Week 7: Lecture A

Access Control & Isolation

Tuesday, October 1, 2024




Announcements

Project 2: AppSec released

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Deadline: Thursday, October 17th by 11:59PM

/Project 2: Application Security

Deadline: Thursday, October 17 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Helpful Resources

* The CS 4440 Course Wiki

¢ VM Setup and Troubleshooting
 Terminal Cheat Sheet

* GDB Cheat Sheet

 x86 Cheat Sheet

kc Cheat Sheet

~

Table of Contents:

Helpful Resources
Introduction
Objectives
Start by reading this!
o Setup Instructions
o Important Guidelines
Part 1: Beginner Exploits
o Target 0: Variable Overwrite
o Target 1: Execution Redirect
o What to Submit
Part 2: Intermediate Exploits
> Target 2: Shellcode Redirect
o Target 3: Indirect Overwrite
o Target 4: Beyond Strings
o What to Submit
Part 3: Advanced Exploits
o Target 5: Bypassing DEP
o Target 6: Bypassing ASLR
What to Submit
Part 4: Super L33T Pwnage
o Extra Credit: Target 7
o Extra Credit: Target 8
o What to Submit
Submission Instructions /
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Project 2 Progress Update

Working on Targets 0-2

P 0%
Working on Targets 3-4

fi 0%
Working on Targets 5-6

f 0%
Finished!

i 0%

Haven't started :(
0 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Announcements

Project 1 grades and regrades are now available on Canvas

Statistics:
=  Average score: 100%
= lLastyear’s average: 85%

Fantastic job!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 4



Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu
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Last time on CS 4440...

Automated Bug-Finding
Fuzz Testing
Symbolic Execution




Exploitation

Common Vulnerabilities Consequences Attacker Exploitation

= Missed initialization check = Use uninitialized memory = Software denial of service
= Free'd pointers not NULLd = Use non-owned memory = Leak sensitive information
= Unchecked memory writes - Overflowing a data buffer = Inject & run arbitrary code

Race against time to find & fix vulnerabilities
before they are exploited

SCHOOL OF COMPUTING
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Proactive Vulnerability Discovery

Static Analysis:
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Proactive Vulnerability Discovery

Static Analysis:

SOOI
SEEEEEEEEEERT T

Analyze program without running it

Challenges:
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Proactive Vulnerability Discovery

Static Analysis:

B e

Analyze program without running it

Challenges:
= False negatives (vulnerabilities missed)
= False positives (results are unusable)
As code size grows, analysis speed drops
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Proactive Vulnerability Discovery

Static Analysis: Dynamic Testing:

§§ EXE ’%

SOOI
B e

Analyze program without running it

Challenges:
= False negatives (vulnerabilities missed)
= False positives (results are unusable)
As code size grows, analysis speed drops
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Proactive Vulnerability Discovery

Static Analysis: Dynamic Testing:
TThd capd
Analyze program without running it Analyze program by executing it
Challenges: Advantages:

= False negatives (vulnerabilities missed)
= False positives (results are unusable)
As code size grows, analysis speed drops
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Proactive Vulnerability Discovery

Static Analysis: Dynamic Testing:
TThd capd
Analyze program without running it Analyze program by executing it
Challenges: Advantages:
= False negatives (vulnerabilities missed) e Better accuracy: no false positives
= False positives (results are unusable) =  Execution reveals only what exists
As code size grows, analysis speed drops =  Program crashed? You found a bug!

Capable of very high throughput

SCHOOL OF COMPUTING
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Finding Bugs with Fuzzing

&

Badly behaved
- eo\ﬁe cases

The space ok possible program behaviors

Source: https://blogtrailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/
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Why do we need feedback in fuzzing?
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Why do we need feedback in fuzzing?
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Feedback-driven Fuzzing

3

Inputs ??7

® 6 O
Program
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3

Inputs

[ |

Program

SCHOOL OF COMPUTING
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Feedback-driven Fuzzing

Execute and
Collect Feedback

(e.g., code coverage)

Stefan Nagy
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Feedback-driven Fuzzing

Interesting!

B

(new code)

Inputs ???

‘ \ Execute and 7??
Collect Feedback e 0 o

Program

(e.g., code coverage)
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Feedback-driven Fuzzing

Interesting!

B

(new code)

Inputs ???

Uninteresting

r:\ Execute and ~ _ﬁ —

Collect Feedback
(e.g., code coverage)

Program (no new code)

SCHOOL OF COMPUTING
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Feedback-driven Fuzzing

Interesting!
(new code) Crashes
Inputs
Uninteresting (SEGFAULT)
‘ \ Execute and I
Collect Feedback
Program (e.g., code coverage) (no new code)

SCHOOL OF COMPUTING
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Types of Feedback-driven Fuzzers

Black-box Grey-box White-box

I i \\\ //
?7?7? 222 ??7?

Stefan Nagy 23
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Types of Feedback-driven Fuzzers

Black-box Grey-box White-box

N\,

N -
S -
~_ >

~\ /V/' /

Zero Introspection High Introspection

Some Introspection
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Types of Feedback-driven Fuzzers

Black-box Grey-box White-box

N\,

\\\/

High Introspection

Zero Introspection

Some Introspection
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Types of Feedback-driven Fuzzers

- \ .
Black-box ,/  Grey-box \ White-box

Zero Introspection
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Coverage-guided Fuzzing

Code coverage: program regions exercised by each test case

177x function fib(n) {

Horse racing analogy: “breed” (mutate) only § B =) ¢
the “winning” (coverage-increasing) inputs B Trewmi "
= New coverage? Keep and mutate the input b =il e SR
= 0Old coverage? Discard it and try again e — .
1431 177x } '
Most fuzzing today is coverage-guided SSOM, SSIESE TR SO

= Good balance of performance and precision

Maximize

code coverage

SCHOOL OF COMPUTING
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Code Coverage Metrics

Program represented as control-flow graphs (CFG)

= Directed graph encompassing all program paths Blocks Q(’
= Basis of virtually all software analysis techniques
Various coverage metrics in use today
= Instructions: units that make up basic blocks
= Basic blocks: nodes of the program’s CFG Edges () ’
= Edges: transitions between basic blocks
= Hit counts: frequencies of basic blocks

= Paths: sequences of edges
Paths °<’

SCHOOL OF COMPUTING
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Impact of Code Coverage

void top(char input[4]) {
if(input[@] == ‘b")
if(input[1] == ‘a’)
if(input[2] == ‘d")
if(input[3] == ‘1)
OVERFLOW() ;

SCHOOL OF COMPUTING
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Impact of Code Coverage

. h : 4 N . .
void top(char input[4]) { Estimated Mutations Required

if(input[@] == ‘b")
if(input[1] == ‘a’) ‘ [ 7 ]
if(input[2] == ‘d")
if(input[3] == ‘1) e [ - J
OVERFLOW() ;

SCHOOL OF COMPUTING
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Impact of Code Coverage

void top(char input[4]) {
if(input[@] == ‘b")
if(input[1] == ‘a’)
if(input[2] == ‘d")
if(input[3] == ‘1)
OVERFLOW() ;

SCHOOL OF COMPUTING
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Estimated Mutations Required

‘ [ (28)* = 4,294,967,296 }
e [ 4*(28) = 1,024 J

31



Model-agnostic Input Generation

11 11m11 i1 11 11

Brute-force your way to valid inputs
= Bit and byte “flipping”
= Addition and subtraction
= Inserting random chunks
= Inserting dictionary “tokens”
= Splicing two inputs together

The good: super fast

= Incorporating feedback like coverage enables
you to synthesize valid inputs (eventually)

SCHOOL OF COMPUTING
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<html><header><title>Hello</title></header>
<body>World<br/></body></html>

<a> <a/>
</a> ='a’'

AA | AA | AA \’ BB | BB | BB
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Model-guided Input Generation

Follow a pre-defined input specification
= Pre-defined input grammars
= Dynamically-learned grammars
= Domain-specific generators

The good: many more valid inputs
= Model-agnostic inputs are often discarded
because they fail basic input sanity checks
= Valid inputs = higher code coverage

SCHOOL OF COMPUTING
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XML_GRAMMAR: Grammar = {
"<start>": ["<xml-tree>"
"<xml-tree>": ["<text>",

"<xml-ope

"<xml-ope

"<xml-tre
"<xml-open-tag>": [
"<xml-openclose-tag>": [
"<xml-close-tag>": [
"<xml-attribute>": [
"<id>": [
"<text>": [
"<letter>": s

"<letter_space>": s

1

n-tag><xml-tree><xml-close-tag>",

nclose-tag>",

e><xml-tree>"],

"<<id>>", "<<id> <xml-attribute>>"],

"<<id>/>", "<<id> <xml-attribute>/>"],
"</<id>>"],

"<id>=<id>", "<xml-attribute> <xml-attribute>"],
"<letter>", "<id><letter>"],
"<text><letter_space>", "<letter_space>"],
range(string.ascii_letters + string.digits +
range(string.ascii_letters + string.digits +

o x m pm n g gy

<htm

<head>

<title> </
Hello

1> </html>
</head> <body> </body>
title> World<br/>

33



Taint Tracking

Track input bytes’ flow throughout program

Identify input “chunks” that affect program state
Chunks that affect branches
Chunks that flow to function calls

Mutate these chunks
= Random mutation
Insert fun or useful tokens

The good: finding vulnerable buffers,
solving branches

SCHOOL OF COMPUTING
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Mutate!

iyl 11 11 11 11

i¥@ 00 00 00 00 00

34



Symbolic Execution

2. X =Xty X : A+B X: A
i y =x-Y 2y y:g
L 4. X =X-Y j— '
. 5. if (x -y > 0): : e AR satisfiable
6. assert false 13 (AB)-B=A
7. return (x, y) ' i
______________________________________________________________________________ DA<

4| i

Possible path constraints:

e (A>B)and(B-A>0) =unsatisfiable B-A>0 B-A<=0

e (A>B)and(B-A<=0) =satisfiable L x:B xiB

o (A<=B) = satisfiable y:A yiA
unsatisfiable satisfiable

SCHOOL OF COMPUTING
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Feedback-driven Fuzzing vs. Symbolic Execution

if(x*3 == 1881672302290562263) Estimated Mutations Required

° [ 772 ]

S

OVERFLOW( ) ;

SCHOOL OF COMPUTING
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Feedback-driven Fuzzing vs. Symbolic Execution

if(x*3 == 1881672302290562263) Estimated Mutations Required

OVERFLOW(); // x = 1234567
\ ° [ Good luck! }

\ [ Solves instantly J

\/

SCHOOL OF COMPUTING
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Feedback-driven Fuzzing vs. Symbolic Execution

if(A*3 + B3 + C*3 == 33) Estimated Mutations Required

OVERFLOW() ;
° [ ?27? ]

S

SCHOOL OF COMPUTING
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Feedback-driven Fuzzing vs. Symbolic Execution

if(Ar3 + BA3 + CA3 == 33)
OVERFLOW() ;

A = 8,866,128,975,287,528
B = -8,778,405,442,862,239
Cc =-2,736,111,468, 807/, 040

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Estimated Mutations Required

° [ Good luck! }

\ [ Good luck! ]

\/

39



Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: ???

SCHOOL OF COMPUTING
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Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
=  Challenges: ???

SCHOOL OF COMPUTING
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Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
= Challenges: need a lot of luck to solve multi-byte conditionals, checksums

Model-guided Fuzzing:

= Advantages: ???

SCHOOL OF COMPUTING
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Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
= Challenges: need a lot of luck to solve multi-byte conditionals, checksums

Model-guided Fuzzing:
= Advantages: more valid inputs leads to higher coverage earlier on
= Challenges: 7??
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Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
= Challenges: need a lot of luck to solve multi-byte conditionals, checksums

Model-guided Fuzzing:
= Advantages: more valid inputs leads to higher coverage earlier on
= Challenges: out of luck if specification is not defined or hard-to-define

White-box Generation:
= Symbolic Execution Advantages: ???
= Taint Tracking Advantages: ???
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Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
= Challenges: need a lot of luck to solve multi-byte conditionals, checksums

Model-guided Fuzzing:
= Advantages: more valid inputs leads to higher coverage earlier on
= Challenges: out of luck if specification is not defined or hard-to-define

White-box Generation:
= Symbolic Execution Advantages: precise solving of multi-byte conditionals
= Taint Tracking Advantages: easily identifies key data chunks, branch constraints
= Challenges: ???
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Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
= Challenges: need a lot of luck to solve multi-byte conditionals, checksums

Model-guided Fuzzing:
= Advantages: more valid inputs leads to higher coverage earlier on
= Challenges: out of luck if specification is not defined or hard-to-define

White-box Generation:
= Symbolic Execution Advantages: precise solving of multi-byte conditionals
= Taint Tracking Advantages: easily identifies key data chunks, branch constraints
= Challenges: far too heavyweight to deploy on all generated inputs; closed-source code

SCHOOL OF COMPUTING
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Impact of Fuzzing

25000

20,141

20000
egeLs 18 325
New Vulnerabilities Reported Per Year 1655773 B
Source: cvedetails.com 14,714
15000
10000
7,939
6,610 6,520 6,504 6,454
5,632 5,736
4935 70 5,297 5,191
5000 ' = 4653 4, 155 '
2,156 2,451
894 1,020 1,677 1,527
0

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
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Impact of Fuzzing

25000
20000
New Vulnerabilities Reported Per Year -
Source: cvedetails.com
15000
10000
7,9
6,610 6,520 5,632 5,736
4,935 ' 4,653 5,297 5,191
5000
2,156 2,451
894 1,020 1,677 1,527
0 =
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
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Interested in fuzzing?

Spring 2025: CS 5963/6963: Applied Software Security Testing
= Everything you'd ever want to know about fuzzing for finding security bugs!
= Course project: team up to fuzz a real program (of your choice), and find and report its bugs!
= https://cs.utah.edu/~snagy/courses/cs5963/

CS 5963/6963: Applied Software Security Testing

This special topics course will dive into today’s state-of-the-art techniques for uncovering hidden security
vulnerabilities in software. Projects will provide hands-on experience with real-world security tools like AFL++ and
AddressSanitizer, culminating in a final project where you’ll team up to hunt down, analyze, and report security
bugs in a real application or system of your choice.

This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp
over topics like software security, systems programming, and C/C++.

Professor

Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 50


https://users.cs.utah.edu/~snagy/courses/cs5963/

Interested in fuzzing?

CS 5963 - 001 Applied S/W Secur Test

Class Number: 14578 Instructor: NAGY, STEFAN Component: Special Topics Type: In Person Units: 3.0
Requisites: Yes Wait List: No View Feedback

This class will prepare students to become effective software testers capable of automating vulnerability discovery in today's large and complex software
systems. This course will cover the fundamental design considerations behind today’s state-of-the-art software testing tools, and equip students with the
know-how to soundly evaluate their results and effectiveness. Students will team up to target a software or system of their choice, and devise their own testing
strategies to find new vulnerabilities in it, analyze their severity, and report them to its developers. Prerequisites CS 3505, CS 4400 and CS 4440

Days / Times Locations
MoWe/01:25PM-02:45PM WEB L114
Meets With

e CS 6963 001

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy
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This time on CS 4440...

Access Control
Permissions
Process Isolation




Food for Thought

So far, we've talked about thwarting bugs by proactively discovering them

= E.g, run fuzzing and try to catch all the bugs!
= Hopefully the attacker will not beat us to it...

Question: how can we redesign our systems to prevent software exploits?

SCHOOL OF COMPUTING
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Principles of a Safe System

Clearly we can’t assume Application Developers will write safe code...

SCHOOL OF COMPUTING
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Principles of a Safe System

Clearly we can’t assume Application Developers will write safe code...
= Unless they are alumni of CS 4440 =

What principles should our safe system design uphold?

SCHOOL OF COMPUTING
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Principles of a Safe System

Clearly we can’t assume Application Developers will write safe code...
= Unless they are alumni of CS 4440 =

What principles should our safe system design uphold?
= Control who can access what
= Prevent applications from spying on one another
= Implement safeguards to minimize damage of attacks

SCHOOL OF COMPUTING
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Access Control
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Access Control

Access Control: the heart of security
on commodity computing systems

Goal: ?7?
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Access Control

Access Control: the heart of security
on commodity computing systems

Goal: control which principles have
access to which system resources
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Access Control

Access Control: the heart of security
on commodity computing systems

Goal: control which principles have Principles:

access to which system resources Users
Programs
Machines

o

SCHOOL OF COMPUTING
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Access Control

Access Control: the heart of security
on commodity computing systems

Goal: control which principles have
access to which system resources

SCHOOL OF COMPUTING
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Access:

Read
Write
Execute
Share
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Access Control

Access Control: the heart of security
on commodity computing systems

/ Resources: \
Goal: control which principles have

access to which system resources Files
Programs

Peripherals
Instructions

SCHOOL OF COMPUTING
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Access Control

Access Control: the heart of security
on commodity computing systems

Goal: control which principles have
access to which system resources

Access control mechanisms exist at

all levels of a modern computer
= E.g., Hardware, Hypervisor, Operating
System, Middleware, Application

SCHOOL OF COMPUTING
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Access Control

Access Control: the heart of security
on commodity computing systems

Goal: control which principles have
access to which system resources

Access control mechanisms exist at

all levels of a modern computer
= E.g., Hardware, Hypervisor, Operating
System, Middleware, Application

SCHOOL OF COMPUTING
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Relies on

Application

Middleware

Operating System

Hypervisor

Hardware
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Access Control

Access Control: the heart of security Relies on Complexity

on commodlty computing systems Application A

Goal: control which principles have
access to which system resources

Middleware

Operating System

Access control mechanisms exist at

all levels of a modern computer Hypervisor
= E.g., Hardware, Hypervisor, Operating
System, Middleware, Application v Hardware v

Reliability

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 65



Access Control History

Wasn’t necessary back in “the day”

ENIAC

= The first programmable, electronic,
general-purpose digital computer

=  Builtin 1945 by U.S. Army / UPenn

= Access control consisted of just a
single user and a single program

SCHOOL OF COMPUTING
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Access Control History

LEO Il
= “Lyons Electronic Office”
= Introduced concept of multi-tasking
= Consisted of a single master program
“Operating System”
= Allowed 12 “application” programs to
be run concurrently

SCHOOL OF COMPUTING
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Access Control History

PLATO 1/ PLATO 2
= Developed by Univ. of Illinois (ILLIAC)
= Based on a time-sharing computer
system, with users and programmers
connected to a central mainframe
= Access control = multiple users,
multi-tasking

SCHOOL OF COMPUTING Stefan Nagy 68
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Access Control History

Moore’s Law: number of
transistors in an IC doubles
about every two years

By 1980: we all have access
to computers!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
Transistor count
50,000,000,000

Moore’s Law: The number of transistors on microchips doubles every two years [oiig gvmd
in Data
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Year in which the microchip was first introduced

Data source: Wikipedia (w
OurWorldinData.org - Re

pedia.org/wiki/Transistor_count)
1and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser

Stefan Nagy
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Access Control History

Moore’s Law: number of
transistors in an IC doubles
about every two years

By 1980: we all have access
to computers!
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Access Control History

Moore’s Law: number of
transistors in an IC doubles
about every two years

By 1980: we all have access
to computers!

Same terrible security ideas

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

YOU GET.ROOT ACCESS
YOU GET ROOTACCESS

vnu‘"nu‘gﬂ ROO

TACCESS!




Prevention and Detection

Bugs are inevitable in any complex software system

NIST: 10-50 bugs per every 1000 code lines

m Denial of Service

Many bugs are never found a Code Exccution

= Overflow

m Cross Site Scripting

m Directory Traversal
Bypass Something
Gain Information

= Gain Privilege

m Memory Corruption
SQL Injection
File Inclusion

Cross Site Request Forgery

HTTP Response Splitting

SCHOOL OF COMPUTING
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Prevention and Detection

Bugs are inevitable in any complex software system Amnesty says NSO's Pegasus
used to hack phones of
Palestinian rights workers

NIST: 10-50 bugs per every 1000 code lines Solarwinds hackers are targeting the

global IT supply chain, Microsoft says

Many bugs are never found Cyber-attack hits | Janesville school
UK internet phone  district hit by
providers \ ransomware attack

Many are found and never reported

= Weaponized by Nation-States, criminals 'A cyber-attack disrupted my cancer treatment'
= What we know as Zero-Day Exploits

New York subway
hacked in computer
breach linked to China
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Implementing Access Control




Isolating Applications

Adversary 1: exploited user-space process
= Targets 2-8 in Project 2 (after your attacks)

= e o o o

| ]
: Application :
| |
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Isolating Applications

Adversary 1: exploited user-space process
= Targets 2-8 in Project 2 (after your attacks)

= e o o o

| ]
: Application :
| |

Adversary 2: malicious user-space process

= Spyware app your aunt installed
= That TikTok app that you installed
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Isolating Applications

Adversary 1: exploited user-space process
= Targets 2-8 in Project 2 (after your attacks)

= e o o o

| ]
: Application :
| |

Adversary 2: malicious user-space process

= Spyware app your aunt installed
= That TikTok app that you installed

Goal: protect the system (i.e., all other
processes + the OS) from an evil process
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What specific resources must we protect?
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What specific resources must we protect?

Memory N\
= Code and data of Operating System Applications
= Code and data of other processes :
Kernel
CPU [ Memory Devices
S E :

A Bskyped 1 fejjils

z,: Dropbox s
P == Windows/
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What specific resources must we protect?

Memory N\
= Code and data of Operating System Applications
= Code and data of other processes :
Files, Directories, and Metadata Kernel
= The sudo-ers files L |
=  Your HOME directory (
=  Program-specific file descriptors CPU [Memory Devices

8
(4
1]
3
(4

= =
€23 ] Office
32 Dropbox s
E S, il - .

\ | EE Wlndows/
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What specific resources must we protect?

Memory N\
= Code and data of Operating System Applications
= Code and data of other processes :
Files, Directories, and Metadata Kernel
= The sudo-ers files L |
=  Your HOME directory (
=  Program-specific file descriptors CPU [Memory Devices

The Network

= QOther systems on the same network

8
(4
I
3
(4

£
(4
B
(4

(@B [-F
g
&

Dropbox i0S
—— Windows ,
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What specific resources must we protect?

Memory @ ™\

= Code and data of Operating System ) = [ Applications
= Code and data of other processes -
* l 'l le!-ll!l!

f

Files, Directories, and Metadata
= The sudo-ers files
=  Your HOME directory
=  Program-specific file descriptors

The Network

= QOther systems on the same network

. . P =/
External Devices and Peripherals > 38 35 45

=  Your USB drive that contains a
pirated copy of Super Bowl LVII
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How should we protect them?
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How should we protect them?

Principle of Least Privilege
= “In a particular abstraction layer of a computing environment,
every module (e.g., process, user, or program) must be able to
access only the information and resources that are necessary”
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How should we protect them?

Principle of Least Privilege
= “In a particular abstraction layer of a computing environment,
every module (e.g., process, user, or program) must be able to
access only the information and resources that are necessary”

In other words, apps should mind their own business!

Critical design consideration for protecting data and
functionality from faults and malicious behavior
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Access Control Matrix

Conceptual model that specifies
the rights each entity (row) has
for each resource (column)

Entity rights:
= R =Read
= W= Write
= X = Execute
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Conceptual model that specifies
the rights each entity (row) has
for each resource (column)

Entity rights:
= R =Read
= W =Write

= X =Execute

SCHOOL OF COMPUTING
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Access Control Matrix

0S Accounting | Accounting | Insurance | Payroll
Program Data Data Data
Bob RX RX R — —
Alice RX RX R RW RW
Sam RWX |RWX R RW RW
Accounting | RX RX RW RW RW
Program

Stefan Nagy
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Conceptual model that specifies
the rights each entity (row) has
for each resource (column)

Entity rights:
= R =Read
= W =Write

= X =Execute
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Access Control Matrix

0S Accounting | Accounting | Insurance | Payroll
Program Data Data Data
Bob RX RX R - -
Alice RX RX R RW RW
Sam RWX |RWX R RW RW
Accounting | RX RX RW RW RW
Program
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Implementing Access Control

How can we implement AC matrices on real systems?

Answer: Access Control Lists
= Generalization of UNIX file system permissions
= Stored with file system object as metadata (object-centric)

Compactly and efficiently encodes access to an object
via the subject’s (user or group) system rights

Capabilities: subject centered alternative to ACLs
= For each subject, store list of objects and permissions
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Implementing Access Control

4 )

How to completely
remove user Bob?

o j
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Implementing Access Control

4 )

How to completely
remove user Bob?

o j

4 N

Revoke all of his
permissions!

. y
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Modern Permissions Schemes




File System Permissions

Users: uid, 32-bit integer, every file has one
Groups: gid, 32-bit integer, every file has one

R w X | 0 I - cs47440@7c574440: ~/{argets
File Actions Edit View Help

€s4440@cs4440: ~ftargets (]

cs4440@cs4440: $ users
cs4440
cs4440@cs4440: $ groups
cs4440 adm cdrom sudo dip plugdev lpadmin sambas
cs4440@cs4440: $ ls -1la
otal 4

Feb 15
Feb 15
Feb
c Jan build.py
479 Jan 16 build.sh
11 Feb 15 cookie

S R W e e N oo e W ey
Nooph,wWwN -
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File System Permissions

D = Directory

R=read filesin D
W =writeafileinD
X=accessafileinD
if you know its path

Last number =D’s
total subdirectories

SCHOOL OF COMPUTING
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//;;WXFWXF—X

drwxr-xr-x
drwxrwxr-x
-rw-rw-r--
- rWXIrWXr-X
-rw-rw-r--

- FWXrwxr-Xx

drwxrwxr-x

\\:fwxrwxr—x

S N = aapNd D

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440 .

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

~

bin
build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///
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File System Permissions

D = Directory

R=read filesin D
W =writeafileinD
X=accessafileinD
if you know its path

Last number = D’s
total subdirectories
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/erXFWXF—X

drwxr-xr-x
drwxrwxr-x
~rw-rw-r--
~rWXIrwXxr-xX
~rw-rw-r--
~rWXIrwXxr-xX
drwxrwxr-x

\\;iwxrwxr—x

SN NN

—_—

= N =

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

bin
build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///
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File System Permissions

D = Directory

R=read filesin D
W =writeafileinD
X=accessafileinD
if you know its path

Last number = D’s
total subdirectories
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/erXFWXF—X

drwxr-xr-x
drwxrwxr-x
-rwW-rw-r--
- FWXIrwXxr-xX
-rwW-rw-r--
- FWXIrwXxr-xX
drwxrwxr-x

\\:fwxrwxr—x

SN NS

—_—

= N =

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

bin
build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///
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File System Permissions

D = Directory

R=read filesin D

W=writeafileinD
X=accessafileinD
if you know its path

Last number = D’s
total subdirectories
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/erXFWXF—X

drwxr-xr-x
drwxrwxr-x
~rwW-rw-r--
~FWXTIWXr-xX
~rwW-rw-r--
~FWXTIWXr-xX
drwxrwxr-x

\\:fwxrwxr—x

S NN

—_—

= N =

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

bin
build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///
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File System Permissions

D = Directory

R=read filesin D

W=writeafileinD
X=accessafileinD
if you know its path

Last number = D’s
total subdirectories
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/erXFWXF—X

drwxr-xr-x
drwxrwxr-x
~rwW-rw-r--
~FWXIWXr-X
~rwW-rw-r--
~FWXIWXr-X
drwxrwxr-x

\\:fwxrwxr—x

S NN

—_—

= N =

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

bin
build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///
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File System Permissions

D = Directory

R=read filesin D

W=writeafileinD
X=accessafileinD
if you know its path

Last number = D’s
total subdirectories

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

/erXFWXF—X

drwxr-xr-x 1
drwxrwxr-x
-rW-rw-r--
~FWXIWXI-X
-rW-rw-r--

- FWXIrWXr-X
drwXxrwxr-x

R | JEE G QR G G SR S

\\:fwxrwxr—x

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

~

bin

build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///
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File System Permissions

First three represent ///’ ‘\\\

Owner’s privileges Owner
-rwxrwxrwx 1 root cs4440 target6
-rwxrwxr-x 1 cs4440 cs4440 target6.c
-rwxrwxrwx 1 root cs4440 target/
-rwxrwxr-x 1 cs4440 cs4440 target/.c
-rwxrwxrwx 1 root cs4440 target8
-rw-rw-r-- 1 cs4440 cs4440 target8.c
-rw-rw-r-- 1 cs4440 cs4440 tmp

- /
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File System Permissions

First three represent //f’ ‘\\\
Owner’s privileges Owner Group

-rwxrwxrwx 1 root cs4440 target6
-rwxrwxr-x 1 cs4440 cs4440 target6.c
Nextﬁneef?pmsent -rwxrwxrwx 1 root  cs4440 target/
Group's privileges -rwxrwxr-x 1 cs4440 cs4440 target7.c
-rwxrwxrwx 1 root cs4440 target8
-rw-rw-r-- 1 cs4440 cs4440 target8.c
-rw-rw-r-- 1 c¢s4440 cs4440 tmp

- /
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File System Permissions

First three represent / \
Owner’s privileges Owner Group
-rwxrwxrwx 1 root cs4440 target6
Next three represent -rwxrwxr-x 1 cs4440 cs4440 target6.c
) .. -rwxrwxrwx 1 root cs4440 target/
Group’s privileges -rwxrwxr-x 1 cs4440 cs4440 target7.c
-rwxrwxrwx 1 root cs4440 target8
Last three represent -rw-rw-r-- 1 cs4440 cs4440 target8.c
everyone else -rw-rw-r-- 1 cs4440 cs4440 tmp

- /
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Permission Puzzles

No permissions?

Read, Write, Exec only for owner?

Execute for all?

Owner can read, write, & exec;
Group can only read; and all
others have no permissions.
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Permission Puzzles

No permissions?

Read, Write, Exec only for owner?

Execute for all?

Owner can read, write, & exec;
Group can only read; and all
others have no permissions.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

rwx

rwx

104



Process Permissions

Every process has one uid, up to many gids
Actions: create, kill, debug (ptrace)

Login process (uid=0, root)

€T 1] Office
= Checks (username, password) tuple

= Changes uid to user’s value (via setuid) z‘z DrOpbOX 10S
= Start’s user’s shell (/bin/sh)
ml \\/;
=iy Windows

= Processes now run as current user!

setuid binaries
= Program runs with uid of owner (e.g., root)
= Not the parent process!
= Examples: /bin/su, /bin/sudo
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Network Permissions

Connect
= Liberal permissions

Listen
= Liberal permissions
= Ports below 1024 reserved for system
= Requires special permissions!

Read/write data
= As long as you have a file descriptor!

Send/receive raw packets

= Must be associated with an existing connection
= Otherwise uid=0 (root)
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Process Isolation
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Process Isolation

- 4 -+ -4 | 4 4 -4 | 4 4
> = > > =5 > = > >
= = = = = = = = =
/ \ © ) o ) o) ) ) o ©
oY ] oY Y] ) oY Y] oY oY
o a a a al a a al a
Process Process Process
Goal: ?7?
{ ] ® 0 o
Libraries

N / oS

Hardware
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Process Isolation

4 N

Goal: minimize
damage by isolating
every process

-

/
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== == ==
> = > > =5 > = > >
= = = = = = = = =
() D D D D D D (0] ()
QU Q QU Q Q QU Q QU QU
o o o o o o o o o
Process Process Process
Libraries
oS
Hardware
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Process Isolation

We can't just rely on permission schemes N

= Assume attackers can (and will) bypass them usr= Steve

. pwd= cs4440

Security Goal: prevent cross-process

memory access or memory corruption v
\

read(wf.usr)

read(wf.pwd)
/
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Process Isolation

We can't just rely on permission schemes N
= Assume attackers can (and will) bypass them WF usr= Steve
. pwd= cs4440
Security Goal: prevent cross-process
memory access or memory corruption . v

Memory Management Unit

= Hardware that acts as gatekeeper of memory
= Translates virtual memory to physical memory
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Isolating Process Memory

Instruction
Fetcher

Instruction
i~"" Decoder

Memory Management Unit
= Translates virtual memory to physical memory
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Isolating Process Memory

Memory Management Unit

= Translates virtual memory to physical memory
= Enforce Process-1 can’t access of Process-2's memory!

Virtual Memory  Virtual Memory Physical Memory
Process #1 Process #2

Process
#2

Page Tables Process
#1

SCHOOL OF COMPUTING
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Process Isolation

/

Goal: minimize

damage by isolating

every process

~

.

Caveat: ???

~
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Process Isolation

peaiylL
peaiylL
pealyL
peaiylL
pealyL
peaiyL
pealyL
peaiylL
peaiylL

4 )
Goal: minimize sa -
° ° Process Process Process 3

damage by iIsolating

every process
o P v ,

4 Dy 5
Caveat: you must Hardware
trust all potential G N & N
isolation bridges U Ty e
N\ Y, W A
oo?mgg’ller mouse CD/DVD keyboard
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Memory-level Isolation

What about malicious peripherals?
= Assume plugged-in USB'’s are hostile!

Main Memory

Solution: the Input/Output (10) MMU

= Same idea as MMU, but extended to devices T Physical addresses T

= 10 means “input” / “output” devices; e.g.: [ ] [ i
. Network 1l IOMMU MMU |
= Keyboard Device Fddresses © Virtual Taddressesg
= USB stick : :
= Graphics cards _
. Device CPU
= Anything that uses a device driver : :
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Resource-level Isolation

Without App Sandbox

Problem: any processes you execute
will inherit your privileges, resources —

Unrestricted
access

All
system resources

Your app
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Resource-level Isolation

Problem: any processes you execute
will inherit your privileges, resources ‘\
""

Your app

Unrestricted
access

All
system resources

Process Sandbox: tight, controlled set

of resources to execute guest programs
= Scratch space on disk and memory

With App Sandbox

Your sandbox =

= Network access -~ -
= Ability to inspect the host system or @ &
e

= Read from input devices are usually
disallowed or heavily restricted

No access '

Your app
Other
system resources
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Resource-level Isolation

Renderer: Renderer: Renderer:
a.com b.com c.com
Sandbox Sandbox Sandbox

Browser Process
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Sandboxing

/

Goal: give processes
the least privileges

~

N /
4 ™
Caveat: 7?7?

o J
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Sandboxing

/

o

Goal: give processes

~

the least privileges
/

e

o

~
Caveat: the trusted

computing base is
still very large!

J
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Containers

App 1 App 2 App 3

Bins/Lib Bins/Lib Bins/Lib

Container Engine

Operating System

Infrastructure

Containers
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Containers

4 ) R
Goal: make libraries,

middleware specific

to each process ibraries [ e

. /
0S
4 N

pealyL
peaiyl
peaiyl

Process

Hardware

Caveat: ???

. s

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 125



Containers

4 N 1 H
Goal: make libraries, o=l 21"
middleware specific ,’: Process

to each process '\ Libraries

. ~ \ A

4 N R

Caveat: the trusted
computing base Is
now the OS and HW
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Virtual Machines

App 1 App 2 App 3
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Bins/Lib Bins/Lib Bins/Lib

Hypervisor

Infrastructure

O 8 &

Virtual Machines

Stefan Nagy 127



Virtual Machines

/

Goal: completely
Isolate the OS

~

\

.

Caveat: ?7?7?

)
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Virtual Machines

4 N

Goal: completely
Isolate the OS

- /

e N
Caveat: the trusted

computing base now

the Hypervisor
N yP /
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So what are the overall trade-offs of
using sandboxes, containers, or VMs?

J
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Trade-offs of sandboxes/containers/VMs?

Sandboxes are the most secure but also the slowest. 0%
Containers balance speed/security but share the host's kernel. 0%
VMs are faster than containers but offer less isolation. 0%
Containers and VMs offer the same security and performance. 0%

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Other Caveats

Sandboxes, containers, and
hypervisors are all software...
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Other Caveats

Sandboxes, containers, and
hypervisors are all software...
with vulnerabilities too!

CVE-2022-0185 in Linux Kernel Can Allow Container Escape in
Kubernetes

Last week, a new high-severity CVE was released that affects the Linux kernel. This vulnerability provides an
opportunity for an attacker who has access to a system as an unprivileged user to escalate those rights to
root. To do this, the attacker must have a specific Linux capability, CAP_SYS_ADMIN, which reduces the risk
of breakout in some container cases. But in many Kubernetes clusters, it's likely that an attacker could exploit
this issue.

At the moment, there is no public exploit code for this issue. However, one of the researchers who found it
has posted a proof of concept showing a container breakout, and it's expected that exploit code will be
released soon.

Virtual machine escape % 3 languages v

Article  Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In computer security, virtual machine escape is the process of a program breaking out of the virtual machine on which it is running and interacting with
the host operating system.!') A virtual machine is a "completely isolated guest operating system installation within a normal host operating system".”l In
2008, a vulnerability (CVE-2008-0923 ') in VMware discovered by Core Security Technologies made VM escape possible on VMware Workstation 6.0.2
and 5.5.4.314] A fully working exploit labeled Cloudburst was developed by Immunity Inc. for Immunity CANVAS (commercial penetration testing tool).[!
Cloudburst was presented in Black Hat USA 2009.6!

Previous known vulnerabilities |edit]

* CVE-2007-4993 Z' Xen pygrub: Command injection in grub.conf file.

« CVE-2007-1744 2 Directory traversal vulnerability in shared folders feature for VMware

« CVE-2008-0923 2 Directory traversal vulnerability in shared folders feature for VMware

* CVE-2008-1943 2 Xen Para Virtualized Frame Buffer backend buffer overflow.

* CVE-2009-1244 17 Cloudburst: VM display function in VMware

« CVE-2011-1751 ! QEMU-KVM: PIIX4 emulation does not check if a device is hotpluggable before unplugging!”!
« CVE-2012-0217 2 The x86-64 kernel system-call functionality in Xen 4.1.2 and earlier

« CVE-2014-0983 2 Oracle VirtualBox 3D acceleration multiple memory corruption

« CVE-2015-3456 2 VENOM: buffer-overflow in QEMU's virtual floppy disk controller

« CVE-2015-7504 2 QEMU-KVM: Heap overflow in pcnet_receive function.®!

« CVE-2015-7835 2 Xen Hypervisor: Uncontrolled creation of large page mappings by PV guests

Integer overflow in Skia in Google Chrome prior to 112.0.5615.137 allowed
a remote attacker who had compromised the renderer process to
potentially perform a sandbox escape via a crafted HTML page.
(Chromium security severity: High)

« CVE-2016-6258 (' Xen Hypervisor: The PV pagetable code has fast-paths for making updates to pre-existing pagetable entries, to skip expensive re-
validation in safe cases (e.g. clearing only Access/Dirty bits). The bits considered safe were too broad, and not actually safe.

« CVE-2016-7092 ' Xen Hypervisor: Disallow L3 recursive pagetable for 32-bit PV guests

« CVE-2017-5715, 2017-5753, 2017-5754: The Spectre and Meltdown hardware vulnerabilities, a cache side-channel attack on CPU level (Rogue Data
Cache Load (RDCL)), allow a rogue process to read all memory of a computer, even outside the memory assigned to a virtual machine

* CVE-2017-0075 2 Hyper-V Remote Code Execution Vulnerability

* CVE-2017-0109 2 Hyper-V Remote Code Execution Vulnerability

« CVE-2017-4903 2 VMware ESXi, Workstation, Fusion: SVGA driver contains buffer overflow that may allow guests to execute code on hosts'®]
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Next time on CS 4440...

Security in Practice: Malware




