Week 9: Lecture A

Client-side Web Security and HTTPS
Tuesday, October 22, 2024

Announcements

Project 3: WebSec released
= Deadline: Thursday, November 7th by 11:59PM

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

-
Project 3: Web Security

Deadline: Thursday, November 7 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Stefan Nagy

Project 3 progress

Working on Part 1
| 0%
Working on Part 2
| 0%
Working on Part 3
' 0%

None of the above

| 0%

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Announcements

Project 2 grades are now available on Canvas

Statistics:

= Average score across all teams: 91.64%
= Three solved one of the extra credit targets

Fantastic job!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 4

Announcements

Project 2 grades are now available on Canvas

Think we made an error? Request a regrade!
= Valid regrade requests:
= You have verified your solution is correct
(i.e., we made an error in grading)

Project 2 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 10/28 via Google Form

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 7

Last time on CS 4440...

Web Attacks
SQL Injection
Cross-site Scripting
Cross-site Request Forgery

Code Injection in Web Apps

A common and dangerous class of attacks
= Shell Injection
= SQL Injection
= Cross-Site Scripting
= Control-flow Hijacking (buffer overflows)

[GET /?path=$(rm —rf /) HTTP/1.1

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 9

Code Injection in Web Apps

[What is the universal flaw here? J

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 10

Code Injection in Web Apps

- N
What is the universal flaw here?

- .
Confusing input data with code!

SCHOOL OF COMPUTING
u UNIVERSITY OF UTAH Stefan Nagy 1

SQL Injection Attacks

Attacker goal: ?7?

GET /search/directory?id=1000 [SELECT * FROM directory where userid = '1000" l

» » <=
< =7]
e Here is your data I < Here is information on userid = 1000
i Webserver
Alice
SCHOOL OF COMPUTING Stefan Nagy 12

UNIVERSITY OF UTAH

SQL Injection Attacks

Attacker goal: inject or modify database commands to read or alter info

GET /search/directory?id=1000 - [SELECT * FROM directory where userid = '1000" l ‘E

arimlrm
I <

Webserver

A

Here is your data Here is information on userid = 1000

Alice

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 13

SQL Injection Attacks

Attacker goal: inject or modify database commands to read or alter info

GET /search/directory?id=1000 { SELECT * FROM directory where userid = '1000" L

J » - - [
I Here is your data I < Here is information on userid = 1000 .
. Webserver
Alice
GET /search/directory?id=1000' OR '1'="1 [SELECT * FROM directory where userid = '1000' OR '1'="1'
i
< : M < . : :
Here is your data Here is everything | have in the users table
Webserver
Eve
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 14

Project 3: SQL Injection Tips

Identify how the input is processed on the server-side

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 15

Project 3: SQL Injection Tips

Identify how the input is processed on the server-side
= E.g. for SQL Inject #0:

[SELECT * FROM users WHERE username='Susername' AND password='Spassword'’]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 16

Project 3: SQL Injection Tips

Identify how the input is processed on the server-side
= E.g. for SQL Inject #0:

[SELECT * FROM users WHERE username='Susername' AND password='Spassword'’]

What input fields are under our control?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 17

Project 3: SQL Injection Tips

Identify how the input is processed on the server-side
= E.g. for SQL Inject #0:

[SELECT * FROM users WHERE username='Susername' AND password='Spassword']

What input fields are under our control?
= The Susername and Spassword fields

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 18

Project 3: SQL Injection Tips

Identify how the input is processed on the server-side
= E.g. for SQL Inject #0:

[SELECT * FROM users WHERE username='Susername' AND password='Spassword']

What input fields are under our control?
= The Susername and Spassword fields

What is the goal of our SQL injection attack?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 19

Project 3: SQL Injection Tips

Identify how the input is processed on the server-side
= E.g. for SQL Inject #0:

[SELECT * FROM users WHERE username='Susername' AND password='S$password’]

What input fields are under our control?
= The Susername and Spassword fields

What is the goal of our SQL injection attack?
= ASQL query that logsusinas “victim”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 20

Project 3: SQL Injection Tips

Identify how the input is processed on the server-side
= E.g. for SQL Inject #0:

[SELECT * FROM users WHERE username='Susername' AND password='S$password’]

What input fields are under our control?
= The Susername and Spassword fields

What is the goal of our SQL injection attack?
= ASQL query that logsusinas “victim”

What steps are needed for our attack to work?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 21

Project 3: SQL Injection Tips

Identify how the input is processed on the server-side
= E.g. for SQL Inject #0:

[SELECT * FROM WHERE username='Susername' AND password='S$password']

What input fields are under our control?

= The Susername and $password fields (A

The correct password

What is the goal of our SQL injection attack? would log us in...

= ASQL query that logsusinas “victim” N =
4 N

What steps are needed for our attack to work? But we do not know

1. Set $username to “victim” the user's password!
2. Set $password to their password \ /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 22

Project 3: SQL Injection Tips

Solution: craft a query that closes-out unknowable fields, resolves to TRUE

[SELECT * FROM users WHERE username='Susername' AND password='$password']

Example Attack:

[... AND password='S$password']

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 23

Project 3: SQL Injection Tips

Solution: craft a query that closes-out unknowable fields, resolves to TRUE

[SELECT * FROM users WHERE username='Susername' AND password='$password']

Example Attack:

. AND password='S$password'

. AND password=""]

= Closes-out unknowable password

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 2

Project 3: SQL Injection Tips

Solution: craft a query that closes-out unknowable fields, resolves to TRUE

[SELECT * FROM users WHERE username='Susername' AND password='S$password’]

Example Attack:

. AND password='S$password'

A

. AND password='' OR '1'="1"

p——

= Closes-out unknowable password
= '"1'="1" always resolves TRUE

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 25

Project 3: SQL Injection Tips

Solution: craft a query that closes-out unknowable fields, resolves to TRUE

[SELECT * FROM users WHERE username='Susername' AND password='S$password’]

Example Attack: Example Attack:

. AND password='S$ ' [... AND password='Spassword'

. AND password=" . AND password="'foo'

Closes-out unknowable password
always resolves

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 26

Project 3: SQL Injection Tips

Solution: craft a query that closes-out unknowable fields, resolves to TRUE

[SELECT * FROM users WHERE username='Susername' AND password='S$password’]

Example Attack: Example Attack:

. AND password='S$ ' [... AND password='Spassword'

. AND password=" . AND password="'foo'

Closes-out unknowable password = Creates a FALSE string comparison
always resolves

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 27

Project 3: SQL Injection Tips

Solution: craft a query that closes-out unknowable fields, resolves to TRUE

[SELECT * FROM users WHERE username='Susername' AND password='S$password’]

Example Attack: Example Attack:

. AND password='S$ ' [... AND password='Spassword'

. AND password=' . AND password="'foo' =

Closes-out unknowable password = Creates a FALSE string comparison
always resolves

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 28

Project 3: SQL Injection Tips

Solution: craft a query that closes-out unknowable fields, resolves to TRUE

[SELECT * FROM users WHERE username='Susername' AND password='$password']

Example Attack: Example Attack:
. AND password='S$ ' [..

. AND password='S$password'

~—

. AND password="' ' [... AND password='foo' = "']
Closes-out unknowable password = Creates a FALSE string comparison
always resolves = But FALSE == "' ends up TRUE

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

29

Project 3: SQL Injection Tips

Solution: craft a query that closes-out unknowable fields, resolves to TRUE

[SELECT * FROM users WHERE username='Susername' AND password='S$password’]

Example Attack: Example Attack:

. AND password='S$ ' [AND password='Spassword']
. AND password="' ' [AND int(FALSE) == int('")]
Closes-out unknowable password = Creates a FALSE string comparison

always resolves = But FALSE == "' ends up TRUE

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

30

Project 3: SQL Injection Tips

Solution: craft a query that closes-out unknowable fields, resolves to TRUE

Key idea: identify how you can
exploit SQL's command syntax
and queries that resolve TRUE

Result: Attacker does not need
to know the victim’s password!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 31

Project 3: SQL Injection Tips

Write-out your query and how the server processes it
= Are you closing-out fields? Commenting-out the line?

Trial-and-error with different TRUE-resolving queries
= Pay attention to what server tells you!
= Eg,“Incorrect username or password”versus “Error in MySQL query”

AND password='"'" OR '1'="1"

AND password='"' OR '12345'

AND password='"' =

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 32

Interacting with Web Applications

GET request: parameters in ???

Y

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 33

Interacting with Web Applications

GET request: parameters in URL

? www.bank.com/send.asp?to=snagy&amt=100 }

Ok! Sent $100 to snagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

POST request: parameters in 7??

34

Interacting with Web Applications

GET request: parameters in URL

? www.bank.com/send.asp?to=snagy&amt=100]

POST request: parameters in body
? www.bank.com/send.asp]
<input name="to" value="snagy”>
<input name="amt" value="100">

? Ok! Sent $160 to snagy
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 35

Ok! Sent $100 to snagy

Cross-site Request Forgery (CSRF)

Attacker goal: 77?

UUUUUUUUUUUUUUUU Stefan Nagy 36

Cross-site Request Forgery (CSRF)

Attacker goal: leverage user’s session to execute malicious commands
= Trick user into accessing specially-crafted URLs (GET) or HTML pages (POST)

https://vulnerable-website.com/email/change?email=pwned@evil-user.net

— 1
(IZI Change email address)

\ 4

Email
changed

HI

SCHOOL OF COMPUTING Stefan Nagy 37

UNIVERSITY OF UTAH

CSRF Attacks

POST-based CSRF (evil webpage)

N
O <input name="to" value="evil”>
<input name="amt" value="100">

Ok! Sent $100 to evil

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 38

CSRF Attacks

GET-based CSRF (evil URL)

? www.bank.com/send.asp?to=evil&amt=100 }

Ok! Sent $100 to evil

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 39

Interacting with Dynamic Web Applications

A powerful, popular web programming language
= Transmitted as text, rendered by client’s browser

= Can alter webpage contents, track events, read/set

cookies, issue requests, read requests’ replies, etc.

[. 1" 3 : 1
<script type="text/javascript'>
function hello() { alert("Hello world!"); }

_ </script>
p
<img src="picture.gif"
onMouseOver="javascript:hello()">
\

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 40

Cross-site Scripting (XSS)

Attacker goal: 77?

‘ M https://insecure-website.com/comment?message="1 wonder if this message box filters-out JavaScript?"

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

41

Cross-site Scripting (XSS)

Attacker goal: submit code as data to website, get victim to execute it

| M https:/linsecure-website.com/comment?message=<script src=https://evil-user.net/badscript.js></script> l

A

v
? Sensitive data
% 4

|

o~]
CO Mother’s maiden name)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 42

Cross-site Scripting (XSS)

Attacker goal: submit code as data to website, get victim to execute it

/ N

What are the two forms of
Cross-site Scripting?

N Y,

4 N\
Persistent: malicious code

L embedded on the website)

4)
Reflected: malicious code part

L of the request sent to the site
v

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 43

Cross-site Scripting (XSS)

Attacker goal: submit code as data to website, get victim to execute it

4 N

What are the two forms of po— A——\

Cross-site Scripting? <script>
evil
</script>

Persistent: malicious code
embedded on the website

render

\ / CS 4440: Introduction to
4 o) ~ :
Reflected: malicious code part e
L of the request sent to the site
v

execute

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy Lt

Project 3: Beginner CSRF & XSS Tips

Understand how your target takes input
= LOGIN page: POST requests
= SEARCH page: GET requests

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 45

Project 3: Beginner CSRF & XSS Tips

Understand how your target takes input
= LOGIN page: POST requests
= SEARCH page: GET requests

Set up your attack parameters accordingly
= Desired username, password, method, etc.
= Template makes this easy—use the form!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 46

Project 3: Beginner CSRF & XSS Tips

Understand how your target takes input
= LOGIN page: POST requests
= SEARCH page: GET requests

Set up your attack parameters accordingly
= Desired username, password, method, etc.
= Template makes this easy—use the form!

BSF 1-3: exploiting the SEARCH page
= Weakness: improperly filters search terms...
= Can we leverage this to inject code?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Example SEARCH Input:

-

<input name="q" value="
<script>
alert(0);
</script>

~

47

Project 3: Beginner CSRF & XSS Tips

Understand how your target takes input Example SEARCH Input:
LOGIN page: requests
SEARCH page: requests <input name="q" value="

Set up your attack parameters accordingly
Desired username, password, method, etc.
Template makes this easy—use the !

BSF 1-3: exploiting the page
improperly filters search terms...
Can we leverage this to inject code?

Test out simple payloads first, then move on to building your full attacks!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 48

Project 3: Advanced XSS Tips

Builds off your skills from Part 2

= Master those first before attempting these!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 49

Project 3: Advanced XSS Tips

Builds off your skills from Part 2

= Master those first before attempting these!

Part 2: page-reflected XSS
= Attack embedded in a static page

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

<input name="q" value="

>

<script>alert(0);</script>

50

Project 3: Advanced XSS Tips

Builds off your skills from Part 2

= Master those first before attempting these!

<input name="q" value="
Part 2: page-reflected XSS <script>alert(8);</script>
= Attack embedded in a static page >)
B
Part 3: URL-reflected XSS http://cs4440.eng.utah.edu/project3
= Attack embedded in a URL /search?q=%3Cscript%3E. ..

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 51

Project 3: Advanced XSS Tips

Builds off your skills from Part 2

Master those first before attempting these!

<input name="q" value="
Part 2: XSS
Attack embedded in a static page g
Part 3: XSS http://cs4446.eng.utah.edu/project3
Attack embedded in a URL /search?

Test your attack by first embedding it in an HTML page, then move to a URL!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 52

Project 3: Advanced XSS Tips

Builds off your skills from Part 2

Master those first before attempting these!

<input name="q" value="
Part 2: XSS
Attack embedded in a static page g
Part 3: XSS http://cs4446.eng.utah.edu/project3
Attack embedded in a URL /search?

Test your attack by first embedding it in an HTML page, then move to a URL!

= Hint: write a program to convert JavaScript code characters to a URL-friendly encoding
= See https://www.w3schools.com/tags/ref urlencode.ASP

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 53

https://www.w3schools.com/tags/ref_urlencode.ASP

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 54

This time on CS 4440...

Browser-side Web Security
Isolation and Sandboxing
The Same-origin Policy
HTTPS, SSL, and TLS

Principles of Web Security

Privacy

= 772

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 56

Principles of Web Security

Privacy
= Malicious websites should not be able
to spy on me or my activities online

Integrity

=

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 57

Principles of Web Security

Privacy
= Malicious websites should not be able
to spy on me or my activities online

Integrity
= Malicious websites should not be able
to violate the integrity of my computer
or my information on other websites

Confidentiality

= ??7?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 58

Principles of Web Security

Privacy
= Malicious websites should not be able
to spy on me or my activities online

Integrity
= Malicious websites should not be able
to violate the integrity of my computer
or my information on other websites

Confidentiality
= Malicious websites should not be able
to learn confidential information from
my computer or from other websites

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 59

Web Security Risks

Risk #1: TotallySafeSite.com should keep my information secure
= E.g., database breaches, stolen login credentials, disgruntled employee, etc.

Defenses: server-side security

= 772

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 60

Web Security Risks

Risk #1: TotallySafeSite.com should keep my information secure
= E.g., database breaches, stolen login credentials, disgruntled employee, etc.

Defenses: server-side security
= Not storing info in plaintext
= Principle of Least Privilege
= Multi-factor authentication
= Fix all server security bugs

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 61

Web Security Risks

Risk #2 visiting TotallySafeSite.com may access my files and programs
= E.g, install malware, read sensitive information, alter local files, etc.

Defenses: browser-side security

= 7 ’
@

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 62

Web Security Risks

Risk #2 visiting TotallySafeSite.com may access my files and programs
= E.g, install malware, read sensitive information, alter local files, etc.

Defenses: browser-side security

= Fix browser security bugs ‘
= Enable automatic updates @
= Privilege separation

= Sandbox all code (e.g., JavaScript)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 63

Client-side Web Defenses

Browser Sandboxing Techniques

General Process Sandboxing
= See Week 6B’s lecture

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 65

Browser Sandboxing Techniques

General Process Sandboxing
= See Week 6B’s lecture

DOM Mirroring
= Filter-out unsafe DOM elements S
= E.g, anti-adblocking functionality __ gz /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 66

Browser Sandboxing Techniques

General Process Sandboxing
= See Week 6B’s lecture

DOM Mirroring
= Filter-out unsafe DOM elements
= E.g, anti-adblocking functionality

Pixel Streaming / Remote Browser
= Render page remotely (e.g., container)
= Pixel Reconstruction: client only gets the
final pixel array, not the application code
= Remote Browser: all interaction encrypted

67

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Web Security Risks

Risk #3: TotallySafeSite.com tracks my info/interaction with other sites
= E.g., spying on my GMail emails, purchasing things with my Amazon, etc.

Defenses: maintain site
= Same-origin Policy
= Multi-process browsing

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 68

Same-origin Policy

Goal: make sure that scripts don’t abuse the power of JavaScript

Compi Securi v
%

S~ >

Scripts from CS 4440 website shouldn’t read cookies on FellsWargo site
= ... oralter FellsWargo site’s layout, or its read keystrokes typed by user to FellsWargo site

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 69

Same-origin Policy

Origin = the protocol + the hostname

Example: http://www.cs.utah.edu/class...

= Protocol: HTTP
= Hosthame: www.cs.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

70

Same-origin Policy

Origin = the protocol + the hostname

Example: http://www.cs.utah.edu/class...
= Protocol: HTTP
= Hosthame: www.cs.utah.edu

JavaScript from one page can read, change, and e
interact freely with all pages from same origin s —
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 71

Same-origin Policy

Origin = the protocol + the hostname e

Example: http://www.cs.utah.edu/class...
= Protocol: HTTP
= Hosthame: www.cs.utah.edu

CS 4440: Introduction to
Computer Security

JavaScript from one page can read, change, and

interact freely with all pages from same origin
= Content cannot be accessed by scripts of different origin | | .= 2

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 72

Same-origin Policy

Restricts access to content from the same origin (protocol + host)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 73

Same-origin Policy

Restricts access to content from the same origin (protocol + host)
Try the following, comparing to http://example.com/home.html

Candidate Request SOP Result Explanation

https://example.com/index.html

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 74

For http://example.com/home.html, does https://example.com/index.html violate the SOP?

Passes SOP

| 0%
Violates SOP

| 0%

None of the above

| 0%

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Same-origin Policy

Restricts access to content from the same origin (protocol + host)
Try the following, comparing to http://example.com/home.html

Candidate Request SOP Result Explanation

https://example.com/index.html FAIL Different protocol (https)

http://example.com/dir/other.html

https://example.com/dir/inner/index.html

http://example.com/dir/first/out/home.html

http://en.example.com/dir/other.html

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 76

Same-origin Policy

Restricts access to content from the same origin (protocol + host)
Try the following, comparing to http://example.com/home.html

Candidate Request SOP Result Explanation
https://example.com/index.html FAIL Different protocol (https)
http://example.com/dir/other.html PASS Same protocol, same host
https://example.com/dir/inner/index.html FAIL Different protocol (https)
http://example.com/dir/first/out/home.html PASS Same protocol, same host
http://en.example.com/dir/other.html FAIL Different host (en)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 77

Same-origin Policy

Implementation: tagged sandboxing

/

&

Your Website
JavaScript JavaScript
Methods Methods
Data Data
etc. etc.
o NG

/

~

v

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

-

Other Site

\.

JavaScript

Methods
Data
etc.

/

N

78

Same-origin Policy

Implementation: tagged sandboxing

/ Your Website \ / Other Site \

JavaScript

JavaScript JavaScript

Methods
Data

etc.

k\ // \\

= Scripts within same origin can interface with each other

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 79

Same-origin Policy

Implementation: tagged sandboxing

/ Your Website \ I / Other Site \

4 I
JavaScript JavaScript
Methods
Data

k . / / I

= Scripts within same origin can interface with each other
= Scripts from different origins are completely blocked

JavaScript

etc.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 80

Multi-process Browsing

Idea: isolate “tabs” into
distinct processes

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

P Task Manager - Google Chrome

Task

L5 @2 I 8

H 0 é

Browser

GPU Process

Tab: All

Subframe: https://stripe.com/
Tab: TweetDeck

Subframe: https://twitter.com/
Tab: Posteingang - helge@helgeklein.com - Helge K|
Subframe: https://accounts.google.com/

Subframe: https://accounts.google.com/

Subframe: https://accounts.google.com/

Tab: vast limits - Kalender - November 2018

Tab: Inbox - helge@uberagent.com - vast limits Mail
Tab: Activity Stream | uberAgent dev

Tab: Front

Subframe: https://meetingbird.com/

Tab: uberAgent « Windows, Citrix & VMware mon
Extension: uBlock Origin

Extension: Grammarly for Chrome

Extension: uberAgent

Main process

Tab process

CPU

Frames sharing a process

Isolated frame from other site

Extension processes

00

00

Network Process ID
0 5376
0 28152
0 25160
0 4100
0 18588
) 21532

23948

0 10040
104

780

= 544
0 10836
0 20140
0 18112
0 18916
0 720

JavaScript memory

64,568K (58,204K live)
6,388K (2.873K live)

76,784K (64,197K live)

175,700K (154,169K live)

26,356K (20,142K live)

97,264K (85,582K live)
227,660K (201,641K live)
37,872K (29.536K live)
62,448K (51,857K live)
35,584K (31,297K live)
20,452K (14,665K live)
34,660K (27,061K live)
24,320K (19,044K live)

17,652K (12,092K live)

Stefan Nagy

81

Multi-process Browsing

Idea: isolate “tabs” into

distinct processes Main process
= Site-level isolation! = By e o v e :

e & TabAl 00 0 25160 64,568K (58,294K live)

| P i ggy b acC k Off Of M M U e Subframe: httpsy/stripe.com/ Ta b p rocess 00 0 4100 6388K (2:873K live)

I W Tab: TweetDeck

00 0 18588 76,784K (64,197K live)

Subframe: https://twitter.com/

Most b rowse rs d o th is ® M Tab: Posteingang - helge@helgeklein.com - Helge K) 21532 175700K (154,169K live)
Subframe: https://accounts.google.com/ F ra m es S h a ri n g a p roce S S) 23948 26,356K (20,142K live)
] C h ro m e Subframe: https://accounts.google.com/

. Subframe: https://accounts.google.com/
= Firefox)

)
= Etc.

Tab: vast limits — Kalender - November 2018 00, Q 10040 97,264K (85,582K live)

Tab: Inbox - helge@uberagent.com - vast limits Mail

st Ee Isolated frame from other site

104 227,660K (201,641K live)

2 X 8

. 780 37,872K (29,536K live)
. @ Tab: Front = = 544 62,448K (51,857K live)
. Subframe: https://meetingbird.com/ 00 0 10836 35,584K (31,297K live)

[
()
D ow n s I d e. ??? e ¥ Tab:uberAgent - Windows, Citrix & VMware mon 00 0 20140 20,452K (14,665K live)

L5 |

|
. @ Extension: uBlock Origin E t o 00 0 18112 34,660K (27,061K live)
Xtension processes
. @ Extension: Grammarly for Chrome 00 0 18916 24,320K (19,044K live)
. m Extension: uberAgent 00 0 720 17,652K (12,092K live)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 82

Multi-process Browsing

Idea: isolate “tabs” into

distinct processes T Main process R
= Sijte-level isolation! = By e o :

o & Tab:Al 00

] PiggybaCk Off Of MM U o Subframe: https://stripe.com/ Tab process 00

I W Tab: TweetDeck

25160 64,568K (58,294K live)

4100 6,388K (2.873K live)

© o o o o

18588 76,784K (64,197K live)

Subframe: https://twitter.com/

Most b rowse rs d o th is ® M Tab: Posteingang - helge@helgeklein.com - Helge K) 21532 175700K (154,169K live)
Subframe: https://accounts.google.com/ F ra m es S h a ri n g a p roce S S) 23948 26,356K (20,142K live)
] C h ro m e Subframe: https://accounts.google.com/

. Subframe: https://accounts.google.com/
= Firefox
= Etc.

Tab: vast limits — Kalender - November 2018 00, Q 10040 97,264K (85,582K live)

Tab: Inbox - helge@uberagent.com - vast limits Mail 104 227.660K (201,641K live}

ek o L R Isolated frame from other site

2 X 8

. @ Tab: Front = 544 62,448K (51,857K live)
° . Subframe: https://meetingbird.com/ 0.0 0 10836 35,584K (31,297K live)
]

Downside: pe rformance S e R R
. @ Extension: uBlock Origin ® 00 0 18112 34,660K (27,061K live)

= Lots of tabs leads t Extension processes
O S O O e n a S ea S 0 . @ Extension: Grammarly for Chrome 0.0 0 18916 24,320K (19,044K live)
. ﬂ Extension: uberAgent 0.0 0 720 17,652K (12,092K live)

lots of running processes!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 83

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 84

Secure Web Communication

Principles of Secure Web Communication

Authentication

= 777

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 86

Principles of Secure Web Communication

Authentication
= The client must be able to verify that it
is talking to the desired server

Integrity

=

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 87

Principles of Secure Web Communication

Authentication
= The client must be able to verify that it
is talking to the desired server

Integrity
= Data transmitted between client and
server must not be attacker-modifiable

Confidentiality

=

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 88

Principles of Secure Web Communication

Authentication
= The client must be able to verify that it
is talking to the desired server

Integrity
= Data transmitted between client and
server must not be attacker-modifiable

Confidentiality

= Data transmitted between the client
and server must not be attacker-visible

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 89

Principles of Secure Web Communication

Assumptions:

- ‘-\
@ \
i

Assume end-points (the
cllent and server) secure

«

Stefan Nagy 90

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Principles of Secure Web Communication

Threat Model:

Coffee Shop
Public Library

Cheap Motel

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 91

Principles of Secure Web Communication

Threat Model:
Man-in-the-Middle

“ c

Cheap Motel

Stefan Nagy 92

Coffee Shop
Public Library

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Principles of Secure Web Communication

4)

Parties that are trying to spy on you:
Hackers, your boss, the government

. v

4)

How can we make web comm secure?
L /

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 93

Crypto to the rescue!

Symmetric Crypto:

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 94

Crypto to the rescue!

Symmetric Crypto:

= Encryption ———| Decryption e
T == "> |/
Plaintext Ciphertext Plaintext
(Sender) (Receiver)
Problem: ?7?
SCHOOL OF COMPUTING Stefan Nagy o

UNIVERSITY OF UTAH

Crypto to the rescue!

Symmetric Crypto:

S0

_ Encryption Decryption —_—

~ » =

Plaintext

Plaintext Ciphertext
(Receiver)

(Sender)

Problem: pre-sharing entire key
= |f intercepted, whole scheme ruined!

SCHOOL OF COMPUTING Stefan Nagy %6

UNIVERSITY OF UTAH

Crypto to the rescue!

Symmetric Crypto:

O
N

|
| Public-key Crypto:
|
|
|
|
|
|
|
! ! |
|
|
|
|
|
|
|
|

_ Encryption Decryption —_—

~ » =

Plaintext Ciphertext Plaintext
(Sender) (Receiver)

Problem: pre-sharing entire key
= |f intercepted, whole scheme ruined!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 97

Crypto to the rescue!

|
Symmetric Crypto: | Public-key Crypto:
I
Q) I
I |
6 F } | (- }
Secret Key | As}zmn;etnc
ey Pair
O . |
I I | I I
E— Encryption === Decryption — | -— Public Key ———| PrivateKey e —
Encryption Decryption
Plaintext Ciphertext Gl ! Plaintext Ciphertext Plaintext
(Sender) (Receiver) | (Sender) (Receiver)
|
Problem: pre-sharing entire key | Problem: 77?
l
|

= |f intercepted, whole scheme ruined!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 98

Crypto to the rescue!

Symmetric Crypto:

O
N

Public-key Crypto:

!; Asymmetrlc ; !
Key Pair

p— Encryption = Decryption — p— Public Key E—— Private Key —
Encryption = Decryption

Plaintext Ciphertext Gl Plaintext Ciphertext Plaintext

(Sender) (Receiver) (Sender) (Receiver)

Problem: pre-sharing entire key
= |f intercepted, whole scheme ruined!

Problem: lack of pre-authentication
= |s Bob's key really from the real Bob?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 99

Crypto to the rescue!

4)

Parties that are trying to spy on you:
Hackers, your boss, the government

. v

4)

How can we overcome pre-auth?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 100

HTTPS: HTTP over TLS

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 101

Recap: HyperText Transfer Protocol (HTTP)

Protocol for transmitting hypermedia documents (e.g., web pages)
= Widely used
= Simple
= Unencrypted

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 102

Recap: HyperText Transfer Protocol (HTTP)

Protocol for transmitting hypermedia documents (e.g., web pages)
= Widely used
= Simple
= Unencrypted

Hypertext Transfer Protocol)
» GET /libs/gimessaging/1.0/qimessaging.js?v=1.2.0 HTTP/1.1\r\n
Host: 10.0.0.6\r\n
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101
Accept: */*\r\n
Problem: no way of Accept-Language: en-US,en;q=0.5\r\n
. . Accept-Encoding: gzip, deflate\r\n
keeping data hidden Referer: http://10.0.0.6/\r\n

Connection: keep-alive\r\n

from prylng eyeS! - Authorization: Basic bmFvOmNhcmVzc2VzLTIWMDE=\r\n
Credentials: nao: |l

\ n - /

>

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 103

Recap: HyperText Transfer Protocol (HTTP)

We need a secure protocol for comms:
HTTPS (aka “HTTP over SSL/TLS")

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 104

SSL and TLS

The physical protocols by which HTTPS public-key encryption works

I http:/

| 8 https:/

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 105

SSL and TLS

The physical protocols by which HTTPS public-key encryption works

SSL (Secure Socket Layer)
= Developed by Netscape

= Obsolete—stop using it! ! http://

| 8 https:/

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 106

SSL and TLS

The physical protocols by which HTTPS public-key encryption works

SSL (Secure Socket Layer)
= Developed by Netscape

= Obsolete—stop using it! ! http://

TLS (Transport Layer Security)

= Successor to SSL .
= Versions 1.0, 1.1, 1.2, 1.3 a https'//

= Current IETF approved standard

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 107

The TLS Handshake

Client Hello: Here’s Ciphers | support, and a random
el %

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 108

The TLS Handshake

Client Hello: Here’
: Here’s Ciph
phers I support, and a random
Server Hello: Chosen Cipher i

tificate: Here is my Certificate with my PubKey
h my PrivKey

Cer
Here's your random back encrypted wit

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH
Stefan Nagy
109

The TLS Handshake

Client Hello: ,
ello: Here’s Ciphers | support, and a random
' > &
Server Hello: Chosen Cipher

tificate: Here is my Certificate with my PubKey
h my PrivKey

Cer
Here's your random back encrypted wit

Key Exchange: Our SymKey encrypted with your PubKey
—g-

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 110

The TLS Handshake

Client Hello: ,
ello: Here’s Ciphers | support, and a random
' > &
Server Hello: Chosen Cipher

tificate: Here is my Certificate with my PubKey
h my PrivKey

Cer
Here's your random back encrypted wit

Key Exchange: Our SymKey encrypted with your PubKey

Switch to a Symmetric Cipher
—g

Switch to a Symmetric Cipher

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 111

The TLS Handshake

4 N

We do not expect you to memorize
the hairy details about SSL/TLS!

. j

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 112

Higher-level TLS Handshake

Client says: “Howdy! Here is what cipher suites | support.”
“Here is a random number for you to encrypt.”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 113

Higher-level TLS Handshake

Client says: “Howdy! Here is what cipher suites | support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let's go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 114

Higher-level TLS Handshake

Client says: “Howdy! Here is what cipher suites | support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let's go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Client verifies Server’s authenticity from its certificate; and by decrypting the
Server-encrypted random via Server’s public key and checking it to the original.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 115

Higher-level TLS Handshake

Client says: “Howdy! Here is what cipher suites | support.”
“Here is a random number for you to encrypt.”

Server says: “Howdy! Let's go with this specific cipher.”
“Here is my signed certificate containing my public key.”
“Here is your random encrypted with my private key.”

Client verifies Server’s authenticity from its certificate; and by decrypting the
Server-encrypted random via Server’s public key and checking it to the original.

Client says: “Great! You are who you say you are. Here's our symmetric key.”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 116

Handling Pre-authentication

A trusted authority vouches that a certain public key belongs to a particular site
= Format called x.509 (complicated)

Browsers ship with public keys for large number of trusted Certificate Authorities

Important fields:

Common Name (CN) (e.g., *google.com)
Expiration Date (e.g., 2 years from now)
Subject's Public Key

Issuer (e.g., Verisign)

Issuer's signature

Common Name field
= Explicit name, e.g. cs.utah.edu
= Orwildcard, e.g. *.utah.edu

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 117

Handling Pre-authentication

A trusted authority vouches that a certain public key belongs to a particular site
= Format called x.509 (complicated)

Browsers ship with public keys for large number of trusted Certificate Authorities

Important fields:
Common Name (CN) (e.g., *google.com) 4 N\
= Expiration Date (e.g., 2 years from now) _
= Subject's Public Key The CA ecosystem aims to
= |ssuer (e.g., Verisign)
= |ssuer's signature address comm pre'aUth
Common Name field \ /

= Explicit name, e.g. cs.utah.edu
= Orwildcard, e.g. *.utah.edu

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 118

Example x509 Certificate

-

Subject: C=US/0=Google Inc/CN=www.google.com

Issuer: C=US/0=Google Inc/CN=Google Internet Authority

Serial Number: 01:b1:04:17:be:22:48:b4:8e:1e:8b:a0:73:c9:ac:83
Expiration Period: Jul 12 20610 - Jul 19 2012

Public Key Algorithm: rsaEncryption
Public Key: 43:1d:53:2e:09:ef:dc:50:54:0a:fb:9a:f0:fa:14:58:ad:a0:81:b06:3d

7c:be:b1:82:19:b9:7¢c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:b0:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7¢c3:8:04:9:39:23:46

s

_ %
Signature Algorithm: shalWithRSAEncryption

e N
Signature: 39:10:83:2e:09:ef:ac:50:04:0a:fb:9a:f0:fa:14:58:ad:a0:81:b6:3d
7c:be:b1:82:19:b9:7¢c3:8:04:e9:1e5d:b5:80:af:d4:a0:81:b0:bB:68:5b:a4:a4
:ff:b5:8a:3a:a2:29:e2:6c:7c3:8:04:e9:1e5d:b5:7¢c3:8:04:e9:1e:5d:b5

N\ /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

119

Certificate Chaining

Root CA signs a certificate-issuing Root CA
certificate for delegated authority |@ 0O
= Your browser “peels” this chain of A O / \
certificates until finds one it trusts Rt R o
Intermediate CA1 Intermediate CA2

Certification Paths 7

Domain Validation: — —
= Is the certificate expired? — —
= Does the registered email reply to me?
= Does DNS record match the cert owner?
= More thorough, complicated certificate Certificate 1 Certificate 2 Certificate 3

validation measures exist today — ' — I @

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 120

2
@ ®,
5 (3
& X

1anssi

Food for Thought

Think of CAs like notaries or passport-issuing government entities

Is this ecosystem forever trustable?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 121

Food for Thought

Think of CAs like notaries or passport-issuing government entities

Is this ecosystem forever trustable?

\. J
4)

What kinds of things could go wrong?
. /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 122

Next time on CS 4440...

Attacks on HTTPS, Networking 101

