# Week 13: Lecture B Hardware Testing

### Wednesday, April 9, 2025



### How are semester projects going?

Making progress?





Stuck?





### **The Next Few Weeks**

| Part 3: New Frontiers in Fuzzing                                                      |                                                |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------------|--|--|
| Monday Meeting                                                                        | Wednesday Meeting                              |  |  |
| Mar. 31<br>Kernel Fuzzing<br>▶ Readings:                                              | Apr. 02<br>LLM-assisted Fuzzing<br>▶ Readings: |  |  |
| Apr. 07<br>Compiler Fuzzing<br>▶ Readings:                                            | Apr. 09<br>Hardware Fuzzing<br>▶ Readings:     |  |  |
| Apr. 14<br>Fuzzing Configurable Software<br>▶ Readings:                               | Apr. 16 Final Presentations (Day 1)            |  |  |
| Apr. 21  Final Presentations (Day 2)  Final Reports due Tuesday by 11:59pm via Canvas | Apr. 23<br>No Class (Reading Day)              |  |  |

### **Recap: Project Schedule**

#### Apr. 16th & 21st: final presentations

- **5–8 minute** slide deck and discussion
- What you did, and why, and what results
- Report any bugs found (and show you did so!)

#### What's most important:

- High-level technique
- Challenges and workarounds
- Key results (bugs found, other successes, etc.)
- Project report due by midnight last day of class
  - 3–5 pages describing your work and results
  - Reports of any bugs found





### **Questions?**





## **Hardware Security and Testing**



### Hardware





### Hardware





### Hardware























Stefan Nagy

### **Hardware Bugs**





Stefan Nagy

### **Hardware Bugs**





### **Hardware Bugs**





Stefan Nagy

- Trojan Horse:
  - **•** ???



#### Trojan Horse:

- Attack pre-inserted into chip
- Will be exploited at run time
- **Remotely triggered** by attacker





#### Trojan Horse:

- Attack pre-inserted into chip
- Will be exploited at run time
- Remotely triggered by attacker

#### Ideal characteristics:

- Small
- Stealthy
- Controllable



#### Trojan Horse:

- Attack pre-inserted into chip
- Will be exploited at run time
- Remotely triggered by attacker

#### Ideal characteristics:

- Small
- Stealthy
- Controllable

Engineering a trigger



## Israeli sky-hack switched off Syrian radars countrywide

Backdoors penetrated without violence

A Lewis Page

Thu 22 Nov 2007 // 13:57 UTC

More rumours are starting to leak out regarding the mysterious Israeli air raid against Syria in September. It is now suggested that "computer to computer" techniques and "air-to-ground network penetration" took place.

The latest revelations are made by well-connected *Aviation Week* journalists. Electronic-warfare correspondent David Fulghum says that US intelligence and military personnel "provided advice" to the Israelis regarding methods of breaking into the Syrian air-defence network.

### **Recycled and Counterfeit Hardware**

Guin et al.: Counterfeit Integrated Circuits: A Rising Threat in the Global Semiconductor Supply Chain



Russia is resorting to putting computer chips from dishwashers and refrigerators in tanks due to US sanctions, official says



### **Recycled and Counterfeit Hardware**

#### Counterfeit and recycled chips have a shorter lifespan

Absolutely dangerous for security-critical use cases





### **Recycled and Counterfeit Hardware**

#### Counterfeit and recycled chips have a shorter lifespan

Absolutely dangerous for security-critical use cases





### **Secure Hardware**

Can we ever know for sure that a chip is secure?





### Hardware Testing

- One of the highest-paid (and steep-learning-curve) careers in testing
  - **Spoiler:** it's even harder than testing software

| ¢ | Electrical Hardware Test |      | Hardware Test Engineer □<br>Motorola Solutions, Inc.<br>Culver City, CA<br>via ZipRecruiter<br>■ Full-time ③ Health insurance ⑦ Dental insurance<br>☑ Paid time off |
|---|--------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R | Hardware Test Engineer   | HNNN | Hardware Test Engineer                                                                                                                                              |



### **Testing Hardware Physically**

How could we even do this?





### **Testing Hardware Physically**







### **Testing Hardware Pre-Silicon**

- Idea: apply testing to the HDL (Hardware Description Lang.)
  - E.g., Verilog
- Benefits over physical testing?



0

HOLD

### **Testing Hardware Pre-Silicon**

- Idea: apply testing to the HDL (Hardware Description Lang.)
  - E.g., Verilog
- Benefits over physical testing?
  - Downsides?



### **Enter the Simulation**

Idea: "translate" HDL to a more workable representation (e.g., C++)



### **Questions?**



