Week 7: Lecture A

Access Control & Isolation

Tuesday, October 1, 2024

Announcements

Project 2: AppSec released

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Deadline: Thursday, October 17th by 11:59PM

/Project 2: Application Security

Deadline: Thursday, October 17 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Helpful Resources

* The CS 4440 Course Wiki

¢ VM Setup and Troubleshooting
 Terminal Cheat Sheet

* GDB Cheat Sheet

 x86 Cheat Sheet

kc Cheat Sheet

~

Table of Contents:

Helpful Resources
Introduction
Objectives
Start by reading this!
o Setup Instructions
o Important Guidelines
Part 1: Beginner Exploits
o Target 0: Variable Overwrite
o Target 1: Execution Redirect
o What to Submit
Part 2: Intermediate Exploits
> Target 2: Shellcode Redirect
o Target 3: Indirect Overwrite
o Target 4: Beyond Strings
o What to Submit
Part 3: Advanced Exploits
o Target 5: Bypassing DEP
o Target 6: Bypassing ASLR
What to Submit
Part 4: Super L33T Pwnage
o Extra Credit: Target 7
o Extra Credit: Target 8
o What to Submit
Submission Instructions /

Stefan Nagy

Project 2 Progress Update

Working on Targets 0-2

P 0%
Working on Targets 3-4

fi 0%
Working on Targets 5-6

f 0%
Finished!

i 0%

Haven't started :(
0 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Announcements

Project 1 grades and regrades are now available on Canvas

Statistics:
= Average score: 100%
= lLastyear’s average: 85%

Fantastic job!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 4

Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 6

Last time on CS 4440...

Automated Bug-Finding
Fuzz Testing
Symbolic Execution

Exploitation

Common Vulnerabilities Consequences Attacker Exploitation

= Missed initialization check = Use uninitialized memory = Software denial of service
= Free'd pointers not NULLd = Use non-owned memory = Leak sensitive information
= Unchecked memory writes - Overflowing a data buffer = Inject & run arbitrary code

Race against time to find & fix vulnerabilities
before they are exploited

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Proactive Vulnerability Discovery

Static Analysis:

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 9

Proactive Vulnerability Discovery

Static Analysis:

SOOI
SEEEEEEEEEERT T

Analyze program without running it

Challenges:

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 10

Proactive Vulnerability Discovery

Static Analysis:

B e

Analyze program without running it

Challenges:
= False negatives (vulnerabilities missed)
= False positives (results are unusable)
As code size grows, analysis speed drops

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 1

Proactive Vulnerability Discovery

Static Analysis: Dynamic Testing:

§§ EXE ’%

SOOI
B e

Analyze program without running it

Challenges:
= False negatives (vulnerabilities missed)
= False positives (results are unusable)
As code size grows, analysis speed drops

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 12

Proactive Vulnerability Discovery

Static Analysis: Dynamic Testing:
TThd capd
Analyze program without running it Analyze program by executing it
Challenges: Advantages:

= False negatives (vulnerabilities missed)
= False positives (results are unusable)
As code size grows, analysis speed drops

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 13

Proactive Vulnerability Discovery

Static Analysis: Dynamic Testing:
TThd capd
Analyze program without running it Analyze program by executing it
Challenges: Advantages:
= False negatives (vulnerabilities missed) e Better accuracy: no false positives
= False positives (results are unusable) = Execution reveals only what exists
As code size grows, analysis speed drops = Program crashed? You found a bug!

Capable of very high throughput

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 14

Finding Bugs with Fuzzing

&

Badly behaved
- eo\ﬁe cases

The space ok possible program behaviors

Source: https://blogtrailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 15

Why do we need feedback in fuzzing?

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 16

Why do we need feedback in fuzzing?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 17

Feedback-driven Fuzzing

3

Inputs ??7

® 6 O
Program
SCHOOL OF COMPUTING
u UNIVERSITY OF UTAH Stefan Nagy 18

3

Inputs

[|

Program

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Feedback-driven Fuzzing

Execute and
Collect Feedback

(e.g., code coverage)

Stefan Nagy

19

Feedback-driven Fuzzing

Interesting!

B

(new code)

Inputs ???

‘ \ Execute and 7??
Collect Feedback e 0 o

Program

(e.g., code coverage)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

20

Feedback-driven Fuzzing

Interesting!

B

(new code)

Inputs ???

Uninteresting

r:\ Execute and ~ _ﬁ —

Collect Feedback
(e.g., code coverage)

Program (no new code)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 21

Feedback-driven Fuzzing

Interesting!
(new code) Crashes
Inputs
Uninteresting (SEGFAULT)
‘ \ Execute and I
Collect Feedback
Program (e.g., code coverage) (no new code)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 22

Types of Feedback-driven Fuzzers

Black-box Grey-box White-box

I i \\\ //
?7?7? 222 ??7?

Stefan Nagy 23

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Types of Feedback-driven Fuzzers

Black-box Grey-box White-box

N\,

N -
S -
~_ >

~\ /V/' /

Zero Introspection High Introspection

Some Introspection

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

24

Types of Feedback-driven Fuzzers

Black-box Grey-box White-box

N\,

\\\/

High Introspection

Zero Introspection

Some Introspection

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 25

Types of Feedback-driven Fuzzers

- \ .
Black-box ,/ Grey-box \ White-box

Zero Introspection

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 26

Coverage-guided Fuzzing

Code coverage: program regions exercised by each test case

177x function fib(n) {

Horse racing analogy: “breed” (mutate) only § B =) ¢
the “winning” (coverage-increasing) inputs B Trewmi "
= New coverage? Keep and mutate the input b =il e SR
= 0Old coverage? Discard it and try again e — .
1431 177x } '
Most fuzzing today is coverage-guided SSOM, SSIESE TR SO

= Good balance of performance and precision

Maximize

code coverage

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 27

Code Coverage Metrics

Program represented as control-flow graphs (CFG)

= Directed graph encompassing all program paths Blocks Q(’
= Basis of virtually all software analysis techniques
Various coverage metrics in use today
= Instructions: units that make up basic blocks
= Basic blocks: nodes of the program’s CFG Edges () ’
= Edges: transitions between basic blocks
= Hit counts: frequencies of basic blocks

= Paths: sequences of edges
Paths °<’

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 28

Impact of Code Coverage

void top(char input[4]) {
if(input[@] == ‘b")
if(input[1] == ‘a’)
if(input[2] == ‘d")
if(input[3] == ‘1)
OVERFLOW() ;

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 29

Impact of Code Coverage

. h : 4 N . .
void top(char input[4]) { Estimated Mutations Required

if(input[@] == ‘b")
if(input[1] == ‘a’) ‘ [7]
if(input[2] == ‘d")
if(input[3] == ‘1) e [- J
OVERFLOW() ;

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 30

Impact of Code Coverage

void top(char input[4]) {
if(input[@] == ‘b")
if(input[1] == ‘a’)
if(input[2] == ‘d")
if(input[3] == ‘1)
OVERFLOW() ;

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Estimated Mutations Required

‘ [(28)* = 4,294,967,296 }
e [4*(28) = 1,024 J

31

Model-agnostic Input Generation

11 11m11 i1 11 11

Brute-force your way to valid inputs
= Bit and byte “flipping”
= Addition and subtraction
= Inserting random chunks
= Inserting dictionary “tokens”
= Splicing two inputs together

The good: super fast

= Incorporating feedback like coverage enables
you to synthesize valid inputs (eventually)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

<html><header><title>Hello</title></header>
<body>World
</body></html>

<a> <a/>
 ='a’'

AA | AA | AA \’ BB | BB | BB

32

Model-guided Input Generation

Follow a pre-defined input specification
= Pre-defined input grammars
= Dynamically-learned grammars
= Domain-specific generators

The good: many more valid inputs
= Model-agnostic inputs are often discarded
because they fail basic input sanity checks
= Valid inputs = higher code coverage

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

XML_GRAMMAR: Grammar = {
"<start>": ["<xml-tree>"
"<xml-tree>": ["<text>",

"<xml-ope

"<xml-ope

"<xml-tre
"<xml-open-tag>": [
"<xml-openclose-tag>": [
"<xml-close-tag>": [
"<xml-attribute>": [
"<id>": [
"<text>": [
"<letter>": s

"<letter_space>": s

1

n-tag><xml-tree><xml-close-tag>",

nclose-tag>",

e><xml-tree>"],

"<<id>>", "<<id> <xml-attribute>>"],

"<<id>/>", "<<id> <xml-attribute>/>"],
"</<id>>"],

"<id>=<id>", "<xml-attribute> <xml-attribute>"],
"<letter>", "<id><letter>"],
"<text><letter_space>", "<letter_space>"],
range(string.ascii_letters + string.digits +
range(string.ascii_letters + string.digits +

o x m pm n g gy

<htm

<head>

<title> </
Hello

1> </html>
</head> <body> </body>
title> World

33

Taint Tracking

Track input bytes’ flow throughout program

Identify input “chunks” that affect program state
Chunks that affect branches
Chunks that flow to function calls

Mutate these chunks
= Random mutation
Insert fun or useful tokens

The good: finding vulnerable buffers,
solving branches

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Mutate!

iyl 11 11 11 11

i¥@ 00 00 00 00 00

34

Symbolic Execution

2. X =Xty X : A+B X: A
i y =x-Y 2y y:g
L 4. X =X-Y j— '
. 5. if (x -y > 0): : e AR satisfiable
6. assert false 13 (AB)-B=A
7. return (x, y) ' i
__ DA<

4| i

Possible path constraints:

e (A>B)and(B-A>0) =unsatisfiable B-A>0 B-A<=0

e (A>B)and(B-A<=0) =satisfiable L x:B xiB

o (A<=B) = satisfiable y:A yiA
unsatisfiable satisfiable

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 35

Feedback-driven Fuzzing vs. Symbolic Execution

if(x*3 == 1881672302290562263) Estimated Mutations Required

° [772]

S

OVERFLOW() ;

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 36

Feedback-driven Fuzzing vs. Symbolic Execution

if(x*3 == 1881672302290562263) Estimated Mutations Required

OVERFLOW(); // x = 1234567
\ ° [Good luck! }

\ [Solves instantly J

\/

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 37

Feedback-driven Fuzzing vs. Symbolic Execution

if(A*3 + B3 + C*3 == 33) Estimated Mutations Required

OVERFLOW() ;
° [?27?]

S

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 38

Feedback-driven Fuzzing vs. Symbolic Execution

if(Ar3 + BA3 + CA3 == 33)
OVERFLOW() ;

A = 8,866,128,975,287,528
B = -8,778,405,442,862,239
Cc =-2,736,111,468, 807/, 040

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Estimated Mutations Required

° [Good luck! }

\ [Good luck!]

\/

39

Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: ???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 40

Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
= Challenges: ???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 41

Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
= Challenges: need a lot of luck to solve multi-byte conditionals, checksums

Model-guided Fuzzing:

= Advantages: ???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 42

Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
= Challenges: need a lot of luck to solve multi-byte conditionals, checksums

Model-guided Fuzzing:
= Advantages: more valid inputs leads to higher coverage earlier on
= Challenges: 7??

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 43

Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
= Challenges: need a lot of luck to solve multi-byte conditionals, checksums

Model-guided Fuzzing:
= Advantages: more valid inputs leads to higher coverage earlier on
= Challenges: out of luck if specification is not defined or hard-to-define

White-box Generation:
= Symbolic Execution Advantages: ???
= Taint Tracking Advantages: ???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy Lt

Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
= Challenges: need a lot of luck to solve multi-byte conditionals, checksums

Model-guided Fuzzing:
= Advantages: more valid inputs leads to higher coverage earlier on
= Challenges: out of luck if specification is not defined or hard-to-define

White-box Generation:
= Symbolic Execution Advantages: precise solving of multi-byte conditionals
= Taint Tracking Advantages: easily identifies key data chunks, branch constraints
= Challenges: ???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 45

Input Generation Trade-offs

Model-agnostic Fuzzing:
= Advantages: great on simple, easy-to-solve branches; attains really fast speed
= Challenges: need a lot of luck to solve multi-byte conditionals, checksums

Model-guided Fuzzing:
= Advantages: more valid inputs leads to higher coverage earlier on
= Challenges: out of luck if specification is not defined or hard-to-define

White-box Generation:
= Symbolic Execution Advantages: precise solving of multi-byte conditionals
= Taint Tracking Advantages: easily identifies key data chunks, branch constraints
= Challenges: far too heavyweight to deploy on all generated inputs; closed-source code

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 46

Impact of Fuzzing

25000

20,141

20000
egeLs 18 325
New Vulnerabilities Reported Per Year 1655773 B
Source: cvedetails.com 14,714
15000
10000
7,939
6,610 6,520 6,504 6,454
5,632 5,736
4935 70 5,297 5,191
5000 ' = 4653 4, 155 '
2,156 2,451
894 1,020 1,677 1,527
0

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 47

Impact of Fuzzing

25000
20000
New Vulnerabilities Reported Per Year -
Source: cvedetails.com
15000
10000
7,9
6,610 6,520 5,632 5,736
4,935 ' 4,653 5,297 5,191
5000
2,156 2,451
894 1,020 1,677 1,527
0 =
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 48

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 49

Interested in fuzzing?

Spring 2025: CS 5963/6963: Applied Software Security Testing
= Everything you'd ever want to know about fuzzing for finding security bugs!
= Course project: team up to fuzz a real program (of your choice), and find and report its bugs!
= https://cs.utah.edu/~snagy/courses/cs5963/

CS 5963/6963: Applied Software Security Testing

This special topics course will dive into today’s state-of-the-art techniques for uncovering hidden security
vulnerabilities in software. Projects will provide hands-on experience with real-world security tools like AFL++ and
AddressSanitizer, culminating in a final project where you’ll team up to hunt down, analyze, and report security
bugs in a real application or system of your choice.

This class is open to graduate students and upper-level undergraduates. It is recommended you have a solid grasp
over topics like software security, systems programming, and C/C++.

Professor

Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 50

https://users.cs.utah.edu/~snagy/courses/cs5963/

Interested in fuzzing?

CS 5963 - 001 Applied S/W Secur Test

Class Number: 14578 Instructor: NAGY, STEFAN Component: Special Topics Type: In Person Units: 3.0
Requisites: Yes Wait List: No View Feedback

This class will prepare students to become effective software testers capable of automating vulnerability discovery in today's large and complex software
systems. This course will cover the fundamental design considerations behind today’s state-of-the-art software testing tools, and equip students with the
know-how to soundly evaluate their results and effectiveness. Students will team up to target a software or system of their choice, and devise their own testing
strategies to find new vulnerabilities in it, analyze their severity, and report them to its developers. Prerequisites CS 3505, CS 4400 and CS 4440

Days / Times Locations
MoWe/01:25PM-02:45PM WEB L114
Meets With

e CS 6963 001

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

51

https://users.cs.utah.edu/~snagy/courses/cs5963/

This time on CS 4440...

Access Control
Permissions
Process Isolation

Food for Thought

So far, we've talked about thwarting bugs by proactively discovering them

= E.g, run fuzzing and try to catch all the bugs!
= Hopefully the attacker will not beat us to it...

Question: how can we redesign our systems to prevent software exploits?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 53

Principles of a Safe System

Clearly we can’t assume Application Developers will write safe code...

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 54

Principles of a Safe System

Clearly we can’t assume Application Developers will write safe code...
= Unless they are alumni of CS 4440 =

What principles should our safe system design uphold?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 55

Principles of a Safe System

Clearly we can’t assume Application Developers will write safe code...
= Unless they are alumni of CS 4440 =

What principles should our safe system design uphold?
= Control who can access what
= Prevent applications from spying on one another
= Implement safeguards to minimize damage of attacks

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 56

Access Control

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 57

Access Control

Access Control: the heart of security
on commodity computing systems

Goal: ?7?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 58

Access Control

Access Control: the heart of security
on commodity computing systems

Goal: control which principles have
access to which system resources

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 59

Access Control

Access Control: the heart of security
on commodity computing systems

Goal: control which principles have Principles:

access to which system resources Users
Programs
Machines

o

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 60

Access Control

Access Control: the heart of security
on commodity computing systems

Goal: control which principles have
access to which system resources

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Access:

Read
Write
Execute
Share

61

Access Control

Access Control: the heart of security
on commodity computing systems

/ Resources: \
Goal: control which principles have

access to which system resources Files
Programs

Peripherals
Instructions

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 62

Access Control

Access Control: the heart of security
on commodity computing systems

Goal: control which principles have
access to which system resources

Access control mechanisms exist at

all levels of a modern computer
= E.g., Hardware, Hypervisor, Operating
System, Middleware, Application

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 63

Access Control

Access Control: the heart of security
on commodity computing systems

Goal: control which principles have
access to which system resources

Access control mechanisms exist at

all levels of a modern computer
= E.g., Hardware, Hypervisor, Operating
System, Middleware, Application

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Relies on

Application

Middleware

Operating System

Hypervisor

Hardware

64

Access Control

Access Control: the heart of security Relies on Complexity

on commodlty computing systems Application A

Goal: control which principles have
access to which system resources

Middleware

Operating System

Access control mechanisms exist at

all levels of a modern computer Hypervisor
= E.g., Hardware, Hypervisor, Operating
System, Middleware, Application v Hardware v

Reliability

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 65

Access Control History

Wasn’t necessary back in “the day”

ENIAC

= The first programmable, electronic,
general-purpose digital computer

= Builtin 1945 by U.S. Army / UPenn

= Access control consisted of just a
single user and a single program

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 66

Access Control History

LEO Il
= “Lyons Electronic Office”
= Introduced concept of multi-tasking
= Consisted of a single master program
“Operating System”
= Allowed 12 “application” programs to
be run concurrently

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 67

Access Control History

PLATO 1/ PLATO 2
= Developed by Univ. of Illinois (ILLIAC)
= Based on a time-sharing computer
system, with users and programmers
connected to a central mainframe
= Access control = multiple users,
multi-tasking

SCHOOL OF COMPUTING Stefan Nagy 68

UNIVERSITY OF UTAH

Access Control History

Moore’s Law: number of
transistors in an IC doubles
about every two years

By 1980: we all have access
to computers!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
Transistor count
50,000,000,000

Moore’s Law: The number of transistors on microchips doubles every two years [oiig gvmd
in Data

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000

50,000,000 \tium 4 Northwooe bt
: entium 4 Wil w»Hv—o‘ o‘?°

b \‘w‘,‘soq m lll Coppermine
AMD K6

10,000,000 .
OO g @SB
5,000,000 Pentium Prog, peltu
oot
tmg DK
1,000,000 Inel 804840, @
500,000

100,000
50,000

10,000 16 100
5,000

Intel 800G,

o
Intel 40

1,000
O L S s .- . SR L C R LI ML S
SRS NN M I AR R S S S

Mot
8800

O O O b & O
NI I A T 2
S P
Year in which the microchip was first introduced

Data source: Wikipedia (w
OurWorldinData.org - Re

pedia.org/wiki/Transistor_count)
1and data to make progress against the world’s largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser

Stefan Nagy

69

Access Control History

Moore’s Law: number of
transistors in an IC doubles
about every two years

By 1980: we all have access
to computers!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 70

Access Control History

Moore’s Law: number of
transistors in an IC doubles
about every two years

By 1980: we all have access
to computers!

Same terrible security ideas

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

YOU GET.ROOT ACCESS
YOU GET ROOTACCESS

vnu‘"nu‘gﬂ ROO

TACCESS!

Prevention and Detection

Bugs are inevitable in any complex software system

NIST: 10-50 bugs per every 1000 code lines

m Denial of Service

Many bugs are never found a Code Exccution

= Overflow

m Cross Site Scripting

m Directory Traversal
Bypass Something
Gain Information

= Gain Privilege

m Memory Corruption
SQL Injection
File Inclusion

Cross Site Request Forgery

HTTP Response Splitting

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 72

Prevention and Detection

Bugs are inevitable in any complex software system Amnesty says NSO's Pegasus
used to hack phones of
Palestinian rights workers

NIST: 10-50 bugs per every 1000 code lines Solarwinds hackers are targeting the

global IT supply chain, Microsoft says

Many bugs are never found Cyber-attack hits | Janesville school
UK internet phone district hit by
providers \ ransomware attack

Many are found and never reported

= Weaponized by Nation-States, criminals 'A cyber-attack disrupted my cancer treatment'
= What we know as Zero-Day Exploits

New York subway
hacked in computer
breach linked to China

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 73

Implementing Access Control

Isolating Applications

Adversary 1: exploited user-space process
= Targets 2-8 in Project 2 (after your attacks)

= e o o o

|]
: Application :
| |

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 75

Isolating Applications

Adversary 1: exploited user-space process
= Targets 2-8 in Project 2 (after your attacks)

= e o o o

|]
: Application :
| |

Adversary 2: malicious user-space process

= Spyware app your aunt installed
= That TikTok app that you installed

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 76

Isolating Applications

Adversary 1: exploited user-space process
= Targets 2-8 in Project 2 (after your attacks)

= e o o o

|]
: Application :
| |

Adversary 2: malicious user-space process

= Spyware app your aunt installed
= That TikTok app that you installed

Goal: protect the system (i.e., all other
processes + the OS) from an evil process

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 77

What specific resources must we protect?

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 78

What specific resources must we protect?

Memory N\
= Code and data of Operating System Applications
= Code and data of other processes :
Kernel
CPU [Memory Devices
S E :

A Bskyped 1 fejjils

z,: Dropbox s
P == Windows/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 79

=P [

3

v
Bl 29
(L) (4 (A 4

[oP [-F
g

| [P @P ¢
P

z
(4
B
(4
i
(4

B [0
=P [oF

ZF

©P [#
P

What specific resources must we protect?

Memory N\
= Code and data of Operating System Applications
= Code and data of other processes :
Files, Directories, and Metadata Kernel
= The sudo-ers files L |
= Your HOME directory (
= Program-specific file descriptors CPU [Memory Devices

8
(4
1]
3
(4

= =
€23] Office
32 Dropbox s
E S, il - .

\ | EE Wlndows/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 80

What specific resources must we protect?

Memory N\
= Code and data of Operating System Applications
= Code and data of other processes :
Files, Directories, and Metadata Kernel
= The sudo-ers files L |
= Your HOME directory (
= Program-specific file descriptors CPU [Memory Devices

The Network

= QOther systems on the same network

8
(4
I
3
(4

£
(4
B
(4

(@B [-F
g
&

Dropbox i0S
—— Windows ,

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 81

z
(4
B
(4
i
(4

0
=P P P

A4
P P
El
=P (A
) ¢ &3
=
©)
=
()
D

~H
<y

©P [#
P

What specific resources must we protect?

Memory @ ™\

= Code and data of Operating System) = [Applications
= Code and data of other processes -
* l 'l le!-ll!l!

f

Files, Directories, and Metadata
= The sudo-ers files
= Your HOME directory
= Program-specific file descriptors

The Network

= QOther systems on the same network

. . P =/
External Devices and Peripherals > 38 35 45

= Your USB drive that contains a
pirated copy of Super Bowl LVII

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 82

How should we protect them?

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 83

How should we protect them?

Principle of Least Privilege
= “In a particular abstraction layer of a computing environment,
every module (e.g., process, user, or program) must be able to
access only the information and resources that are necessary”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

84

How should we protect them?

Principle of Least Privilege
= “In a particular abstraction layer of a computing environment,
every module (e.g., process, user, or program) must be able to
access only the information and resources that are necessary”

In other words, apps should mind their own business!

Critical design consideration for protecting data and
functionality from faults and malicious behavior

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 85

Access Control Matrix

Conceptual model that specifies
the rights each entity (row) has
for each resource (column)

Entity rights:
= R =Read
= W= Write
= X = Execute

SCHOOL OF COMPUTING Stefan Nagy 86

UNIVERSITY OF UTAH

Conceptual model that specifies
the rights each entity (row) has
for each resource (column)

Entity rights:
= R =Read
= W =Write

= X =Execute

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Access Control Matrix

0S Accounting | Accounting | Insurance | Payroll
Program Data Data Data
Bob RX RX R — —
Alice RX RX R RW RW
Sam RWX |RWX R RW RW
Accounting | RX RX RW RW RW
Program

Stefan Nagy

87

Conceptual model that specifies
the rights each entity (row) has
for each resource (column)

Entity rights:
= R =Read
= W =Write

= X =Execute

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Access Control Matrix

0S Accounting | Accounting | Insurance | Payroll
Program Data Data Data
Bob RX RX R - -
Alice RX RX R RW RW
Sam RWX |RWX R RW RW
Accounting | RX RX RW RW RW
Program

Stefan Nagy

88

Implementing Access Control

How can we implement AC matrices on real systems?

Answer: Access Control Lists
= Generalization of UNIX file system permissions
= Stored with file system object as metadata (object-centric)

Compactly and efficiently encodes access to an object
via the subject’s (user or group) system rights

Capabilities: subject centered alternative to ACLs
= For each subject, store list of objects and permissions

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

89

Implementing Access Control

4)

How to completely
remove user Bob?

o j

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 90

Implementing Access Control

4)

How to completely
remove user Bob?

o j

4 N

Revoke all of his
permissions!

. y

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 91

Modern Permissions Schemes

File System Permissions

Users: uid, 32-bit integer, every file has one
Groups: gid, 32-bit integer, every file has one

R w X | 0 I - cs47440@7c574440: ~/{argets
File Actions Edit View Help

€s4440@cs4440: ~ftargets (]

cs4440@cs4440: $ users
cs4440
cs4440@cs4440: $ groups
cs4440 adm cdrom sudo dip plugdev lpadmin sambas
cs4440@cs4440: $ ls -1la
otal 4

Feb 15
Feb 15
Feb
c Jan build.py
479 Jan 16 build.sh
11 Feb 15 cookie

S R W e e N oo e W ey
Nooph,wWwN -

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 93

File System Permissions

D = Directory

R=read filesin D
W =writeafileinD
X=accessafileinD
if you know its path

Last number =D’s
total subdirectories

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

//;;WXFWXF—X

drwxr-xr-x
drwxrwxr-x
-rw-rw-r--
- rWXIrWXr-X
-rw-rw-r--

- FWXrwxr-Xx

drwxrwxr-x

\\:fwxrwxr—x

S N = aapNd D

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440 .

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

~

bin
build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///

Stefan Nagy

9%

File System Permissions

D = Directory

R=read filesin D
W =writeafileinD
X=accessafileinD
if you know its path

Last number = D’s
total subdirectories

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

/erXFWXF—X

drwxr-xr-x
drwxrwxr-x
~rw-rw-r--
~rWXIrwXxr-xX
~rw-rw-r--
~rWXIrwXxr-xX
drwxrwxr-x

\\;iwxrwxr—x

SN NN

—_—

= N =

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

bin
build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///

Stefan Nagy

95

File System Permissions

D = Directory

R=read filesin D
W =writeafileinD
X=accessafileinD
if you know its path

Last number = D’s
total subdirectories

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

/erXFWXF—X

drwxr-xr-x
drwxrwxr-x
-rwW-rw-r--
- FWXIrwXxr-xX
-rwW-rw-r--
- FWXIrwXxr-xX
drwxrwxr-x

\\:fwxrwxr—x

SN NS

—_—

= N =

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

bin
build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///

Stefan Nagy

96

File System Permissions

D = Directory

R=read filesin D

W=writeafileinD
X=accessafileinD
if you know its path

Last number = D’s
total subdirectories

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

/erXFWXF—X

drwxr-xr-x
drwxrwxr-x
~rwW-rw-r--
~FWXTIWXr-xX
~rwW-rw-r--
~FWXTIWXr-xX
drwxrwxr-x

\\:fwxrwxr—x

S NN

—_—

= N =

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

bin
build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///

Stefan Nagy

97

File System Permissions

D = Directory

R=read filesin D

W=writeafileinD
X=accessafileinD
if you know its path

Last number = D’s
total subdirectories

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

/erXFWXF—X

drwxr-xr-x
drwxrwxr-x
~rwW-rw-r--
~FWXIWXr-X
~rwW-rw-r--
~FWXIWXr-X
drwxrwxr-x

\\:fwxrwxr—x

S NN

—_—

= N =

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

bin
build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///

Stefan Nagy

98

File System Permissions

D = Directory

R=read filesin D

W=writeafileinD
X=accessafileinD
if you know its path

Last number = D’s
total subdirectories

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

/erXFWXF—X

drwxr-xr-x 1
drwxrwxr-x
-rW-rw-r--
~FWXIWXI-X
-rW-rw-r--

- FWXIrWXr-X
drwXxrwxr-x

R | JEE G QR G G SR S

\\:fwxrwxr—x

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440
cs4440

~

bin

build.py
build.sh
cookie

core
helper.c
__pycache__

shellcode.p%///

Stefan Nagy

929

File System Permissions

First three represent ///’ ‘\\\

Owner’s privileges Owner
-rwxrwxrwx 1 root cs4440 target6
-rwxrwxr-x 1 cs4440 cs4440 target6.c
-rwxrwxrwx 1 root cs4440 target/
-rwxrwxr-x 1 cs4440 cs4440 target/.c
-rwxrwxrwx 1 root cs4440 target8
-rw-rw-r-- 1 cs4440 cs4440 target8.c
-rw-rw-r-- 1 cs4440 cs4440 tmp

- /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 100

File System Permissions

First three represent //f’ ‘\\\
Owner’s privileges Owner Group

-rwxrwxrwx 1 root cs4440 target6
-rwxrwxr-x 1 cs4440 cs4440 target6.c
Nextﬁneef?pmsent -rwxrwxrwx 1 root cs4440 target/
Group's privileges -rwxrwxr-x 1 cs4440 cs4440 target7.c
-rwxrwxrwx 1 root cs4440 target8
-rw-rw-r-- 1 cs4440 cs4440 target8.c
-rw-rw-r-- 1 c¢s4440 cs4440 tmp

- /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 101

File System Permissions

First three represent / \
Owner’s privileges Owner Group
-rwxrwxrwx 1 root cs4440 target6
Next three represent -rwxrwxr-x 1 cs4440 cs4440 target6.c
) .. -rwxrwxrwx 1 root cs4440 target/
Group’s privileges -rwxrwxr-x 1 cs4440 cs4440 target7.c
-rwxrwxrwx 1 root cs4440 target8
Last three represent -rw-rw-r-- 1 cs4440 cs4440 target8.c
everyone else -rw-rw-r-- 1 cs4440 cs4440 tmp

- /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 102

Permission Puzzles

No permissions?

Read, Write, Exec only for owner?

Execute for all?

Owner can read, write, & exec;
Group can only read; and all
others have no permissions.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

7?77

7?77

7?77

7?77

7?77

7?77

7?77

7?77

7?77

7?77

7?77

7?77

103

Permission Puzzles

No permissions?

Read, Write, Exec only for owner?

Execute for all?

Owner can read, write, & exec;
Group can only read; and all
others have no permissions.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

rwx

rwx

104

Process Permissions

Every process has one uid, up to many gids
Actions: create, kill, debug (ptrace)

Login process (uid=0, root)

€T 1] Office
= Checks (username, password) tuple

= Changes uid to user’s value (via setuid) z‘z DrOpbOX 10S
= Start’s user’s shell (/bin/sh)
ml \\/;
=iy Windows

= Processes now run as current user!

setuid binaries
= Program runs with uid of owner (e.g., root)
= Not the parent process!
= Examples: /bin/su, /bin/sudo

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 105

Network Permissions

Connect
= Liberal permissions

Listen
= Liberal permissions
= Ports below 1024 reserved for system
= Requires special permissions!

Read/write data
= As long as you have a file descriptor!

Send/receive raw packets

= Must be associated with an existing connection
= Otherwise uid=0 (root)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 106

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 107

Process Isolation

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 108

Process Isolation

- 4 -+ -4 | 4 4 -4 | 4 4
> = > > =5 > = > >
= = = = = = = = =
/ \ ©) o) o))) o ©
oY] oY Y]) oY Y] oY oY
o a a a al a a al a
Process Process Process
Goal: ?7?
{] ® 0 o
Libraries

N / oS

Hardware

SCHOOL OF COMPUTING Stefan Nagy 109

UNIVERSITY OF UTAH

Process Isolation

4 N

Goal: minimize
damage by isolating
every process

-

/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

== == ==
> = > > =5 > = > >
= = = = = = = = =
() D D D D D D (0] ()
QU Q QU Q Q QU Q QU QU
o o o o o o o o o
Process Process Process
Libraries
oS
Hardware

Stefan Nagy

110

Process Isolation

We can't just rely on permission schemes N

= Assume attackers can (and will) bypass them usr= Steve

. pwd= cs4440

Security Goal: prevent cross-process

memory access or memory corruption v
\

read(wf.usr)

read(wf.pwd)
/

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 111

Process Isolation

We can't just rely on permission schemes N
= Assume attackers can (and will) bypass them WF usr= Steve
. pwd= cs4440
Security Goal: prevent cross-process
memory access or memory corruption . v

Memory Management Unit

= Hardware that acts as gatekeeper of memory
= Translates virtual memory to physical memory

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 112

Isolating Process Memory

Instruction
Fetcher

Instruction
i~"" Decoder

Memory Management Unit
= Translates virtual memory to physical memory

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 113

Isolating Process Memory

Memory Management Unit

= Translates virtual memory to physical memory
= Enforce Process-1 can’t access of Process-2's memory!

Virtual Memory Virtual Memory Physical Memory
Process #1 Process #2

Process
#2

Page Tables Process
#1

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 14

Process Isolation

/

Goal: minimize

damage by isolating

every process

~

.

Caveat: ???

~

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

== == ==
> = > > =5 > = > >
= = = = = = = = =
() D D D D D D (0] ()
QU Q QU Q Q QU Q QU QU
o o o o o o o o o
Process Process Process
Libraries
oS
Hardware

Stefan Nagy

115

Process Isolation

peaiylL
peaiylL
pealyL
peaiylL
pealyL
peaiyL
pealyL
peaiylL
peaiylL

4)
Goal: minimize sa -
° ° Process Process Process 3

damage by iIsolating

every process
o P v ,

4 Dy 5
Caveat: you must Hardware
trust all potential G N & N
isolation bridges U Ty e
N\ Y, W A
oo?mgg’ller mouse CD/DVD keyboard

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 116

c
R
)
L

@)
n
[

—
9

>

(@)

=

(d})
—

ipherals?
s are host

icious per
-in

What about mal

le!

?

Assume plugged-in USB

117

Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Memory-level Isolation

What about malicious peripherals?
= Assume plugged-in USB'’s are hostile!

Main Memory

Solution: the Input/Output (10) MMU

= Same idea as MMU, but extended to devices T Physical addresses T

= 10 means “input” / “output” devices; e.g.: [] [i
. Network 1l IOMMU MMU |
= Keyboard Device Fddresses © Virtual Taddressesg
= USB stick : :
= Graphics cards _
. Device CPU
= Anything that uses a device driver : :

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 118

Resource-level Isolation

Without App Sandbox

Problem: any processes you execute
will inherit your privileges, resources —

Unrestricted
access

All
system resources

Your app

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 119

Resource-level Isolation

Problem: any processes you execute
will inherit your privileges, resources ‘\
""

Your app

Unrestricted
access

All
system resources

Process Sandbox: tight, controlled set

of resources to execute guest programs
= Scratch space on disk and memory

With App Sandbox

Your sandbox =

= Network access -~ -
= Ability to inspect the host system or @ &
e

= Read from input devices are usually
disallowed or heavily restricted

No access '

Your app
Other
system resources

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 120

Resource-level Isolation

Renderer: Renderer: Renderer:
a.com b.com c.com
Sandbox Sandbox Sandbox

Browser Process

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 121

Sandboxing

/

Goal: give processes
the least privileges

~

N /
4 ™
Caveat: 7?7?

o J

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

| 4 -
=l = =y
= = =
@ ® ®
QU Q QU
o ol a
Process

Libraries

0S

Hardware

Stefan Nagy

122

Sandboxing

/

o

Goal: give processes

~

the least privileges
/

e

o

~
Caveat: the trusted

computing base is
still very large!

J

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

peaiyL
peaiylL
pealylL

N~
I,\ Process ,\\
i 1\
by w Libraries « 7\
i \‘ ,/ I
k) i

\ oS /
N /
Hardware 7
/
/
S ~ - v

Stefan Nagy 123

Containers

App 1 App 2 App 3

Bins/Lib Bins/Lib Bins/Lib

Container Engine

Operating System

Infrastructure

Containers

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 124

Containers

4) R
Goal: make libraries,

middleware specific

to each process ibraries [e

. /
0S
4 N

pealyL
peaiyl
peaiyl

Process

Hardware

Caveat: ???

. s

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 125

Containers

4 N 1 H
Goal: make libraries, o=l 21"
middleware specific ,’: Process

to each process '\ Libraries

. ~ \ A

4 N R

Caveat: the trusted
computing base Is
now the OS and HW

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

- J

Stefan Nagy

s
n
1
| Libraries || Libraries [
‘/I
7
(0 /
¥

Hardware

126

Virtual Machines

App 1 App 2 App 3

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Bins/Lib Bins/Lib Bins/Lib

Hypervisor

Infrastructure

O 8 &

Virtual Machines

Stefan Nagy 127

Virtual Machines

/

Goal: completely
Isolate the OS

~

\

.

Caveat: ?7?7?

)

SCHOOL OF COMPUTI
UNIVERSITY OF UTAH

NG

pealyL
peaiyl
peaiyl

Process

Stefan Nagy

Guest 0OS

Host OS / Hypervisor

Hardware

128

Virtual Machines

4 N

Goal: completely
Isolate the OS

- /

e N
Caveat: the trusted

computing base now

the Hypervisor
N yP /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

£ ™ -

! Process i

I 1

§ !

4 7
S /
“ Host OS / Hypervisor &

Hardware

Stefan Nagy 129

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Virtual Machines

-

.

~

So what are the overall trade-offs of
using sandboxes, containers, or VMs?

J

Stefan Nagy

B J

130

Trade-offs of sandboxes/containers/VMs?

Sandboxes are the most secure but also the slowest. 0%
Containers balance speed/security but share the host's kernel. 0%
VMs are faster than containers but offer less isolation. 0%
Containers and VMs offer the same security and performance. 0%

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Other Caveats

Sandboxes, containers, and
hypervisors are all software...

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 132

Other Caveats

Sandboxes, containers, and
hypervisors are all software...
with vulnerabilities too!

CVE-2022-0185 in Linux Kernel Can Allow Container Escape in
Kubernetes

Last week, a new high-severity CVE was released that affects the Linux kernel. This vulnerability provides an
opportunity for an attacker who has access to a system as an unprivileged user to escalate those rights to
root. To do this, the attacker must have a specific Linux capability, CAP_SYS_ADMIN, which reduces the risk
of breakout in some container cases. But in many Kubernetes clusters, it's likely that an attacker could exploit
this issue.

At the moment, there is no public exploit code for this issue. However, one of the researchers who found it
has posted a proof of concept showing a container breakout, and it's expected that exploit code will be
released soon.

Virtual machine escape % 3 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

In computer security, virtual machine escape is the process of a program breaking out of the virtual machine on which it is running and interacting with
the host operating system.!') A virtual machine is a "completely isolated guest operating system installation within a normal host operating system".”l In
2008, a vulnerability (CVE-2008-0923 ') in VMware discovered by Core Security Technologies made VM escape possible on VMware Workstation 6.0.2
and 5.5.4.314] A fully working exploit labeled Cloudburst was developed by Immunity Inc. for Immunity CANVAS (commercial penetration testing tool).[!
Cloudburst was presented in Black Hat USA 2009.6!

Previous known vulnerabilities |edit]

* CVE-2007-4993 Z' Xen pygrub: Command injection in grub.conf file.

« CVE-2007-1744 2 Directory traversal vulnerability in shared folders feature for VMware

« CVE-2008-0923 2 Directory traversal vulnerability in shared folders feature for VMware

* CVE-2008-1943 2 Xen Para Virtualized Frame Buffer backend buffer overflow.

* CVE-2009-1244 17 Cloudburst: VM display function in VMware

« CVE-2011-1751 ! QEMU-KVM: PIIX4 emulation does not check if a device is hotpluggable before unplugging!”!
« CVE-2012-0217 2 The x86-64 kernel system-call functionality in Xen 4.1.2 and earlier

« CVE-2014-0983 2 Oracle VirtualBox 3D acceleration multiple memory corruption

« CVE-2015-3456 2 VENOM: buffer-overflow in QEMU's virtual floppy disk controller

« CVE-2015-7504 2 QEMU-KVM: Heap overflow in pcnet_receive function.®!

« CVE-2015-7835 2 Xen Hypervisor: Uncontrolled creation of large page mappings by PV guests

Integer overflow in Skia in Google Chrome prior to 112.0.5615.137 allowed
a remote attacker who had compromised the renderer process to
potentially perform a sandbox escape via a crafted HTML page.
(Chromium security severity: High)

« CVE-2016-6258 (' Xen Hypervisor: The PV pagetable code has fast-paths for making updates to pre-existing pagetable entries, to skip expensive re-
validation in safe cases (e.g. clearing only Access/Dirty bits). The bits considered safe were too broad, and not actually safe.

« CVE-2016-7092 ' Xen Hypervisor: Disallow L3 recursive pagetable for 32-bit PV guests

« CVE-2017-5715, 2017-5753, 2017-5754: The Spectre and Meltdown hardware vulnerabilities, a cache side-channel attack on CPU level (Rogue Data
Cache Load (RDCL)), allow a rogue process to read all memory of a computer, even outside the memory assigned to a virtual machine

* CVE-2017-0075 2 Hyper-V Remote Code Execution Vulnerability

* CVE-2017-0109 2 Hyper-V Remote Code Execution Vulnerability

« CVE-2017-4903 2 VMware ESXi, Workstation, Fusion: SVGA driver contains buffer overflow that may allow guests to execute code on hosts'®]

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 133

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 134

Next time on CS 4440...

Security in Practice: Malware

