
Stefan Nagy

Week 7: Lecture A
Access Control & Isolation

Tuesday, October 1, 2024

1

Stefan Nagy

Announcements

￭ Project 2: AppSec released
￭ Deadline: Thursday, October 17th by 11:59PM

2

Stefan Nagy 3

Stefan Nagy

Announcements

￭ Project 1 grades and regrades are now available on Canvas

￭ Statistics:
￭ Average score: 100%
￭ Last year’s average: 85%

￭ Fantastic job!

4

Stefan Nagy

Announcements

5

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Questions?

6

Stefan Nagy

Last time on CS 4440…

7

Automated Bug-Finding
Fuzz Testing

Symbolic Execution

Stefan Nagy

▪Missed initialization check
▪ Free’d pointers not NULL’d
▪ Unchecked memory writes

Common Vulnerabilities
▪ Use uninitialized memory
▪ Use non-owned memory
▪ Overflowing a data buffer

Consequences Attacker Exploitation
▪ Software denial of service
▪ Leak sensitive information
▪ Inject & run arbitrary code

Race against time to find & fix vulnerabilities
before they are exploited

Exploitation

8

Stefan Nagy

Proactive Vulnerability Discovery

9

Static Analysis:

Stefan Nagy

Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Challenges:

10

Static Analysis:

Stefan Nagy

Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Challenges:
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

As code size grows, analysis speed drops

11

Static Analysis:

Stefan Nagy

Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Challenges:
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

As code size grows, analysis speed drops

12

Static Analysis: Dynamic Testing:

Stefan Nagy

Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Challenges:
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

As code size grows, analysis speed drops

13

Static Analysis: Dynamic Testing:

￭ Analyze program by executing it

￭ Advantages:

Stefan Nagy

Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Challenges:
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

As code size grows, analysis speed drops

14

Static Analysis: Dynamic Testing:

￭ Analyze program by executing it

￭ Advantages:
● Better accuracy: no false positives
￭ Execution reveals only what exists
￭ Program crashed? You found a bug!
￭ Capable of very high throughput

Stefan Nagy

Finding Bugs with Fuzzing

15

Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/

Stefan Nagy 16

Why do we need feedback in fuzzing?

Stefan Nagy

Why do we need feedback in fuzzing?

17

Stefan Nagy

Program

Inputs

18

Feedback-driven Fuzzing

???

Stefan Nagy

Program

Inputs

19

Feedback-driven Fuzzing

Execute and
Collect Feedback

(e.g., code coverage)

???

???

???

Stefan Nagy

Program

Inputs

20

Feedback-driven Fuzzing

Execute and
Collect Feedback

(e.g., code coverage)

✓
Interesting!

(new code)

???

???

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

Inputs

Execute and
Collect Feedback

(e.g., code coverage)

21

Feedback-driven Fuzzing

(new code)

(no new code)

???

Stefan Nagy

✓

X

Interesting!

Uninteresting

Crashes

Program

Inputs

Execute and
Collect Feedback

(e.g., code coverage)

22

Feedback-driven Fuzzing

(new code)

(no new code)

(SEGFAULT)

Stefan Nagy

Types of Feedback-driven Fuzzers

23

??? ??? ???

Black-box Grey-box White-box

Stefan Nagy

Types of Feedback-driven Fuzzers

24

Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box

Stefan Nagy

Types of Feedback-driven Fuzzers

25

Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box

Stefan Nagy

Types of Feedback-driven Fuzzers

26

Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box

Stefan Nagy

Coverage-guided Fuzzing

￭ Code coverage: program regions exercised by each test case

￭ Horse racing analogy: “breed” (mutate) only
the “winning” (coverage-increasing) inputs
￭ New coverage? Keep and mutate the input
￭ Old coverage? Discard it and try again

￭ Most fuzzing today is coverage-guided
￭ Good balance of performance and precision

27

Maximize
code coverage

Stefan Nagy

Code Coverage Metrics

￭ Program represented as control-flow graphs (CFG)
￭ Directed graph encompassing all program paths
￭ Basis of virtually all software analysis techniques

￭ Various coverage metrics in use today
￭ Instructions: units that make up basic blocks
￭ Basic blocks: nodes of the program’s CFG
￭ Edges: transitions between basic blocks
￭ Hit counts: frequencies of basic blocks
￭ Paths: sequences of edges

28

Blocks

Edges

Paths

Stefan Nagy

Impact of Code Coverage

void top(char input[4]) {

 if(input[0] == ‘b’)

 if(input[1] == ‘a’)

 if(input[2] == ‘d’)

 if(input[3] == ‘!’)

 OVERFLOW();

}

29

Stefan Nagy

Impact of Code Coverage

void top(char input[4]) {

 if(input[0] == ‘b’)

 if(input[1] == ‘a’)

 if(input[2] == ‘d’)

 if(input[3] == ‘!’)

 OVERFLOW();

}

30

???

???

Estimated Mutations Required

Stefan Nagy

Impact of Code Coverage

void top(char input[4]) {

 if(input[0] == ‘b’)

 if(input[1] == ‘a’)

 if(input[2] == ‘d’)

 if(input[3] == ‘!’)

 OVERFLOW();

}

31

(28)4 = 4,294,967,296

4*(28) = 1,024

Estimated Mutations Required

Stefan Nagy

Model-agnostic Input Generation

￭ Brute-force your way to valid inputs
￭ Bit and byte “flipping”
￭ Addition and subtraction
￭ Inserting random chunks
￭ Inserting dictionary “tokens”
￭ Splicing two inputs together

￭ The good: super fast
￭ Incorporating feedback like coverage enables

you to synthesize valid inputs (eventually)

32

AA AA AA BB BB BB

AA BB BB BB AA AA

11 11 00 11 11 11 11 1112 FF

Stefan Nagy

Model-guided Input Generation

￭ Follow a pre-defined input specification
￭ Pre-defined input grammars
￭ Dynamically-learned grammars
￭ Domain-specific generators

￭ The good: many more valid inputs
￭ Model-agnostic inputs are often discarded

because they fail basic input sanity checks
￭ Valid inputs = higher code coverage

33

Stefan Nagy

Taint Tracking

￭ Track input bytes’ flow throughout program
￭ Identify input “chunks” that affect program state

￭ Chunks that affect branches
￭ Chunks that flow to function calls

￭ Mutate these chunks
￭ Random mutation
￭ Insert fun or useful tokens

￭ The good: finding vulnerable buffers,
 solving branches

34

 0. def f (x, y):
1. if (x > y):
2.

11

11 11 11 11 11 11 1111

11 11 Bytes that comprise X

Bytes that comprise Y

11

11 11 11 11 11 11 1111

11 11 11

00

11 1111 11

00 00 00 00

Mutate!

Stefan Nagy

Symbolic Execution

35

0. def f (x, y):
1. if (x > y):
2. x = x + y
3. y = x - y
4. x = x - y
5. if (x - y > 0):
6. assert false
7. return (x, y)

 x : A
 y : B

 x : A+B
 y : B

A > B A <= B

 x : A
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

B - A > 0 B - A <= 0

L2

L3

L4

L7

L6 x : B
 y : A L6

unsatisfiable satisfiable

satisfiable

Possible path constraints:
● (A > B) and (B-A > 0) = unsatisfiable
● (A > B) and (B-A <= 0) = satisfiable
● (A <= B) = satisfiable

Stefan Nagy

Feedback-driven Fuzzing vs. Symbolic Execution

if(x^3 == 1881672302290562263)

OVERFLOW();

}

36

Estimated Mutations Required

???

???

Stefan Nagy

Feedback-driven Fuzzing vs. Symbolic Execution

if(x^3 == 1881672302290562263)

OVERFLOW(); // x = 1234567

}

37

Good luck!

Solves instantly

Estimated Mutations Required

Stefan Nagy

Feedback-driven Fuzzing vs. Symbolic Execution

if(A^3 + B^3 + C^3 == 33)

OVERFLOW();

}

38

Estimated Mutations Required

???

???

Stefan Nagy

Feedback-driven Fuzzing vs. Symbolic Execution

if(A^3 + B^3 + C^3 == 33)

OVERFLOW();

}

A = 8,866,128,975,287,528

B = −8,778,405,442,862,239

C = −2,736,111,468,807,040

39

Good luck!

Estimated Mutations Required

Good luck!

Stefan Nagy

Input Generation Trade-offs

￭ Model-agnostic Fuzzing:
￭ Advantages: ???

40

Stefan Nagy

Input Generation Trade-offs

￭ Model-agnostic Fuzzing:
￭ Advantages: great on simple, easy-to-solve branches; attains really fast speed
￭ Challenges: ???

41

Stefan Nagy

Input Generation Trade-offs

￭ Model-agnostic Fuzzing:
￭ Advantages: great on simple, easy-to-solve branches; attains really fast speed
￭ Challenges: need a lot of luck to solve multi-byte conditionals, checksums

￭ Model-guided Fuzzing:
￭ Advantages: ???

42

Stefan Nagy

Input Generation Trade-offs

￭ Model-agnostic Fuzzing:
￭ Advantages: great on simple, easy-to-solve branches; attains really fast speed
￭ Challenges: need a lot of luck to solve multi-byte conditionals, checksums

￭ Model-guided Fuzzing:
￭ Advantages: more valid inputs leads to higher coverage earlier on
￭ Challenges: ???

43

Stefan Nagy

Input Generation Trade-offs

￭ Model-agnostic Fuzzing:
￭ Advantages: great on simple, easy-to-solve branches; attains really fast speed
￭ Challenges: need a lot of luck to solve multi-byte conditionals, checksums

￭ Model-guided Fuzzing:
￭ Advantages: more valid inputs leads to higher coverage earlier on
￭ Challenges: out of luck if specification is not defined or hard-to-define

￭ White-box Generation:
￭ Symbolic Execution Advantages: ???
￭ Taint Tracking Advantages: ???

44

Stefan Nagy

Input Generation Trade-offs

￭ Model-agnostic Fuzzing:
￭ Advantages: great on simple, easy-to-solve branches; attains really fast speed
￭ Challenges: need a lot of luck to solve multi-byte conditionals, checksums

￭ Model-guided Fuzzing:
￭ Advantages: more valid inputs leads to higher coverage earlier on
￭ Challenges: out of luck if specification is not defined or hard-to-define

￭ White-box Generation:
￭ Symbolic Execution Advantages: precise solving of multi-byte conditionals
￭ Taint Tracking Advantages: easily identifies key data chunks, branch constraints
￭ Challenges: ???

45

Stefan Nagy

Input Generation Trade-offs

￭ Model-agnostic Fuzzing:
￭ Advantages: great on simple, easy-to-solve branches; attains really fast speed
￭ Challenges: need a lot of luck to solve multi-byte conditionals, checksums

￭ Model-guided Fuzzing:
￭ Advantages: more valid inputs leads to higher coverage earlier on
￭ Challenges: out of luck if specification is not defined or hard-to-define

￭ White-box Generation:
￭ Symbolic Execution Advantages: precise solving of multi-byte conditionals
￭ Taint Tracking Advantages: easily identifies key data chunks, branch constraints
￭ Challenges: far too heavyweight to deploy on all generated inputs; closed-source code

46

Stefan Nagy

Source: cvedetails.com

Impact of Fuzzing

47

Stefan Nagy

Source: cvedetails.com

Impact of Fuzzing

48

Stefan Nagy

Questions?

49

Stefan Nagy

Interested in fuzzing?

￭ Spring 2025: CS 5963/6963: Applied Software Security Testing
￭ Everything you’d ever want to know about fuzzing for finding security bugs!
￭ Course project: team up to fuzz a real program (of your choice), and find and report its bugs!
￭ https://cs.utah.edu/~snagy/courses/cs5963/

50

https://users.cs.utah.edu/~snagy/courses/cs5963/

Stefan Nagy

￭ Spring 2024: CS 5963/6963: Applied Software Security Testing
￭ Everything you’d ever want to know about fuzzing for finding security bugs!
￭ Course project: team up to fuzz a real program (of your choice), and find and report its bugs!
￭ https://cs.utah.edu/~snagy/courses/cs5963/

51

Interested in fuzzing?

https://users.cs.utah.edu/~snagy/courses/cs5963/

Stefan Nagy

This time on CS 4440…

52

Access Control
Permissions

Process Isolation

Stefan Nagy

Food for Thought

￭ So far, we’ve talked about thwarting bugs by proactively discovering them
￭ E.g., run fuzzing and try to catch all the bugs!
￭ Hopefully the attacker will not beat us to it…

￭ Question: how can we redesign our systems to prevent software exploits?

53

Stefan Nagy

Principles of a Safe System

￭ Clearly we can’t assume Application Developers will write safe code…

54

Stefan Nagy

Principles of a Safe System

￭ Clearly we can’t assume Application Developers will write safe code…
￭ Unless they are alumni of CS 4440 😊

￭ What principles should our safe system design uphold?

55

Stefan Nagy

Principles of a Safe System

￭ Clearly we can’t assume Application Developers will write safe code…
￭ Unless they are alumni of CS 4440 😊

￭ What principles should our safe system design uphold?
￭ Control who can access what
￭ Prevent applications from spying on one another
￭ Implement safeguards to minimize damage of attacks

56

Stefan Nagy

Access Control

57

Stefan Nagy

Access Control

￭ Access Control: the heart of security
on commodity computing systems

￭ Goal: ???

58

Non-root Users

Root Admin

Stefan Nagy

Access Control

￭ Access Control: the heart of security
on commodity computing systems

￭ Goal: control which principles have
access to which system resources

59

Non-root Users

Root Admin

Stefan Nagy

Access Control

￭ Access Control: the heart of security
on commodity computing systems

￭ Goal: control which principles have
access to which system resources

60

Non-root Users

Root Admin

Principles:

Users
Programs
Machines

…

Stefan Nagy

Access Control

￭ Access Control: the heart of security
on commodity computing systems

￭ Goal: control which principles have
access to which system resources

61

Non-root Users

Root Admin
Access:

Read
Write

Execute
Share

…

Stefan Nagy

Access Control

￭ Access Control: the heart of security
on commodity computing systems

￭ Goal: control which principles have
access to which system resources

62

Non-root Users

Root Admin
Resources:

Files
Programs

Peripherals
Instructions

…

Stefan Nagy

Access Control

￭ Access Control: the heart of security
on commodity computing systems

￭ Goal: control which principles have
access to which system resources

￭ Access control mechanisms exist at
all levels of a modern computer
￭ E.g., Hardware, Hypervisor, Operating

System, Middleware, Application

63

Non-root Users

Root Admin

Stefan Nagy

Access Control

￭ Access Control: the heart of security
on commodity computing systems

￭ Goal: control which principles have
access to which system resources

￭ Access control mechanisms exist at
all levels of a modern computer
￭ E.g., Hardware, Hypervisor, Operating

System, Middleware, Application

64

Relies on

Application

Middleware

Operating System

Hypervisor

Hardware

Stefan Nagy

Access Control

￭ Access Control: the heart of security
on commodity computing systems

￭ Goal: control which principles have
access to which system resources

￭ Access control mechanisms exist at
all levels of a modern computer
￭ E.g., Hardware, Hypervisor, Operating

System, Middleware, Application

65

Application

Relies on Complexity

Reliability

Middleware

Operating System

Hypervisor

Hardware

Stefan Nagy

Access Control History

￭ Wasn’t necessary back in “the day”

￭ ENIAC
￭ The first programmable, electronic,

general-purpose digital computer
￭ Built in 1945 by U.S. Army / UPenn
￭ Access control consisted of just a

single user and a single program

66

Stefan Nagy

Access Control History

67

￭ LEO III
￭ “Lyons Electronic Office”
￭ Introduced concept of multi-tasking
￭ Consisted of a single master program

“Operating System”
￭ Allowed 12 “application” programs to

be run concurrently

Stefan Nagy

Access Control History

￭ PLATO 1 / PLATO 2
￭ Developed by Univ. of Illinois (ILLIAC)
￭ Based on a time-sharing computer

system, with users and programmers
connected to a central mainframe

￭ Access control = multiple users,
multi-tasking

68

Stefan Nagy

Access Control History

￭ Moore’s Law: number of
transistors in an IC doubles
about every two years

￭ By 1980: we all have access
to computers!

69

Stefan Nagy

Access Control History

￭ Moore’s Law: number of
transistors in an IC doubles
about every two years

￭ By 1980: we all have access
to computers!

70

Stefan Nagy

Access Control History

￭ Moore’s Law: number of
transistors in an IC doubles
about every two years

￭ By 1980: we all have access
to computers!

￭ Same terrible security ideas

71

Stefan Nagy

Prevention and Detection

￭ Bugs are inevitable in any complex software system

￭ NIST: 10–50 bugs per every 1000 code lines

￭ Many bugs are never found

72

Stefan Nagy

Prevention and Detection

￭ Bugs are inevitable in any complex software system

￭ NIST: 10–50 bugs per every 1000 code lines

￭ Many bugs are never found

￭ Many are found and never reported
￭ Weaponized by Nation-States, criminals
￭ What we know as Zero-Day Exploits

73

Stefan Nagy

Implementing Access Control

74

Stefan Nagy

Isolating Applications

￭ Adversary 1: exploited user-space process
￭ Targets 2–8 in Project 2 (after your attacks)

75

Hardware

Hypervisor

Operating System

Middleware

Application

Stefan Nagy

Isolating Applications

￭ Adversary 1: exploited user-space process
￭ Targets 2–8 in Project 2 (after your attacks)

￭ Adversary 2: malicious user-space process
￭ Spyware app your aunt installed
￭ That TikTok app that you installed

76

Hardware

Hypervisor

Operating System

Middleware

Application

Stefan Nagy

Isolating Applications

￭ Adversary 1: exploited user-space process
￭ Targets 2–8 in Project 2 (after your attacks)

￭ Adversary 2: malicious user-space process
￭ Spyware app your aunt installed
￭ That TikTok app that you installed

￭ Goal: protect the system (i.e., all other
processes + the OS) from an evil process

77

Hardware

Hypervisor

Operating System

Middleware

Application

Stefan Nagy

What specific resources must we protect?

78

Stefan Nagy

￭ Memory
￭ Code and data of Operating System
￭ Code and data of other processes

79

What specific resources must we protect?

Stefan Nagy

￭ Memory
￭ Code and data of Operating System
￭ Code and data of other processes

￭ Files, Directories, and Metadata
￭ The sudo-ers files
￭ Your HOME directory
￭ Program-specific file descriptors

80

What specific resources must we protect?

Stefan Nagy

￭ Memory
￭ Code and data of Operating System
￭ Code and data of other processes

￭ Files, Directories, and Metadata
￭ The sudo-ers files
￭ Your HOME directory
￭ Program-specific file descriptors

￭ The Network
￭ Other systems on the same network

81

What specific resources must we protect?

Stefan Nagy

￭ Memory
￭ Code and data of Operating System
￭ Code and data of other processes

￭ Files, Directories, and Metadata
￭ The sudo-ers files
￭ Your HOME directory
￭ Program-specific file descriptors

￭ The Network
￭ Other systems on the same network

￭ External Devices and Peripherals
￭ Your USB drive that contains a

pirated copy of Super Bowl LVII

82

What specific resources must we protect?

Stefan Nagy

How should we protect them?

83

Stefan Nagy

How should we protect them?

￭ Principle of Least Privilege
￭ “In a particular abstraction layer of a computing environment,

every module (e.g., process, user, or program) must be able to
access only the information and resources that are necessary”

84

Stefan Nagy

How should we protect them?

￭ Principle of Least Privilege
￭ “In a particular abstraction layer of a computing environment,

every module (e.g., process, user, or program) must be able to
access only the information and resources that are necessary”

￭ In other words, apps should mind their own business!

￭ Critical design consideration for protecting data and
functionality from faults and malicious behavior

85

Stefan Nagy

Access Control Matrix

￭ Conceptual model that specifies
the rights each entity (row) has
for each resource (column)

￭ Entity rights:
￭ R = Read
￭ W = Write
￭ X = Execute

86

Stefan Nagy

Access Control Matrix

￭ Conceptual model that specifies
the rights each entity (row) has
for each resource (column)

￭ Entity rights:
￭ R = Read
￭ W = Write
￭ X = Execute

87

OS Accounting
Program

Accounting
Data

Insurance
Data

Payroll
Data

Bob R X R X R — —

Alice R X R X R R W R W

Sam R W X R W X R R W R W

Accounting
Program

R X R X R W R W R W

Stefan Nagy

Access Control Matrix

￭ Conceptual model that specifies
the rights each entity (row) has
for each resource (column)

￭ Entity rights:
￭ R = Read
￭ W = Write
￭ X = Execute

88

OS Accounting
Program

Accounting
Data

Insurance
Data

Payroll
Data

Bob R X R X R — —

Alice R X R X R R W R W

Sam R W X R W X R R W R W

Accounting
Program

R X R X R W R W R W

Stefan Nagy

Implementing Access Control

￭ How can we implement AC matrices on real systems?

￭ Answer: Access Control Lists
￭ Generalization of UNIX file system permissions
￭ Stored with file system object as metadata (object-centric)

￭ Compactly and efficiently encodes access to an object
via the subject’s (user or group) system rights

￭ Capabilities: subject centered alternative to ACLs
￭ For each subject, store list of objects and permissions

89

Stefan Nagy

Implementing Access Control

￭ How can we implement AC matrices on real systems?

￭ Answer: Access Control Lists
￭ Generalization of UNIX file system permissions
￭ Stored with file system object as metadata (object-centric)

￭ Compactly and efficiently encodes access to an object
via the subject’s (user or group) system rights

￭ Capabilities: subject centered alternative to ACLs
￭ For each subject, store list of objects and permissions

90

How to completely
remove user Bob?

Stefan Nagy

Implementing Access Control

￭ How can we implement AC matrices on real systems?

￭ Answer: Access Control Lists
￭ Generalization of UNIX file system permissions
￭ Stored with file system object as metadata (object-centric)

￭ Compactly and efficiently encodes access to an object
via the subject’s (user or group) system rights

￭ Capabilities: subject centered alternative to ACLs
￭ For each subject, store list of objects and permissions

91

Revoke all of his
permissions!

How to completely
remove user Bob?

Stefan Nagy

Modern Permissions Schemes

92

Stefan Nagy

File System Permissions

￭ Users: uid, 32-bit integer, every file has one
￭ Groups: gid, 32-bit integer, every file has one

93

R W X | O

0 0 0 | 0
0 0 1 | 1
0 1 0 | 2
0 1 1 | 3
1 0 0 | 4
1 0 1 | 5
1 1 0 | 6
1 1 1 | 7

Stefan Nagy

File System Permissions

￭ D = Directory

￭ R = read files in D
￭ W = write a file in D
￭ X = access a file in D

if you know its path

￭ Last number = D’s
total subdirectories

94

drwxrwxr-x 4 cs4440 cs4440 .
drwxr-xr-x 17 cs4440 cs4440 ..
drwxrwxr-x 2 cs4440 cs4440 bin
-rw-rw-r-- 1 cs4440 cs4440 build.py
-rwxrwxr-x 1 cs4440 cs4440 build.sh
-rw-rw-r-- 1 cs4440 cs4440 cookie
-rw------- 1 cs4440 cs4440 core
-rwxrwxr-x 1 cs4440 cs4440 helper.c
drwxrwxr-x 2 cs4440 cs4440 __pycache__
-rwxrwxr-x 1 cs4440 cs4440 shellcode.py

Stefan Nagy

File System Permissions

￭ D = Directory

￭ R = read files in D
￭ W = write a file in D
￭ X = access a file in D

if you know its path

￭ Last number = D’s
total subdirectories

95

drwxrwxr-x 4 cs4440 cs4440 .
drwxr-xr-x 17 cs4440 cs4440 ..
drwxrwxr-x 2 cs4440 cs4440 bin
-rw-rw-r-- 1 cs4440 cs4440 build.py
-rwxrwxr-x 1 cs4440 cs4440 build.sh
-rw-rw-r-- 1 cs4440 cs4440 cookie
-rw------- 1 cs4440 cs4440 core
-rwxrwxr-x 1 cs4440 cs4440 helper.c
drwxrwxr-x 2 cs4440 cs4440 __pycache__
-rwxrwxr-x 1 cs4440 cs4440 shellcode.py

Stefan Nagy

File System Permissions

￭ D = Directory

￭ R = read files in D
￭ W = write a file in D
￭ X = access a file in D

if you know its path

￭ Last number = D’s
total subdirectories

96

drwxrwxr-x 4 cs4440 cs4440 .
drwxr-xr-x 17 cs4440 cs4440 ..
drwxrwxr-x 2 cs4440 cs4440 bin
-rw-rw-r-- 1 cs4440 cs4440 build.py
-rwxrwxr-x 1 cs4440 cs4440 build.sh
-rw-rw-r-- 1 cs4440 cs4440 cookie
-rw------- 1 cs4440 cs4440 core
-rwxrwxr-x 1 cs4440 cs4440 helper.c
drwxrwxr-x 2 cs4440 cs4440 __pycache__
-rwxrwxr-x 1 cs4440 cs4440 shellcode.py

Stefan Nagy

File System Permissions

￭ D = Directory

￭ R = read files in D
￭ W = write a file in D
￭ X = access a file in D

if you know its path

￭ Last number = D’s
total subdirectories

97

drwxrwxr-x 4 cs4440 cs4440 .
drwxr-xr-x 17 cs4440 cs4440 ..
drwxrwxr-x 2 cs4440 cs4440 bin
-rw-rw-r-- 1 cs4440 cs4440 build.py
-rwxrwxr-x 1 cs4440 cs4440 build.sh
-rw-rw-r-- 1 cs4440 cs4440 cookie
-rw------- 1 cs4440 cs4440 core
-rwxrwxr-x 1 cs4440 cs4440 helper.c
drwxrwxr-x 2 cs4440 cs4440 __pycache__
-rwxrwxr-x 1 cs4440 cs4440 shellcode.py

Stefan Nagy

File System Permissions

￭ D = Directory

￭ R = read files in D
￭ W = write a file in D
￭ X = access a file in D

if you know its path

￭ Last number = D’s
total subdirectories

98

drwxrwxr-x 4 cs4440 cs4440 .
drwxr-xr-x 17 cs4440 cs4440 ..
drwxrwxr-x 2 cs4440 cs4440 bin
-rw-rw-r-- 1 cs4440 cs4440 build.py
-rwxrwxr-x 1 cs4440 cs4440 build.sh
-rw-rw-r-- 1 cs4440 cs4440 cookie
-rw------- 1 cs4440 cs4440 core
-rwxrwxr-x 1 cs4440 cs4440 helper.c
drwxrwxr-x 2 cs4440 cs4440 __pycache__
-rwxrwxr-x 1 cs4440 cs4440 shellcode.py

Stefan Nagy

File System Permissions

￭ D = Directory

￭ R = read files in D
￭ W = write a file in D
￭ X = access a file in D

if you know its path

￭ Last number = D’s
total subdirectories

99

drwxrwxr-x 4 cs4440 cs4440 .
drwxr-xr-x 17 cs4440 cs4440 ..
drwxrwxr-x 2 cs4440 cs4440 bin
-rw-rw-r-- 1 cs4440 cs4440 build.py
-rwxrwxr-x 1 cs4440 cs4440 build.sh
-rw-rw-r-- 1 cs4440 cs4440 cookie
-rw------- 1 cs4440 cs4440 core
-rwxrwxr-x 1 cs4440 cs4440 helper.c
drwxrwxr-x 2 cs4440 cs4440 __pycache__
-rwxrwxr-x 1 cs4440 cs4440 shellcode.py

Stefan Nagy

File System Permissions

￭ First three represent
Owner’s privileges

100

-rwxrwxrwx 1 root cs4440 target6
-rwxrwxr-x 1 cs4440 cs4440 target6.c
-rwxrwxrwx 1 root cs4440 target7
-rwxrwxr-x 1 cs4440 cs4440 target7.c
-rwxrwxrwx 1 root cs4440 target8
-rw-rw-r-- 1 cs4440 cs4440 target8.c
-rw-rw-r-- 1 cs4440 cs4440 tmp

Owner

Stefan Nagy

File System Permissions

￭ First three represent
Owner’s privileges

￭ Next three represent
Group’s privileges

101

-rwxrwxrwx 1 root cs4440 target6
-rwxrwxr-x 1 cs4440 cs4440 target6.c
-rwxrwxrwx 1 root cs4440 target7
-rwxrwxr-x 1 cs4440 cs4440 target7.c
-rwxrwxrwx 1 root cs4440 target8
-rw-rw-r-- 1 cs4440 cs4440 target8.c
-rw-rw-r-- 1 cs4440 cs4440 tmp

Owner Group

Stefan Nagy

File System Permissions

￭ First three represent
Owner’s privileges

￭ Next three represent
Group’s privileges

￭ Last three represent
everyone else

102

-rwxrwxrwx 1 root cs4440 target6
-rwxrwxr-x 1 cs4440 cs4440 target6.c
-rwxrwxrwx 1 root cs4440 target7
-rwxrwxr-x 1 cs4440 cs4440 target7.c
-rwxrwxrwx 1 root cs4440 target8
-rw-rw-r-- 1 cs4440 cs4440 target8.c
-rw-rw-r-- 1 cs4440 cs4440 tmp

Owner Group

Stefan Nagy

Permission Puzzles

1. No permissions?

2. Read, Write, Exec only for owner?

3. Execute for all?

4. Owner can read, write, & exec;
Group can only read; and all
others have no permissions.

103

??? ??? ???

??? ??? ???

??? ??? ???

??? ??? ???

Stefan Nagy

Permission Puzzles

1. No permissions?

2. Read, Write, Exec only for owner?

3. Execute for all?

4. Owner can read, write, & exec;
Group can only read; and all
others have no permissions.

104

--- --- ---

rwx --- ---

--x --x --x

rwx r-- ---

Stefan Nagy

Process Permissions

￭ Every process has one uid, up to many gids

￭ Actions: create, kill, debug (ptrace)

￭ Login process (uid=0, root)
￭ Checks (username, password) tuple
￭ Changes uid to user’s value (via setuid)
￭ Start’s user’s shell (/bin/sh)

￭ Processes now run as current user!

￭ setuid binaries
￭ Program runs with uid of owner (e.g., root)

￭ Not the parent process!
￭ Examples: /bin/su, /bin/sudo

105

Stefan Nagy

Network Permissions

￭ Connect
￭ Liberal permissions

￭ Listen
￭ Liberal permissions
￭ Ports below 1024 reserved for system

￭ Requires special permissions!

￭ Read/write data
￭ As long as you have a file descriptor!

￭ Send/receive raw packets
￭ Must be associated with an existing connection
￭ Otherwise uid=0 (root)

106

Stefan Nagy

Questions?

107

Stefan Nagy

Process Isolation

108

Stefan Nagy

Process

Thread

Thread

Thread

109

Libraries

OS

Hardware

Process

Thread

Thread

Thread

Process

Thread

Thread

Thread

Process Isolation

Goal: ???

Stefan Nagy

Thread

Thread

Thread

110

Libraries

OS

Hardware

Process

Thread

Thread

Thread

Process

Thread

Thread

Thread

Process Isolation

Goal: minimize
damage by isolating

every process

Process

Thread

Thread

Thread

Stefan Nagy

Process Isolation

￭ We can’t just rely on permission schemes
￭ Assume attackers can (and will) bypass them

￭ Security Goal: prevent cross-process
memory access or memory corruption

111

usr= Steve
pwd= cs4440

read(wf.usr)
read(wf.pwd)

Stefan Nagy

￭ We can’t just rely on permission schemes
￭ Assume attackers can (and will) bypass them

￭ Security Goal: prevent cross-process
memory access or memory corruption

￭ Memory Management Unit
￭ Hardware that acts as gatekeeper of memory
￭ Translates virtual memory to physical memory

112

usr= Steve
pwd= cs4440

read(wf.usr)
read(wf.pwd)

Process Isolation

Stefan Nagy 113

￭ Memory Management Unit
￭ Translates virtual memory to physical memory

Isolating Process Memory

Stefan Nagy

￭ Memory Management Unit
￭ Translates virtual memory to physical memory
￭ Enforce Process-1 can’t access of Process-2’s memory!

114

Isolating Process Memory

Stefan Nagy

Thread

Thread

Thread

115

Libraries

OS

Hardware

Process

Thread

Thread

Thread

Process

Thread

Thread

Thread
Goal: minimize

damage by isolating
every process

Process

Thread

Thread

Thread

Caveat: ???

Process Isolation

Stefan Nagy

Process

Thread

Thread

Thread

116

Libraries

OS

Hardware

Process

Thread

Thread

Thread

Process

Thread

Thread

Thread

Process Isolation

Caveat: you must
trust all potential
isolation bridges

Goal: minimize
damage by isolating

every process

Stefan Nagy

￭ What about malicious peripherals?
￭ Assume plugged-in USB’s are hostile!

117

Memory-level Isolation

Stefan Nagy

￭ What about malicious peripherals?
￭ Assume plugged-in USB’s are hostile!

￭ Solution: the Input/Output (IO) MMU
￭ Same idea as MMU, but extended to devices
￭ IO means “input” / “output” devices; e.g.:

￭ Network
￭ Keyboard
￭ USB stick
￭ Graphics cards
￭ …
￭ Anything that uses a device driver

118

Memory-level Isolation

Stefan Nagy

￭ Problem: any processes you execute
will inherit your privileges, resources

119

Resource-level Isolation

Stefan Nagy

￭ Problem: any processes you execute
will inherit your privileges, resources

￭ Process Sandbox: tight, controlled set
of resources to execute guest programs
￭ Scratch space on disk and memory
￭ Network access
￭ Ability to inspect the host system or
￭ Read from input devices are usually

disallowed or heavily restricted

120

Resource-level Isolation

Stefan Nagy

￭ Problem: any processes you execute
will inherit your privileges, resources

￭ Process Sandbox: tight, controlled set
of resources to execute guest programs
￭ Scratch space on disk and memory
￭ Network access
￭ Ability to inspect the host system or
￭ Read from input devices are usually

disallowed or heavily restricted

121

Resource-level Isolation

Stefan Nagy

Process

Thread

Thread

Thread

122

Libraries

OS

Hardware

Process

Thread

Thread

Thread
Process

Thread

Thread

Thread

Sandboxing

Goal: give processes
the least privileges

Caveat: ???

Stefan Nagy

Process

Thread

Thread

Thread

123

Libraries

OS

Hardware

Process

Thread

Thread

Thread
Process

Thread

Thread

Thread

Caveat: the trusted
computing base is

still very large!

Goal: give processes
the least privileges

Sandboxing

Stefan Nagy

Containers

124

Stefan Nagy

Process

Thread

Thread

Thread

125

OS

Process

Thread

Thread

Thread
Process

Thread

Thread

Thread

Containers

Goal: make libraries,
middleware specific

to each process LibrariesLibraries

Hardware

Libraries

Caveat: ???

Stefan Nagy

Process

Thread

Thread

Thread

126

OS

Process

Thread

Thread

Thread
Process

Thread

Thread

Thread

Containers

LibrariesLibraries

Hardware

Libraries

Caveat: the trusted
computing base is

now the OS and HW

Goal: make libraries,
middleware specific

to each process

Stefan Nagy

Virtual Machines

127

Stefan Nagy

Process

Thread

Thread

Thread

128

Host OS / Hypervisor

Process

Thread

Thread

Thread
Process

Thread

Thread

Thread

Virtual Machines

Goal: completely
isolate the OS

LibrariesLibraries

Hardware

Libraries

Guest OS Guest OS Guest OS

Caveat: ???

Stefan Nagy

Process

Thread

Thread

Thread

129

Host OS / Hypervisor

Process

Thread

Thread

Thread
Process

Thread

Thread

Thread

Virtual Machines

Goal: completely
isolate the OS

LibrariesLibraries Libraries

Guest OS Guest OS Guest OS

Caveat: the trusted
computing base now

the Hypervisor
Hardware

Stefan Nagy

Process

Thread

Thread

Thread

130

Host OS / Hypervisor

Process

Thread

Thread

Thread
Process

Thread

Thread

Thread

Virtual Machines

Goal: completely
isolate the OS

LibrariesLibraries Libraries

Guest OS Guest OS Guest OS

Caveat: the trusted
computing base now

the Hypervisor
Hardware

So what are the overall trade-offs of
using sandboxes, containers, or VMs?

Stefan Nagy 131

Stefan Nagy

Other Caveats

132

￭ Sandboxes, containers, and
hypervisors are all software…

Stefan Nagy 133

￭ Sandboxes, containers, and
hypervisors are all software…
with vulnerabilities too!

Other Caveats

Stefan Nagy

Questions?

134

Stefan Nagy

Next time on CS 4440…

135

Security in Practice: Malware

