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Week 7: Lecture A 
Access Control & Isolation

Tuesday, October 1, 2024
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Announcements

￭ Project 2: AppSec released
￭ Deadline: Thursday, October 17th by 11:59PM
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Announcements

￭ Project 1 grades and regrades are now available on Canvas

￭ Statistics:
￭ Average score: 100%
￭ Last year’s average: 85%

￭ Fantastic job!
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Announcements
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See Discord for 
meeting info!

utahsec.cs.utah.edu
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Questions?
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Last time on CS 4440…
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Automated Bug-Finding
Fuzz Testing

Symbolic Execution
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▪Missed initialization check
▪ Free’d pointers not NULL’d
▪ Unchecked memory writes

Common Vulnerabilities
▪ Use uninitialized memory
▪ Use non-owned memory
▪ Overflowing a data buffer

Consequences Attacker Exploitation
▪ Software denial of service
▪ Leak sensitive information
▪ Inject & run arbitrary code

Race against time to find & fix vulnerabilities 
before they are exploited

Exploitation
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Proactive Vulnerability Discovery
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Static Analysis:
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Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Challenges:
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Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Challenges:
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

As code size grows, analysis speed drops
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Static Analysis: Dynamic Testing:
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Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Challenges:
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

As code size grows, analysis speed drops
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Static Analysis: Dynamic Testing:

￭ Analyze program by executing it

￭ Advantages:
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Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Challenges:
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

As code size grows, analysis speed drops
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Static Analysis: Dynamic Testing:

￭ Analyze program by executing it

￭ Advantages:
● Better accuracy: no false positives
￭ Execution reveals only what exists
￭ Program crashed? You found a bug!
￭ Capable of very high throughput
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Finding Bugs with Fuzzing

15

Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/
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Why do we need feedback in fuzzing?
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Why do we need feedback in fuzzing?
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Program

Inputs

18

Feedback-driven Fuzzing

???
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Program

Inputs
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Feedback-driven Fuzzing

Execute and 
Collect Feedback

 

(e.g., code coverage)
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Program

Inputs

20

Feedback-driven Fuzzing

Execute and 
Collect Feedback

 

(e.g., code coverage)

✓
Interesting!

(new code)
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✓

X

Interesting!

Uninteresting

Program

Inputs

Execute and 
Collect Feedback

 

(e.g., code coverage)
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Feedback-driven Fuzzing

(new code)

(no new code)

???



Stefan Nagy

✓

X

Interesting!

Uninteresting

Crashes

Program

Inputs

Execute and 
Collect Feedback

 

(e.g., code coverage)
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Feedback-driven Fuzzing

(new code)

(no new code)

(SEGFAULT)
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Types of Feedback-driven Fuzzers
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??? ??? ???

Black-box Grey-box White-box
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Types of Feedback-driven Fuzzers
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Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box
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Types of Feedback-driven Fuzzers
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Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box
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Coverage-guided Fuzzing

￭ Code coverage: program regions exercised by each test case

￭ Horse racing analogy: “breed” (mutate) only 
the “winning” (coverage-increasing) inputs
￭ New coverage? Keep and mutate the input
￭ Old coverage? Discard it and try again

￭ Most fuzzing today is coverage-guided
￭ Good balance of performance and precision

27

Maximize
code coverage
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Code Coverage Metrics

￭ Program represented as control-flow graphs (CFG)
￭ Directed graph encompassing all program paths
￭ Basis of virtually all software analysis techniques

￭ Various coverage metrics in use today
￭ Instructions: units that make up basic blocks
￭ Basic blocks: nodes of the program’s CFG
￭ Edges: transitions between basic blocks
￭ Hit counts: frequencies of basic blocks
￭ Paths: sequences of edges

28

Blocks

Edges

Paths
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Impact of Code Coverage

void top(char input[4]) {

   if(input[0] == ‘b’)

      if(input[1] == ‘a’)

         if(input[2] == ‘d’)

            if(input[3] == ‘!’)

               OVERFLOW();

}
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Impact of Code Coverage

void top(char input[4]) {

   if(input[0] == ‘b’)

      if(input[1] == ‘a’)

         if(input[2] == ‘d’)

            if(input[3] == ‘!’)

               OVERFLOW();

}
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(28)4 = 4,294,967,296

4*(28) = 1,024

Estimated Mutations Required
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Model-agnostic Input Generation

￭ Brute-force your way to valid inputs
￭ Bit and byte “flipping”
￭ Addition and subtraction
￭ Inserting random chunks
￭ Inserting dictionary “tokens”
￭ Splicing two inputs together

￭ The good: super fast
￭ Incorporating feedback like coverage enables 

you to synthesize valid inputs (eventually)

32
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Model-guided Input Generation

￭ Follow a pre-defined input specification 
￭ Pre-defined input grammars
￭ Dynamically-learned grammars
￭ Domain-specific generators

￭ The good: many more valid inputs
￭ Model-agnostic inputs are often discarded

because they fail basic input sanity checks
￭ Valid inputs = higher code coverage 
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Taint Tracking

￭ Track input bytes’ flow throughout program
￭ Identify input “chunks” that affect program state

￭ Chunks that affect branches
￭ Chunks that flow to function calls

￭ Mutate these chunks
￭ Random mutation
￭ Insert fun or useful tokens

￭ The good: finding vulnerable buffers, 
   solving branches

34

 0. def f (x, y): 
1.  if (x > y): 
2.    .........

11

11 11 11 11 11 11 1111

11 11 Bytes that comprise X

Bytes that comprise Y

11

11 11 11 11 11 11 1111

11 11 11

00

11 1111 11

00 00 00 00

Mutate!
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Symbolic Execution

35

0. def f (x, y): 
1.  if (x > y): 
2.    x = x + y 
3.    y = x - y
4.    x = x - y 
5.    if (x - y > 0):
6.      assert false 
7.  return (x, y)

 x : A
 y : B

  x : A+B
  y : B

A > B A <= B

 x : A
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

B - A > 0 B - A <= 0

L2

L3

L4

L7

L6  x : B
 y : A L6

unsatisfiable satisfiable

satisfiable

Possible path constraints:
● (A > B) and (B-A > 0) = unsatisfiable
● (A > B) and (B-A <= 0) = satisfiable
● (A <= B) = satisfiable



Stefan Nagy

Feedback-driven Fuzzing vs. Symbolic Execution

if(x^3 == 1881672302290562263)

OVERFLOW(); 

}

36

Estimated Mutations Required

???
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Feedback-driven Fuzzing vs. Symbolic Execution

if(x^3 == 1881672302290562263)

OVERFLOW(); // x = 1234567

}

37

Good luck!

Solves instantly 

Estimated Mutations Required
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Feedback-driven Fuzzing vs. Symbolic Execution

if(A^3 + B^3 + C^3 == 33)

OVERFLOW(); 

}

38

Estimated Mutations Required

???

???
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Feedback-driven Fuzzing vs. Symbolic Execution

if(A^3 + B^3 + C^3 == 33)

OVERFLOW(); 

}

A = 8,866,128,975,287,528

B = −8,778,405,442,862,239

C = −2,736,111,468,807,040

39

Good luck!

Estimated Mutations Required

Good luck!
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Input Generation Trade-offs

￭ Model-agnostic Fuzzing: 
￭ Advantages: ???
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Input Generation Trade-offs

￭ Model-agnostic Fuzzing: 
￭ Advantages: great on simple, easy-to-solve branches; attains really fast speed
￭ Challenges: ???
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Input Generation Trade-offs

￭ Model-agnostic Fuzzing: 
￭ Advantages: great on simple, easy-to-solve branches; attains really fast speed
￭ Challenges: need a lot of luck to solve multi-byte conditionals, checksums 

￭ Model-guided Fuzzing: 
￭ Advantages: ???
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￭ Model-guided Fuzzing: 
￭ Advantages: more valid inputs leads to higher coverage earlier on
￭ Challenges: ???
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Input Generation Trade-offs

￭ Model-agnostic Fuzzing: 
￭ Advantages: great on simple, easy-to-solve branches; attains really fast speed
￭ Challenges: need a lot of luck to solve multi-byte conditionals, checksums 

￭ Model-guided Fuzzing: 
￭ Advantages: more valid inputs leads to higher coverage earlier on
￭ Challenges: out of luck if specification is not defined or hard-to-define

￭ White-box Generation: 
￭ Symbolic Execution Advantages: ???
￭ Taint Tracking Advantages:  ???
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Input Generation Trade-offs

￭ Model-agnostic Fuzzing: 
￭ Advantages: great on simple, easy-to-solve branches; attains really fast speed
￭ Challenges: need a lot of luck to solve multi-byte conditionals, checksums 

￭ Model-guided Fuzzing: 
￭ Advantages: more valid inputs leads to higher coverage earlier on
￭ Challenges: out of luck if specification is not defined or hard-to-define

￭ White-box Generation: 
￭ Symbolic Execution Advantages: precise solving of multi-byte conditionals
￭ Taint Tracking Advantages: easily identifies key data chunks, branch constraints
￭ Challenges: ???
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Input Generation Trade-offs

￭ Model-agnostic Fuzzing: 
￭ Advantages: great on simple, easy-to-solve branches; attains really fast speed
￭ Challenges: need a lot of luck to solve multi-byte conditionals, checksums 

￭ Model-guided Fuzzing: 
￭ Advantages: more valid inputs leads to higher coverage earlier on
￭ Challenges: out of luck if specification is not defined or hard-to-define

￭ White-box Generation: 
￭ Symbolic Execution Advantages: precise solving of multi-byte conditionals
￭ Taint Tracking Advantages: easily identifies key data chunks, branch constraints
￭ Challenges: far too heavyweight to deploy on all generated inputs; closed-source code
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Source: cvedetails.com

Impact of Fuzzing
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Source: cvedetails.com

Impact of Fuzzing
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Questions?
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Interested in fuzzing?

￭ Spring 2025: CS 5963/6963: Applied Software Security Testing
￭ Everything you’d ever want to know about fuzzing for finding security bugs!
￭ Course project: team up to fuzz a real program (of your choice), and find and report its bugs!
￭ https://cs.utah.edu/~snagy/courses/cs5963/ 

50

https://users.cs.utah.edu/~snagy/courses/cs5963/
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￭ Spring 2024: CS 5963/6963: Applied Software Security Testing
￭ Everything you’d ever want to know about fuzzing for finding security bugs!
￭ Course project: team up to fuzz a real program (of your choice), and find and report its bugs!
￭ https://cs.utah.edu/~snagy/courses/cs5963/ 
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Interested in fuzzing?

https://users.cs.utah.edu/~snagy/courses/cs5963/
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This time on CS 4440…

52

Access Control
Permissions

Process Isolation
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Food for Thought

￭ So far, we’ve talked about thwarting bugs by proactively discovering them
￭ E.g., run fuzzing and try to catch all the bugs!
￭ Hopefully the attacker will not beat us to it…

￭ Question: how can we redesign our systems to prevent software exploits?
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Principles of a Safe System

￭ Clearly we can’t assume Application Developers will write safe code…
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Principles of a Safe System

￭ Clearly we can’t assume Application Developers will write safe code…
￭ Unless they are alumni of CS 4440 😊

￭ What principles should our safe system design uphold?
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Principles of a Safe System

￭ Clearly we can’t assume Application Developers will write safe code…
￭ Unless they are alumni of CS 4440 😊

￭ What principles should our safe system design uphold?
￭ Control who can access what
￭ Prevent applications from spying on one another
￭ Implement safeguards to minimize damage of attacks

56



Stefan Nagy

Access Control

57
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Access Control

￭ Access Control: the heart of security 
on commodity computing systems

￭ Goal: ???
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Non-root Users

Root Admin
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Access Control

￭ Access Control: the heart of security 
on commodity computing systems

￭ Goal: control which principles have 
access to which system resources
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Non-root Users

Root Admin
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Access Control

￭ Access Control: the heart of security 
on commodity computing systems

￭ Goal: control which principles have 
access to which system resources

60

Non-root Users

Root Admin

Principles:

Users
Programs
Machines

…
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Access Control

￭ Access Control: the heart of security 
on commodity computing systems

￭ Goal: control which principles have 
access to which system resources

61

Non-root Users

Root Admin
Access:

Read
Write

Execute
Share

…
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Access Control

￭ Access Control: the heart of security 
on commodity computing systems

￭ Goal: control which principles have 
access to which system resources

62

Non-root Users

Root Admin
Resources:

Files
Programs

Peripherals
Instructions

…
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Access Control

￭ Access Control: the heart of security 
on commodity computing systems

￭ Goal: control which principles have 
access to which system resources

￭ Access control mechanisms exist at 
all levels of a modern computer
￭ E.g., Hardware, Hypervisor, Operating 

System, Middleware, Application

63

Non-root Users

Root Admin
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Access Control

￭ Access Control: the heart of security 
on commodity computing systems

￭ Goal: control which principles have 
access to which system resources

￭ Access control mechanisms exist at 
all levels of a modern computer
￭ E.g., Hardware, Hypervisor, Operating 

System, Middleware, Application

64

Relies on

Application

Middleware

Operating System

Hypervisor

Hardware
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Access Control

￭ Access Control: the heart of security 
on commodity computing systems

￭ Goal: control which principles have 
access to which system resources

￭ Access control mechanisms exist at 
all levels of a modern computer
￭ E.g., Hardware, Hypervisor, Operating 

System, Middleware, Application

65

Application

Relies on Complexity

Reliability

Middleware

Operating System

Hypervisor

Hardware
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Access Control History

￭ Wasn’t necessary back in “the day”

￭ ENIAC 
￭ The first programmable, electronic, 

general-purpose digital computer
￭ Built in 1945 by U.S. Army / UPenn
￭ Access control consisted of just a

single user and a single program
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Access Control History

67

￭ LEO III
￭ “Lyons Electronic Office”
￭ Introduced concept of multi-tasking
￭ Consisted of a single master program 

“Operating System” 
￭ Allowed 12 “application” programs to 

be run concurrently
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Access Control History

￭ PLATO 1 / PLATO 2
￭ Developed by Univ. of Illinois (ILLIAC)
￭ Based on a time-sharing computer 

system, with users and programmers 
connected to a central mainframe

￭ Access control = multiple users, 
multi-tasking
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Access Control History

￭ Moore’s Law: number of 
transistors in an IC doubles 
about every two years

￭ By 1980: we all have access 
to computers!
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Access Control History

￭ Moore’s Law: number of 
transistors in an IC doubles 
about every two years

￭ By 1980: we all have access 
to computers!
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Access Control History

￭ Moore’s Law: number of 
transistors in an IC doubles 
about every two years

￭ By 1980: we all have access 
to computers!

￭ Same terrible security ideas
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Prevention and Detection

￭ Bugs are inevitable in any complex software system

￭ NIST: 10–50 bugs per every 1000 code lines

￭ Many bugs are never found
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Prevention and Detection

￭ Bugs are inevitable in any complex software system

￭ NIST: 10–50 bugs per every 1000 code lines

￭ Many bugs are never found

￭ Many are found and never reported
￭ Weaponized by Nation-States, criminals
￭ What we know as Zero-Day Exploits
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Implementing Access Control
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Isolating Applications

￭ Adversary 1: exploited user-space process
￭ Targets 2–8 in Project 2 (after your attacks)

75

Hardware

Hypervisor

Operating System

Middleware

Application
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Isolating Applications

￭ Adversary 1: exploited user-space process
￭ Targets 2–8 in Project 2 (after your attacks)

￭ Adversary 2: malicious user-space process
￭ Spyware app your aunt installed
￭ That TikTok app that you installed

76

Hardware

Hypervisor

Operating System

Middleware

Application
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Isolating Applications

￭ Adversary 1: exploited user-space process
￭ Targets 2–8 in Project 2 (after your attacks)

￭ Adversary 2: malicious user-space process
￭ Spyware app your aunt installed
￭ That TikTok app that you installed

￭ Goal: protect the system (i.e., all other 
processes + the OS) from an evil process

77

Hardware

Hypervisor

Operating System

Middleware

Application
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What specific resources must we protect?
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￭ Memory
￭ Code and data of Operating System
￭ Code and data of other processes

79

What specific resources must we protect?
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￭ Memory
￭ Code and data of Operating System
￭ Code and data of other processes

￭ Files, Directories, and Metadata
￭ The sudo-ers files
￭ Your HOME directory
￭ Program-specific file descriptors

80

What specific resources must we protect?
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￭ Memory
￭ Code and data of Operating System
￭ Code and data of other processes

￭ Files, Directories, and Metadata
￭ The sudo-ers files
￭ Your HOME directory
￭ Program-specific file descriptors

￭ The Network
￭ Other systems on the same network

81

What specific resources must we protect?
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￭ Memory
￭ Code and data of Operating System
￭ Code and data of other processes

￭ Files, Directories, and Metadata
￭ The sudo-ers files
￭ Your HOME directory
￭ Program-specific file descriptors

￭ The Network
￭ Other systems on the same network

￭ External Devices and Peripherals
￭ Your USB drive that contains a 

pirated copy of Super Bowl LVII

82

What specific resources must we protect?
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How should we protect them?

83
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How should we protect them?

￭ Principle of Least Privilege 
￭ “In a particular abstraction layer of a computing environment, 

every module (e.g., process, user, or program) must be able to 
access only the information and resources that are necessary”
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How should we protect them?

￭ Principle of Least Privilege 
￭ “In a particular abstraction layer of a computing environment, 

every module (e.g., process, user, or program) must be able to 
access only the information and resources that are necessary”

￭ In other words, apps should mind their own business!

￭ Critical design consideration for protecting data and 
functionality from faults and malicious behavior
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Access Control Matrix

￭ Conceptual model that specifies 
the rights each entity (row) has 
for each resource (column)

￭ Entity rights:
￭ R  = Read
￭ W = Write
￭ X  = Execute

86
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Access Control Matrix

￭ Conceptual model that specifies 
the rights each entity (row) has 
for each resource (column)

￭ Entity rights:
￭ R  = Read
￭ W = Write
￭ X  = Execute
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OS Accounting 
Program

Accounting 
Data

Insurance 
Data

Payroll 
Data

Bob R X R X R — —

Alice R X R X R R W R W

Sam R W X R W X R R W R W

Accounting 
Program

R X R X R W R W R W
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Access Control Matrix

￭ Conceptual model that specifies 
the rights each entity (row) has 
for each resource (column)

￭ Entity rights:
￭ R  = Read
￭ W = Write
￭ X  = Execute

88

OS Accounting 
Program

Accounting 
Data

Insurance 
Data

Payroll 
Data

Bob R X R X R — —

Alice R X R X R R W R W

Sam R W X R W X R R W R W

Accounting 
Program

R X R X R W R W R W
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Implementing Access Control

￭ How can we implement AC matrices on real systems?

￭ Answer: Access Control Lists
￭ Generalization of UNIX file system permissions
￭ Stored with file system object as metadata (object-centric)

￭ Compactly and efficiently encodes access to an object 
via the subject’s (user or group) system rights 

￭ Capabilities: subject centered alternative to ACLs
￭ For each subject, store list of objects and permissions

89
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Implementing Access Control

￭ How can we implement AC matrices on real systems?

￭ Answer: Access Control Lists
￭ Generalization of UNIX file system permissions
￭ Stored with file system object as metadata (object-centric)

￭ Compactly and efficiently encodes access to an object 
via the subject’s (user or group) system rights 

￭ Capabilities: subject centered alternative to ACLs
￭ For each subject, store list of objects and permissions

90

How to completely 
remove user Bob?
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Implementing Access Control

￭ How can we implement AC matrices on real systems?

￭ Answer: Access Control Lists
￭ Generalization of UNIX file system permissions
￭ Stored with file system object as metadata (object-centric)

￭ Compactly and efficiently encodes access to an object 
via the subject’s (user or group) system rights 

￭ Capabilities: subject centered alternative to ACLs
￭ For each subject, store list of objects and permissions
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Revoke all of his 
permissions!

How to completely 
remove user Bob?
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Modern Permissions Schemes
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File System Permissions

￭ Users: uid, 32-bit integer, every file has one
￭ Groups: gid, 32-bit integer, every file has one

93

R W X | O
---------
0 0 0 | 0
0 0 1 | 1
0 1 0 | 2
0 1 1 | 3
1 0 0 | 4
1 0 1 | 5
1 1 0 | 6
1 1 1 | 7
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File System Permissions

￭ D = Directory

￭ R = read files in D 
￭ W = write a file in D
￭ X = access a file in D

if you know its path

￭ Last number = D’s 
total subdirectories

94

drwxrwxr-x  4 cs4440 cs4440 .
drwxr-xr-x 17 cs4440 cs4440 ..
drwxrwxr-x  2 cs4440 cs4440 bin
-rw-rw-r--  1 cs4440 cs4440 build.py
-rwxrwxr-x  1 cs4440 cs4440 build.sh
-rw-rw-r--  1 cs4440 cs4440 cookie
-rw-------  1 cs4440 cs4440 core
-rwxrwxr-x  1 cs4440 cs4440 helper.c
drwxrwxr-x  2 cs4440 cs4440 __pycache__
-rwxrwxr-x  1 cs4440 cs4440 shellcode.py
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File System Permissions

￭ D = Directory

￭ R = read files in D 
￭ W = write a file in D
￭ X = access a file in D

if you know its path

￭ Last number = D’s 
total subdirectories
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File System Permissions

￭ First three represent
Owner’s privileges
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File System Permissions

￭ First three represent
Owner’s privileges

￭ Next three represent
Group’s privileges
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File System Permissions

￭ First three represent
Owner’s privileges

￭ Next three represent
Group’s privileges

￭ Last three represent
everyone else
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Permission Puzzles

1. No permissions?

2. Read, Write, Exec only for owner?

3. Execute for all?

4. Owner can read, write, & exec;
Group can only read; and all
others have no permissions.
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Permission Puzzles

1. No permissions?

2. Read, Write, Exec only for owner?

3. Execute for all?

4. Owner can read, write, & exec;
Group can only read; and all
others have no permissions.
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Process Permissions

￭ Every process has one uid, up to many gids

￭ Actions: create, kill, debug (ptrace)

￭ Login process (uid=0, root)
￭ Checks (username, password) tuple
￭ Changes uid to user’s value (via setuid)
￭ Start’s user’s shell (/bin/sh) 

￭ Processes now run as current user!

￭ setuid binaries
￭ Program runs with uid of owner (e.g., root) 

￭ Not the parent process!
￭ Examples: /bin/su, /bin/sudo
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Network Permissions

￭ Connect
￭ Liberal permissions

￭ Listen
￭ Liberal permissions
￭ Ports below 1024 reserved for system

￭ Requires special permissions!

￭ Read/write data
￭ As long as you have a file descriptor!

￭ Send/receive raw packets
￭ Must be associated with an existing connection
￭ Otherwise uid=0 (root)
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Questions?
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Process Isolation
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Process Isolation

￭ We can’t just rely on permission schemes
￭ Assume attackers can (and will) bypass them

￭ Security Goal: prevent cross-process 
memory access or memory corruption

111

usr= Steve
pwd= cs4440

read(wf.usr)
read(wf.pwd)
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￭ We can’t just rely on permission schemes
￭ Assume attackers can (and will) bypass them

￭ Security Goal: prevent cross-process 
memory access or memory corruption

￭ Memory Management Unit 
￭ Hardware that acts as gatekeeper of memory
￭ Translates virtual memory to physical memory
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read(wf.pwd)

Process Isolation
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￭ Memory Management Unit 
￭ Translates virtual memory to physical memory

Isolating Process Memory
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￭ Memory Management Unit 
￭ Translates virtual memory to physical memory
￭ Enforce Process-1 can’t access of Process-2’s memory!
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Isolating Process Memory
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Process

Thread
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￭ What about malicious peripherals?
￭ Assume plugged-in USB’s are hostile!

117
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￭ What about malicious peripherals?
￭ Assume plugged-in USB’s are hostile!

￭ Solution: the Input/Output (IO) MMU
￭ Same idea as MMU, but extended to devices
￭ IO means “input” / “output” devices; e.g.:

￭ Network
￭ Keyboard
￭ USB stick
￭ Graphics cards
￭ …
￭ Anything that uses a device driver
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￭ Problem: any processes you execute 
will inherit your privileges, resources

119

Resource-level Isolation
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￭ Problem: any processes you execute 
will inherit your privileges, resources

￭ Process Sandbox: tight, controlled set 
of resources to execute guest programs
￭ Scratch space on disk and memory 
￭ Network access 
￭ Ability to inspect the host system or 
￭ Read from input devices are usually 

disallowed or heavily restricted

120

Resource-level Isolation
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￭ Problem: any processes you execute 
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Caveat: ???
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Caveat: the trusted 
computing base is 

still very large!

Goal: give processes 
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Sandboxing
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Containers

124



Stefan Nagy

Process

Thread

Thread

Thread

125

OS

Process

Thread

Thread

Thread
Process

Thread

Thread

Thread

Containers

Goal: make libraries, 
middleware specific 

to each process LibrariesLibraries

Hardware

Libraries

Caveat: ???



Stefan Nagy

Process

Thread

Thread

Thread

126

OS

Process

Thread

Thread

Thread
Process

Thread

Thread

Thread

Containers

LibrariesLibraries

Hardware

Libraries

Caveat: the trusted 
computing base is 

now the OS and HW

Goal: make libraries, 
middleware specific 

to each process



Stefan Nagy

Virtual Machines
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Host OS / Hypervisor

Process

Thread

Thread

Thread
Process

Thread
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Thread

Virtual Machines

Goal: completely 
isolate the OS

LibrariesLibraries Libraries

Guest OS Guest OS Guest OS

Caveat: the trusted 
computing base now 

the Hypervisor
Hardware

So what are the overall trade-offs of 
using sandboxes, containers, or VMs?



Stefan Nagy 131



Stefan Nagy

Other Caveats
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￭ Sandboxes, containers, and 
hypervisors are all software… 
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￭ Sandboxes, containers, and 
hypervisors are all software… 
with vulnerabilities too!

Other Caveats
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Questions?
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Next time on CS 4440…
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Security in Practice: Malware


