range comparisons.
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Loop
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Figure 3.14: Bucketed unrolling applied to a simple loop.

As shown in Figure 3.14, bucketed unrolling augments each loop header with a series of

sequential conditional statements weighing the loop induction variable against the desired

hit count bucket ranges (e.g., AFL’s eight). To support CGT, each conditional’s fall-through

block is assigned an interrupt; taking any conditional’s target branch jumps directly to the

loop’s body, indicating no change from the current bucket range; and taking the fall-through

triggers the next sequential interrupt, thus signaling an advancement to the next bucket.

The resulting code replicates the functionality of AFL-style hit count tracking—but obtains

much higher performance by doing so at just one instrumentation location per loop.

Technique 2: Encoding conventional bucketed hit count tracking as a series of se-

quential, binarized range checks enables CGT to capture binary-level loop exploration

progress—while upholding its fast, interrupt-driven coverage-tracing strategy.
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3.8 Implementation: HEXCITE

In this section I introduce HEXCITE—High-Efficiency eXpanded Coverage for Improved

Testing of Executables—my implementation of binary-only coverage-preserving Coverage-

guided Tracing. Below I discuss HEXCITE’s core architecture, and our design decisions in

realizing jump mistargeting and bucketed unrolling.

3.8.1 Architectural Overview

HEXCITE consists of three main components: (1) binary generation, (2) control-flow

mapping, and (3) the fuzzer. We implement components 1–2 as a set of analysis and

transformation passes atop the ZAFL static rewriting platform [91], and component 3 atop

the industry-standard fuzzer AFL [146]. Below I briefly discuss each and their synergy in

facilitating coverage-preserving CGT.

Binary Generation: HEXCITE’s workflow is similar in nature to UnTracer’s (Figure 3.1);

i.e., I generate two versions of the original target binary: (1) an oracle (run for every test

case) with interrupts added to each basic block; and (2) a tracer (run only for coverage-

increasing test cases) equipped with conventional tracing instrumentation. While many

fuzzers embrace compiler instrumentation for its speed and soundness (i.e., LLVM [76]), there

are by now a number of static binary rewriters with comparable qualities. I examine sev-

eral popular and/or emerging security-oriented binary rewriters—Dyninst [96], McSema [31],

RetroWrite [32], and ZAFL [91]—and distill a set of properties I feel are best-suited support-

ing jump mistargeting and bucketed unrolling: (1) a modifiable control-flow representation;

(2) dominator flow analysis [2]); and (3) sound code transformation and generation. I select

ZAFL as the basis for HEXCITE as it is the highest performance rewriter that possesses the

above three properties in addition to an LLVM-like transformation API. I expect that with
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additional engineering effort, my findings apply to the other rewriters listed.

Like most static binary rewriters, ZAFL operates by first disassembling and lifting the input

binary to an intermediate representation;9 and performing all code transformation at this

IR level (e.g., injecting bucketed unrolling’s range checks subsection 3.8.3), adjusting the

binary’s layout as necessary before reconstituting the final executable. While relocating

direct (i.e., absolute and PC-relative) control flow is generally trivial, attempting so for

indirect transfers is undecidable and risks corrupting the resulting binary, as their respective

targets cannot be identified with any generalizable accuracy [95, 138]. ZAFL addresses

this challenge conservatively via address pinning [56, 64], which “pins” any unmovable items

(including but not limited to: indirectly-called function entries, callee-to-caller return targets,

data, or items that cannot be precisely disambiguated as being either code or data) to their

original addresses;10 while safely relocating the remaining movable items around these pins

(often via chained jumps). Though address pinning will likely over-approximate the set of

unmovable items at slight cost to binary performance and/or space efficiency (particularly

for exceedingly-complex binaries with an abundance of jump tables, handwritten assembly,

or data-in-code), its general-purpose soundness, speed, and scalability [91] makes it promising

for facilitating coverage-preserving CGT. My current prototype, HEXCITE, supports binary

fuzzing of x86-64 Linux C and C++ executables.

Control-flow Mapping: A key requirement of CGT is a mapping of each oracle basic

block’s address (i.e., where an interrupt is added) to its corresponding tracer binary trace-

block ID; when a coverage-increasing test case is found, the tracer is invoked to capture

the test case’s full coverage, for which all interrupts are subsequently removed at their ad-

9ZAFL’s disassembly supports mixing-and-matching of recursive descent and linear sweep. The current
tools utilized are based on IDA Pro [54] and GNU objdump [45].

10To support address pinning, ZAFL conservatively scans for addresses likely targeted by indirect control
flow; generally this is achieved via rudimentary heuristics (e.g., post-call instructions, jump table entries,
etc.). Additionally, ZAFL pins all data items.
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dresses in the oracle. To generate this mapping, I save the original and rewritten control-flow

graphs for both the oracle and tracer binaries. I then parse the pair of original control-flow

graphs to find their corresponding matches, and subsequently map each to their oracle and

tracer binary counterparts (i.e., (cfgBB,oracleBB) → (cfgBB,tracerBB)). From there, I

generate the necessary (oracleAddr,tracerID,interruptBytes) mapping for each block

(e.g., (0x400400,30,0xCC)). If mapping should fail (e.g., a tracer block with no correspond-

ing oracle block), I omit the block to avoid problematic interrupts; I observe this generally

amounts to no more than a handful of instances per binary, and does not impact HEXCITE’s

overall coverage (section 3.9.2–section 3.9.2).

The Fuzzer: Like UnTracer, I implement HEXCITE atop the industry-standard fuzzer

AFL [146] 2.52b with several changes in test case handling logic (Figure 3.15). I default

to conventional tracing for any executions where coverage is required (e.g., calibration and

trimming), while not re-executing or saving timeout-producing test cases. As jump mistar-

geting triggers signals that might otherwise appear as valid crashes (e.g., SIGSEGV), I alter

HEXCITE’s fuzzer-side crash-handling logic as follows: if a test case crashes the oracle, I re-run

it on the tracer to verify whether it is a true or a mistargeted crash; if it does not crash the

tracer, I conclude it is the result of taking a mistargeted critical edge (i.e., a SIGSEGV from

jumping to the zero address), and save it to the fuzzer queue. I note that the core principles

of coverage-preserving CGT scale to any fuzzer (e.g., honggFuzz), as evidenced by emerging

CGT-based efforts within the fuzzing community [41, 53, 69].

3.8.2 Implementing Jump Mistargeting

We implement zero-address jump mistargeting for the common-case of critical edges, con-

ditional jump target branches (subsection 3.7.1), as follows. To statically identify critical
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edges we first enumerate all control-flow edges, and mark an edge as critical if at least two

edges both precede and succeed it. We subsequently parse each critical edge and categorize

it by type by examining its starting block’s last instruction (Table 3.5). Lastly, we update an

offline record of each critical edge by type (e.g., “conditional jump target”) and its respective

starting/ending basic block addresses.

I enumerate all conditional jump target critical edges; as x86-64 conditional jumps are 6-

bytes in length and encoded with a 32-bit PC-relative displacement, I compute the sum of the

instruction’s address and its length, and determine the 2’s complement (i.e., negative binary

representation). Using basic file I/O I then statically overwrite the jump’s displacement

operand with the little-endian encoding of the zero-address-mistargeted displacement, and

update my oracle-to-tracer mapping accordingly (e.g., (0x400400,30,0x7C000000) for the

example in subsection 3.7.1).

If a critical edge cannot accommodate zero-address mistargeting (e.g., from having a <32-

bit displacement), we attempt to fall-back to conventional SanitizerCoverage-style [123] edge

splitting, inserting a dummy block and connecting it to the edge’s end block. Conditional

fall-through critical edges require careful handling, as accommodating the transfer from the

edge’s starting block to the dummy requires the dummy be placed immediately after the

starting block (i.e., the next sequential address). However, splitting indirect critical edges

remains a universal problem even for robust compilers like LLVM (subsection 3.10.1). While

recent work [73] reveals the possibility that indirect edges may be modeled at the binary level,

such approaches are still too imprecise to be realistically deployed; hence, I conservatively

omit indirect critical edges as I observe they have little overall significance on dynamically-

seen control-flow (Figure 3.12).



3.8. IMPLEMENTATION: HEXCITE 67

3.8.3 Implementing Bucketed Unrolling

We implement bucketed unrolling to replicate AFL-style loop hit count tracking, beginning

with an analysis pass to retrieve all code loops from the target binary based on the clas-

sic dominance-based loop detection [101]: given the control-flow graph and dominator tree

(generally available in any off-the-shelf static rewriter’s API), we mark a set of blocks S as a

loop if (1) there exists a header block h that dominates all blocks in S; and (2) there exists

a backward edge # »bh from some block b ∈ S such that h dominates b.11 Though binary-level

loop head/body detection is difficult—particularly around complex optimizations like Loop-

invariant Code Motion—I observe that the standard dominance-based algorithm is sufficient;

and while HEXCITE attains the highest loop coverage in my evaluation (section 3.9.2), I expect

that future advances in optimized-binary loop detection will only improve these capabilities.

As pinpointing a loop’s induction variable (the target of bucketed unrolling’s discrete range

checks) is itself semantically challenging at the binary level, I opt for a simpler approach and

instead add a “fake” loop counter before each loop header; and augment the header with an

instruction to increment this counter per iteration (e.g., x86’s incl). Where the increment is

inserted in the header ultimately depends on the static rewriter of choice; Dyninst [96] prefers

to conservatively insert new code at basic block entrypoints to avoid clobbering occupied

registers; while RetroWrite [32] and ZAFL [91] analyze register liveness to more tightly weave

code with the original instructions. Either style is supportive of HEXCITE, though tight code

insertion is preferable for higher runtime speed.

We implement bucketed unrolling’s sequential range checks (per AFL’s 8-bucket hit count

scheme) as a transformation pass directly before the loop’s first body block; and connect

each to the first body block via direct jumps, and to each other via fall-throughs. The

11In compiler and graph theory, a basic block a is said to dominate basic block b if and only if every path
through b also covers a. [2]
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resulting assembly resembles the following (shown in Intel syntax):

1 _loop_head:

2 incl rdx

3 cmpl rdx, 1

4 jle _loop_body

5 cmpl rdx, 2

6 jle _loop_body

7 ...

8 _loop_body:

To facilitate signaling of a range change, I flag the start of each sequential range check (e.g.,

lines 3 and 5 above) with the one-byte 0xCC interrupt. To maintain control-flow congruence,

I apply this transformation to both the oracle and tracer binaries.

3.9 Evaluation

My evaluation of the effectiveness of coverage-preserving Coverage-guided Tracing is moti-

vated by three key questions:

Q1: Do jump mistargeting and bucketed unrolling improve coverage over basic-block-only

CGT?

Q2: What are the performance impacts of expanding CGT to finer-grained code coverage

metrics?

Q3: How do the benefits of coverage-preserving CGT impact fuzzing bug-finding effective-

ness?
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3.9.1 Experiment Setup

Below I provide expanded detail on my evaluation: the coverage-tracing approaches I am

testing, my benchmark selection, and my experimental infrastructure and analysis proce-

dures.

Competing Tracing Approaches: Table 3.7 lists the fuzzing coverage-tracing approaches

tested in my evaluation. I evaluate my binary-only coverage-preserving CGT implementa-

tion, HEXCITE, alongside the current block-coverage-only CGT approach UnTracer [89].12 To

test HEXCITE’s fidelity against the conventional always-on coverage tracing in binary fuzzing,

I also evaluate the leading binary tracers QEMU (AFL [146] and honggFuzz’s [119] default

approach for fuzzing binary-only targets); Dyninst (a popular static-rewriting-based alter-

native [61]); and RetroWrite [32] (a recent static-rewriting-based instrumenter). Lastly, I

replicate UnTracer’s evaluation for open-source targets by further comparing against AFL-

Clang (AFL’s [146] source-level always-on tracing) [89]. I report HEXCITE’s best-performing

coverage configuration (edge coverage or edge+count coverage) in all experiments.

Approach Tracing Type Level Coverage
HeXcite coverage-guided binary edge + counts
UnTracer [89] coverage-guided binary block
QEMU [146] always-on binary edge + counts
Dyninst [61] always-on binary edge + counts
RetroWrite [32] always-on binary edge + counts
Clang [146] always-on source edge + counts

Table 3.7: Fuzzing coverage tracers evaluated alongside HEXCITE; and their type, level, and
coverage metric.

Benchmark Selection: My benchmark selection (Table 3.8) follows the current standard
12As UnTracer is partially reliant on AFL’s source-level instrumentation and is hence impossible to use

on binary-only targets in its original form, I implement a fully binary-only version suitable across all 12 of
my evaluation benchmarks.
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Binary Package Source Input File
jasper jasper-1.701.0 4 JPG
mjs mjs-1.20.1 4 JS
nasm nasm-2.10 4 ASM
sam2p sam2p-0.49.3 4 BMP
sfconvertaudiofile-0.2.7 4 WAV
tcpdump tcpdump-4.5.1 4 PCAP
unrtf unrtf-0.20.0 4 RTF
yara yara-3.2.0 4 YAR
lzturbo lzturbo-1.2 7 LZT
pngout Mar 19 2015 7 PNG
rar rarlinux-4.0.0 7 RAR
unrar rarlinux-4.0.0 7 RAR

Table 3.8: My evaluation benchmark corpora.

in the fuzzing literature, consisting of eight binaries from popular open-source applications

varying by input file format (e.g., images, audio, video) and characteristics. Furthermore,

as CGT’s most popular usage to date [41, 53, 69] is in accelerating binary-only fuzzing, I

also incorporate a set of four closed-source binary benchmarks distributed as free software.

All benchmarks are selected from versions with well-known bugs to ensure a self-evident

comparison in my bug-finding evaluation.

For each tracing approach I omit benchmarks that are unsupported or fail: sam2p and

sfconvert for QEMU (due to repeated deadlock); lzturbo, pngout, rar, and unrar for

Dyninst (due to its inability to support closed-source, stripped binaries [91]); jasper, nasm,

sam2p, lzturbo, pngout, rar, and unrar for RetroWrite (due to crashes on startup and/or

being position-dependent/stripped); and lzturbo, pngout, rar, and unrar for AFL-Clang

(due to it only supporting open-source targets).

Infrastructure: I carry out all evaluations on the Microsoft Azure cloud infrastructure.
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Each fuzzing trial is issued its own isolated Ubuntu 16.04 x86-64 virtual machine. Following

Klees et al.’s [75] standard I run 16×24-hour trials per benchmark for each of the coverage-

tracing approaches listed in Table 3.7, amounting to over 2.4 years’ of total compute time

across my entire evaluation. All benchmarks are instrumented on an Ubuntu 16.04 x86-64

desktop with a 6-core 3.50GHz Intel Core i7-7800x CPU and 64GB memory. I repurpose

the same system for all data post-processing.

3.9.2 Q1: Coverage Evaluation

To understand the trade-offs of adapting CGT to finer-grained coverage metrics, I first

evaluate HEXCITE’s code and loop coverage against the block-coverage-only Coverage-guided

Tracer UnTracer; as well as conventional always-on coverage-tracing approaches QEMU,

Dyninst, RetroWrite, and AFL-Clang. I detail my experimental setup and results below.

Code Coverage

I compare the code coverage of all tracing approaches in Table 3.7. I utilize AFL++’s

Link Time Optimization (LTO) instrumentation [41] to build collision-free edge-tracking

versions of each binary; the same technique is applied to my four closed-source benchmarks

(Table 3.8) with the help of the industry-standard binary-to-LLVM lifting tool McSema [31].

I measure each trial’s code coverage by replaying its test cases on the LTO binary using AFL’s

afl-showmap [146] utility and compute the average across all 16 trials. Table 3.9 reports the

average across all benchmark–tracer pairs as well as Mann-Whitney U significance scores

at the p = 0.05 significance level; and Figure 3.16 shows the relative edge coverage over

24-hours for several benchmarks.

Versus UnTracer: As Table 3.9 shows, HEXCITE surpasses UnTracer in total coverage
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across all benchmarks by 1–18% for a mean improvement of 6.2%, with statistically higher

coverage on 10 of 12 benchmarks. The impact of coverage granularity on CGT is signifi-

cant; besides seeing the worst coverage on unrtf (Figure 3.16c) and sfconvert, block-only

coverage UnTracer is bested by AFL-Clang on all 8 open-source benchmarks, demonstrating

that sheer speed is not enough to overcome a sacrifice in code coverage—whereas HEXCITE’s

coverage-preserving CGT averages the highest overall code coverage in my entire evaluation.

Versus binary-only always-on tracing: I see that HEXCITE achieves a mean 23.1%,

18.1%, and 6.3% higher code coverage over binary-only always-on tracers QSYM, Dyninst,

and RetroWrite (respectively), with statistically significant improvements on all but one

binary per comparison (yara for QEMU, and sfconvert for Dyninst and RetroWrite). For

sfconvert in particular, I find that all tracers’ runs are dominated by timeout-inducing

inputs, causing each to see roughly equal execution speeds, and hence, code coverage. While

I expect that timeout-laden binaries are less likely to see benefit from CGT in general,

overall, HEXCITE’s balance of fine-grained coverage and speed easily rank it the highest-

coverage binary-only tracer.

Versus source-level always-on tracing: Across all eight open-source benchmarks HEX-

CITE averages 1.1% higher coverage than AFL’s source-level tracing, AFL-Clang. Despite

having statistically worse coverage on sfconvert (due to its heavy timeouts), HEXCITE’s

coverage is statistically better or identical to AFL-Clang’s on 7/8 benchmarks, confirming

that coverage-preserving CGT brings coverage tracing at least as effective as source-level

tracing—to binary-only fuzzing use cases.
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Figure 3.17: HEXCITE’s mean loop coverage relative to UnTracer. Each box represents a
mutually-covered loop, with values indicating the mean maximum consecutive iterations
(capped at 128 total iterations to match AFL) over all 16 trials. Green and pink shading
indicate a higher relative loop coverage for HEXCITE and UnTracer (respectively), while grey
indicates no change.

Loop Coverage

To determine if coverage-preserving CGT is more effective at covering code loops, I develop a

custom LLVM instrumentation pass to report the maximum consecutive iterations per loop

per trial. Despite my success in lifting my closed-source benchmarks to add edge-tracking
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Binary
HEXCITE/ UnTracer HEXCITE/ Clang

Rel. LoopCov Rel. LoopCov
jasper 1.56 1.14

mjs 3.61 1.06
nasm 2.54 1.85
sam2p 1.05 1.19

sfconvert 1.89 2.56
tcpdump 1.21 1.39
unrtf 3.54 0.73
yara 2.98 0.95

Mean Increase +130% +36%

Table 3.10: HEXCITE’s mean loop coverage (i.e., average maximum consecutive iterations
capped at 128) relative to block-only CGT UnTracer and the source-level conventional tracer
AFL-Clang.

instrumentation (section 3.9.2), none of my binary-to-LLVM lifters (McSema, rev.ng, Ret-

Dec, reopt, llvm-mctoll, or Ghidra-to-LLVM) succeeded in recovering the loop metadata

necessary for my LLVM loop transformation to work; thus my loop analysis is restricted to

my eight open-source benchmarks.

I compare HEXCITE to UnTracer and AFL-Clang as they support all eight open-source bench-

marks (and hence omit QEMU, Dyninst and RetroWrite which only support a few). I com-

pute each loop’s mean from the maximum consecutive iterations for all trials per benchmark–

tracer pair, capping iterations at 128 as AFL omits hit counts beyond this range. Table 3.10

reports HEXCITE’s mean coverage across all loops for each binary relative to UnTracer and

AFL-Clang; and Figure 3.17 shows a heatmap of HEXCITE’s per-loop coverage relative to

UnTracer’s for several benchmarks.

Versus UnTracer: As Table 3.10 shows, HEXCITE’s bucketed unrolling brings 130% higher

loop penetration coverage over UnTracer. I see that UnTracer beats HEXCITE on a minutia
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of loops per benchmark (Figure 3.17)—expectedly—as its inability to track loop progress

inevitably constrains fuzzing to exploring the same few loops trial after trial. I find that

HEXCITE queues over 2× as many test cases, thus showing that its loop-progress-aware cov-

erage leads fuzzing to sacrifice focusing on the same few loops in favor of a higher diversity

of loops per binary.

Versus source-level always-on tracing: I see that, on average, HEXCITE attains a 36%

higher loop coverage than source-level always-on tracing with AFL-Clang. Though this im-

provement is modest, these results show that bucketed unrolling outperforms conventional

coverage tracing’s exhaustive (i.e., on every basic block) hit count tracking—yet only instru-

ments loop headers. While I posit that bucketed unrolling has further optimization potential

(e.g., halving the number of buckets, selective insertion, etc.), I leave exploring this trade-off

space to future work.

Q1: Jump mistargeting and bucketed unrolling enable Coverage-preserving CGT to

achieve the highest overall coverage versus block-only CGT—as well as conventional bi-

nary and source-level tracing.

3.9.3 Q2: Performance Evaluation

To measure the impacts of finer-grained coverage on CGT performance, I perform a piece-

wise evaluation of the fuzzing test case throughput (i.e., mean total test cases processed in

24-hours) of HEXCITE’s edge (via jump mistargeting) and full (jump mistargeting + bucketed

unrolling) coverage versus UnTracer’s block-only coverage, shown in Table 3.11. To ascertain

where coverage-preserving CGT’s performance stands with respect to always-on tracing, I

further evaluate HEXCITE’s best-case throughput alongside the leading binary- and source-

level coverage tracers QEMU, Dyninst, RetroWrite, and AFL-Clang, shown in Figure 3.18.
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Binary Edge / Block Full / Block Best / Block
Rel. Perf MWU Rel. Perf MWU Rel. Perf MWU

jasper 0.52 <0.001 0.54 <0.001 0.54 <0.001
mjs 0.93 0.046 0.65 <0.001 0.93 0.046
nasm 1.46 <0.001 2.61 <0.001 2.61 <0.001
sam2p 0.99 0.433 1.07 0.090 1.07 0.090
sfconvert 1.06 <0.001 1.24 <0.001 1.24 <0.001
tcpdump 0.96 0.150 0.64 <0.001 0.96 0.150
unrtf 1.04 0.332 0.78 <0.001 1.04 0.332
yara 0.97 0.125 0.18 <0.001 0.97 0.125
lzturbo 0.74 0.292 0.82 0.448 0.82 0.448
pngout 1.02 0.002 0.99 0.332 1.02 0.002
rar 1.01 0.492 0.68 <0.001 1.01 0.492
unrar 0.97 0.188 0.90 0.047 0.97 0.188
Mean Rel. Perf. 97% 92% 110%

Table 3.11: Performance trade-offs of different CGT coverage granularities. I compute mean
throughputs for three HEXCITE coverage granularities (edge, full, and the best of both) rel-
ative to UnTracer’s block-only granularity.

Versus UnTracer: As Table 3.11 shows, incorporating edge coverage in CGT incurs a

mean throughput slowdown of 3%, while supporting full coverage (i.e., edges and counts)

sees a slightly higher slowdown of 8%. However, as the experiments in section 3.9.2 and

section 3.9.2 show, coverage-preserving CGT attains the highest edge and loop coverage of

all tracers in my evaluation—offsetting the performance deficits expected of finer-grained

coverage (e.g., from spending more time covering more loops). Furthermore, as column 3

in Table 3.11 shows, HEXCITE’s best-case performance is nearly indistinguishable from

UnTracer’s, with performance statistically improved or identical on all but two benchmarks.

Versus binary-only always-on tracing: As Figure 3.18 shows, HEXCITE averages 11.4×,

24.1×, and 3.6× the throughput of always-on binary-only tracers QEMU, Dyninst, and
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RetroWrite, respectively. Furthermore, I observe that all 23 comparisons to HEXCITE yield

a statistically significant improvement in HEXCITE’s speed over these competing binary-only

tracers.

Versus source-level always-on tracing: HEXCITE averages 2.8× the throughput of AFL’s

main source-level coverage tracer AFL-Clang. In only one case (nasm) does HEXCITE face

lower a throughput of around 19%; however, the remaining seven open-source benchmarks

see HEXCITE attaining a statistically higher throughput. Thus, I conclude that HEXCITE’s

coverage-preserving CGT indeed upholds the speed advantages of CGT—outperforming even

the ordinarily-fast source-level tracing.

Q2: Coverage-preserving CGT trades-off a negligible amount of speed to attain the

highest binary-only code and loop coverage—and still outperforms conventional always-

on binary- and source-level tracing with over 2–24× the test case throughput.

3.9.4 Q3: Bug-finding Evaluation

I evaluate the crash- and bug-finding effectiveness of coverage-preserving CGT across my

12 benchmarks. To triage raw crashes into bugs, I apply the popular “fuzzy stack hashing”

methodology, trimming stack traces to their top-6 entries, and hash each with their corre-

sponding fault address and reported error. I make use of the binary-only AddressSanitizer

implementation QASan [40] to extract crash stack traces and errors.

Unique Bugs and Crashes

Table 3.12 shows the HEXCITE’s mean crash- and bug-finding relative to block-coverage-only

CGT UnTracer; and always-on fuzzing coverage tracers QEMU, Dyninst, RetroWrite, and
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Figure 3.19: HEXCITE’s mean unique bugs over time relative to all supported tracing ap-
proaches per benchmark.

AFL-Clang. Figure 3.19 shows the mean unique crashes over time for several benchmarks.

I omit lzturbo and rar as no fuzzing run found crashes in them.

Versus UnTracer: As Table 3.12 shows, HEXCITE exposes a mean 12% more bugs than

UnTracer. In conjunction with the plots shown in Figure 3.19, I see that coverage-preserving

CGT’s small sacrifice in speed is completely offset by the much higher number of bugs and

crashes found—attaining effectiveness statistically better than or identical to UnTracer on
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all 12 benchmarks.

Versus binary-only always-on tracing: As expected, HEXCITE’s coverage-preserving

CGT attains a mean improvement of 521%, 1193%, and 56% in fuzzing bug-finding over

always-on binary-only tracers QEMU, Dyninst, and RetroWrite (respectively). Just as in

my performance experiments (subsection 3.9.3), all 21 comparisons yield a statistically sig-

nificant improvement for HEXCITE.

Versus source-level always-on tracing: Across all eight open-source benchmarks, HEX-

CITE achieves a 46% higher bug-finding effectiveness than source-level tracer AFL-Clang,

with statistically improved and statistically identical bug-finding on 6/8 and 2/8 binaries (re-

spectively). Overall, beating even source-level tracers highlights HEXCITE’s value at binary-

only coverage.

Bug Diversity

Following additional triage to map discovered crashes to previously-reported vulnerabilities

and bugs, I conduct several case studies to further examine HEXCITE’s practicality in real-

world bug-finding versus existing tracers.

98 28147

(a) HEXCITE vs. RetroWrite

141 48197

(b) HEXCITE vs. AFL-Clang

Figure 3.20: HEXCITE’s total unique bugs found versus the fastest conventional always-on
tracers RetroWrite (binary-only) and AFL-Clang (source-level).

To determine whether coverage-preserving CGT effectively reveals many bugs, or is merely

constrained to the same few time after time, I compare the total bugs found by HEXCITE
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to the best-performing always-on coverage-tracers, RetroWrite (binary-only) and AFL-Clang

(source-level). As Figure 3.20 shows, despite some overlap, HEXCITE reveals 1.4× the unique

bugs as RetroWrite and AFL-Clang—with a higher number of bugs that only HEXCITE suc-

cessfully reveals—confirming that coverage-preserving CGT is practical for real-world bug-

finding.

Bug Time-to-Exposure

I further compare HEXCITE’s mean time-to-exposure for 16 previously-reported bugs versus

block-only CGT UnTracer; and always-on coverage tracers QEMU, Dyninst, RetroWrite,

and AFL-Clang. As Table 3.13 shows, HEXCITE accelerates bug discovery by 52.4%, 48.9%,

41.2%, 43.5%, and 32.3% over UnTracer, QEMU, Dyninst, RetroWrite, and AFL-Clang

(respectively). While HEXCITE is not the fastest on every bug, its overall improvement

over competing tracers further substantiates the improved fuzzing effectiveness of coverage-

preserving CGT.

Q3: Coverage-preserving CGT’s balance of speed and coverage improves fuzzing effec-

tiveness, revealing more bugs than alternative tracing approaches—in less time.

3.10 Discussion

Below I discuss several limitations of coverage-preserving CGT and my prototype implemen-

tation, HEXCITE.
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3.10.1 Indirect Critical Edges

While resolving direct critical edges is straightforward through jump mistargeting or edge

splitting (subsection 3.7.1), indirect critical edges (i.e., indirect jumps/calls/returns) remain a

universal problem even for source-level solutions like LLVM’s SanitizerCoverage [123]. Below

I discuss several emerging and/or promising techniques for resolving indirect critical edges,

and their trade-offs with respect to supporting a binary-level coverage-preserving CGT.

Block Header Splitting: LLVM’s SanitizerCoverage supports resolving indirect critical

edges whose end blocks have one or more incoming direct edges. For example, given a CFG

with indirect critical edge # »ib (with i having outgoing indirect edges to some other blocks x

and y) and direct edge # »ab, SanitizerCoverage first cuts block b’s header from its body into

two copies, b0i and b0a. Second, as the indirect transfer’s destination is resolved dynamically

and thus cannot be statically moved, b0i’s location must be pinned to that of the original

block b. Finally, the twin header blocks (b0i and b0a) are appended with a direct jump to b’s

body, b1—effectively splitting the original indirect critical edge # »ib with edges #     »ib0i and #       »b0ib1;

and direct edge # »ab with #     »ab0a and #        »b0ab1. However, the inability to statically alter indirect

transfer destinations makes this approach only applicable for indirect critical edges that are

the sole indirect edge to their end block; i.e., should there be multiple indirect critical edges

( #   »i1b and #   »i2b), at most one can be split.

Indirect Branch Promotion: Originally designed as a mitigation for branch target pre-

diction attacks, indirect branch promotion aims to “rewrite” indirect transfers as direct: at

runtime, each dynamically-resolved indirect branch target is compared to several statically-

encoded candidates, with a conditional jump to each should the comparison match (e.g.,

if(%eax == foo): jump foo). While promotion is applicable to nearly all indirect branches

(and hence indirect critical edges), branch target prediction accuracy is never guaranteed.
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Existing approaches attempt to maximize precision by profiling indirect branches in advance

for their “most probable” targets, however, fuzzing may expose (and prioritize) new targets

previously considered unlikely by profiling.

Hybrid Instrumentation: A third possibility for indirect critical edges is to default back

to AFL-style hashing-based edge coverage (section 2.2). While it is impossible to identify

each indirect edge’s targets accurately, a conservative approach is to instead instrument the

set of all potential indirect branch targets, as their heuristics are generally well-known (e.g.,

function entrypoints for indirect calls, and post-call blocks for returns). I can thus imagine

future target-tailored CGT approaches balancing fast speed for common-case critical edges

with more precise handling (e.g., header splitting, promotion, and hybrid instrumentation)

of infrequent ones.

3.10.2 Trade-offs of Hit Count Coverage

Hit counts measure fuzzing exploration progress in loops and cycles, but as with any coverage

metric, their implementation must carefully balance precision and speed to support effective

bug-finding. Two considerations central to hit count coverage implementations are (1) the

size and number of bucket ranges; and (2) the frequency at which hit counts are tracked. I

discuss both of these below.

Bucket Granularity: Our current implementation of bucketed unrolling (subsection 3.8.3)

mimics the hit count tracking of conventional fuzzers by injecting conditional checks against

eight bucket ranges (0–1, 2, 3, 4–7, 8–15, 16–31, 32–127, 128+). However, these eight bucket

ranges are merely an artifact of AFL’s original implementation (each hashed edge is mapped

to an 8-bit index in its coverage bitmap). Adding more buckets makes it possible to track

more subtle changes in loop iteration counts, while using fewer buckets trades-off this level of
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introspection for higher fuzzing throughput. While it is unclear which bucket ranges achieve

the best balance of speed and coverage with respect to bug-finding, I expect that future

research will address these unanswered questions and more.

Frequency of Tracking: How often hit counts are tracked further influences fuzzing ex-

ploration and bug-finding. Conventional exhaustive (per-edge) hit counts shed light on fre-

quencies of cycle subpaths (e.g., how many times a loop break is taken), but risk saturating

a fuzzer’s search space with redundant or noisy paths. Bucketed unrolling instead trades-off

coverage exhaustiveness for speed by restricting hit count tracking to only a subset of the

program state (e.g., loop iteration counters). While my analysis of the bugs exclusively found

by exhaustive hit counts (Figure 3.20b) reveals that none are outside the reach of HEXCITE,

I expect that future work will explore adapting selective and synergistic hit count schemes

to better cover complex loops, cycles, and compiler optimizations at high speed.

3.10.3 Improving Performance

The fuzzing-oriented binary transformation platform currently utilized in HEXCITE, ZAFL [91],

adopts a code layout algorithm that rewrites all direct jumps to have 32-bit PC-relative

signed displacements. While this is well-suited to my implementation of zero-address jump

mistargeting (subsection 3.8.2)—enabling virtually every conditional jump in the program’s

address space to be mistargeted to 0x00—32-bit displacements accumulate more runtime

overhead over 8–16-bit displacements. As ZAFL has experimental code layouts that instead

prioritize smaller displacements, I thus envision potential for faster “hybrid” mistargeting

schemes that coalesce both zero-address and embedded interrupt styles.



3.11. RELATED WORK 89

3.10.4 Supporting Other Software & Platforms

Our current coverage-preserving CGT prototype, HEXCITE, supports 64-bit Linux C and

C++ binaries. Extending support to other software characteristics (e.g., 32-bit) or platforms

(e.g., Windows) requires retooling of its underlying static binary rewriting engine. However,

as this component is orthogonal to the fundamental principles of coverage-preserving CGT,

I expect that HEXCITE will capitalize on future engineering improvements in static rewriting

to bring accelerated fuzzing to the broader software ecosystem.

3.11 Related Work

I discuss recent efforts to improve binary-only fuzzing performance that are orthogonal to

coverage-preserving CGT: (1) faster instrumentation, (2) less instrumentation, and (3) faster

execution.

3.11.1 Faster Instrumentation

As binary fuzzing effectiveness depends heavily on maintaining fast coverage tracking, a

growing body of research is targeting instrumentation-side optimizations. Efforts to improve

dynamic translation-based instrumentation (e.g., AFL-QEMU [146], DrAFL [115], Unicor-

nAFL [130]) generally focus on simplifying or expanding the caching of translated code [11];

while those using static rewriting (e.g., ZAFL [91], Dyninst [96], RetroWrite [32]) tackle vari-

ous challenges related to generated code performance. Though my coverage-preserving CGT

prototype, HEXCITE, currently leverages the ZAFL rewriter, I believe that future advances

in binary instrumentation will enable it to achieve performance even closer to native speed.
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3.11.2 Less Instrumentation

Another way to reduce the footprint of coverage tracking is to eliminate needless instru-

mentation from the program under test. While most other control-flow-centric approaches

only exist in compiler instrumentation-based implementation (e.g., dominator trees [2], IN-

STRIM [65], CollAFL [43]), their principles are well-suited to binary-only fuzzing. A recent

fork of AFL-Dyninst [61] omits instrumentation from blocks preceded by unconditional direct

transfer, as their coverage is directly implied by their ancestor’s. In addition to accelerating

execution of HEXCITE’s tracer binary, I see the potential for such control-flow-centric anal-

yses to help determine how HEXCITE’s control-flow-altering transformations (e.g., bucketed

unrolling) should optimally be applied.

3.11.3 Faster Execution

Besides instrumentation, execution is itself a bottleneck to fuzzing, as faster execution en-

ables more test cases to be run on the target program in less time. Most modern binary-only

fuzzing efforts have abandoned slow process creation-based execution for faster snapshot-

ting, leveraging cheap copy-on-write cloning to rapidly initiate target execution from a pre-

initialized state (e.g., AFL’s forkserver [146]). Xu et al. [139] achieve even faster snapshotting

through fuzzing-optimized Linux kernel extensions. The recent technique of persistent/in-

memory execution offers higher speed by restricting execution to only a pre-specified target

program code region (essentially interposing a loop), and is gaining support among popular

binary-only fuzzing toolchains (e.g., WinAFL [51], AFL-QEMU, UnicornAFL). Many efforts

are also exploring the benefits of amortizing fuzzing execution speed through parallelization;

off-the-shelf binary-only fuzzers like AFL [146] and honggFuzz [119] support parallelization

out-of-the-box, and recent work by Falk [38] achieves even faster speed by leveraging vector-
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ized instruction sets. As execution and coverage tracking work hand-in-hand during fuzzing,

I view such accelerated execution mechanisms as complementary to HEXCITE’s accelerated

coverage tracking.

3.12 Conclusion

Coverage-preserving Coverage-guided Tracing extends the principles behind CGT’s performance-

maximizing, waste-eliminating tracing strategy to the finer-gained coverage metrics it is not

naturally supportive of: edge coverage and hit counts. I introduce program transformations

that enhance CGT’s introspection capabilities while upholding its minimally-invasive nature;

and show how these techniques improve binary-only fuzzing effectiveness over conventional

CGT, while keeping an orders-of-magnitude performance advantage over the leading binary-

only coverage tracers.

My results reveal it is finally possible for today’s state-of-the-art coverage-guided fuzzers

to embrace the acceleration of CGT—without sacrificing coverage. I envision a new era in

software fuzzing, where synergistic and target-tailored approaches will maximize common-

case performance with infrequent-case precision.



Chapter 4

Compiler-quality Code

Transformation for Closed-source

Fuzzing

4.1 Introduction

Software vulnerabilities represent a persistent threat to cybersecurity. Identifying these bugs

in both modern and legacy software is a tedious task; manual analysis is unrealistic, and

heavyweight program analysis techniques like symbolic execution are unscalable due to the

sheer size of real-world applications. Instead, developers and bug-hunters alike have largely

adopted a software testing strategy known as fuzzing.

Fuzzing consists of mutationally generating massive amounts of test cases and observing

their effects on the target program, with the end goal of identifying those triggering bugs.

The most successful of these approaches is coverage-guided grey-box fuzzing, which adds

a feedback loop to keep and mutate only the few test cases reaching new code coverage;

the intuition being that exhaustively exploring target code reveals more bugs. Coverage is

collected via instrumentation inserted in the target program’s basic blocks. Widely successful

coverage-guided grey-box fuzzers include AFL [146], libFuzzer [107], and honggFuzz [119].

92
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Most modern fuzzers require access to the target’s source code, embracing compiler instru-

mentation’s low overhead for high fuzzing throughput [107, 119, 146] and increased crash

finding. State-of-the-art fuzzers further use compilers to apply fuzzing-enhancing program

transformation that improves target speed [43, 65], makes code easier-to-penetrate [1], or

tracks interesting behavior [22]. Yet, compiler instrumentation is impossible on closed-source

targets (e.g., proprietary or commercial software). In such instances fuzzers are restricted

to binary instrumentation (e.g., Dyninst [96], PIN [81], and QEMU [9]). But while binary

instrumentation succeeds in many non-fuzzing domains (e.g., program analysis, emulation,

and profiling), available options for binary-only fuzzing are simply unable to uphold both

the speed and transformation of their compiler counterparts—limiting fuzzing effectiveness.

Despite advances in general-purpose binary instrumentation [10, 56, 64, 134, 135], it remains

an open question whether compiler-quality instrumentation capabilities and performance are

within reach for binary-only fuzzing.

To address this challenge I scrutinize the field of binary instrumentation, identifying key

characteristics for achieving performant and general-purpose binary-only fuzzing instrumen-

tation. We apply this standard in designing ZAFL: an instrumentation platform bringing

compiler-quality capabilities and speed to x86-64 binary-only fuzzing. I demonstrate how

ZAFL facilitates powerful fuzzing enhancements with a suite of five transformations, ported

from compiler-based fuzzing contexts. I show how ZAFL’s capabilities improve binary-only

fuzzing bug-finding: among evaluations on the LAVA-M corpus and eight real-world bina-

ries, ZAFL finds an average of 26–96% more unique crashes than the static rewriter AFL-

Dyninst; and 37–131% more than the dynamic translator AFL-QEMU. I further show that

ZAFL achieves compiler-quality overhead of 27% and increases fuzzing throughput by 48–

78% and 131–203% over AFL-Dyninst and AFL-QEMU, respectively. Lastly, I show that

ZAFL scales to real-world software—successfully instrumenting 56 binaries of varying type
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(33 open- and 23 closed-source), size (10K–100MB), complexity (100–1,000,000 basic

blocks), and platform (30 Linux and 12 Windows).

In summary, this work contributes the following:

• I examine the challenges of achieving compiler-quality instrumentation in binary-only

fuzzing, developing a criteria for success, and highlighting where popular binary-only

instrumenters fit with respect to my criteria.

• We apply this criteria in designing ZAFL: a platform for state-of-the-art compiler-

quality instrumentation—and speed—in binary-only fuzzing. ZAFL’s architectural fo-

cus on fine-grained instrumentation facilitates complex fuzzing-enhancing transforma-

tions in a performant manner.

• We show that it is possible to achieve fuzzing-enhancing program transformation in a

performant manner for binary-only contexts by implementing five of such transforma-

tions derived from existing compiler-based implementations in ZAFL, and evaluating

runtime overhead.

• I demonstrate how ZAFL improves fuzzing effectiveness; on average ZAFL’s performant,

fuzzing-enhancing program transformations enable fuzzers to find more unique crashes

than the leading binary-only fuzzing instrumenters AFL-Dyninst and AFL-QEMU

across both LAVA-M and real-world benchmarks.

• I show that ZAFL supports real-world binaries of varying characteristics, size, complex-

ity, and platform—even those binaries not supported by other instrumenters.

• We open-source ZAFL and all benchmark corpora at:

https://git.zephyr-software.com/opensrc/zafl.



4.2. COMPILER-BASED FUZZING ENHANCEMENTS 95

4.2 Compiler-based Fuzzing Enhancements

Coverage-guided fuzzing spans two distinct domains: compiler-based and binary-only, with

both using program instrumentation to track test case code coverage. Much of fuzzing’s

success is due to the high throughput made possible by fast compiler instrumentation [123,

146]. Though advanced fuzzers introduce more heavyweight analyses [7, 22, 117, 143], the

core of these approaches remains the standard coverage-guided fuzzing loop (Figure 2.2)—

amounting to over 90% of their execution time [89]; recent feedback enhancements (e.g.,

context sensitivity) only increase the proportion of time spent tracing execution. Thus, my

focus is performant fuzzing-enhancing transformations in the absence of source code.

Focus Category Effect on Fuzzing

Performance Instrumentation Pruning Overhead reduction from fewer
blocks instrumented

Instrumentation Downgrading Overhead reduction from lighter-
weight instrumentation

Feedback Sub-instruction Profiling Incremental coverage to guide
code penetration

Extra-coverage Behavior Ability to consider finer-grained
execution behavior

Table 4.1: Popular compiler-based fuzzing-enhancing program transformations, listed by
category and effect.

State-of-the-art fuzzers leverage compiler instrumentation to add transformations that im-

prove fuzzing performance and feedback (e.g., AFL++ [41], Angora [22], CollAFL [43],

honggFuzz [119], INSTRIM [65], libFuzzer [107]). Performance-enhancing transformation

helps alleviate the runtime cost of coverage tracing and other feedback sources. Feedback-

enhancing transformations reveal finer-grained program progress, beyond traditional code

coverage metrics. I broadly examine popular fuzzers and identify four categories of fuzzing-

enhancing transformation that target the core coverage-guided loop (Table 4.1): (1) instru-
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mentation pruning, (2) instrumentation downgrading, (3) sub-instruction profiling, and (4)

extra-coverage behavior tracking. Below I detail each transformation.

4.2.1 Instrumentation Pruning

Graph reducibility techniques [57, 121] are used in fuzzing to elide instrumenting some target

basic blocks, thus lowering overall runtime overhead. AFL’s [146] compiler instrumentation

permits a “ratio”: 100 instruments all blocks; 0 only function entries; and values in between

form a probability to arbitrarily skip blocks. Clearly, culling random blocks risks coverage

blind-spots. More rigorous CFG-aware analyses [41, 65] prune blocks implicitly covered by

others: formally, for N blocks and M unique paths over N , it is possible to select a subset

N ′ ∈ N such that the M ′ unique paths over N ′ equals M . INSTRIM [65] only instruments

blocks targeted by backward edges and tracks loops either by entry or pre-entry blocks (the

latter forgoing loop iteration tracking).

4.2.2 Instrumentation Downgrading

The majority of today’s fuzzers track coverage in the form of edges (i.e., branches between

basic blocks). Edges are typically recorded as hashes of their start and end blocks (computed

in the body of the end block’s instrumentation), as popularized by the fuzzer AFL [146].

Edge hashing requires several instructions (two index fetches, a hash, array update, and

an XOR); but given that blocks themselves are small, maintaining speed requires inserting

as few instructions as necessary. CollAFL [43]’s compiler instrumentation optimizes single-

predecessor blocks by downgrading them to fewer-instruction block coverage (i.e., cov(A→

B) ≡ cov(B)).
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4.2.3 Sub-instruction Profiling

Fuzzers struggle to penetrate code guarded by complex predicates like “magic bytes” [104],

nested checksums [7], and switch cases [1]. Most fuzzers track edge/block coverage and

hence are oblivious to “incremental” predicate progress. Recent compiler-based efforts apply

sub-instruction profiling—decomposing multi-byte conditionals into single-byte comparisons

(e.g., CmpCov [70], honggFuzz [119], laf-Intel [1]). Such splitting of roadblocks into smaller,

simpler problems facilitates greater fuzzing code coverage.

4.2.4 Extra-coverage Behavior Tracking

An area of current research in fuzzing is the inclusion of execution behavior beyond tradi-

tional code coverage. Although I foresee future work considering metrics such as register

or memory usage, the existing body of work on extra-coverage behavior tracking focuses

on context sensitivity. Context-sensitive coverage tracks edges along with their preceding

calling context. For example, given two paths over the same set of edges, A→ B → C and

B → A→ C, context-insensitive coverage misses the second path as it offers no new edges;

however context-sensitive coverage reveals two distinct calls: B → C and A → C. Several

LLVM implementations exist for both function- and callsite-level context sensitivity [22, 41].

4.3 Binary-only Fuzzing: the Bad & the Ugly

Program transformation has become ubiquitous in compiler-based fuzzers (e.g., AFL++ [41],

CollAFL [43], laf-Intel [1]), and for good reason: it makes fuzzing significantly more powerful.

Despite these advantages there is no platform that adapts such transformation to binaries

in an effective manner—severely impeding efforts to fuzz closed-source software.
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This section examines existing binary instrumenters and their limitations that prevent them

from attaining effective binary-only fuzzing instrumentation. I follow this exploration with

an identification of the key instrumenter design attributes necessary to support compiler-

quality fuzzing-enhancing program transformation and speed.

4.3.1 Limitations of Existing Platforms

Coverage-guided fuzzers trace test case code coverage via fast compiler instrumentation;

and state-of-the-art efforts further leverage compilers to apply fuzzing-enhancing program

transformation. In binary-only fuzzing, code coverage is traced by one of three mechanisms:

(1) hardware-assisted tracing, (2) dynamic binary translation, or (3) static binary rewriting.

Below I briefly detail each, and weigh their implications with respect to supporting the

extension of compiler-quality transformation to binary-only fuzzing.

• Hardware-assisted Tracing. Newer processors are offering mechanisms that facil-

itate binary code coverage (e.g., Intel PT [66]). Fuzzing implementations are bur-

dened by the need for costly trace post-processing, which reportedly incurs overheads

as high as 50% over compilers [7, 24]; but despite some optimistic performance im-

provements [51], hardware-assisted tracing currently remains incapable of modifying

programs—and hence fails to support fuzzing-enhancing program transformation.

• Dynamic Binary Translators. Dynamic translators apply coverage-tracing on-the-

fly as the target is executing (e.g., DynamoRIO [60], PIN [81], and QEMU [9]). Trans-

lators generally support many architectures and binary characteristics; and offer deep

introspection that simplifies analysis and transformation [41, 146]. However, existing

dynamic translators attain the worst-known fuzzing performance: recent work shows

AFL-QEMU’s average overhead is well over 600% [89], and AFL-DynamoRIO [60]
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and AFL-PIN [62] report overheads of up to 10x and 100x higher, respectively.

• Static Binary Rewriters. Static rewriting improves performance by modifying

binaries prior to runtime (e.g., Dyninst [61]). Unfortunately, static rewriting op-

tions for binary-only fuzzing are limited. AFL-Dyninst is the most popular, but

sees prohibitively-high fuzzing overheads of over 500% [89] and is restricted to Linux

programs. RetroWrite suggests reassembleable-assembly is more performant and vi-

able, but it relies on AFL’s assembly-time instrumentation which is both unsupportive

of transformation and reportedly 10–100% slower than compile-time instrumenta-

tion [146]; and moreover, it does not overcome the generalizability challenges of prior

attempts at reassembleable-assembly (e.g., Uroboros [135], Ramblr [134]), and is hence

limited to position-independent Linux C programs. Neither scale well to stripped bi-

naries.

As summarized in Table 4.2, the prevailing binary-only fuzzing coverage-tracing approaches

are limited in achieving compiler-quality fuzzing instrumentation. Hardware-assisted tracing

(Intel PT) is incompatible with program instrumentation/transformation and adds post-

processing overhead. Dynamic translators (DynamoRIO, PIN, and QEMU) all face orders-

of-magnitude worse overheads. Static rewriters (Dyninst and RetroWrite) fail to uphold

both performance and transformation and are unsupportive of Windows software (the most

popular being PE32+), common binary characteristics (e.g., position-dependent code), or

the simplest obfuscation techniques (i.e., stripped binaries).

These limitations make fuzzing-enhancing transformations scarce in binary-only fuzzing. To

my knowledge the only two such implementations exist atop of AFL-Dyninst (instruction

pruning [61]) and AFL-PIN (context sensitivity [143])—both suffering from the central flaw

that any of their potential benefits are outweighed by the steep overheads of their respective
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binary instrumenters (over 500% and 10,000%, respectively [62, 89]).

Impetus: Current binary instrumenters are fundamentally ill-equipped to support compiler-

quality fuzzing instrumentation. I envision a world where binary-only and compiler-based

fuzzing are not segregated by capabilities; thus we design a binary-only fuzzing instrumentation

platform capable of performant compiler-quality transformation.

4.3.2 Fundamental Design Considerations

My analysis of how compilers support performant program transformations reveals four

critical design decisions: (1) rewriting versus translation, (2) inlining versus tram-

polining, (3) register allocation, and (4) real-world scalability. Below I discuss the

significance of each, and build a criteria of the instrumenter characteristics best-suited to

compiler-quality instrumentation.

• Consideration 1: Rewriting versus Translation. Dynamic translation processes

a target binary’s source instruction stream as it is executed, generally by means of

emulation [9]. Unfortunately, this requires heavy-lifting to interpret target instruc-

tions to the host architecture; and incurs significant runtime overhead, as evidenced

by the poor performance of AFL-DynamoRIO/PIN/QEMU [60, 62, 146]. While trans-

lation does facilitate transformations like sub-instruction profiling [41], static binary

rewriting is a more viable approach for fuzzing due to its significantly lower overhead.

Like compilers, static binary rewriting performs all analyses (e.g., control-flow recov-

ery, code/data disambiguation, instrumentation) prior to target execution, avoiding

the costly runtime effort of dynamic translation. Thus, static rewriting is the most

compatible with achieving compiler-quality speed in binary-only fuzzing.
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Criterion 1: Instrumentation added via static rewriting.

• Consideration 2: Inlining versus Trampolining. A second concern is how in-

strumentation code (e.g., coverage-tracing) is invoked. Instrumenters generally adopt

one of two techniques: trampolining or inlining. Trampolining refers to invocation

via jumping to a separate payload function containing the instrumentation. This re-

quires two transfers: one to the payload, and another back to the callee. However, the

total instructions needed to accommodate this redirection is significant relative to a

basic block’s size; and their overhead accumulation quickly becomes problematic for

fuzzing. Modern compilers inline, injecting instrumentation directly within target

basic blocks. Inlining offers the least-invasive invocation as instrumentation is launched

via contiguous instruction execution rather than through redirection. I thus believe

that inlining is essential to minimize fuzzing instrumentation’s runtime overhead and

achieve compiler-quality speed in binary-only fuzzing.

Criterion 2: Instrumentation is invoked via inlining.

• Consideration 3: Register Allocation. Memory access is a persistent bottleneck

to performance. On architectures with a finite set of CPU registers (e.g., x86), gener-

ating fast code necessitates meticulous register allocation to avoid clobbering occupied

registers. Condition code registers (e.g., x86’s eflags) are particularly critical as it

is common to modify them; but saving/restoring them to their original state requires

pushing to the stack and is thus ∼10x slower than for other registers. Compilers

track register liveness to avoid saving/restoring dead (untouched) condition code

registers as much as possible. Smart register allocation is thus imperative to attaining

compiler-quality binary instrumentation speed.
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Criterion 3: Must facilitate register liveness tracking.

• Consideration 4: Real-world Scalability. Modern compilers support a variety of

compiled languages, binary characteristics, and platforms. While dynamic translators

(e.g., DynamoRIO, QEMU, PIN) are comparably flexible because of their reliance on

emulation techniques, existing static rewriters have proven far less reliable: some re-

quire binaries be written in C despite the fact that developers are increasingly turning

to C++ [32, 134, 135]. others apply to only position-independent (i.e., relocatable)

code and neglect the bulk of software that remains position-dependent [32]; many

presume access to debugging symbols (i.e., non-stripped) but this seldom holds true

when fuzzing proprietary software [61]; and most are only Linux-compatible, leav-

ing some of the world’s most popular commodity software (Windows 64-bit PE32+)

unsupported [32, 61, 134, 135]. A compiler-quality binary-only fuzzing instrumenter

must therefore support these garden-variety closed-source binary characteristics and

formats.

Criterion 4: Support common binary formats and platforms.

While binary instrumenters have properties useful to many non-fuzzing domains (e.g., anal-

ysis, emulation, and profiling), attaining compiler-quality fuzzing instrumentation hinges on

satisfying four core design criteria: (C1) static rewriting, (C2) inlining, (C3) register

liveness, and (C4) broad binary support. Hardware-assisted tracing cannot modify pro-

grams and hence violates criteria (C1)–(C3). DynamoRIO, PIN, and QEMU adopt dynamic

translation (C1) and thus incur orders-of-magnitude performance penalties—before applying

any feedback-enhancing transformation. Dyninst and RetroWrite embrace static rewriting

but both rely on costlier trampoline-based invocation (C2) and fail to support commodity

binary formats and characteristics (C4); and moreover, Dyninst’s liveness-aware instrumen-
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tation failed on my evaluation benchmarks (C3). Thus, compiler-quality instrumentation in

a binary-only context demands a new approach that satisfies all four criteria.

4.4 The ZAFL Platform

Fuzzing effectiveness severely declines on closed-source targets. Recent efforts capitalize on

compiler instrumentation to apply state-of-the-art fuzzing-enhancing program transforma-

tions; however, current binary-only fuzzing instrumenters are ineffective at this. As practi-

tioners are often restricted to binary-only fuzzing for proprietary or commercial software, any

hope of advancing binary-only fuzzing beseeches efforts to bridge the gap between source-

available and binary-only fuzzing instrumentation.

To combat this disparity we introduce ZAFL: a compiler-quality instrumenter for x86-64

binary fuzzing. ZAFL extends the rich capabilities of compiler-style instrumentation—with

compiler-level throughput—to closed-source fuzzing targets of any size and complexity. In-

spired by recent compiler-based fuzzing advancements (section 4.2), ZAFL streamlines instru-

mentation through four extensible phases, facilitating intuitive implementation and layering

of state-of-the-art fuzzing-enhancing program transformations. Below I detail ZAFL’s internal

architecture and guiding design principles.

4.4.1 Design Overview

As shown in Figure 4.1, ZAFL consists of two primary components (1) a static rewriting engine

and (2) ZAX: our four IR-modifying phases for integrating compiler-quality instrumentation

and fuzzing enhancements. Given a target binary, ZAFL operates as follows:

1. IR Extraction. From our (or any compatible) binary rewriter, ZAFL requests an
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intermediate representation (IR) of the target binary.

2. ZAX. The resulting IR is then passed to ZAX’s four transformation and instrumentation

phases:

P1: Optimization,

P2: Analysis,

P3: Point Selection, and

P4: Application.

3. Binary Reconstitution. After ZAX applies program transformations and instrumen-

tation at IR-level, ZAFL transfers the modified IR back to the rewriting engine which

generates the output binary for fuzzing.

Static Rewriting Engine

ZAFL interacts with the binary rewriter of choice to first translate the target binary to

an intermediate representation (IR) for subsequent processing in ZAX; and secondly, to

reconstitute an output binary from the ZAX-modified IR.

I initially considered re-purposing LLVM IR-based rewriter McSema [31] due to its maturity

and popularity in the static rewriting community, but ultimately ruled it out as both the

literature [37] and my own preliminary evaluation reveal that it is a poor fit for fuzzing due to

its high baseline overhead. Instead, for our prototype, we extend the GCC IR-inspired static

rewriter Zipr [56, 64] as it meets the same criteria that McSema does (subsection 4.3.2), but

has better baseline performance.
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4.4.2 The ZAX Transformation Architecture

Once target IR construction is finished, ZAFL initiates ZAX: our fuzzing instrumentation

toolchain. Below I describe the intricacies of ZAX’s four core phases: (1) Optimization,

(2) Analysis, (3) Point Selection, and (4) Application.

Optimization

ZAX’s first phase enables transformations that reduce the mutation effort required to fuzz-

through deeper code regions (e.g., sub-instruction profiling). Given a pre-specified opti-

mization criteria (e.g., “decompose multi-byte conditional constraints”), it scans the target

binary’s control-flow graph to identify sections of interest; and for every match, it applies

the relevant IR-level transformations. As such transformations alter control-flow, we apply

them before further analyses that depend on the finalized control-flow graph.

Analysis

With the optimized control-flow graph in hand, ZAX’s second phase computes meta-characteristics

(e.g., predecessor-successor, data-flow, and dominance relationships). We model this after

existing compiler mechanisms [3, 29, 86], and to facilitate integration of other desirable anal-

yses appearing in the literature [2, 127]. The extent of possible analyses depends on the

rewriter’s IR; for example, low-level IR’s modeled after GCC’s RTL [45] permit intuitive

analysis to infer register liveness; and other IRs may support equivalent analyses which

could be used instead, but if not, such algorithms are well-known [86] and could be added

to support ZAX.
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Point Selection

ZAX’s third phase aims to identify where in the program to instrument. Given the binary’s

full control-flow graph and meta-characteristic data (e.g., liveness, dominator trees), this

phase enumerates all candidate basic blocks and culls those deemed unnecessary for future

instrumentation. ZAX’s CFG-aware instrumentation pruning capabilities facilitate easy im-

plementation of compiler-based techniques described in section 4.2.

Application

Finally, ZAX’s applies the desired instrumentation configuration (e.g., block or edge coverage

tracking). A challenge is identifying how to instrument each location; ensuring correct

execution requires precise handling of registers around instrumentation code—necessitating

careful consideration of liveness. As a block’s instrumentation can theoretically be positioned

anywhere within it, liveness analysis also facilitates “best-fit” location ranking by quantity of

free registers; and since restoring condition code registers (e.g., x86’s eflags) is often costlier

than others, we further prioritize locations where these are free. Thus, ZAX’s efficiency-

maximizing instrumentation insertion is comparable to that of modern compilers [45, 76].

Though our current prototype (section 4.5) targets AFL-style fuzzers, support for others is

possible through new instrumentation configurations.

4.5 Extending Compiler-quality Transforms to Binary-

only Fuzzing

I review successful compiler-based fuzzing approaches and identify impactful fuzzing perfor-

mance and feedback-enhancing program transformations. As these transformations provably
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improve compiler-based fuzzers they thus are desirable for closed-source targets; however,

they are largely neglected due to current binary instrumenters’ limitations.

Performance Transformation
Single Successor-based Pruning [41]

Dominator-based Pruning [65]
Instrumentation Downgrading [43]

Feedback Transformation
Sub-instruction Profiling [1, 41, 70, 119]

Context-sensitive Coverage [22, 41]

Table 4.3: A catalog of ZAFL-implemented compiler-quality fuzzing-enhancing program
transformations and their compiler-based origins.

To show the power of ZAFL in applying and layering transformations ad-hoc, we extend three

performance- and two feedback-enhancing compiler-based transformations to binary-only

fuzzing, shown in Table 4.3. Below details our implementations of these five transformations

using ZAFL.

4.5.1 Performance-enhancing Transformations

We leverage ZAFL’s ZAX architecture in deploying three fuzzing performance-enhancing pro-

gram transformations: single successor and dominator-based instrumentation pruning,

and edge instrumentation downgrading. I describe our implementation of each below.

Single Successor Instrumentation Pruning

Recent fuzzing works leverage flow graph reducibility techniques [57, 121] to cut down in-

strumentation overhead [65]. We borrow AFL-Dyninst’s omitting of basic blocks which are

not their function’s entry, but are the single successor to their parent block [61]. Intuitively,
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these are guaranteed to be covered as they are preceded by unconditional transfer and

thus, their instrumentation is redundant. Our implementation applies a meta-characteristic

predecessor-successor analysis in ZAX’s Analysis phase; and a location selector during Point

Selection to omit basic blocks accordingly.

Dominator Tree Instrumentation Pruning

Tikir and Hollingsworth [127] expand on single predecessor/successor pruning by evaluating

control-flow dominator relationships. A node A “dominates” B if and only if every possible

path to B contains A [2]. Dominator-aware instrumentation audits the control-flow graph’s

corresponding dominator tree to consider nodes that are a dominator tree leaf, or precede

another node in control-flow but do not dominate it.

In line with our other CFG-aware pruning, we implement a dominator tree meta-characteristic

in ZAX’s Analysis phase; and a corresponding selector within Point Selection. My analy-

sis reveals this omits 30–50% of blocks from instrumentation. I elect to apply Tikir and

Hollingsworth’s algorithm because it balances graph reduction and analysis effort. Other

alternative, more aggressive algorithms exist [2, 65], which I believe are also implementable

in ZAFL.

Edge Instrumentation Downgrading

CollAFL [43] optimizes AFL-style edge coverage by downgrading select blocks to faster (i.e.,

fewer-instruction) block coverage. At a high level, blocks with a single predecessor can

themselves represent that edge, eliminating the instruction cost of hashing the start and end

points. We implement edge downgrading using a meta-characteristic analysis based on linear

flows in ZAX’s Analysis phase; and construct both edge- and block-coverage instrumentation
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templates utilized in the Application phase. My numbers show that roughly 35–45% of basic

blocks benefit from this optimization.

4.5.2 Feedback-enhancing Transformations

Recent compiler-based fuzzing efforts attain improved code-penetration power by considering

finer-grained execution information [22, 41]. Below I detail our ZAFL implementations of

two prominent examples: sub-instruction profiling and context-sensitive coverage

tracking.

Sub-instruction Profiling

Sub-instruction profiling breaks down complex conditional constraints into nested single-byte

comparisons—allowing the fuzzer to track progress toward matching the entire constraint,

and significantly decreasing the overall mutation effort. Compiler-based implementations

(e.g., laf-Intel [1] and CmpCov [70]) replace comparisons with nested micro-comparisons;

however, as the goal is to augment control-flow with nested conditionals that permit increased

feedback, I observe it is equally effective to insert these before the original. We implement

a binary-only sub-instruction profiling for (up to) 64-bit unsigned integer comparisons: in

ZAX’s Optimization phase, we scan the IR for comparison mnemonics (i.e., cmp), and then

insert a one-byte nested comparison per constraint byte. We further incorporate handling

for division operators to help reveal divide-by-zero bugs.

Context-sensitive Coverage

Context sensitivity considers calling contexts to enable finer-grained coverage. For hash-

indexing fuzzers like AFL, this merely requires that the hash index calculation additionally
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incorporates a context value. Several LLVM-based efforts compute values at callsite-level [22]

or function-level [41]. Though context values can assigned statically or obtained dynamically

(e.g., from a stack trace), an easy solution is to create a global context variable which

is updated on-the-fly: we create function-level context sensitivity by instrumenting each

function with a random value, which at function entry/exit is XOR’d to a global context

value that is used during edge hashing. We implement function-level context sensitivity in

ZAX’s Application phase. Callsite-level context sensitivity is also possible by adjusting where

values are inserted.

4.6 Evaluation

My evaluation answers three high-level questions:

Q1: Does ZAFL enable compiler-style program transformations while maintaining perfor-

mance?

Q2: Do performant fuzzing-enhancing program transformations increase binary-only fuzzing’s

effectiveness?

Q3: Does ZAFL support real-world, complex targets?

I first perform an evaluation of ZAFL against the leading binary-only fuzzing instrumenters

AFL-Dyninst and AFL-QEMU on the LAVA-M benchmark corpus [34]. Second, to see

if LAVA-M results hold for real-world programs, I expand my evaluation to eight popular

programs well-known to the fuzzing literature, selecting older versions known to contain bugs

to ensure self-evident comparison. Third, I evaluate these instrumenters’ fuzzing overhead

across each. Fourth, I evaluate ZAFL alongside AFL-Dyninst and AFL-QEMU in fuzzing
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five varied closed-source binaries. Fifth, I test ZAFL’s support for 42 open- and closed-source

programs of varying size, complexity, and platform. Finally, I use industry-standard reverse-

engineering tools as ground-truth to assess ZAFL’s precision.

4.6.1 Evaluation-wide Instrumenter Setup

I evaluate ZAFL against the fastest-available binary-only fuzzing instrumenters; I thus omit

AFL-PIN [62, 97, 126] and AFL-DynamoRIO [60, 114, 128] variants as their reported over-

heads are much higher than AFL-Dyninst’s and AFL-QEMU’s; and Intel PT [66] as it does

not support instrumentation (Table 4.2). I configure AFL-Dyninst and AFL-QEMU with

recent updates which purportedly increase their fuzzing performance by 2–3x and 3–4x,

respectively. I detail these below in addition to my setup of ZAFL.

AFL-Dyninst: A recent AFL-Dyninst update [61] adds two optimizations which increase

performance by 2–3x: (1) CFG-aware “single successor” instrumentation pruning; and (2)

two optimally-set Dyninst BPatch API settings (setTrampRecursive and setSaveFPR).1

I discovered three other performance-impacting BPatch settings (setLivenessAnalysis,

setMergeTramp, and setInstrStackFrames). For fairness I apply the fastest-possible AFL-

Dyninst configurations to all benchmarks; but for setLivenessAnalysis I am restricted

to its non-optimal setting on all as they otherwise crash; and likewise for setSaveFPR on

sfconvert and tcpdump.

AFL-QEMU: QEMU attempts to optimize its expensive block-level translation with caching,

enabling translation-free chaining of directly-linked fetched-block sequences. Until recently,

AFL-QEMU invoked its instrumentation via trampoline after translation—rendering block
1This AFL-Dyninst update [61] also adds a third optimization that replaces Dyninst-inserted instructions

with a custom, optimized set. However, in addition to having only a negligible performance benefit according
to its author, its current implementation is experimental and crashes each of my benchmarks. For these
reasons I omit it in my experiments.
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chaining incompatible as skipping translation leaves some blocks uninstrumented, potentially

missing coverage. A newly-released AFL-QEMU update [11] claims a 3–4x performance im-

provement through enabling support for chaining by instead applying instrumentation within

translated blocks. To ensure best-available AFL-QEMU performance I apply this update in

all experiments.

ZAFL: To explore the effects of compiler-quality fuzzing-enhancing transformation on binary-

only fuzzing I instrument benchmarks with all transformations shown in Table 4.3.

4.6.2 LAVA-M Benchmarking

For my initial crash-finding evaluation I select the LAVA-M corpus as it provides ground-

truth on its programs’ bugs. Below I detail my evaluation setup and results.

Benchmarks

I compile each benchmark with Clang/LLVM before instrumenting with AFL-Dyninst and

ZAFL; for AFL-QEMU I simply run compiled binaries in AFL using “QEMU mode”. As

fuzzer effectiveness on LAVA-M is sensitive to starting seeds and/or dictionary usage, I fuzz

each instrumented binary per four configurations: empty and default seeds both with and

without dictionaries. I build dictionaries as instructed by one of LAVA-M’s authors [33].

Experimental Setup and Infrastructure

I adopt the standard set by other LAVA-M evaluations [7, 110, 143] and fuzz each instru-

mented binary for five hours with the coverage-guided fuzzer AFL [146]; each for five trials

per the four seed/dictionary configurations. All instrumenters are configured as detailed
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in subsection 4.6.1. To maintain performance neutrality, I distribute trials across eight VM’s

spanning two Ubuntu 16.04 x86-64 systems with 6-core 3.50GHz Intel Core i7-7800x CPU’s

and 64GB RAM. Each VM runs in VirtualBox with 6GB RAM and one core allocated.

Data Processing and Crash Triage

I log both the number of AFL-saved crashes and test cases processed (i.e., total − hang

− calibration − trim executions); and in post-processing match each crash to a specific

number of test cases seen—allowing me to pinpoint when each crash occurred in its trial. I

then triage all crashes and create ⟨crash_id, testcases_done, triage_data⟩ triples; and apply

set operations to obtain the unique crashes over test cases done (i.e., ⟨triaged_crashes,

testcases_done⟩). For LAVA-M I triage solely by its benchmarks’ self-reported bug ID’s.

I compute the average unique crashes, total processed and queued test cases for all instrumenter-

benchmark trial groupings. To show ZAFL’s effectiveness, I report its mean relative increase

for all three metrics per-trial group, and geometric mean relative increases among all bench-

marks. Following Klees et al.’s [75] recommendation, to determine if ZAFL’s gains are sta-

tistically significant, I compute a Mann-Whitney U-test with a 0.05 significance level, and

report the geometric mean p-values across all benchmarks.

Results

I do not include ZAFL’s context sensitivity in my LAVA-M trials as I observe it slightly

inhibits effectiveness (∼2%), likely due to LAVA-M’s focus on a specific type of synthetic

bug (i.e., “magic bytes”). This also enhances the distinction on the impact of ZAFL’s sub-

instruction profiling transformation based on number of queued (i.e., coverage-increasing)

test cases. Table 4.4 shows ZAFL’s mean relative increase in triaged crashes, total and queued
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test cases over AFL-Dyninst and AFL-QEMU per configuration.

Binary Seed,
Dictionary

ZAFL vs. AFL-Dyninst ZAFL vs. AFL-QEMU
rel. crash rel. total rel. queue rel. crash rel. total rel. queue

base64

default, none 1.00 13.71 1.70 1.00 13.71 1.58
default, dict. 1.00 13.70 1.70 1.00 13.71 1.58
empty, none 7 1.34 3.16 7 1.67 2.88
empty, dict. 2.46 1.33 2.80 1.05 2.57 2.61

md5sum

default, none 7 0.88 45.22 7 2.22 4.39
default, dict. 5.52 0.94 32.17 1.00 1.88 2.15
empty, none 7 1.01 45.54 7 2.15 4.39
empty, dict. 4.00 0.96 77.77 0.87 1.91 2.22

uniq

default, none 1.00 1.62 1.37 1.00 1.98 1.21
default, dict. 5.75 1.04 2.39 7.67 1.23 1.64
empty, none 7 1.97 4.37 7 3.92 3.71
empty, dict. 2.23 1.55 2.60 1.04 2.15 2.43

who

default, none 1.00 1.32 27.07 1.00 2.44 21.86
default, dict. 3.78 1.18 40.24 3.68 1.7 36.36
empty, none 1.00 4.13 12.62 1.00 4.20 9.50
empty, dict. 1.24 1.15 11.22 2.54 10.00 15.74

Mean Rel. Increase +96% +78% +751% +42% +203% +296%
Mean MWU Score 0.023 0.022 0.005 0.039 0.007 0.005

Table 4.4: ZAFL’s LAVA-M mean bugs and total/queued test cases relative to AFL-Dyninst
and AFL-QEMU. I report geometric means for all metrics and MWU test p-values (p ≤ 0.05
indicates significance). 7 = ZAFL finds crashes while competitor finds zero.

ZAFL versus AFL-Dyninst: Across all 16 configurations ZAFL executes 78% more test

cases than AFL-Dyninst and either matches or beats it with 96% more crashes on average,

additionally finding crashes in four cases where AFL-Dyninst finds none. As I observe

Mann-Whitney U p-values (0.005–0.023) below the 0.05 threshold I conclude this difference

in effectiveness is statistically significant. Though ZAFL averages slightly fewer (4–12%) test

cases on md5sum this is not to its disadvantage: ZAFL queues 3100–7600% more test cases

and finds well over 300% more crashes, thus revealing the value of its control-flow-optimizing

program transformations.



4.6. EVALUATION 117

ZAFL versus AFL-QEMU: ZAFL matches or surpasses AFL-QEMU among 15 benchmark

configurations, averaging 42% more crashes and 203% more test cases seen. As with AFL-

Dyninst, ZAFL successfully finds crashes in four cases for which AFL-QEMU finds none.

Additionally, the Mann-Whitney U p-values (0.005–0.039) reveal a statistically significant

difference between AFL-QEMU and ZAFL. ZAFL finds 13% fewer crashes relative to AFL-

QEMU on md5sum with empty seeds and dictionary, but as ZAFL’s queue is 91% larger,

I believe this specific seed/dictionary configuration and ZAFL’s transformations result in a

“burst” of hot paths, which the fuzzer struggles to prioritize. Such occurrences are rare given

ZAFL’s superiority in other trials, and likely correctable through orthogonal advancements

in fuzzing path prioritization [14, 26, 77, 148].

To my surprise, AFL-QEMU finds more crashes than AFL-Dyninst despite executing the

least test cases. This indicates that Dyninst’s instrumentation, while faster, is less sound than

QEMU’s in important ways. Achieving compiler-quality instrumentation requires upholding

both performance and soundness, which neither QEMU nor Dyninst achieve in concert, but

ZAFL does (see subsection 4.6.5).

ZAFL versus AFL-LLVM: To gain a sense of whether ZAFL’s transformation is comparable

to existing compiler-based implementations, I ran ZAFL alongside the the analogous configu-

ration of AFL’s LLVM instrumentation with its INSTRIM [65] and laf-Intel [1] transforma-

tions applied. Results show that the two instrumentation approaches result in statistically

indistinguishable (MWU p-value 0.10) bug finding performance.

4.6.3 Fuzzing Real-world Software

Though my LAVA-M results show compiler-quality fuzzing-enhancing program transforma-

tions are beneficial to binary-only fuzzing, it is an open question as to whether this carries
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over to real-world programs. I therefore expand my crash-finding evaluation to eight diverse,

real-world benchmarks and extend all trials to 24 hours as per the standard set by Klees et

al. [75]. I further show that ZAFL achieves compiler-quality performance in a coverage-tracing

overhead comparison of all three instrumenters.

Benchmarks

To capture the diversity of real-world software I select eight binaries of varying type, size, and

libraries which previously appear in the fuzzing literature: bsdtar, cert-basic, clean_text,

jasper, readelf, sfconvert, tcpdump, and unrtf. I intentionally select older versions

known to contain AFL-findable bugs to facilitate a self-evident bug-finding comparison.

Statistics for each (e.g., package, size, number of basic blocks) are listed in Table 4.8.

Experimental Setup and Infrastructure

In both crash-finding and overhead experiments I configure instrumenters and binaries as

described in subsection 4.6.1 and section 4.6.2, and utilize either AFL- or developer-provided

seed inputs in fuzzing evaluations. For crash-finding, I fuzz all instrumented binaries with

AFL on a cluster for 8×24-hour trials each and to evaluate overhead, I perform 5×24-hour

trials on my LAVA-M experiment infrastructure (section 4.6.2).

Real-world Crash-finding

I apply all ZAFL-implemented transformations (Table 4.3) to all eight binaries, but omit

context sensitivity for clean_text as it otherwise consumes 100% of its coverage map. Triage

is performed as in section 4.6.2 but is based on stack hashing as seen in the literature [75, 82,
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(c) unrtf
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(d) tcpdump

Figure 4.2: Real-world software fuzzing unique triaged crashes averaged over 8×24-hour
trials.
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Binary
ZAFL vs. AFL-Dyninst ZAFL vs. AFL-QEMU

rel. crash rel. total rel. queue rel. crash rel. total rel. queue
bsdtar 0.80 1.25 1.06 8.00 2.59 2.79
cert-basic 1.41 1.79 4.99 1.95 3.05 4.51
clean_text 1.25 1.48 1.68 6.25 3.23 1.93
jasper 2.60 2.70 2.30 1.39 2.05 1.67
readelf 1.00 1.03 3.52 1.00 3.44 5.60
sfconvert 1.30 0.96 4.04 1.18 0.90 3.30
tcpdump 0.90 1.44 2.68 3.17 4.95 4.99
unrtf 1.50 1.78 36.1 1.62 2.51 35.5
Mean Rel. Increase +26% +48% +260% +131% +159% +337%
Mean MWU Score 0.018 0.001 0.001 0.002 0.001 0.001

Table 4.5: ZAFL’s real-world software mean triaged crashes and total/queued test cases rel.
to AFL-Dyninst and AFL-QEMU. I report geometric means for all metrics and MWU test
p-values (p ≤ 0.05 indicates significance).

99].2 Table 4.5 shows ZAFL-instrumented fuzzing crash-finding as well as total and queued

test cases relative to AFL-Dyninst and AFL-QEMU. I further report the geometric mean

Mann-Whitney U significance test p-values across all metrics.

ZAFL versus AFL-Dyninst: My results show ZAFL averages 26% more real-world crashes

and 48% more test cases than AFL-Dyninst in 24 hours. Though ZAFL finds 10–20% fewer

on bsdtar and tcpdump, the raw differences amount to only 1–2 crashes, suggesting that it

and AFL-Dyninst converge on these two benchmarks (as shown in Figure 4.2d). Likewise

for readelf my triage reveals two unique crashes across all trials, both found by all three

instrumenters. For all others ZAFL holds a lead (as shown in Figure 4.2), averaging 61%

more crashes. Given the Mann-Whitney U p-values (0.001–0.018) below the 0.05 significance

level, I conclude that ZAFL’s compiler-quality transformations bear a statistically significant

advantage over AFL-Dyninst.

2In stack hashing I consider both function names and lines; and condense recursive calls as they would
otherwise over-approximate bug counts.
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ZAFL versus AFL-QEMU: While ZAFL surpasses AFL-QEMU’s LAVA-M crash-finding by

42%, ZAFL’s real-world crash-finding is an even higher 131%. Apart from the two readelf

bugs found by all three instrumenters, ZAFL’s fuzzing-enhancing program transformations

and 159% higher execution rate allow it to hone-in on more crash-triggering paths on aver-

age. As with AFL-Dyninst, comparing to AFL-QEMU produces Mann-Whitney U p-values

(0.001–0.002) which prove ZAFL’s increased effectiveness is statistically significant. Further-

more the disparity between AFL-QEMU’s LAVA-M and real-world crash-finding suggests

that increasingly-complex binaries heighten the need for more powerful binary rewriters.

Real-world Coverage-tracing Overhead

For my coverage-tracing overhead evaluation I follow established practice [89]: I collect

5×24-hour test case dumps per benchmark; instrument a forkserver-only “baseline” (i.e.,

no coverage-tracing) version of each benchmark; log every instrumented binary’s coverage-

tracing time for each test case per dump; apply 30% trimmed-mean de-noising on the exe-

cution times per instrumenter-benchmark pair; and scale the resulting overheads relative to

baseline.

I compare ZAFL to AFL-Dyninst, AFL-QEMU, and to the compiler- and assembler-based

instrumentation available in AFL [146]. I assess all aspects of ZAFL’s performance: (1)

its baseline forkserver-only rewritten binary overhead (ZAFL-FSRVR); and instrumentation

overheads (2) with no transformations (ZAFL-NONE), (3) only performance-enhancing trans-

formations (ZAFL-PERF), and (4) all (Table 4.3) transformations (ZAFL-ALL). I additionally

compute geometric mean Mann-Whitney U p-values of both ZAFL-NONE’s and ZAFL-ALL’s ex-

ecution times compared to those of compiler and assembler instrumentation, AFL-Dyninst,

and AFL-QEMU among all benchmarks.
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Figure 4.3: Compiler, assembler, AFL-Dyninst, AFL-QEMU, and ZAFL fuzzing instrumen-
tation performance relative to baseline (higher is better).

Figure 4.3 displays the instrumenters’ relative overheads. On average, ZAFL-FSRVR, ZAFL-

NONE, ZAFL-PERF, and ZAFL-ALL obtain overheads of 5%, 32%, 17%, and 27%, while compiler

and assembler instrumentation average 24% and 34%, and AFL-Dyninst and AFL-QEMU

average 88% and 256%, respectively. Thus, even ZAFL with all fuzzing-enhancing transfor-

mations approaches compiler performance.

ZAFL versus AFL-Dyninst: I observe ZAFL performs slightly worse on sfconvert as it has

the fewest basic blocks by far I believe our rewriting overhead is more pronounced on such tiny

binaries. Other results suggest that this case is pathological. Even ZAFL’s most heavyweight

configuration (ZAFL-ALL) incurs 61% less average overhead than AFL-Dyninst, even though

this comparison includes ZAFL’s performance-enhancing transformations. If omitted, this

still leaves ZAFL ahead of AFL-Dyninst—which, too, benefits from performance-enhancing
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single successor-based pruning. Comparing the execution times of ZAFL-NONE and ZAFL-ALL

to AFL-Dyninst’s yields mean Mann-Whitney U p-values of 0.020–0.023. As these are below

0.05, suggesting that ZAFL, both with- and without-transformations, achieves statistically

better performance over AFL-Dyninst.

ZAFL versus AFL-QEMU: Though AFL-QEMU’s block caching reduces its overhead from

previous reports [89], ZAFL outperforms it with nearly 229% less overhead. Interestingly,

AFL-QEMU beats AFL-Dyninst on jasper, consistent with the relative throughput gains

in Table 4.5. Thus, while it appears some binary characteristics are better-suited for dynamic

vs. static rewriting, existing instrumenters do not match ZAFL’s performance across all

benchmarks. My Mann-Whitney U tests reveal that both ZAFL-NONE and ZAFL-ALL obtain

p-values of 0.012, suggesting that ZAFL achieves statistically better performance over AFL-

QEMU.

Comparing ZAFL to Compiler Instrumentation: On average, compared to a forkserver-

only binary, ZAFL incurs a baseline overhead of 5% just for adding rewriting support to the bi-

nary; tracing all code coverage increases overhead to 32%; optimizing coverage tracing using

graph analysis reduces overhead to 20%; and applying all fuzzing-enhancing program trans-

formations brings overhead back up to 27%. These overheads are similar to the 24% overhead

of AFL’s compiler-based instrumentation, and slightly better than AFL’s assembler-based

trampolining overhead of 34%. Comparing ZAFL-NONE and ZAFL-ALL to compiler instrumen-

tation yields mean Mann-Whitney U p-values ranging 0.12–0.18 which, being larger than

0.05, suggests that ZAFL is indistinguishable from compiler-level performance.
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4.6.4 Fuzzing Closed-source Binaries

To evaluate whether ZAFL’s improvements extend to true binary-only use cases, I expand

my evaluation with five diverse, closed-source binary benchmarks. My results show that

ZAFL’s compiler-quality instrumentation and speed help reveal more unique crashes than

AFL-Dyninst and AFL-QEMU across all benchmarks. I further conduct several case studies

showing that ZAFL achieves far shorter time-to-bug-discovery compared to AFL-Dyninst and

AFL-QEMU.

Benchmarks

I drill-down the set of all closed-source binaries I tested with ZAFL (Table 4.9) into five AFL-

compatible (i.e., command-line interfacing) benchmarks: idat64 from IDA Pro, nconvert

from XNView’s NConvert, nvdisasm from NVIDIA’s CUDA Utilities, pngout from Ken

Silverman’s PNGOUT, and unrar from RarLab’s RAR. Table 4.9 lists the key features of

each benchmark.

Closed-source Crash-finding

I repeat the evaluation from section 4.6.4, running five 24-hour experiments per configu-

ration. My results (mean unique triaged crashes, total and queued test cases, and MWU

p-scores) among all benchmarks are shown in Table 4.6; and plots of unique triaged crashes

over time are shown in Figure 4.4.

ZAFL versus AFL-Dyninst: Despite AFL-Dyninst being faster on idat64, nconvert,

nvdisasm, and unrar, ZAFL averages a statistically-significant (mean MWU p-value of 0.036)

55% higher crash-finding. I believe AFL-Dyninst’s speed, small queues, and lack of crashes

in unrar are due to it missing significant parts of these binaries, as my own testing with its



4.6. EVALUATION 125

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours

0.0

0.2

0.4

0.6

0.8

1.0

R
e
l. 

A
vg

 C
ra

sh
e
s

AFL-Dyninst AFL-QEMU ZAFL

(a) idat64

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours

0.0

0.2

0.4

0.6

0.8

1.0

R
e
l. 

A
vg

 C
ra

sh
e
s

AFL-Dyninst AFL-QEMU ZAFL

(b) nconvert

0.0 0.2 0.4 0.6 0.8

Prop. Test Cases / 24-hours

0.0

0.2

0.4

0.6

0.8

1.0

R
e
l. 

A
vg

 C
ra

sh
e
s

AFL-Dyninst AFL-QEMU ZAFL

(c) pngout
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Figure 4.4: Closed-source binary fuzzing unique triaged crashes averaged over 5×24-hour
trials.
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Binary
ZAFL vs. AFL-Dyninst ZAFL vs. AFL-QEMU

rel. crash rel. total rel. queue rel. crash rel. total rel. queue
idat64 1.000 0.789 2.332 7 1.657 1.192
nconvert 3.538 0.708 48.140 1.095 1.910 1.303
nvdisasm 1.111 0.757 1.484 1.111 0.578 1.252
pngout 1.476 5.842 1.380 1.476 3.419 1.023
unrar 7 0.838 6.112 2.000 1.284 1.249
Mean Rel. Increase +55% +16% +326% +38% +52% +20%
Mean MWU Score 0.036 0.041 0.009 0.082 0.021 0.045

Table 4.6: ZAFL’s closed-source binary mean triaged crashes and total/queued test cases
relative to AFL-Dyninst and AFL-QEMU. I report geometric means for all metrics and MWU
test p-values (p ≤ 0.05 indicates significance). 7 = ZAFL finds crashes while competitor finds
zero.

graph-pruning off shows it leaves over 50% of basic blocks uninstrumented for all but pngout.

I conclude that ZAFL’s support for complex, stripped binaries brings a decisive advantage

over existing tools like AFL-Dyninst.

ZAFL versus AFL-QEMU: ZAFL’s speed and transformations enable it to average 38% more

triaged crashes and 52% more test cases than AFL-QEMU. While ZAFL offers a statistically

significant improvement in throughput for four benchmarks (mean MWU p-value of 0.021),

I posit that its slower speed on nvdisasm is due to AFL prioritizing slower paths: AFL’s

logs show ZAFL’s initial speed is over 2×AFL-QEMU’s (2500 execs/s vs. 1200), but it

fluctuates around 5 execs/s for much of the campaign afterwards. Though the crash-finding

gap between ZAFL and AFL-QEMU is not overwhelming, ZAFL successfully uncovers a heap

overread crash in idat64—while AFL-QEMU finds nothing.
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Bug-finding Case Study

Following additional manual triage with binary-level memory error checkers (e.g., QASan [40]

and Dr. Memory [19]), I compare the time-to-discovery (TTD) for five closed-source binary

bugs found by ZAFL, AFL-Dyninst, or AFL-QEMU: a heap overflow in nconvert, a stack

overflow in unrar, a heap use-after-free and heap overflow in pngout, and a heap overread

in idat64’s libida64.so.

Error Type Location AFL-Dyninst AFL-QEMU ZAFL

heap overflow nconvert 7 18.3 hrs 12.7 hrs
stack overflow unrar 7 12.3 hrs 9.04 hrs
heap overflow pngout 12.6 hrs 6.26 hrs 1.93 hrs
use-after-free pngout 9.35 hrs 4.67 hrs 1.44 hrs
heap overread libida64.so 23.7 hrs 7 2.30 hrs
ZAFL Mean Rel. Decrease -660% -113%

Table 4.7: Mean time-to-discovery of closed-source binary bugs found for AFL-Dyninst,
AFL-QEMU, and ZAFL over 5×24-hour fuzzing trials. 7 = bug is not reached in any trials
for that instrumenter configuration.

Table 4.7 reports the geometric mean TTD among all five bugs for all three instrumenters.

I observe that, on average, ZAFL finds these bugs 660% faster than AFL-Dyninst, and 113%

faster than AFL-QEMU. Thus, ZAFL’s balance of compiler-quality transformation and per-

formance lends a valuable asset to bug-finding in closed-source code.

4.6.5 Scalability and Precision

I recognize the fuzzing community’s overwhelming desire for new tools that support many

types of software—with a growing emphasis on more complex, real-world targets. But for

a static rewriter to meet the needs of the fuzzing community, it must also achieve high



128 CHAPTER 4. COMPILER-QUALITY CODE TRANSFORMATION FOR CLOSED-SOURCE FUZZING

precision with respect to compiler-generated code. This section examines ZAFL’s scalability

to binaries beyond my evaluation benchmarks, as well as key considerations related to its

static rewriting precision.

Scalability

I instrument and test ZAFL on a multitude of popular real-world binaries of varying size, com-

plexity, source availability, and platform. I focus on Linux and Windows as these platforms’

binary formats are common high-value targets for fuzzing. All binaries are instrumented

with ZAFL’s AFL-like configuration; I do the same for Windows binaries using ZAFL’s cross-

instrumentation support. I test instrumented binaries either with our automated regression

test suite (used throughout ZAFL’s development); or by manually running the application

(for Windows) or testing the instrumentation output with afl-showmap [146] (for Linux).

I verify ZAFL achieves success on 33 open-source Linux and Windows binaries, shown in Ta-

ble 4.8. To confirm ZAFL’s applicability to true binary-only use cases, I expand my test-

ing with 23 closed-source binaries from 19 proprietary and commercial applications, listed

in Table 4.9. In summary, my findings show that ZAFL can instrument Linux and Windows

binaries of varying size (e.g., 100K–100M bytes), complexity (100–1M basic blocks), and

characteristics (open- and closed-source, PIC and PDC, and stripped binaries).

Liveness-aware Optimization

As discussed in subsection 4.3.2, register liveness analysis enables optimized instrumentation

insertion for closer-to-compiler-level speed. While liveness false positives introduce overhead

from the additional instructions needed to save/restore registers, liveness false negatives may

leave live registers erroneously overwritten—potentially breaking program functionality. If
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ZAFL’s liveness analysis (section 4.4.2) cannot guarantee correctness, it conservatively halts

this optimization to avoid false negatives, and instead safely inserts code at basic block

starts.
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Figure 4.5: A comparison of ZAFL’s runtime overhead with and without register liveness-
aware instrumentation optimization (lower is better).

To assess the impact of skipping register liveness-aware optimization, I replicate my overhead

evaluation (section 4.6.3) to compare ZAFL’s speed with/without liveness-aware instrumen-

tation. As Figure 4.5 shows, liveness-unaware ZAFL faces 31% more overhead across all eight

benchmarks. While 13–16% slower than AFL-Dyninst on bsdtar and sfconvert, ZAFL’s

unoptimized instrumentation still averages 25% and 193% less overhead than AFL-Dyninst

and AFL-QEMU, respectively. Thus, even in the worst case ZAFL generally outperforms

other binary-only fuzzing instrumenters.

As Table 4.8 and Table 4.9 show, I successfully apply liveness-aware instrumentation for
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all 44 Linux benchmarks. I posit that with further engineering, the same robustness is

achievable for Windows binaries.

Instruction Recovery

Recovery of the original binary’s full instructions is paramount to static rewriting. It is

especially important for binary-only fuzzing, as false positive instructions misguide coverage-

guidance; while false negatives introduce coverage blind-spots or break functionality. Fur-

ther, precise instruction recovery heads fuzzing-enhancing transformation, as it is necessary

to know where/how to modify code (e.g., targeting cmp’s for sub-instruction profiling (sec-

tion 4.5.2)).

I evaluate ZAFL’s instruction recovery using ground-truth disassemblies of binary .TEXT sec-

tions generated by objdump, which is shown to achieve ∼100% accuracy [5] (specifically, I

use the version shipped in LLVM-10 [76]). To see how ZAFL fairs with respect to the state-

of-the-art in binary analysis, I also evaluate disassemblies of the commercial tools IDA Pro

7.1 and Binary Ninja 1.1.1259. As all three only recover instructions they deem “reach-

able”, I compute false negative recovery rates from the mean number of unique unrecovered

instructions that are actually reached among five 24-hour fuzzing campaigns per benchmark.

Table 4.10 lists the total instructions; and total and reached unrecovered instructions per my

five closed-source benchmarks.3 As I observe zero false positives for any tool on any bench-

mark, I focus only on false negatives. Though all three achieve near-perfect accuracy, ZAFL

is the only to maintain a 0% false negative rate among all benchmarks, as IDA and Binary

Ninja erroneously unrecover an average of 0–0.68% of instructions. While static rewriting

is fraught with challenges—many of which require further engineering work to overcome

3I omit results for my eight open-source benchmarks as all three tools achieve a 0% false negative instruc-
tion recovery rate on each.
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(subsection 4.7.3)—these results suggest that ZAFL’s common-case instruction recovery is

sound.

Control-flow Recovery

Preserving the original binary’s control-flow is critical to fuzzing’s coverage-guidance. Ex-

cessive false positives add noise that misguide fuzzing or overwhelm its seed scheduling

processes; while false negatives may cause fuzzing to overlook entire code regions or bug-

triggering paths. To examine ZAFL’s control-flow recovery, I run all test cases generated over

five 24-hour trials for my eight open-source benchmarks on both a ZAFL- and a ground-truth

LLVM-instrumented binary, and log when each report new coverage.

As Table 4.11 shows, ZAFL’s coverage identification is near-identical to LLVM’s: achieving

97.3% sensitivity, ∼100% specificity, and ∼100% accuracy. While ZAFL encounters some

false positives, they are so infrequent (1–20 test cases out of 1–20 million) that the total

noise is negligible. In investigating false negatives, I see that in only 7/40 fuzzing campaigns

do missed test cases precede bug-triggering paths; however, further triage reveals that ZAFL

eventually finds replacement test cases, thus, ZAFL reaches every bug reached by LLVM.

Thus, I conclude that ZAFL succeeds in preserving the control-flow of compiler-generated

code.

4.7 Limitations

Below I briefly discuss limitations unique to ZAFL, and others fundamental to static binary

rewriting.
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4.7.1 Improving Baseline Performance

My performance evaluation section 4.6.3 shows ZAFL’s baseline (i.e., non-tracing) overhead

is around 5%. I believe that our rewriter’s code layout algorithm is likely the biggest con-

tributing factor to performance and have since tested experimental optimizations that bring

baseline overhead down to ∼1%. But as ZAFL’s full fuzzing performance is already near

modern compiler’s, I leave further optimization and the requisite re-evaluation to future

work.

4.7.2 Supporting New Architectures, Formats, and Platforms

Our current ZAFL prototype is limited to x86-64 C/C++ binaries. As our current static

rewriting engine handles both 32- and 64-bit x86 and ARM binaries (as well as prototype

32-bit MIPS support), I believe supporting these in ZAFL is achievable with future engineering

work.

Extending to other compiled languages similarly depends on the rewriter’s capabilities. We

have some experimental success for Go/Rust binaries, but more ZAFL-side engineering is

needed to achieve soundness. I leave instrumenting non-C/C++ languages for future work.

While ZAFL is engineered with Linux targets in mind, my evaluation shows it also supports

many Windows applications; few other static binary rewriters support Windows binaries.

Though we face some challenges in precise code/data disambiguation and at this time are

restricted to Windows 7 64-bit PE32+ formats, I expect that with future rewriter-level

enhancements, ZAFL will achieve broader success across other Windows binary formats and

versions.
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4.7.3 Static Rewriting’s Limitations

Though static rewriting’s speed makes it an attractive choice over dynamic translation for

many binary-only use cases and matches what compilers do, static rewriting normally fails on

software crafted to thwart reverse engineering. Two such examples are code obfuscation and

digital rights management (DRM) protections—both of which, while uncommon, appear in

many proprietary and commercial applications. While neither ZAFL nor its rewriter currently

support obfuscated or DRM-protected binaries, a growing body of research is working toward

overcoming these obstacles [12, 140]. Thus, I believe that with new advances in binary

deobfuscation and DRM-stripping, ZAFL will be able to bring performant binary-only fuzzing

to high-value closed-source targets like Dropbox, Skype, and Spotify.

Another grey area for static binary rewriters is deprecated language constructs. For ex-

ample, C++’s dynamic exception specification—obsolete as of C++11—is unsupported in

ZAFL and simply ignored. I recognize there are trade-offs between static binary rewriting

generalizability and precision, and leave addressing such gaps as future work.

Most modern static binary rewriters perform their core analyses—disassembly, code/data

disambiguation, and indirect branch target identification—via third-party tools like Cap-

stone [100] and IDA [54], consequently inheriting their limitations. For example, if the

utilized disassembler is not up-to-date with the latest x86 ISA extension, binaries contain-

ing such code cannot be fully interpreted. I posit that trickle-down dependency limitations

are an inherent problem to modern static binary rewriting; and while perfection is never

guaranteed [84, 106], most common roadblocks are mitigated with further heuristics or en-

gineering.
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4.8 Related Work

Below I discuss related works in orthogonal areas static rewriting, fuzzing test case genera-

tion, hybrid fuzzing, and emergent fuzzing transformations.

4.8.1 Static Binary Rewriting

Static rewriters generally differ by their underlying methodologies. Uroboros [135], Ram-

blr [134], and RetroWrite [32] reconstruct binary assembly code “reassembleable” by compil-

ers. Others translate directly to compiler-level intermediate representations (IR); Hasabnis

et. al [55] target GCC [45] while McSema [31], SecondWrite [4], and dagger [16] focus on

LLVM IR. GTIRB [52] and Zipr [64] implement their own custom IR’s. I believe static

rewriters with robust, low-level IR’s are best-suited to supporting ZAFL.

4.8.2 Improving Fuzzing Test Case Generation

Research continues to improve test case generation from many perspectives. Input data-

inference (e.g., Angora [22], VUzzer [104], TIFF [67]) augments mutation with type/shape

characteristics. Other works bridge the gap between naive- and grammar-based fuzzing with

models inferred statically (e.g., Shastry et. al [109], Skyfire [132]) or dynamically (e.g.,

pFuzzer [83], NAUTILUS [8], Superion [133], AFLSmart [99]). Such approaches mainly

augment fuzzing at the mutator-level, and thus complement ZAFL’s compiler-quality instru-

mentation in binary-only contexts.

Another area of improvement is path prioritization. AFLFast [14] allocates mutation to test

cases exercising deep paths. FairFuzz [77] focuses on data segments triggering rare basic

blocks. VUzzer [104] assigns deeper blocks high scores to prioritize test cases reaching them;
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and QTEP [136] similarly targets code near program faults. ZAFL’s feedback-enhancing

transformations result in greater path discovery, thus increasing the importance of smart

path prioritization.

4.8.3 Hybrid Fuzzing

Many recent fuzzers are hybrid: using coverage-guided fuzzing for most test cases but spar-

ingly invoking more heavyweight analyses. Angora [22] uses taint tracking to infer mutation

information, but runs all mutatees in the standard fuzzing loop; REDQUEEN [7] operates

similarly but forgoes taint tracking for program state monitoring. Driller’s [117] concolic

execution starts when fuzzing coverage stalls; QSYM’s [143] instead runs in parallel, as

do DigFuzz’s [148] and SAVIOR’s [25], which improve by prioritizing rare and bug-honing

paths, respectively. While this work’s focus is applying performant, compiler-quality trans-

formations to the standard coverage-guided fuzzing loop, I imagine leveraging ZAFL to also

enhance the more heavyweight techniques central to hybrid fuzzing.

4.8.4 Emergent Fuzzing Transformations

LLVM [76] offers several robust “sanitizers” useful for software debugging. In fuzzing, sani-

tizers are typically reserved for post-fuzzing crash triage due to their performance bloat; but

recently, several works achieve success with sanitizers intra-fuzzing: AFLGo [15] compiles

binaries with AddressSanitizer for more effective crash-finding; Angora [22] builds its taint

tracking atop DataFlowSanitizer [122]; and SAVIOR [25] uses UndefinedBehaviorSanitizer

to steer concolic execution toward bug-exercising paths. I thus foresee increasing desire for

sanitizers in binary-only fuzzing, however, their heavyweight nature makes porting them a

challenge. RetroWrite [32] reveals the possibility that lightweight versions of sanitizers can
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be incorporated in the main fuzzing loop while maintaining performance. I expect that such

transformations can be realized with ZAFL.

4.9 Conclusion

ZAFL leverages state-of-the-art binary rewriting to extend compiler-quality instrumentation’s

capabilities to binary-only fuzzing—with compiler-level performance. I show its improved

effectiveness among synthetic and real-world benchmarks: compared to the leading binary

instrumenters, ZAFL enables fuzzers to average 26–131% more unique crashes, 48–203% more

test cases, achieve 60–229% less overhead, and find crashes in instances where competing

instrumenters find none. I further show that ZAFL scales well to real-world open- and closed-

source software of varying size and complexity, and has Windows binary support.

My results highlight the requirements and need for compiler-quality instrumentation in

binary-only fuzzing. Through careful matching of compiler instrumentation properties in

a static binary rewriter, state-of-the-art compiler-based approaches can be ported to binary-

only fuzzing—without degrading performance. Thus, I envision a future where fuzzing is no

longer burdened by a disparity between compiler-based and binary instrumentation. a
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Application OS Binary Size Blocks Opt
Apache L httpd 1.0M 25,547 4

AudioFile L sfconvert 568K 5,814 4

BIND L named 9.4M 120,665 4

Binutils L readelf 1.4M 21,085 4

CatBoost L catboost 153M 1,308,249 4

cJSON L cjson 43K 1,409 4

Clang L clang 36.4M 1,756,126 4

DNSMasq L dnsmasq 375K 20,302 4

Gumbo L clean_text 571K 5,008 4

JasPer L jasper 1.1M 14,795 4

libarchive L bsdtar 2.1M 29,868 4

libjpeg L djpeg 667K 5,066 4

libksba L cert-basic 435K 5,247 4

lighttpd L lighttpd 1.1M 12,558 4

Mosh L mosh-client 4.2M 14,311 4

NGINX L nginx 4.8M 29,507 4

OpenSSH L sshd 2.3M 33,115 4

OpenVPN L vpn 2.9M 34,521 4

Poppler L pdftohtml 1.5M 2,814 4

Redis L redis-server 5.7M 74,515 4

Samba L smbclient 226K 6,279 4

SIPWitch L sipcontrol 226K 772 4

Squid L squid 32.7M 212,746 4

tcpdump L tcpdump 2.3M 24,451 4

thttpd L thttpd 119K 3,428 4

UnRTF L unrtf 170K 1,657 4

7-Zip W 7z 447K 23,353 7

AkelPad W AkelPad 540K 31,140 7

cygwin64 W bash 740K 38,397 7

cygwin64 W ls 128K 5,661 7

fre:ac W freaccmd 97K 521 7

fmedia W fmedia 178K 3,016 7

fmedia W fmedia-gui 173K 1,363 7

Table 4.8: Open-source binaries tested successfully with ZAFL. L
/W = Linux/Windows; Opt = whether register liveness-aware optimization

succeeds.
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Application OS Binary Size Blocks P*C Sym Opt
B1FreeArchiver L b1 4.1M 150,138 D 4 4

B1FreeArchiver L b1manager 19.3M 290,628 D 4 4

BinaryNinja L binaryninja 34.4M 998,630 D 4 4

BurnInTest L bit_cmd_line 2.6M 73,229 D 7 4

BurnInTest L bit_gui 3.4M 107,897 D 7 4

Coherent PDF L smpdf 3.9M 61,204 D 4 4

IDA Free L ida64 4.5M 173,551 I 7 4

IDA Pro L idat64 1.8M 82,869 I 7 4

LzTurbo L lzturbo 314K 13,361 D 7 4

NConvert L nconvert 2.6M 111,652 D 7 4

NVIDIA CUDA L nvdisasm 19M 46,190 D 7 4

Object2VR L object2vr 8.1M 239,089 D 4 4

PNGOUT L pngout 89K 4,017 D 7 4

RARLab L rar 566K 25,287 D 7 4

RARLab L unrar 311K 13,384 D 7 4

RealVNC L VNC-Viewer 7.9M 338,581 D 7 4

VivaDesigner L VivaDesigner 28.9M 1,097,993 D 7 4

VueScan L vuescan 15.4M 396,555 D 7 4

Everything W Everything 2.2M 115,980 D 4 7

Imagine W Imagine64 15K 99 D 7 7

NirSoft W AppNetworkCounter 122K 4,091 D 7 7

OcenAudio W ocenaudio 6.1M 178,339 D 7 7

USBDView W USBDeview 185K 7,367 D 7 7

Table 4.9: Closed-source binaries tested successfully with ZAFL. L/W = Linux/Windows;
D/I = position-dependent/independent; Sym = binary is non-stripped; Opt = whether
register liveness-aware optimization succeeds.
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Binary Total
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idat64 268K 1681 0 0 5342 2 0 958 0 0
nconvert 458K 105K 3117 0.68% 3569 0 0 33.0K 0 0
nvdisasm 162K 180 0 0 3814 21.4 0.01% 0 0 0
pngout 16.8K 645 0 0 752 112.5 0.67% 1724 0 0
unrar 37.8K 1523 0 0 1941 138.2 0.37% 40 0 0

Table 4.10: Instruction recovery statistics for IDA Pro, Binary Ninja, and ZAFL, with ground-
truth disassembly from LLVM-10’s objdump. Reached = mean unrecovered instructions
reached by fuzzing (hence, erroneously-unrecovered); FalseNeg = erroneously-unrecovered
instructions over total.

Binary Coverage TPR Coverage TNR Coverage Accuracy
bsdtar 97.28% >99.99% >99.99%

cert-basic 96.67% >99.99% >99.99%
clean_text 96.39% >99.99% >99.99%

jasper 98.82% >99.99% >99.99%
readelf 99.98% >99.99% >99.99%

sfconvert 98.71% >99.99% >99.99%
tcpdump 96.51% >99.99% >99.99%
unrtf 94.17% >99.99% >99.99%
Mean 97.30% 100.00% 100.00%

Table 4.11: ZAFL’s fuzzing code coverage true positive and true negative rates, and accuracy
with respect to the LLVM compiler over 5×24-hour trials.



Chapter 5

Conclusion and Future Work

Fuzzing’s aggressive, high-volume testing approach has shown immense success over previous-

generation software security vetting. However, feedback and instrumentation asymmetries

have long made effective fuzzing unattainable for closed-source software such as commercial,

proprietary, and legacy code. This thesis offers a paradigm shift in software fuzzing: making

it finally possible to achieve practical, precise, and performant closed-source software fuzzing

that outperforms even open-source fuzzing techniques, while operating with just the limited

information contained in pre-compiled binary executables. Through the techniques and

tools I have introduced—UNTRACER, HEXCITE, and ZAFL—software developers, maintainers,

and practitioners are better equipped than ever before to uncover critical vulnerabilities

in the commercial, proprietary, and legacy software that dominates our computing world.

Moreover, the high-level principles of this work—(1) optimizing common-case insights, (2)

balancing precision and performance, and (3) identifying and matching desirable properties—

offers new motivation for future advancements to fuzzing as a whole: binary- or source-level.

5.1 FutureWork: Improving Scalability of Closed-source

Software Fuzzing Program Transformation

140
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While the contributions of my thesis tackle Asymmetries 1–3 outlined in section 1.1 (low over-

head code coverage, fine-grained code coverage, and low-overhead program transformation),

Asymmetry 4—scalable program transformation—has and continues to remain a non-trivial

problem for the field of software security as a whole. Though ZAFL shows that compiler-style

fuzzing enhancements are attainable for closed-source binaries on Linux and Windows, there

are significant challenges in (1) program analysis and (2) automated testing that prevent

the deployment of these advancements across the broader closed-source ecosystem. In the

following, I will detail the fundamental next breakthroughs required to extend practical, pre-

cise, and performant automated security testing across the broader closed-source ecosystem,

as well as my research vision for addressing each.

5.1.1 Tackling Asymmetries in Program Analysis

Security auditing hinges on precise program analysis, as virtually all vetting strategies require

deep semantic understanding of the target code. Unfortunately, binary-only code is a far

more hostile environment for program analysis, which impedes efforts to vet security-critical

proprietary, commercial, and legacy codebases. To lay the scientific and technical

foundations for expanding vetting across the closed-source software ecosystem,

my short-term research will first target the asymmetries hindering the analysis

of opaque software and systems.

Shining light on opaque tools. A challenge in practical binary analysis is understanding where

and why heuristics and algorithms (e.g., function detection) fail. While prior work has scru-

tinized and improved open-source binary analysis tools, today’s state-of-the-art, industry-

standard toolchains center on commercial platforms like IDA Pro and Binary Ninja—whose

internals are not public. The opaque mechanics of these tools places a significant burden on
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users: for practitioners, dealing with analysis errors means either waiting for developer-issued

fixes or taking on the challenge of hand-writing custom plugins; and for academics, this means

tedious ground-truth benchmarking. Yet no two studies adopt the same corpora, resulting

in contradictory outcomes and the need to reassess for every new tool update, architecture,

and ISA extension. Therefore, the logical evolution to strengthening the state-of-the-art in

binary analysis is automated testing. To this end, I will develop program synthesis-driven

tools to tease out these frameworks’ heuristics in a source/API-agnostic way and apply tar-

geted fuzzing to uncover their failure points. Building from this, I will explore automated

testing’s efficacy in other security-oriented binary analysis tasks like semantic lifting and

decompilation.

Retroactive repair. Another obstacle in binary analysis is recovering metadata (e.g., code and

data symbols), which is commonly stripped by developers to impede third-party analyses.

The difficulty of precise metadata recovery forces many academically-sourced tools to place

unrealistic assumptions on users (e.g., that the binary possesses full symbols), restricting

their applicability to only a small subset of software. Even in the best-case scenario where

an executable’s symbols are present, recent work shows that compilers and linkers frequently

generate incorrect metadata, derailing analysis even further. To address this, I will extend

the frontiers of program and compiler analysis with data-driven approaches to identify and

retroactively mend malformed and miscompiled binary metadata. My aims in this direction

are to not only improve the precision of state-of-the-art analysis tools, but to also afford

even constrained (e.g., metadata-requiring) tools a broader compatibility, and bring a wider

selection of tools and techniques to the forefront of practical binary analysis.

Next-generation tooling. Current binary analysis tools broadly fall under two archetypes:

(1) transparent internals with immutable analyses (e.g., angr, Dyninst), or (2) opaque in-

ternals with mutable analyses (e.g., IDA Pro, Binary Ninja). Transparency means that a
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tool’s underlying heuristics and algorithms are interpretable, while mutability dictates that

its binary representation is modifiable (e.g., toggling-on a heuristic) without need for de

novo reanalysis. In my collaboration with Trail of Bits, I leveraged the power of logical

programming (e.g., Datalog, Prolog) to support binary analysis that meets both properties:

facilitating flexible yet succinct analysis. I plan to ramp up this work by engaging with HCI

and industry experts to understand what gaps exist between binary analysis theory and

practice, and make use of these insights to design more human-centric platforms for driving

future research on vetting closed-source software and systems.

5.1.2 Tackling Asymmetries in Automated Testing

Safeguarding future computing demands making automated testing as efficient and effective

in closed-source contexts as in open-source ones. Capitalizing on advancements in program

analysis, I will apply my expertise in binary fuzzing to tackle the asymmetries

that restrict automated testing across the closed-source computing ecosystem.

Fully-automated harnessing. Harnessing refers to the task of distilling a larger codebase

or library into smaller driver programs on which to perform fuzzing. Current harnessing

techniques are only partially automated and require human expertise (e.g., knowledge of

data-flow dependencies) to refine candidate programs into sound harnesses. For open-source

targets, this domain knowledge is obtainable through manual code review; yet for closed-

source targets, the learning curve is much higher due to binary code’s semantic opaque-

ness. Thus, fuzzing must embrace fully-automated harnessing in the complex and opaque

domains where human intervention is becoming more and more unscalable. In this direc-

tion, I will develop approaches that combine data-driven program analysis with incremental,
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stochastic program synthesis to generate, grow, and refine candidate harnesses “on the fly”.

Additionally, as even industry-scale fuzzing is shown to miss security bugs due to harness

blindspots (where harnesses erroneously miss some security-critical paths), I will introduce

new approaches to quantify, evaluate, and maximize harness diversity to help enable more

thorough security auditing.

Cross-platform instrumentation. The lack of performant binary instrumentation outside of

Linux has long impeded automated security auditing on Windows and macOS. As these

platforms represent the largest ecosystems for commodity and closed-source software to-

day, I will leverage my binary analysis and fuzzing expertise to devise new techniques for

platform-agnostic compiler-quality fuzzing instrumentation. Advances in this space will em-

power existing fuzzing efforts (e.g., WinAFL, Jackalope) with the ability to port Linux-only

enhancements (e.g., QSYM, AFL++) to non-Linux domains, getting one step closer to

bridging the Linux, Windows, and macOS fuzzing communities. The primary technical

challenges are soundly handling non-Linux binary formats which, in addition to introduc-

ing platform-specific layout conventions, also add compiler-specific patterns (e.g., MSVSC’s

aggressive data-in-code inlining), requiring fundamentally new heuristics and algorithms.

With these challenges addressed, I will seek to adapt platform-agnostic instrumentation to

other security-oriented tasks such as control-flow integrity, de-obfuscation, sanitization, taint

tracking, and program hardening.
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