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Thursday, September 26, 2024
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Announcements

￭ Project 2: AppSec released
￭ Deadline: Thursday, October 17th by 11:59PM
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Announcements

￭ Project 1 grades are now available on Canvas

￭ Think we made an error? Request a regrade!
￭ Valid regrade requests:

￭ You have verified your solution is correct
(i.e., we made an error in grading)
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Project 1 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 9/30 via Google Form
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Announcements
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See Discord for 
meeting info! acm.cs.utah.edu
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Announcements
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See Discord for 
meeting info!

utahsec.cs.utah.edu
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Questions?
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Last time on CS 4440…
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Advanced Exploitation Techniques
ASLR, DEP, and Workarounds

Other Application-level Defenses
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Recap: Spawning Shells

￭ Attacker goal: make program open a root shell
￭ Root-level permissions = total system ownage
￭ You’ll do this in Project 2!

￭ Shellcode = code to open a root shell
￭ Inject this somewhere and direct execution to it
￭ Basic structure:

1. Call setuid(0) to set user ID to “root”
2. Open a shell with execve(“/bin/sh”) 
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setuid(0) execve(“/bin/sh”)+
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Shell Spawning in C

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}
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Shell inherits same privileges 
as the original “parent” process

If the original process run as 
root, shell gives ???? access
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Shell inherits same privileges 
as the original “parent” process

If the original process run as 
root, shell gives root access
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Shell Spawning in C
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Shell inherits same privileges 
as the original “parent” process

If the original process run as 
root, shell gives root access

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}
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Invoking a Shell

13

main()’s locals

??????????????????

??????????????????

??????????????????

main:
pushl   %ebp
movl    %esp, %ebp
pushl   $0
pushl   $0
pushl   $.LC0
call    execve
leave
ret
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Invoking a Shell

14

main()’s locals
main:

pushl   %ebp
movl    %esp, %ebp
pushl   $0
pushl   $0
pushl   $.LC0
call    execve
leave
ret

.LC0:
.string "/bin/sh"

arg3 = NULL

arg2 = NULL

addr to “/bin/sh”
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Invoking a Shell
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main()’s locals
main:

pushl   %ebp
movl    %esp, %ebp
pushl   $0
pushl   $0
pushl   $.LC0
call    execve
leave
ret

.LC0:
.string "/bin/sh"

arg3 = NULL

arg2 = NULL
execve(“/bin/sh”, NULL, NULL);

addr to “/bin/sh”

execve()’s ret addr
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Invoking a Shell

￭ Project 2: we give you shellcode to set up and call execve(/bin/sh)
￭ This will initialize the correct call frame accordingly 

￭ Key idea: ???

16

Vulnerable Function’s RetAddr

Saved EBP, local vars, etc.

Vulnerable Buffer
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Invoking a Shell

￭ Project 2: we give you shellcode to set up and call execve(/bin/sh)
￭ This will initialize the correct call frame accordingly 

￭ Key idea: place the shellcode in an executable buffer
￭ “Executable” means you are able to execute code inside of it
￭ … then direct execution to it, and BOOM!
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Start addr of buffer

Padding to reach RetAddr

NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

setuid(0) + execve(“/bin/sh”)
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Pesky Defenses

￭ Our provided shellcode requires an executable buffer

￭ What if the buffer is relocated on every new run?
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Start addr of buffer = ?????

Padding to reach RetAddr

WHERE?
?

? ?
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Defeating ASLR
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￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all

￭ Idea: ???? NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
setuid(0) + execve(“/bin/sh”)

?
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Defeating ASLR
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￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all

￭ Idea: spam “guessed” buffer addr up the stack

Guessed addr within buffer

Guessed addr within buffer

Guessed addr within buffer

Guessed addr within buffer

Guessed addr within buffer

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
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Defeating ASLR
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￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all

￭ Idea: spam “guessed” buffer addr up the stack
￭ Eventually we’ll overwrite some return address

Guessed addr within buffer

Guessed addr within buffer

Overwritten Return Addr

Guessed addr within buffer

Guessed addr within buffer

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
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Defeating ASLR
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￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all

￭ Idea: spam “guessed” buffer addr up the stack
￭ Eventually we’ll overwrite some return address
￭ When that function returns, jump inside buffer
￭ Hit the huge NOP sled → BOOM!

Guessed addr within buffer

Guessed addr within buffer

Overwritten Return Addr

Guessed addr within buffer

Guessed addr within buffer

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
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Pesky Defenses

￭ Our provided shellcode requires an executable buffer

￭ What if the buffer is prohibited from being executable?
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Start addr of buffer

Padding to reach RetAddr

NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

setuid(0) + execve(“/bin/sh”)
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Pesky Defenses

￭ Our provided shellcode requires an executable buffer

￭ What if the buffer is prohibited from being executable?

24

Start addr of buffer

Padding to reach RetAddr

NOPE
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Defeating DEP
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￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands 
￭ execve()
￭ system()

￭ Idea #1: overwrite ????

main:
pushl   %ebp
movl    %esp, %ebp
subl    $16, %esp
pushl   “/bin/ls”
call    system
leave
ret
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Defeating DEP
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￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands 
￭ execve()
￭ system()

￭ Idea #1: overwrite argument to system()
￭ Replace it with our shell command (“/bin/sh”)

main:
pushl   %ebp
movl    %esp, %ebp
subl    $16, %esp
pushl   “/bin/ls”
call    system
leave
ret

arg1 = “/bin/ls”

system()’s ret addr

Buffer (non-executable)
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Defeating DEP
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￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands 
￭ execve()
￭ system()

￭ Idea #1: overwrite argument to system()
￭ Replace it with our shell command (“/bin/sh”)
￭ Will now execute system(“/bin/sh”)!

main:
pushl   %ebp
movl    %esp, %ebp
subl    $16, %esp
pushl   “/bin/ls”
call    system
leave
ret

arg1 = “/bin/sh”

system()’s ret addr

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
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Defeating DEP
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￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands 
￭ execve()
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￭ Replace it with our shell command (“/bin/sh”)
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Defeating DEP
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￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands 
￭ execve()
￭ system()

￭ Idea #1: overwrite argument to system()
￭ Replace it with our shell command (“/bin/sh”)
￭ Will now execute system(“/bin/sh”)!

main:
pushl   %ebp
movl    %esp, %ebp
subl    $16, %esp
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call    system
leave
ret

arg1 = “/bin/sh”

system()’s ret addr

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA
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Defeating DEP

￭ Suppose system() isn’t executed, but a call to it exists somewhere
￭ You can examine the objdump to look for “interesting” functions in the program

30

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

void foo(char *str) {
char buffer[16];
strcpy(buffer, str)

}
void main() {

char buf[256];
memset(buf, ‘A’, 255);
buf[255] = ‘\x00’;
foo(buf);

}
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Defeating DEP

￭ Idea #2: create a ????
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previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)
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Defeating DEP

￭ Idea #2: create a “fake” call frame for system() with our desired arg
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string “/bin/sh”

Address of “/bin/sh”

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)
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Defeating DEP

￭ Idea #2: create a “fake” call frame for system() with our desired arg
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string “/bin/sh”

system()’s first arg

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)
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Defeating DEP

￭ What happens when system() returns (i.e., the spawned shell is closed)?
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string “/bin/sh”

system()’s first argAddress of “/bin/sh”

AAAAAAAAAAAAAAAAAAAAAA

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)
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Defeating DEP

￭ What happens when system() returns (i.e., the spawned shell is closed)?
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string “/bin/sh”

system()’s first argAddress of “/bin/sh”

AAAAAAAAAAAAAAAAAAAAAA

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

returns
to ????
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Defeating DEP

￭ What happens when system() returns (i.e., the spawned shell is closed)?
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string “/bin/sh”

system()’s first arg

AAAAAAAAAAAAAAAAAAAAAA

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

returns
to ????
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Case Study: Drive-by-Downloads

37
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Case Study: Drive-by-Downloads

￭ Web browser crashing = a dead giveaway you’re being exploited!

38
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Defeating DEP

￭ How can we make this stealthy (i.e., not segfault when system() returns)?

39

string “/bin/sh”

system()’s first arg

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)
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Defeating DEP

￭ How can we make this stealthy (i.e., not segfault when system() returns)?
￭ Replace the return address in our fake system() call frame with the address of _exit()

40

string “/bin/sh”

system()’s first argAddress of “/bin/sh”

Address of _exit()

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

returns
to _exit
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Defeating DEP

￭ How can we make this stealthy (i.e., not segfault when system() returns)?
￭ Replace the return address in our fake system() call frame with the address of _exit()

41

string “/bin/sh”

system()’s first arg

Address of _exit()

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

returns
to _exit
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Project 2 Tips

￭ Targets 0, 1, 2
￭ Relatively simple attacks
￭ Should not require too much effort
￭ They build up your skills for the others!

￭ Suggestion: get these finished ASAP

￭ Having trouble? Come to office hours
￭ See CS 4440 Wiki for cheat sheets!

42
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Project 2 Tips: Attack Planning

1. Establish a plan of attack
￭ Draw a before/after stack diagram

2. What object do you control?
￭ Vulnerable buffer

3. What objects are adjacent to it?
￭ main()’s frame pointer
￭ foo()’s return address

4. What do you need to overwrite?
￭ foo()’s return address, etc.

43

“/bin/sh”

Arg1 Address

Ret Address

system()

AAAAAAAAAA

AAAAAAAAAA

Frame Pointer

“whatever”

Arg1 Address

Ret Address

Frame Pointer

Buffer

Before After

Stack that the 
program gives us

How we want  
the stack to look
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Project 2 Tips: Memory Inspection

1. Get familiar with memory inspection in GDB

2. Begin with simple, easily-identifiable payload
￭ E.g., the string “AAAAAAAAA…”

3. Set breakpoint on payload-inserting function
￭ E.g., the function that calls strcpy()

4. Single-step to right before function returns 

5. Inspect memory and look for payload bytes
￭ At what address does 0x4141414141… appear?

44

(gdb) x/32bx 0xfff6d8c0

0xfff6d8c0: 0x00 0x00 0x00 0x00 
  0x00 0x00 0x00 0x00

0xfff6d8c8: 0x00 0x00 0x00 0x00 
  0x41 0x41 0x41 0x41

0xfff6d8d0: 0x41 0x41 0x41 0x41 
  0x41 0x41 0x41 0x41

Buffer probably begins 
at    0xfff6d8c8 + 4
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Project 2 Tips: Overflowing

￭ Segfaults = you’re on the right track!
￭ Means you’ve overwritten something of value
￭ E.g., the current function’s return address 

￭ Get a dummy “AAAA” payload down first
￭ Are you overwriting the objects you want?
￭ How many bytes do you need to do so?

￭ Then move onto your full shellcode attack
￭ Suggestion: replace “A”s with 0x90s  (NOPs)

45

Program received signal 
SIGSEGV, Segmentation 
fault.

0x41414141 in ?? ()

Program received signal 
SIGSEGV, Segmentation 
fault.

0x08004141 in ?? ()

RetAddr Full Overwrite

RetAddr Partial Overwrite
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Questions?

46
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This time on CS 4440…

47

Automated Bug-Finding
Fuzz Testing

Symbolic Execution
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Today’s Guest Lecturer

48

Gabriel Sherman

￭ About Me:
￭ First year PhD Student
￭ This class sparked my interest in Computer Security
￭ I love to hike and snowboard
￭ I have a weiner dog

￭ My Research:
￭ Novel automatic harness generation techniques
￭ Bridging the gap between untested code and fuzzing
￭ Uncovering bugs in software
￭ Discovered 40+ vulnerabilities in popular software librariesReach out!

gabesherman6@gmail.com

mailto:gabesherman6@gmail.com
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Programs run on inputs

￭ Modern applications accept many sources of input:
￭ Files
￭ Arguments
￭ Environment variables
￭ Network packets
￭ …

￭ Nowadays: multiple sources of inputs

49
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Software Bugs

50
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Software Bugs

51
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When bugs go bad

￭ Improper input validation leads to security vulnerabilities  
￭ Bugs that violate the system’s confidentiality, integrity, or availability

￭ Exploitation: leveraging a vulnerability to perform unauthorized actions

52
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▪Missed initialization check
▪ Free’d pointers not NULL’d
▪ Unchecked memory writes

Common Vulnerabilities
▪ Use uninitialized memory
▪ Use non-owned memory
▪ Overflowing a data buffer

Consequences Attacker Exploitation
▪ Software denial of service
▪ Leak sensitive information
▪ Inject & run arbitrary code

Race against time to find & fix vulnerabilities 
before they are exploited

Exploitation

53
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Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Accuracy a major concern
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

￭ As code size grows, speed drops

54

￭ Analyze program by executing it

￭ Better accuracy: no false positives
￭ Execution reveals only what exists
￭ Program crashed? You found a bug!

￭ Capable of very high throughput

Dynamic Testing:Static Analysis:



Stefan Nagy

Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Accuracy a major concern
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

￭ As code size grows, speed drops

55

￭ Analyze program by executing it

￭ Better accuracy: no false positives
￭ Execution reveals only what exists
￭ Program crashed? You found a bug!

￭ Capable of very high throughput

Dynamic Testing:Static Analysis:
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Questions?

56
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“Fuzz” Testing (aka Fuzzing)

57
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One dark and stormy night…

58

ABCDEFGH

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing
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One dark and stormy night…
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ABCDEFGH

AB.. $4G…

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing
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One dark and stormy night…

60

ABCDEFGH

AB.. $4G…

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing

￭ Shouldn’t programs do much better with glitched or invalid input?
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Bart’s idea: test programs on random inputs

61
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Bart’s idea: test programs on random inputs

￭ Quickly generate lots and lots of random inputs

￭ Execute each on the target program

￭ See what happens
￭ Crash 
￭ Hang
￭ Nothing at all

62
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Random inputs work!

￭ Crash or hang 25–33% of utility 
programs in seven UNIX variants

￭ Results reveal several common 
mistakes made by programmers

￭ They called this fuzz testing
● Known today as fuzzing

63
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Finding Bugs with Fuzzing

64

Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/
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Fuzzing across the industry

￭ Fuzzing = today’s most popular bug-finding technique
￭ Most real-world fuzzing is coverage-guided

65
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Taxonomy of Fuzzers

66
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Tools of the trade: AFL

￭ Most historically significant fuzzer 
ever developed

￭ Authors: Michal Zalewski (2013) 
￭ Google (2019–2022)
￭ The AFL++ team (2020–onwards)

￭ Versatile, easy to spin up & modify
￭ Spawned probably ~100 PhD & MS theses
￭ (mine included)

￭ Mix of carefully chosen trade-offs

67
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What AFL aims to be

￭ Primary goal: high test case throughput

￭ Sacrifice precision in most areas
￭ Lightweight, simple mutators
￭ Coarse, approximated code coverage
￭ Little reasoning about seed selection

￭ Revolutionary & still insanely effective
￭ Ideas ported over to honggFuzz, libFuzzer
￭ and nearly all other fuzzers

68
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Tools of the trade: AFL++

￭ By far today’s most popular fuzzer

￭ Official successor to vanilla AFL
￭ Started out as a community-led fork
￭ Google has since archived vanilla AFL

￭ A platform for trying-out new features
￭ Integrated lots of academic prototypes
￭ Easily tailorable to your target’s needs

69

https://github.com/AFLplusplus/AFLplusplus
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Demo

70
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Feedback-driven Fuzzing

71
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Fuzzing like it’s 1989

￭ Random inputs

￭ Black-box: only check program’s end result
￭ Signals
￭ Return values
￭ Program-specific output

￭ Save inputs that trigger weird behavior
￭ SIGSEGV, SIGFPE, SIGILL, etc.
￭ Assertion failures
￭ Other reported errors

72
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Black-box fuzzing only gets you so far

73
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How can fuzzing exploration be guided?

74

￭ Idea: track some measure of 
exploration “progress”
￭ Coverage of program code
￭ Stack traces
￭ Memory accesses

￭ Pinpoint inputs that further 
progress over the others

￭ Mutate only those inputs
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Program

Inputs

75

Feedback-driven Fuzzing
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Program

Inputs

76

Feedback-driven Fuzzing

Execute and 
Collect Feedback

 

(e.g., code coverage)
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Program

Inputs

77

Feedback-driven Fuzzing

Execute and 
Collect Feedback

 

(e.g., code coverage)

✓
Interesting!

(new code)
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✓

X

Interesting!

Uninteresting

Program

Inputs

Execute and 
Collect Feedback

 

(e.g., code coverage)

78

Feedback-driven Fuzzing

(new code)

(no new code)
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✓

X

Interesting!

Uninteresting

Crashes

Program

Inputs

Execute and 
Collect Feedback

 

(e.g., code coverage)

79

Feedback-driven Fuzzing

(new code)

(no new code)

(SEGFAULT)
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Types of Feedback-driven Fuzzers

80

Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box



Stefan Nagy

Types of Feedback-driven Fuzzers
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Types of Feedback-driven Fuzzers
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Coverage-guided Grey-box Fuzzing

￭ Code coverage: program regions exercised by each test case

￭ Horse racing analogy: “breed” (mutate) only 
the “winning” (coverage-increasing) inputs
￭ New coverage? Keep and mutate the input
￭ Old coverage? Discard it and try again

￭ Most fuzzing today is coverage-guided
￭ Good balance of performance and precision
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Maximize
code coverage
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Code Coverage

￭ Program represented as control-flow graphs (CFG)
￭ Directed graph encompassing all program paths
￭ Basis of virtually all software analysis techniques

￭ Various coverage metrics in use today
￭ Instructions: units that make up basic blocks
￭ Basic blocks: nodes of the program’s CFG
￭ Edges: transitions between basic blocks
￭ Hit counts: frequencies of basic blocks
￭ Paths: sequences of edges
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Tracking Code Coverage

￭ Challenge: coverage-tracing instrumentation
￭ Modifying program to track test case code coverage

￭ Target is open-source? Easy and fast!
￭ Can compile-in coverage-tracing instrumentation

￭ Target is closed-source? Difficult and slow!
￭ Dynamic Translation: modify executable as it’s running

￭ Easy, but really slows down runtime speed
￭ Static Rewriting: modify executable before running it

￭ Conceptually similar to compiler instrumentation
￭ Fast, but difficult to do without breaking the program
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Questions?
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Fuzzing Input Generation
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Before you start: choose your seeds

￭ Seeds: starting inputs from which to mutate from

￭ Small seeds
￭ Smallest-possible PDF file
￭ Empty file

￭ Large seeds
￭ Crawl web for every PDF ever created

￭ No right answer—it is target-dependent!
￭ Smaller seeds = cover earlier code, but struggle to reach deeper code
￭ Larger seeds = cover deeper code to start, but are slower to execute
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Types of Input Generation

￭ Model-agnostic: brute-force your way to valid inputs
￭ Random insertions, deletions, and splicing

￭ Model-guided: follow a pre-defined input specification 
￭ Follow “rules” to create highly-structured inputs

￭ White-box approaches: 
￭ Symbolic execution: solve branches as symbolic expressions
￭ Concolic execution: solve branches as concrete values
￭ Taint tracking: infer critical input “parts” and mutate those
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Source: The Art, Science, and Engineering of Fuzzing: A Survey
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Model-agnostic Generation

￭ Brute-force your way to valid inputs
￭ Bit and byte “flipping”
￭ Addition and subtraction
￭ Inserting random chunks
￭ Inserting dictionary “tokens”
￭ Splicing two inputs together

￭ The good: super fast
￭ Incorporating feedback like coverage enables 

you to synthesize valid inputs (eventually)
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Model-agnostic Generation Trade-offs 

￭ Surprisingly effective: valid inputs appear out of thin air
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Model-agnostic Generation Trade-offs

￭ Need a lot of luck to solve magic bytes checks and nested checksums
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Model-guided Generation

￭ Follow a pre-defined input specification 
￭ Pre-defined input grammars
￭ Dynamically-learned grammars
￭ Domain-specific generators

￭ The good: many more valid inputs
￭ Model-agnostic inputs are often discarded

because they fail basic input sanity checks
￭ Valid inputs = higher code coverage 
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Model-guided Generation Trade-offs

￭ Writing or learning specifications is hard
￭ E.g., CSmith written in 40,000+ LoC
￭ Domain expertise is critical

￭ Seemingly impossible for many inputs
￭ For example, no grammar for x86 binaries

￭ Deeper coverage is not always better
￭ Likely to miss bugs hidden in shallow code

(e.g., input validity checks)
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Symbolic and Concolic Execution

￭ Model paths as symbolic expressions
￭ Construct a system of boolean equations
￭ Pass this off to an SMT solver
￭ Attempt to find all satisfiable assignments
￭ Concolic execution: test one concrete path

￭ Many solvers available today
￭ E.g., Z3, Yices, CVC4

￭ The good: great for many branches
￭ Cuts through magic bytes without much trouble
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Symbolic Execution Example
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0. def f (x, y): 
1.  if (x > y): 
2.    x = x + y 
3.    y = x - y
4.    x = x - y 
5.    if (x - y > 0):
6.      assert false 
7.  return (x, y)

 x : A
 y : B
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Symbolic Execution Example
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Symbolic Execution Example
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0. def f (x, y): 
1.  if (x > y): 
2.    x = x + y 
3.    y = x - y
4.    x = x - y 
5.    if (x - y > 0):
6.      assert false 
7.  return (x, y)

 x : A
 y : B

  x : A+B
  y : B

A > B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

B - A > 0

L2

L3

L4

L6

Possible path constraints:
● (A > B) and (B-A > 0) = satisfiable?
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Symbolic Execution Example
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0. def f (x, y): 
1.  if (x > y): 
2.    x = x + y 
3.    y = x - y
4.    x = x - y 
5.    if (x - y > 0):
6.      assert false 
7.  return (x, y)

 x : A
 y : B

  x : A+B
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unsatisfiable

Possible path constraints:
● (A > B) and (B-A > 0) = unsatisfiable
● (A > B) and (B-A <= 0) = satisfiable?
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Symbolic Execution Example
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0. def f (x, y): 
1.  if (x > y): 
2.    x = x + y 
3.    y = x - y
4.    x = x - y 
5.    if (x - y > 0):
6.      assert false 
7.  return (x, y)

 x : A
 y : B

  x : A+B
  y : B

A > B A <= B

 x : A
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

B - A > 0 B - A <= 0

L2

L3

L4

L7

L6  x : B
 y : A L6

unsatisfiable satisfiable

Possible path constraints:
● (A > B) and (B-A > 0) = unsatisfiable
● (A > B) and (B-A <= 0) = satisfiable
● (A <= B) = satisfiable?
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Symbolic Execution Example
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0. def f (x, y): 
1.  if (x > y): 
2.    x = x + y 
3.    y = x - y
4.    x = x - y 
5.    if (x - y > 0):
6.      assert false 
7.  return (x, y)

 x : A
 y : B

  x : A+B
  y : B

A > B A <= B

 x : A
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A
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 y : A

B - A > 0 B - A <= 0

L2

L3

L4
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L6  x : B
 y : A L6
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satisfiable

Possible path constraints:
● (A > B) and (B-A > 0) = unsatisfiable
● (A > B) and (B-A <= 0) = satisfiable
● (A <= B) = satisfiable
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Taint Tracking

￭ Track input bytes’ flow throughout program
￭ Identify input “chunks” that affect program state

￭ Chunks that affect branches
￭ Chunks that flow to function calls

￭ Mutate these chunks
￭ Random mutation
￭ Insert fun or useful tokens

￭ The good: finding vulnerable buffers, 
   solving branches
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 0. def f (x, y): 
1.  if (x > y): 
2.    .........
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Taint Tracking

￭ Track input bytes’ flow throughout program
￭ Identify input “chunks” that affect program state

￭ Chunks that affect branches
￭ Chunks that flow to function calls

￭ Mutate these chunks
￭ Random mutation
￭ Insert fun or useful tokens

￭ The good: finding vulnerable buffers, 
   solving branches
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Taint Tracking

￭ Track input bytes’ flow throughout program
￭ Identify input “chunks” that affect program state

￭ Chunks that affect branches
￭ Chunks that flow to function calls

￭ Mutate these chunks
￭ Random mutation
￭ Insert fun or useful tokens

￭ The good: finding vulnerable buffers, 
   solving branches
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White-box Generation Trade-offs

￭ All of these techniques are heavyweight
￭ Too slow to deploy for every input, branch, etc.
￭ Must decide which problems to feed it

￭ Scheduling problem

￭ Generally limited to simple software
￭ Good luck doing taint tracking on MS Office…

￭ Emerging techniques give us hope!
￭ Fast taint tracking: RedQueen
￭ Fast concolic exec: SymCC
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Types of Input Generation

￭ Model-agnostic: great on simple, easy-to-solve branches
￭ Need a lot of luck to solve multi-byte conditionals and checksums 

￭ Model-guided: more valid inputs leads to higher coverage
￭ Out of luck if specification is not defined or hard-to-define

￭ White-box approaches: 
￭ Symbolic / concolic exec: precise solving of multi-byte conditionals
￭ Taint tracking: easily identifies key data objects, branch constraints
￭ Far too heavyweight to deploy on every single generated input 
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Source: The Art, Science, and Engineering of Fuzzing: A Survey
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Questions?
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Testing Takeaways
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Demo

￭ Results?
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Building a good fuzzer is all about finding the 
right balance of performance & precision.
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Trade-offs are target-dependent
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If something has not been fuzzed before, 
any fuzzing will probably find lots of bugs.
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Any fuzzing is better than not fuzzing
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Interested in fuzzing?

￭ Spring 2025: CS 5963/6963: Applied Software Security Testing
￭ Everything you’d ever want to know about fuzzing for finding security bugs!
￭ Course project: team up to fuzz a real program (of your choice), and find and report its bugs!
￭ https://cs.utah.edu/~snagy/courses/cs5963/ 
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https://users.cs.utah.edu/~snagy/courses/cs5963/
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Questions?
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Food for Thought

￭ Today, we’ve talked about thwarting bugs by proactively discovering them
￭ E.g., run fuzzing and try to catch all the bugs!
￭ Hopefully the attacker will not beat us to it…

￭ Question: how can we redesign our systems to prevent software exploits?
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Next time on CS 4440…
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Virtualization, Isolation, Sandboxing


