
Stefan Nagy

Week 14: Lecture A
Configuration-aware Fuzzing

& Course Wrap-up

1

Monday, April 14, 2025

Stefan Nagy

How are semester projects going?

Making progress?

2

Stuck?

Stefan Nagy

How are semester projects going?

Making progress?

3

Stuck?

Questions? Need help? Come to
office hours after class today!

Stefan Nagy

The Next Few Weeks

4

Stefan Nagy

Recap: Project Schedule
￭ Apr. 16th & 21st: final presentations

￭ 5–8 minute slide deck and discussion
￭ What you did, and why, and what results
￭ Report any bugs found (and show you did so!)

￭ What’s most important:
￭ High-level technique
￭ Challenges and workarounds
￭ Key results (bugs found, other successes, etc.)

￭ Project report due by midnight last day of class
￭ 3–5 pages describing your work and results
￭ Reports of any bugs found

5

Stefan Nagy

Recap: Project Schedule
￭ Apr. 16th & 21st: final presentations

￭ 5–8 minute slide deck and discussion
￭ What you did, and why, and what results
￭ Report any bugs found (and show you did so!)

￭ What’s most important:
￭ High-level technique
￭ Challenges and workarounds
￭ Key results (bugs found, other successes, etc.)

￭ Project report due by midnight last day of class
￭ 3–5 pages describing your work and results
￭ Reports of any bugs found

6

Final Reports (3–5 pages) due by 11:59PM on Tuesday, April 21st

Merge your Final Reports and Presentation Slides into one PDF

Stefan Nagy

Finalized Team Presentation Schedule

7

Wednesday Monday

Stefan Nagy

End-of-semester Course Evals

￭ I want your feedback!
￭ 3rd time teaching this course 😃
￭ Help me improve the class!

￭ Due by May 6th
￭ https://scf.utah.edu
￭ Please please please!

8

https://scf.utah.edu/blue/

Stefan Nagy

End-of-semester Course Evals

￭ I want your feedback!
￭ 3rd time teaching this course 😃
￭ Help me improve the class!

￭ Due by May 6th
￭ https://scf.utah.edu
￭ Please please please!

9

If 85% of class (42 of 49 students)
submits an eval, we’ll add 2% extra
credit to your Participation grades!
(equivalent to one lecture’s worth of points!)

https://scf.utah.edu/blue/

Stefan Nagy

Questions?

10

Stefan Nagy

Config-aware Fuzzing

11

Stefan Nagy

￭ Variability at run-time:
￭ Different ways of parsing input
￭ Current focus of fuzzing research

12

Software Variability: a Tale of Two Perspectives

Stefan Nagy

￭ Variability at run-time:
￭ Different ways of parsing input
￭ Current focus of fuzzing research

￭ Variability at compile-time:
￭ Including & excluding certain code
￭ Potentially huge attack surface
￭ Not currently being explored

13

Software Variability: a Tale of Two Perspectives

Stefan Nagy

Compile-time Variability

￭ Maintaining deployment-specific codebases is unscalable
￭ Support on-demand features, environments, architectures

￭ Solution: software variability
￭ One codebase, multiple builds

￭ Mechanisms for variability:
￭ C and C++: the preprocessor
￭ Rust: conditional compilation

14

Stefan Nagy

￭ Bugs triggerable only within a specific variant of the software

15

#ifdef TWL4030_CORE
int twl_probe()
{
 int *ops = NULL;

#ifdef OF_IRQ
 ops = &irq_domain_simple_ops;
#endif

 int irq = *ops;
}
#endif

Can you spot the bug?

If TWL4030_CORE and !OF_IRQ,
then int *ops remains NULL…

= NULL pointer dereference!

http://vbdb.itu.dk/linux/6252547.html

With thousands to millions of
possible variants, concurrent
testing becomes unscalable!

Compile-time Variability Bugs

Stefan Nagy

￭ http://vbdb.itu.dk/database.html

16

Compile-time Variability Bugs

http://vbdb.itu.dk/database.html

Stefan Nagy

Is anyone fuzzing for compile-time variability bugs?

￭ OSS-Fuzz
￭ x86
￭ x64
￭ ARM (maybe?)

￭ SyzKaller
￭ Many kernels
￭ Default configs only

17

Stefan Nagy

￭ OSS-Fuzz
￭ x86
￭ x64
￭ ARM (maybe?)

￭ SyzKaller
￭ Many kernels
￭ Default configs only

￭ An under-explored class of bugs
￭ We need tools to find them!

18

Is anyone fuzzing for compile-time variability bugs?

Stefan Nagy

￭ Crude approach:
￭ Enumerate every config possible
￭ Concurrently fuzz all the builds
￭ Differential execution

19

What would compile-time variability fuzzing look like?

Stefan Nagy

￭ Crude approach:
￭ Enumerate every config possible
￭ Concurrently fuzz all the builds
￭ Differential execution

￭ Problem: combinatorial explosion
￭ Good luck building every config
￭ Good luck fuzzing every build

20

Linux provides more than
12,000 configurable features

What would compile-time variability fuzzing look like?

Stefan Nagy

￭ Idea: transform conditionally-compiled code into conditionally-invoked

21

#ifdef TWL4030_CORE
int twl_probe()
{
 int *ops = NULL;

#ifdef OF_IRQ
 ops = &irq_domain_simple_ops;
#endif

 int irq = *ops;
}
#endif

Prior work in the SE community on
“desugaring” preprocessor usage:

Toward Compile-time Variability-Aware Fuzzing

Stefan Nagy

￭ Idea: transform conditionally-compiled code into conditionally-invoked

22

#ifdef TWL4030_CORE
int twl_probe()
{
 int *ops = NULL;

#ifdef OF_IRQ
 ops = &irq_domain_simple_ops;
#endif

 int irq = *ops;
}
#endif

Prior work in the SE community on
“desugaring” preprocessor usage:

Is desugaring amenable
to dynamic testing?

Toward Compile-time Variability-Aware Fuzzing

Stefan Nagy

￭ Idea: transform conditionally-compiled code into conditionally-invoked

23

#ifdef TWL4030_CORE
int twl_probe()
{
 int *ops = NULL;

#ifdef OF_IRQ
 ops = &irq_domain_simple_ops;
#endif

 int irq = *ops;
}
#endif

if (getenv(“TWL4030_CORE”){
int twl_probe()
{
 int *ops = NULL;

if (getenv(“OF_IRQ”){
 ops = &irq_domain_simple_ops;
}

 int irq = *ops;
}
}

Parse the AST
to identify all
preprocessor

tokens

Transform all
preprocessor
code blocks

Toward Compile-time Variability-Aware Fuzzing

Stefan Nagy

￭ Idea: transform conditionally-compiled code into conditionally-invoked

24

if (getenv(“TWL4030_CORE”){
int twl_probe()
{
 int *ops = NULL;

if (getenv(“OF_IRQ”){
 ops = &irq_domain_simple_ops;
}

 int irq = *ops;
}
}

￭ Use fuzzing to differentially test
different feature combinations

 TWL4030_CORE && OF_IRQ
!TWL4030_CORE && !OF_IRQ
!TWL4030_CORE && OF_IRQ
 TWL4030_CORE && !OF_IRQ

Toward Compile-time Variability-Aware Fuzzing

Stefan Nagy

￭ Idea: transform conditionally-compiled code into conditionally-invoked

25

if (getenv(“TWL4030_CORE”){
int twl_probe()
{
 int *ops = NULL;

if (getenv(“OF_IRQ”){
 ops = &irq_domain_simple_ops;
}

 int irq = *ops;
}
}

￭ Use fuzzing to differentially test
different feature combinations

 TWL4030_CORE && OF_IRQ
!TWL4030_CORE && !OF_IRQ
!TWL4030_CORE && OF_IRQ
 TWL4030_CORE && !OF_IRQ

Goal: enable a software product line to be
expressed and fuzzed via a single executable

Toward Compile-time Variability-Aware Fuzzing

Stefan Nagy

Current Work: Variability Desugaring

￭ Current support for:
￭ #ifdef
￭ Function decls/defs
￭ Variable decls/defs
￭ Nested macros

￭ Working on:
￭ Other macro types
￭ Duplicate-named vars/funcs
￭ Other non-trivial cases

26

#ifdef FOO
void foo(){
 printf("foo");
}
#endif

int main(){
#ifdef FOO
int y = 2;
x = y;
foo();
#endif
}

 void foo(){
 assert(“FOO”);
 printf(“foo”);
}

int main(){
 int y;
 if ("FOO"){
 y=2;
 x=y;
 foo();
 }
}

Stefan Nagy

Current Work: Differential Execution

￭ Initial approach: replaying inputs
￭ Gather high-coverage inputs
￭ Replay each with instrumentation
￭ Randomize enabled/disabled macros
￭ Filter-out invalid configs pre/post fuzzing
￭ Use standard bug oracles (e.g., ASAN)

￭ Smarter approach: track variability
￭ Need to identify metrics of “interesting”
￭ Prioritize configs that execute new paths
￭ Prioritize configs that change program state

27

Stefan Nagy

Future Directions

￭ AFL + SyzKaller implementations
￭ Prototype a many-build approach
￭ Eventually pair with desugaring

￭ Directed Variability Fuzzing
￭ Pick subset of features to test
￭ Constrain to specific path/region

￭ Cross-platform Variability
￭ Test Windows and Linux builds
￭ Explore other architectures

28

Stefan Nagy

Course Wrap-up

29

Stefan Nagy

You’ve finished the course!

30

Stefan Nagy

What did we learn?

￭ Weeks 1 – 3: Systems Research 101
￭ Ideas, writing, presenting, reviewing

￭ Weeks 4 – 9: Fuzzing Fundamentals
￭ Generation, feedback, bugs & triage,

harnessing, roadblocks, fuzzing science

￭ Weeks 10 – 12: Emergent Enhancements
￭ Optimization, directed fuzzing, hybrid fuzzing

￭ Weeks 13 – 16: New Frontiers in Fuzzing
￭ Kernels, compilers, hardware, and more!

34

Stefan Nagy

Goal #1: become better researchers

Feel free to bookmark or download the Research 101 slides!
cs.utah.edu/~snagy/courses/cs5963/slides

35

Stefan Nagy

Goal #2: exposure to different perspectives

36

Stefan Nagy

Goal #3: learn state-of-the-art tools

37

== ASAN: heap-use-after-free on address
0x61900000047f at pc 0x00000040a52c bp
0x7fff9200dbf0 sp 0x7fff9200dbe0
READ of size 1 at 0x61900000047f thread T0
 #0 0x40a52b in src/main.cpp:30
 #1 0x40e088 in std_function.h:297
 #2 0x40d605 in std_function.h:687
 #3 0x40b8d5 in src/main.cpp:130
 #4 0x7f9a498ff412 in libc-start.c:308

Stefan Nagy

Now go forth and teach others!

38

Stefan Nagy

Thank you!

39

