
Stefan Nagy

Week 6: Lecture B
Automated Bug Finding

Thursday, September 26, 2024

1

Stefan Nagy

Announcements

￭ Project 2: AppSec released
￭ Deadline: Thursday, October 17th by 11:59PM

2

Stefan Nagy 3

Stefan Nagy

Announcements

￭ Project 1 grades are now available on Canvas

￭ Think we made an error? Request a regrade!
￭ Valid regrade requests:

￭ You have verified your solution is correct
(i.e., we made an error in grading)

4

Project 1 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 9/30 via Google Form

Stefan Nagy

Announcements

5

See Discord for
meeting info! acm.cs.utah.edu

Stefan Nagy

Announcements

6

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Questions?

7

Stefan Nagy

Last time on CS 4440…

8

Advanced Exploitation Techniques
ASLR, DEP, and Workarounds

Other Application-level Defenses

Stefan Nagy

Recap: Spawning Shells

￭ Attacker goal: make program open a root shell
￭ Root-level permissions = total system ownage
￭ You’ll do this in Project 2!

￭ Shellcode = code to open a root shell
￭ Inject this somewhere and direct execution to it
￭ Basic structure:

1. Call setuid(0) to set user ID to “root”
2. Open a shell with execve(“/bin/sh”)

9

setuid(0) execve(“/bin/sh”)+

Stefan Nagy

Shell Spawning in C

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}

10

Shell inherits same privileges
as the original “parent” process

If the original process run as
root, shell gives ???? access

Stefan Nagy

Shell Spawning in C

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}

11

Shell inherits same privileges
as the original “parent” process

If the original process run as
root, shell gives root access

Stefan Nagy

Shell Spawning in C

12

Shell inherits same privileges
as the original “parent” process

If the original process run as
root, shell gives root access

#include <stdio.h>

void main() {

char *argv[1];

argv[0] = "/bin/sh";

execve(argv[0], NULL, NULL);

}

Stefan Nagy

Invoking a Shell

13

main()’s locals

??????????????????

??????????????????

??????????????????

main:
pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

Stefan Nagy

Invoking a Shell

14

main()’s locals
main:

pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

.LC0:
.string "/bin/sh"

arg3 = NULL

arg2 = NULL

addr to “/bin/sh”

Stefan Nagy

Invoking a Shell

15

main()’s locals
main:

pushl %ebp
movl %esp, %ebp
pushl $0
pushl $0
pushl $.LC0
call execve
leave
ret

.LC0:
.string "/bin/sh"

arg3 = NULL

arg2 = NULL
execve(“/bin/sh”, NULL, NULL);

addr to “/bin/sh”

execve()’s ret addr

Stefan Nagy

Invoking a Shell

￭ Project 2: we give you shellcode to set up and call execve(/bin/sh)
￭ This will initialize the correct call frame accordingly

￭ Key idea: ???

16

Vulnerable Function’s RetAddr

Saved EBP, local vars, etc.

Vulnerable Buffer

Stefan Nagy

Invoking a Shell

￭ Project 2: we give you shellcode to set up and call execve(/bin/sh)
￭ This will initialize the correct call frame accordingly

￭ Key idea: place the shellcode in an executable buffer
￭ “Executable” means you are able to execute code inside of it
￭ … then direct execution to it, and BOOM!

17

Start addr of buffer

Padding to reach RetAddr

NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

setuid(0) + execve(“/bin/sh”)

Stefan Nagy

Pesky Defenses

￭ Our provided shellcode requires an executable buffer

￭ What if the buffer is relocated on every new run?

18

Start addr of buffer = ?????

Padding to reach RetAddr

WHERE?
?

? ?

Stefan Nagy

Defeating ASLR

19

￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all

￭ Idea: ???? NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
setuid(0) + execve(“/bin/sh”)

?

Stefan Nagy

Defeating ASLR

20

￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all

￭ Idea: spam “guessed” buffer addr up the stack

Guessed addr within buffer

Guessed addr within buffer

Guessed addr within buffer

Guessed addr within buffer

Guessed addr within buffer

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

Stefan Nagy

Defeating ASLR

21

￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all

￭ Idea: spam “guessed” buffer addr up the stack
￭ Eventually we’ll overwrite some return address

Guessed addr within buffer

Guessed addr within buffer

Overwritten Return Addr

Guessed addr within buffer

Guessed addr within buffer

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

Stefan Nagy

Defeating ASLR

22

￭ Suppose the buffer is sufficiently large
￭ We can still place our shellcode there
￭ Prepend it with a ton of NOPs

￭ We cannot know buffer’s exact start…
￭ But we can guess an address inside of it

￭ It is a really large buffer, after all

￭ Idea: spam “guessed” buffer addr up the stack
￭ Eventually we’ll overwrite some return address
￭ When that function returns, jump inside buffer
￭ Hit the huge NOP sled → BOOM!

Guessed addr within buffer

Guessed addr within buffer

Overwritten Return Addr

Guessed addr within buffer

Guessed addr within buffer

setuid(0) + execve(“/bin/sh”)
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

Stefan Nagy

Pesky Defenses

￭ Our provided shellcode requires an executable buffer

￭ What if the buffer is prohibited from being executable?

23

Start addr of buffer

Padding to reach RetAddr

NOP,NOP,NOP,NOP,NOP,NOP,NOP
NOP,NOP,NOP,NOP,NOP,NOP,NOP

setuid(0) + execve(“/bin/sh”)

Stefan Nagy

Pesky Defenses

￭ Our provided shellcode requires an executable buffer

￭ What if the buffer is prohibited from being executable?

24

Start addr of buffer

Padding to reach RetAddr

NOPE

Stefan Nagy

Defeating DEP

25

￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands
￭ execve()
￭ system()

￭ Idea #1: overwrite ????

main:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
pushl “/bin/ls”
call system
leave
ret

Stefan Nagy

Defeating DEP

26

￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands
￭ execve()
￭ system()

￭ Idea #1: overwrite argument to system()
￭ Replace it with our shell command (“/bin/sh”)

main:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
pushl “/bin/ls”
call system
leave
ret

arg1 = “/bin/ls”

system()’s ret addr

Buffer (non-executable)

Stefan Nagy

Defeating DEP

27

￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands
￭ execve()
￭ system()

￭ Idea #1: overwrite argument to system()
￭ Replace it with our shell command (“/bin/sh”)
￭ Will now execute system(“/bin/sh”)!

main:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
pushl “/bin/ls”
call system
leave
ret

arg1 = “/bin/sh”

system()’s ret addr

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Stefan Nagy

Defeating DEP

28

￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands
￭ execve()
￭ system()

￭ Idea #1: overwrite argument to system()
￭ Replace it with our shell command (“/bin/sh”)
￭ Will now execute system(“/bin/sh”)!

main:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
pushl “/bin/ls”
call system
leave
ret

arg1 = “/bin/sh”

system()’s ret addr

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Stefan Nagy

Defeating DEP

29

￭ Suppose we can still overwrite buffer
￭ We cannot place our shellcode there
￭ But, we can overwrite other stack items

￭ Suppose the program calls a function
that can execute arbitrary commands
￭ execve()
￭ system()

￭ Idea #1: overwrite argument to system()
￭ Replace it with our shell command (“/bin/sh”)
￭ Will now execute system(“/bin/sh”)!

main:
pushl %ebp
movl %esp, %ebp
subl $16, %esp
pushl “/bin/ls”
call system
leave
ret

arg1 = “/bin/sh”

system()’s ret addr

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Stefan Nagy

Defeating DEP

￭ Suppose system() isn’t executed, but a call to it exists somewhere
￭ You can examine the objdump to look for “interesting” functions in the program

30

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

void foo(char *str) {
char buffer[16];
strcpy(buffer, str)

}
void main() {

char buf[256];
memset(buf, ‘A’, 255);
buf[255] = ‘\x00’;
foo(buf);

}

Stefan Nagy

Defeating DEP

￭ Idea #2: create a ????

31

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

Stefan Nagy

Defeating DEP

￭ Idea #2: create a “fake” call frame for system() with our desired arg

32

string “/bin/sh”

Address of “/bin/sh”

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

Stefan Nagy

Defeating DEP

￭ Idea #2: create a “fake” call frame for system() with our desired arg

33

string “/bin/sh”

system()’s first arg

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

Stefan Nagy

Defeating DEP

￭ What happens when system() returns (i.e., the spawned shell is closed)?

34

string “/bin/sh”

system()’s first argAddress of “/bin/sh”

AAAAAAAAAAAAAAAAAAAAAA

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

Stefan Nagy

Defeating DEP

￭ What happens when system() returns (i.e., the spawned shell is closed)?

35

string “/bin/sh”

system()’s first argAddress of “/bin/sh”

AAAAAAAAAAAAAAAAAAAAAA

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

returns
to ????

Stefan Nagy

Defeating DEP

￭ What happens when system() returns (i.e., the spawned shell is closed)?

36

string “/bin/sh”

system()’s first arg

AAAAAAAAAAAAAAAAAAAAAA

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

returns
to ????

Stefan Nagy

Case Study: Drive-by-Downloads

37

Stefan Nagy

Case Study: Drive-by-Downloads

￭ Web browser crashing = a dead giveaway you’re being exploited!

38

Stefan Nagy

Defeating DEP

￭ How can we make this stealthy (i.e., not segfault when system() returns)?

39

string “/bin/sh”

system()’s first arg

system()’s return addr

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

Stefan Nagy

Defeating DEP

￭ How can we make this stealthy (i.e., not segfault when system() returns)?
￭ Replace the return address in our fake system() call frame with the address of _exit()

40

string “/bin/sh”

system()’s first argAddress of “/bin/sh”

Address of _exit()

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

returns
to _exit

Stefan Nagy

Defeating DEP

￭ How can we make this stealthy (i.e., not segfault when system() returns)?
￭ Replace the return address in our fake system() call frame with the address of _exit()

41

string “/bin/sh”

system()’s first arg

Address of _exit()

Address of system()

AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

Buffer (non-executable)

returns
to _exit

Stefan Nagy

Project 2 Tips

￭ Targets 0, 1, 2
￭ Relatively simple attacks
￭ Should not require too much effort
￭ They build up your skills for the others!

￭ Suggestion: get these finished ASAP

￭ Having trouble? Come to office hours
￭ See CS 4440 Wiki for cheat sheets!

42

Stefan Nagy

Project 2 Tips: Attack Planning

1. Establish a plan of attack
￭ Draw a before/after stack diagram

2. What object do you control?
￭ Vulnerable buffer

3. What objects are adjacent to it?
￭ main()’s frame pointer
￭ foo()’s return address

4. What do you need to overwrite?
￭ foo()’s return address, etc.

43

“/bin/sh”

Arg1 Address

Ret Address

system()

AAAAAAAAAA

AAAAAAAAAA

Frame Pointer

“whatever”

Arg1 Address

Ret Address

Frame Pointer

Buffer

Before After

Stack that the
program gives us

How we want
the stack to look

Stefan Nagy

Project 2 Tips: Memory Inspection

1. Get familiar with memory inspection in GDB

2. Begin with simple, easily-identifiable payload
￭ E.g., the string “AAAAAAAAA…”

3. Set breakpoint on payload-inserting function
￭ E.g., the function that calls strcpy()

4. Single-step to right before function returns

5. Inspect memory and look for payload bytes
￭ At what address does 0x4141414141… appear?

44

(gdb) x/32bx 0xfff6d8c0

0xfff6d8c0: 0x00 0x00 0x00 0x00
 0x00 0x00 0x00 0x00

0xfff6d8c8: 0x00 0x00 0x00 0x00
 0x41 0x41 0x41 0x41

0xfff6d8d0: 0x41 0x41 0x41 0x41
 0x41 0x41 0x41 0x41

Buffer probably begins
at 0xfff6d8c8 + 4

Stefan Nagy

Project 2 Tips: Overflowing

￭ Segfaults = you’re on the right track!
￭ Means you’ve overwritten something of value
￭ E.g., the current function’s return address

￭ Get a dummy “AAAA” payload down first
￭ Are you overwriting the objects you want?
￭ How many bytes do you need to do so?

￭ Then move onto your full shellcode attack
￭ Suggestion: replace “A”s with 0x90s (NOPs)

45

Program received signal
SIGSEGV, Segmentation
fault.

0x41414141 in ?? ()

Program received signal
SIGSEGV, Segmentation
fault.

0x08004141 in ?? ()

RetAddr Full Overwrite

RetAddr Partial Overwrite

Stefan Nagy

Questions?

46

Stefan Nagy

This time on CS 4440…

47

Automated Bug-Finding
Fuzz Testing

Symbolic Execution

Stefan Nagy

Today’s Guest Lecturer

48

Gabriel Sherman

￭ About Me:
￭ First year PhD Student
￭ This class sparked my interest in Computer Security
￭ I love to hike and snowboard
￭ I have a weiner dog

￭ My Research:
￭ Novel automatic harness generation techniques
￭ Bridging the gap between untested code and fuzzing
￭ Uncovering bugs in software
￭ Discovered 40+ vulnerabilities in popular software librariesReach out!

gabesherman6@gmail.com

mailto:gabesherman6@gmail.com

Stefan Nagy

Programs run on inputs

￭ Modern applications accept many sources of input:
￭ Files
￭ Arguments
￭ Environment variables
￭ Network packets
￭ …

￭ Nowadays: multiple sources of inputs

49

Stefan Nagy

Software Bugs

50

Stefan Nagy

Software Bugs

51

Stefan Nagy

When bugs go bad

￭ Improper input validation leads to security vulnerabilities
￭ Bugs that violate the system’s confidentiality, integrity, or availability

￭ Exploitation: leveraging a vulnerability to perform unauthorized actions

52

Stefan Nagy

▪Missed initialization check
▪ Free’d pointers not NULL’d
▪ Unchecked memory writes

Common Vulnerabilities
▪ Use uninitialized memory
▪ Use non-owned memory
▪ Overflowing a data buffer

Consequences Attacker Exploitation
▪ Software denial of service
▪ Leak sensitive information
▪ Inject & run arbitrary code

Race against time to find & fix vulnerabilities
before they are exploited

Exploitation

53

Stefan Nagy

Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Accuracy a major concern
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

￭ As code size grows, speed drops

54

￭ Analyze program by executing it

￭ Better accuracy: no false positives
￭ Execution reveals only what exists
￭ Program crashed? You found a bug!

￭ Capable of very high throughput

Dynamic Testing:Static Analysis:

Stefan Nagy

Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Accuracy a major concern
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

￭ As code size grows, speed drops

55

￭ Analyze program by executing it

￭ Better accuracy: no false positives
￭ Execution reveals only what exists
￭ Program crashed? You found a bug!

￭ Capable of very high throughput

Dynamic Testing:Static Analysis:

Stefan Nagy

Questions?

56

Stefan Nagy

“Fuzz” Testing (aka Fuzzing)

57

Stefan Nagy

One dark and stormy night…

58

ABCDEFGH

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing

Stefan Nagy

One dark and stormy night…

59

ABCDEFGH

AB.. $4G…

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing

Stefan Nagy

One dark and stormy night…

60

ABCDEFGH

AB.. $4G…

Source: https://www.linux-magazine.com/Issues/2022/255/Fuzz-Testing

￭ Shouldn’t programs do much better with glitched or invalid input?

Stefan Nagy

Bart’s idea: test programs on random inputs

61

Stefan Nagy

Bart’s idea: test programs on random inputs

￭ Quickly generate lots and lots of random inputs

￭ Execute each on the target program

￭ See what happens
￭ Crash
￭ Hang
￭ Nothing at all

62

Stefan Nagy

Random inputs work!

￭ Crash or hang 25–33% of utility
programs in seven UNIX variants

￭ Results reveal several common
mistakes made by programmers

￭ They called this fuzz testing
● Known today as fuzzing

63

Stefan Nagy

Finding Bugs with Fuzzing

64

Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/

Stefan Nagy

Fuzzing across the industry

￭ Fuzzing = today’s most popular bug-finding technique
￭ Most real-world fuzzing is coverage-guided

65

Stefan Nagy

Taxonomy of Fuzzers

66

Stefan Nagy

Tools of the trade: AFL

￭ Most historically significant fuzzer
ever developed

￭ Authors: Michal Zalewski (2013)
￭ Google (2019–2022)
￭ The AFL++ team (2020–onwards)

￭ Versatile, easy to spin up & modify
￭ Spawned probably ~100 PhD & MS theses
￭ (mine included)

￭ Mix of carefully chosen trade-offs

67

Stefan Nagy

What AFL aims to be

￭ Primary goal: high test case throughput

￭ Sacrifice precision in most areas
￭ Lightweight, simple mutators
￭ Coarse, approximated code coverage
￭ Little reasoning about seed selection

￭ Revolutionary & still insanely effective
￭ Ideas ported over to honggFuzz, libFuzzer
￭ and nearly all other fuzzers

68

Stefan Nagy

Tools of the trade: AFL++

￭ By far today’s most popular fuzzer

￭ Official successor to vanilla AFL
￭ Started out as a community-led fork
￭ Google has since archived vanilla AFL

￭ A platform for trying-out new features
￭ Integrated lots of academic prototypes
￭ Easily tailorable to your target’s needs

69

https://github.com/AFLplusplus/AFLplusplus

Stefan Nagy

Demo

70

Stefan Nagy

Feedback-driven Fuzzing

71

Stefan Nagy

Fuzzing like it’s 1989

￭ Random inputs

￭ Black-box: only check program’s end result
￭ Signals
￭ Return values
￭ Program-specific output

￭ Save inputs that trigger weird behavior
￭ SIGSEGV, SIGFPE, SIGILL, etc.
￭ Assertion failures
￭ Other reported errors

72

Stefan Nagy

Black-box fuzzing only gets you so far

73

Stefan Nagy

How can fuzzing exploration be guided?

74

￭ Idea: track some measure of
exploration “progress”
￭ Coverage of program code
￭ Stack traces
￭ Memory accesses

￭ Pinpoint inputs that further
progress over the others

￭ Mutate only those inputs

Stefan Nagy

Program

Inputs

75

Feedback-driven Fuzzing

Stefan Nagy

Program

Inputs

76

Feedback-driven Fuzzing

Execute and
Collect Feedback

(e.g., code coverage)

Stefan Nagy

Program

Inputs

77

Feedback-driven Fuzzing

Execute and
Collect Feedback

(e.g., code coverage)

✓
Interesting!

(new code)

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

Inputs

Execute and
Collect Feedback

(e.g., code coverage)

78

Feedback-driven Fuzzing

(new code)

(no new code)

Stefan Nagy

✓

X

Interesting!

Uninteresting

Crashes

Program

Inputs

Execute and
Collect Feedback

(e.g., code coverage)

79

Feedback-driven Fuzzing

(new code)

(no new code)

(SEGFAULT)

Stefan Nagy

Types of Feedback-driven Fuzzers

80

Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box

Stefan Nagy

Types of Feedback-driven Fuzzers

81

Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box

Stefan Nagy

Types of Feedback-driven Fuzzers

82

Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box

Stefan Nagy

Coverage-guided Grey-box Fuzzing

￭ Code coverage: program regions exercised by each test case

￭ Horse racing analogy: “breed” (mutate) only
the “winning” (coverage-increasing) inputs
￭ New coverage? Keep and mutate the input
￭ Old coverage? Discard it and try again

￭ Most fuzzing today is coverage-guided
￭ Good balance of performance and precision

83

Maximize
code coverage

Stefan Nagy

Code Coverage

￭ Program represented as control-flow graphs (CFG)
￭ Directed graph encompassing all program paths
￭ Basis of virtually all software analysis techniques

￭ Various coverage metrics in use today
￭ Instructions: units that make up basic blocks
￭ Basic blocks: nodes of the program’s CFG
￭ Edges: transitions between basic blocks
￭ Hit counts: frequencies of basic blocks
￭ Paths: sequences of edges

84

Blocks

Edges

Paths

Stefan Nagy

Tracking Code Coverage

￭ Challenge: coverage-tracing instrumentation
￭ Modifying program to track test case code coverage

￭ Target is open-source? Easy and fast!
￭ Can compile-in coverage-tracing instrumentation

￭ Target is closed-source? Difficult and slow!
￭ Dynamic Translation: modify executable as it’s running

￭ Easy, but really slows down runtime speed
￭ Static Rewriting: modify executable before running it

￭ Conceptually similar to compiler instrumentation
￭ Fast, but difficult to do without breaking the program

85

Stefan Nagy

Questions?

86

Stefan Nagy

Fuzzing Input Generation

87

Stefan Nagy

Before you start: choose your seeds

￭ Seeds: starting inputs from which to mutate from

￭ Small seeds
￭ Smallest-possible PDF file
￭ Empty file

￭ Large seeds
￭ Crawl web for every PDF ever created

￭ No right answer—it is target-dependent!
￭ Smaller seeds = cover earlier code, but struggle to reach deeper code
￭ Larger seeds = cover deeper code to start, but are slower to execute

88

Stefan Nagy

Types of Input Generation

￭ Model-agnostic: brute-force your way to valid inputs
￭ Random insertions, deletions, and splicing

￭ Model-guided: follow a pre-defined input specification
￭ Follow “rules” to create highly-structured inputs

￭ White-box approaches:
￭ Symbolic execution: solve branches as symbolic expressions
￭ Concolic execution: solve branches as concrete values
￭ Taint tracking: infer critical input “parts” and mutate those

89

Source: The Art, Science, and Engineering of Fuzzing: A Survey

Stefan Nagy

Model-agnostic Generation

￭ Brute-force your way to valid inputs
￭ Bit and byte “flipping”
￭ Addition and subtraction
￭ Inserting random chunks
￭ Inserting dictionary “tokens”
￭ Splicing two inputs together

￭ The good: super fast
￭ Incorporating feedback like coverage enables

you to synthesize valid inputs (eventually)

90

AA AA AA BB BB BB

AA BB BB BB AA AA

11 11 00 11 11 11 11 1112 FF

Stefan Nagy

Model-agnostic Generation Trade-offs

￭ Surprisingly effective: valid inputs appear out of thin air

91

Stefan Nagy

Model-agnostic Generation Trade-offs

￭ Need a lot of luck to solve magic bytes checks and nested checksums

92

Stefan Nagy

Model-guided Generation

￭ Follow a pre-defined input specification
￭ Pre-defined input grammars
￭ Dynamically-learned grammars
￭ Domain-specific generators

￭ The good: many more valid inputs
￭ Model-agnostic inputs are often discarded

because they fail basic input sanity checks
￭ Valid inputs = higher code coverage

93

Stefan Nagy

Model-guided Generation Trade-offs

￭ Writing or learning specifications is hard
￭ E.g., CSmith written in 40,000+ LoC
￭ Domain expertise is critical

￭ Seemingly impossible for many inputs
￭ For example, no grammar for x86 binaries

￭ Deeper coverage is not always better
￭ Likely to miss bugs hidden in shallow code

(e.g., input validity checks)

94

Stefan Nagy

Symbolic and Concolic Execution

￭ Model paths as symbolic expressions
￭ Construct a system of boolean equations
￭ Pass this off to an SMT solver
￭ Attempt to find all satisfiable assignments
￭ Concolic execution: test one concrete path

￭ Many solvers available today
￭ E.g., Z3, Yices, CVC4

￭ The good: great for many branches
￭ Cuts through magic bytes without much trouble

95

Stefan Nagy

Symbolic Execution Example

96

0. def f (x, y):
1. if (x > y):
2. x = x + y
3. y = x - y
4. x = x - y
5. if (x - y > 0):
6. assert false
7. return (x, y)

 x : A
 y : B

Stefan Nagy

Symbolic Execution Example

97

0. def f (x, y):
1. if (x > y):
2. x = x + y
3. y = x - y
4. x = x - y
5. if (x - y > 0):
6. assert false
7. return (x, y)

 x : A
 y : B

 x : A+B
 y : B

A > B

L2

Stefan Nagy

Symbolic Execution Example

98

0. def f (x, y):
1. if (x > y):
2. x = x + y
3. y = x - y
4. x = x - y
5. if (x - y > 0):
6. assert false
7. return (x, y)

 x : A
 y : B

 x : A+B
 y : B

A > B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

L2

L3

L4

Stefan Nagy

Symbolic Execution Example

99

0. def f (x, y):
1. if (x > y):
2. x = x + y
3. y = x - y
4. x = x - y
5. if (x - y > 0):
6. assert false
7. return (x, y)

 x : A
 y : B

 x : A+B
 y : B

A > B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

B - A > 0

L2

L3

L4

L6

Possible path constraints:
● (A > B) and (B-A > 0) = satisfiable?

Stefan Nagy

Symbolic Execution Example

100

0. def f (x, y):
1. if (x > y):
2. x = x + y
3. y = x - y
4. x = x - y
5. if (x - y > 0):
6. assert false
7. return (x, y)

 x : A
 y : B

 x : A+B
 y : B

A > B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

B - A > 0 B - A <= 0

L2

L3

L4

L6 x : B
 y : A L6

unsatisfiable

Possible path constraints:
● (A > B) and (B-A > 0) = unsatisfiable
● (A > B) and (B-A <= 0) = satisfiable?

Stefan Nagy

Symbolic Execution Example

101

0. def f (x, y):
1. if (x > y):
2. x = x + y
3. y = x - y
4. x = x - y
5. if (x - y > 0):
6. assert false
7. return (x, y)

 x : A
 y : B

 x : A+B
 y : B

A > B A <= B

 x : A
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

B - A > 0 B - A <= 0

L2

L3

L4

L7

L6 x : B
 y : A L6

unsatisfiable satisfiable

Possible path constraints:
● (A > B) and (B-A > 0) = unsatisfiable
● (A > B) and (B-A <= 0) = satisfiable
● (A <= B) = satisfiable?

Stefan Nagy

Symbolic Execution Example

102

0. def f (x, y):
1. if (x > y):
2. x = x + y
3. y = x - y
4. x = x - y
5. if (x - y > 0):
6. assert false
7. return (x, y)

 x : A
 y : B

 x : A+B
 y : B

A > B A <= B

 x : A
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

B - A > 0 B - A <= 0

L2

L3

L4

L7

L6 x : B
 y : A L6

unsatisfiable satisfiable

satisfiable

Possible path constraints:
● (A > B) and (B-A > 0) = unsatisfiable
● (A > B) and (B-A <= 0) = satisfiable
● (A <= B) = satisfiable

Stefan Nagy

Taint Tracking

￭ Track input bytes’ flow throughout program
￭ Identify input “chunks” that affect program state

￭ Chunks that affect branches
￭ Chunks that flow to function calls

￭ Mutate these chunks
￭ Random mutation
￭ Insert fun or useful tokens

￭ The good: finding vulnerable buffers,
 solving branches

103

11 11 11 11 11 11 1111

11 11 11 11 11 11 1111

 0. def f (x, y):
1. if (x > y):
2.

Stefan Nagy

Taint Tracking

￭ Track input bytes’ flow throughout program
￭ Identify input “chunks” that affect program state

￭ Chunks that affect branches
￭ Chunks that flow to function calls

￭ Mutate these chunks
￭ Random mutation
￭ Insert fun or useful tokens

￭ The good: finding vulnerable buffers,
 solving branches

104

 0. def f (x, y):
1. if (x > y):
2.

11

11 11 11 11 11 11 1111

11 11 Bytes that comprise X

Bytes that comprise Y

Stefan Nagy

Taint Tracking

￭ Track input bytes’ flow throughout program
￭ Identify input “chunks” that affect program state

￭ Chunks that affect branches
￭ Chunks that flow to function calls

￭ Mutate these chunks
￭ Random mutation
￭ Insert fun or useful tokens

￭ The good: finding vulnerable buffers,
 solving branches

105

 0. def f (x, y):
1. if (x > y):
2.

11

11 11 11 11 11 11 1111

11 11 Bytes that comprise X

Bytes that comprise Y

11

11 11 11 11 11 11 1111

11 11 11

00

11 1111 11

00 00 00 00

Mutate!

Stefan Nagy

White-box Generation Trade-offs

￭ All of these techniques are heavyweight
￭ Too slow to deploy for every input, branch, etc.
￭ Must decide which problems to feed it

￭ Scheduling problem

￭ Generally limited to simple software
￭ Good luck doing taint tracking on MS Office…

￭ Emerging techniques give us hope!
￭ Fast taint tracking: RedQueen
￭ Fast concolic exec: SymCC

106

0 min Time spent fuzzing

Edges
Covered

Stefan Nagy

Types of Input Generation

￭ Model-agnostic: great on simple, easy-to-solve branches
￭ Need a lot of luck to solve multi-byte conditionals and checksums

￭ Model-guided: more valid inputs leads to higher coverage
￭ Out of luck if specification is not defined or hard-to-define

￭ White-box approaches:
￭ Symbolic / concolic exec: precise solving of multi-byte conditionals
￭ Taint tracking: easily identifies key data objects, branch constraints
￭ Far too heavyweight to deploy on every single generated input

107

Source: The Art, Science, and Engineering of Fuzzing: A Survey

Stefan Nagy

Questions?

108

Stefan Nagy

Testing Takeaways

109

Stefan Nagy

Demo

￭ Results?

110

Stefan Nagy

Building a good fuzzer is all about finding the
right balance of performance & precision.

111

Trade-offs are target-dependent

Stefan Nagy

If something has not been fuzzed before,
any fuzzing will probably find lots of bugs.

112

Any fuzzing is better than not fuzzing

Stefan Nagy

Interested in fuzzing?

￭ Spring 2025: CS 5963/6963: Applied Software Security Testing
￭ Everything you’d ever want to know about fuzzing for finding security bugs!
￭ Course project: team up to fuzz a real program (of your choice), and find and report its bugs!
￭ https://cs.utah.edu/~snagy/courses/cs5963/

113

https://users.cs.utah.edu/~snagy/courses/cs5963/

Stefan Nagy

Questions?

114

Stefan Nagy

Food for Thought

￭ Today, we’ve talked about thwarting bugs by proactively discovering them
￭ E.g., run fuzzing and try to catch all the bugs!
￭ Hopefully the attacker will not beat us to it…

￭ Question: how can we redesign our systems to prevent software exploits?

115

Stefan Nagy

Next time on CS 4440…

116

Virtualization, Isolation, Sandboxing

