Week 6: Lecture A
Defending Applications

Tuesday, September 24, 2024

Announcements

Project 2: AppSec released

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Deadline: Thursday, October 17th by 11:59PM

/Project 2: Application Security

Deadline: Thursday, October 17 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Helpful Resources

* The CS 4440 Course Wiki

¢ VM Setup and Troubleshooting
 Terminal Cheat Sheet

* GDB Cheat Sheet

 x86 Cheat Sheet

kc Cheat Sheet

~

Table of Contents:

Helpful Resources
Introduction
Objectives
Start by reading this!
o Setup Instructions
o Important Guidelines
Part 1: Beginner Exploits
o Target 0: Variable Overwrite
o Target 1: Execution Redirect
o What to Submit
Part 2: Intermediate Exploits
> Target 2: Shellcode Redirect
o Target 3: Indirect Overwrite
o Target 4: Beyond Strings
o What to Submit
Part 3: Advanced Exploits
o Target 5: Bypassing DEP
o Target 6: Bypassing ASLR
What to Submit
Part 4: Super L33T Pwnage
o Extra Credit: Target 7
o Extra Credit: Target 8
o What to Submit
Submission Instructions /

Stefan Nagy

Project 2 progress?

Finished with Targets 0-1!

Working on Targets 0-1...

Working on Target 2 and beyond!

Haven't started :(

15%

10%

0%

75%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Announcements

Project 1 grades are now available on Canvas

Statistics:
= Average score: 100%
= lLastyear’s average: 85%

Fantastic job!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 4

Announcements

Project 1 grades are now available on Canvas

Think we made an error? Request a regrade!
= Valid regrade requests:
= You have verified your solution is correct
(i.e., we made an error in grading)

Project 1 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 9/30 via Google Form

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Announcements

Last lecture ran out of time (sorry!)

= If you attended but didn’t get credit (e.g., you didn’t
fill-in PollEverywhere fast enough), please email me

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 6

Announcements

Last lecture ran out of time ()
If you attended but didn't get credit (e.g., you didn’t &)
fill-in fast enough), MS
. eat
Thursday’s lecture: automated bug-finding W) \

= Guest lecture (1 will be out of town traveling) : & S A
= TA Ethan will tackle the pre-lecture recap slides EXTERMINATORS
= Main lecture by Gabe Sherman (my PhD student)

= Don’t miss it—one of the coolest security topics!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 7

Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 9

Last time on CS 4440...

Shellcode
Constructing Exploits
Pointer Dereferences

Integer Overflows

Shellcode

Attacker goal: make program open a root shell
= Root-level permissions = total system ownage
= You'll do this in Project 2! # whoaml

Shellcode = code to open a root shell r OOt

= Inject this somewhere and direct execution to it
= Basic structure:
1. Call setuid(0) to set user ID to “root”
2. Open ashell with execve(“/bin/sh”)

setuid(0) + execve(“/bin/sh”)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 11

Where to begin?

Mnemonic device to help guide your attack-planning thought process

~ D : Dive into the source code
(.) / ™
> E : Estimate the stack frame < This acronym is silly...

N : NOP-out the entire frame > B
> < e N
~ N : NOP-out the return address | But the high-level steps
I : Inspect program’s memory . will get you a long way!)
S Setup and stabilize attack!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 12

Exploiting Buffer Overflows

Key idea: inject evil code inside buffer, and redirect execution to it

foo()'s return addr

main()’'s frame ptr

char * buffer[16]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 13

Exploiting Buffer Overflows

Key idea: inject evil code inside buffer, and redirect execution to it

foo()'s return addr

main()’'s frame ptr

char * buffer[16] — Evil code here!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 14

Exploiting Buffer Overflows

Key idea: inject evil code inside buffer, and redirect execution to it

foo()'s return addr

main()’'s frame ptr

char * buffer[16]

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Padding to reach RetAddr

Evil code here!

15

Exploiting Buffer Overflows

Key idea: inject evil code inside buffer, and redirect execution to it

foo()'s return addr

main()’'s frame ptr

char * buffer[16]

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

—
=

Stefan Nagy

Start addr of buffer

Padding to reach RetAddr

Evil code here!

16

Exploiting Buffer Overflows

Key idea: inject evil code inside buffer, and redirect execution to it

foo()'s return addr

main()’'s frame ptr

char * buffer[16]

—
=

—

Start addr of buffer

Padding to reach RetAddr

Evil code here!

When foo() returns, execution will
proceed to our buffer’s address...

Thus executing our evil code!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

17

Bounded vs. Unbounded Writes

Targets 0-2 permit unbounded writes
= We can overwrite anything in the higher stack memory
= Thanks to dangerous functions gets() and strcpy()
= Definitely don't use these functions in your own code!

Targets 3-4 are bounded writes... limited reach!
= Target 3: we can only write 8 + sizeof (buf) bytes
= Target 4 we can only write count bytes (via fread())

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

18

Bounded vs. Unbounded Writes

Targets 0-2 permit unbounded writes

= We can overwrite anything in the higher stack memory
= Thanks to dangerous functions gets() and strcpy()
= Definitely don’t use these functions in your own code!

Targets 3-4 are bounded writes... limited reach!
= Target 3: we can only write 8 + sizeof (buf) bytes
= Target &4 we can only write count bytes (via fread())

For bounded writes, we have to get creative
and find a way to overwrite what we want!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 19

Memory Addresses Point to Memory Slots

Memory \l . %, Hala? ”

A : Key idea: it's all “things

: > pointed to by addresses

| /

|

. i

| [

: || Example: instructions in the Program Text:

|

|

: ‘\ /$ disas vulnerable: \

: ! 0x0804a17b <+0>: endbr32

I ! 0x0804a17f <+4>: push %ebp

*', ! 0x0804a180 <+5>: mov %esp, %ebp

Lower Program Text) /’ kexese4a182 <+7>: push %ebx Py

Memory

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 20

Memory Addresses Point to Memory Slots

\
Memory . ., .
A Stack Memory " Key idea: it's all “things”
: > pointed to by addresses
| /
|
. i
| [
: || Example: payload NOPs in Stack Memory:
|
|
: ‘\ /s x/32xw @xfff6d8cc \
: i oxfff6dScc: ©0x90909090 ©0x90909090
- 1 Oxfff6dsd4: ©0x90909090 0x96909090
v | oxfff6dsdc: 0x90909090 ©x90909090
. oxfff6d8ed: 0x90909090 ©6x96909090
Lower _/ _ -
Memory

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 21

Indirect Memory Overwrite

void foo(char *str) {

Contents of
Px000000

updated to a

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

“““““ » Address 9x000000

int a

Stefan Nagy

Stack Addresses
«— EBP+4

«— EBP+0
- EBP-4
e

EBP-8

-4— 0x000000

22

Indirect Memory Overwrite

void foo(char *str) {

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

foo()'s retAddr

caller’'s EBP

----- > Address EBP+4

Shellcode Address

Stefan Nagy

Stack Addresses

-+

EBP+4

23

Indirect Memory Overwrite

void foo(char *str) {

Shellcode Address

caller’'s EBP

\\\\\ > Address EBP+4

Shellcode Address

Contents of EBP+4 updated to
the shellcode address!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Stack Addresses

-+

EBP+4

24

Integer Overflows

Integer overflows behave differently

from stack buffer overflows
= Really just integer “wrap-arounds”

-

.

32-bit Integer Range: I
Unsigned: [0, (2732 - 1)]

[0, 4294967295]

Signed: [-231, (2731 - 1)]

[-2147483648, 2147483647]

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

UINT_MIN

UINT_MAX 0x0

Oxff...fff

ox1

Unsigned Int

Circle of Integers

/
0x80...001

|
0x80..000

\
Ox7f...fff

Signed Int

Circle of Integers

0x80...001 | Ox7f...fff
0x80..000 INT_MAX
INT_MIN

25

Integer Overflows

Integer overflows behave differently

from stack buffer overflows
= Really just integer “wrap-arounds”

UINT_MIN
UINT_MAX 0x0
Oxff...fff | ox1

4 32-bit Integer Range: I

Unsigned: [0, (2732 - 1)]
[0, 4294967295]

Signed: [-231, (2731 - 1)]
[-2147483648, 2147483647]

Unsigned Int

Circle of Integers

/ \

0x80...001 | Ox7f..fff
0x80..000

.

Overflowing an unsigned integer “wraps around” to a very small integer!
= E.g,0xFFFFFFFF + 2 = 8x00000002

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 26

Overcoming Bounded Writes

What observations can we make?
= Canthey break the program’s assumptions?

Target 4: a potential mismatch of buffer’s size versus the data written to it

Range of count:
alloca([<MAX_UINT]); // allocate our buffer [0, %“(MAX_UINT))
fread(&buf[i], 4, count, f); // fill buffer [0, MAX_UINT)

= If we perform an integer overflow on count, alloca() creates an artificially small buffer
= The resulting fill operation will exceed the buffer's size, resulting in a buffer overflow!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 27

Estimating the Stack

Identify your target fllﬂCtiOﬂ void vulnerable(char *arg){
= Eg,vulnerable() inthis case char buf[100];
strcpy(buf, arg); =~ N
Each frame contains a few key things: | } N
1. The function’s return address E
n | i i
Address of next |rlstruct|on to when RetAddr
the current function returns 7
2. The caller's saved frame pointer Saved EBP _ /
= Where EBP will get “reset” to when the - -
current function returns buf [100]
3. The function’s local variables
= Eg,char buf[100]

= Find these from the source code!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 28

Padding Heuristics

How large is our vulnerable buffer?
= Eg,char buf[100]
= Need at least 100 bytes to overflow!
= Compilers may add a few “extra”
bytes for memory alignment

Saved EBP = an extra four bytes

Other things above our buffer?

= Other locals (e.g.,, count in Target 3)
= Passed-by-reference function args
= Other compiler-added artifacts

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

RetAddr

Saved EBP

other stuff ???

buf [100]

4 bytes

TBD bytes

~100 bytes

29

Write an Initial Payload

Use guesstimated payload bytes as

lower bound for an initial attempt
= E.g., we know our payload is 104+ bytes

Goal: overwrite the return address

with a controlled, friendly payload
= E.g., 104 bytes of NOP instructions

Did it overwrite the return address?
= |f yes—SEGFAULT on 6x909609090
= |f not—program terminates gracefully

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

RetAddr

90909690

90909090909096

90909090909096

4 bytes

TBD bytes

~100 bytes

30

Refine your Payload

Keep a table of attempts and results

1. b'\x90’ * 104 - normal exit
= Too little! Didn't overwrite anything

9090 SEGFAULT

2. b'\x90’ * 120 - SEGV on 0x960909090
= Too much! Complete RetAddr overwrite

3. b‘\x908’ * 114 - SEGV on 0x08049090
= We're close—just two bytes over!
= Qur payload should be 112 bytes

Tweak It to figure out
the exact payload size

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 31

Find the Buffer!

After finding the distance to the return address, we now must overwrite it

= Recall: the return address is our golden ticket to controlling the program’s execution
= |nstead of a normal return, we want to redirect execution to our shellcode-laden buffer

/S info proc mapping // list all memory segments \

Approach: pick a known, friendly . -
.. Start Addr End Addr Size Offset objfile
payload and locate it in memory Bx8048000 0x8049000 6x1000 Bx@ target2
= Goal is to find the start of your buffer! 0x8049000 0x80b8000 0x6f000 0x1000 target2
0x80b800A 0Ox80e8000 0x30000 0x70000 target2
Ox80e8000 0x80eadbod 0x2000 0x9f0B00 target2
Helpfl‘“‘ GDB CommandS: Ox80eabld 0Ox80ecbo0 0x2000 Oxa1000 target2
= 1info proc mapping 0x80ec000 ©0x810e600 ©x22000 0x@ [heap]
n Locate the stack’s boundaries oxf7ff8000 Oxf7ffcooo 0x4000 0x0 [vvar]
- E-g-, @Xfff6d@@@ tO @Xffffe@@@ oxf7ffcoo0 oxf7ffe000 0x2000 0x0 [VdSO]
oxfff6doeo oxffffeooo 0x91006 0x0 [stack]

. s

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 32

Find the Buffer!

After finding the distance to the return address, we now must overwrite it

= Recall: the return address is our golden ticket to controlling the program’s execution
= |nstead of a normal return, we want to redirect execution to our shellcode-laden buffer

Approach: pick a known, friendly 4 h
.. $ b *vulnerable+45 // breakpoint after buf filled
payload and locate It In memOl’y Breakpoint 1, 0x0864ala8 in vulnerable.. target2.c:8

= Goal is to find the start of your buffer!
S r “AAAA" // run program with “AAAA” as its input

Breakpoint 1, ©x0804al1a8 in vulnerable.. target2.c:8

Helpful GDB commands:
= find minAddr,maxAddr, “string” $ find Oxfff6dees, Oxffffeeos, "AAAA"

(] Search memory for address of st r-j_ng Oxfffed8cc // this is likely where buffer begins!
- Use stack boundaries from before Oxfffed93@ // when in doubt, pick the lower address

. s

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 33

Find the Buffer!

After finding the distance to the return address, we now must overwrite it

= Recall: the return address is our golden ticket to controlling the program’s execution
= |nstead of a normal return, we want to redirect execution to our shellcode-laden buffer

Approach: pick a known, friendly 4 h
.. $ b *vulnerable+45 // breakpoint after buf filled
payload and locate It In memOl’y Breakpoint 1, 0x0864ala8 in vulnerable.. target2.c:8

= Goal is to find the start of your buffer!
S r “AAAA" // run program with “AAAA” as its input

Breakpoint 1, ©x0804al1a8 in vulnerable.. target2.c:8

Helpful GDB commands:
= x/32xw,O9xDEADBEEF $ x/32xw oxffféd8cc // look for “AAAA” bytes here
= Show bytes at address OxDEADBEEF oxffféd8cc: 0x41474741 0x00000000 0x00000000 . ..

Oxfff6d8do: 0x00000000 B0x000OBOOO 0x000BLEOO ...

. s

= Inspect candidates from previous step

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 34

We're almost there!

By this point, we've identified our padding length and buffer start address

= Now, introduce our shellcode and finalize the attack payload!

RetAddr —I &buf
Saved EBP —_— 90909090
other stuff —_— 90909090
90909090909090
buf[100] —
9090 shellcode

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 35

We're almost there!

Other Exploitation Techniques

Not just return addresses!
= Function pointers
= Arbitrary data
= C++ exceptions
= (C++objects
= Heap memory freelist
= Any code pointer!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 37

Quiz Question Recap

0x0804a014 <+00>: push %ebp
Ox0804a015 <+01>: mov %esp, %ebp
Ox0804a017 <+03>: sub S4, %esp
Ox0804ab1a <+06>: mov 16 (%ebp), %eax

.

j

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 38

Quiz Question Recap

Ox0804a014 <+00>: push %ebp
Ox0804a015 <+01>: mov %esp, %ebp
Ox0804a017 <+03>: sub S4, %esp
0x0804a01a <+06>: mov 16 (%ebp), %eax
. /
Registers 5 Stack Diagram
EIP 0x0804a014 E Oxbffff400 Return Address
EBP oxbffffa40 . oxbffff3fc
ESP Oxbffff400 . Oxbffff3fs

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Quiz Question Recap

Ox0804a014 <+00>: push %ebp
Ox0804a015 <+01>: mov %esp, %ebp
Ox0804a017 <+03>: sub S4, %esp
0x0804a01a <+06>: mov 16 (%ebp), %eax
o %
Registers 5 Stack Diagram
EIP 0x0804a014 E Oxbffff400 Return Address
EBP oxbffff440 . oxbffff3fc Saved EBP
ESP exbffff3fc . Oxbffff3fs

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Quiz Question Recap

Ox0804a014 <+00>: push %ebp \\
Ox0804a015 <+01>: mov %esp, %ebp
Ox0804a017 <+03>: sub S4, %esp
0x0804a01a <+06>: mov 16 (%ebp), %eax
. /
Registers - Stack Diagram
EIP 0x0804a014 | E exbffff400 Return Address
EBP exbffffafe . | oxbffff3fc BP—#| Saved EBP |=—SP
ESP oxbffffafc | oxbffffafs

__

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 41

Quiz Question Recap

Ox0804a014 <+00>: push %ebp
Ox0804a015 <+01>: mov %esp, %ebp
Ox0804a017 <+03>: sub S4, %esp
0x0804a01a <+06>: mov 16 (%ebp), %eax

o /
Registers Stack Diagram
EIP 0x0804a014 | E exbffff400 Return Address
EBP exbffffafe . | oxbffff3fc BP—#| Saved EBP
ESP Oxbffff3f8 Oxbffff3f8 4 bytes space |-#—SP
SCHOOL OF COMPUTING Stefan Nagy 42

UNIVERSITY OF UTAH

Quiz Question Recap

Ox0804a014 <+00>: push %ebp \\
Ox0804a015 <+01>: mov %esp, %ebp
Ox0804a017 <+03>: sub S4, %esp
0x0804a01a <+06>: mov 16 (%ebp), %eax
o /
Registers - Stack Diagram
ETP 0x08042014 | exbffff4ee Return Address
EBP exbffffafe . | oxbffff3fc BP—#| Saved EBP
ESP Oxbffff3f8 Oxbffff3f8 4 bytes space |-#—SP
SCHOOL OF COMPUTING Stefan Nagy 43

UNIVERSITY OF UTAH

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy Lt

This time on CS 4440...

Advanced Exploitation Techniques
ASLR, DEP, and Workarounds
Other Application-level Defenses

Recap: Spawning Shells

Attacker goal: make program open a root shell
= Root-level permissions = total system ownage
= You'll do this in Project 2! # whoaml

Shellcode = code to open a root shell r OOt

= Inject this somewhere and direct execution to it
= Basic structure:
1. Call setuid(0) to set user ID to “root”
2. Open ashell with execve(“/bin/sh”)

[setuid(e)} + [execve(“/bin/sh”) }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 46

Shell Spawning in C

#include <stdio.h>

void main() {
char *argv[1];
argv[0] = "/bin/sh";
execve(argv[0], NULL, NULL);

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 47

Shell Spawning in C

#include <stdio.h>

void main() {
char *argv[1];
argv[0] = "/bin/sh";
execve(argv[0], NULL, NULL);

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

4 N

execve(): execute a program:
the text, data, bss, and stack of
calling process are overwritten
by that of the program loaded

- J

48

Shell Spawning in C

#include <stdio.h> / \

execve(): execute a program:
the text, data, bss, and stack of
void main() { calling process are overwritten

char *argv[1]: Kby that of the program loaded/

argv[e] = "/bin/sh";
execve(argv[0], NULL, NULL); [/bin/sh:a shell program }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 49

Shell Spawning in C

#include <stdio.h>

Shell inherits same privileges

void main() { as the original “parent” process

char *argv[1];
argv[0] = "/bin/sh";
execve(argv[0], NULL, NULL);

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 50

Shell Spawning in C

#include <stdio.h>

Shell inherits same privileges

void main() { as the original “parent” process

char *argv[1];

argv[0] = "/bin/sh"; If the original process run as

ives 2227
execve(argv[0], NULL, NULL): root, shell gives 7777 access

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 51

Shell Spawning in C

#include <stdio.h>

Shell inherits same privileges

void main() { as the original “parent” process

char *argv[1];

argv[0] = "/bin/sh"; If the original process run as

execve(argv[0], NULL, NULL): root, shell gives root access

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 52

#include <

void main(

*a

argv|[0]

execve(

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Shell Spawning in C

010111010 Q1QTICIGTO
010110110 91011310110
01011010110 C1011010T10

0101010110

O101GT0 010110110
0101101010 -
G101010110

01011010110
1a1010110

Stefan Nagy

privileges
t" process

Shell Spawning in x86 Assembly

main:
pushl %ebp
movl %esp, %ebp
pushl S0
pushl S0
pushl $.LCe@
call execve
leave
ret

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 54

Shell Spawning in x86 Assembly

main:
pushl %ebp
mov1l %esp, %ebp .
pushl $0 Like before, we want to
pushl $0 call execve(“/bin/sh")
pushl $.LC@
call execve
leave
ret

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 55

Shell Spawning in x86 Assembly

main:
pushl %ebp
mov1l %esp, %ebp .
pushl $0 Like before, we want to
pushl $0 call execve(“/bin/sh")
pushl $.LC@
call execve
leave
ret

Q: How does the stack need
to look for this call to work?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 56

Invoking a Shell

main: L
pushl — %ebp . main()’'s locals |
movl %esp, %ebp ! J
pushl S0
pushl $0 ??7?727279797°°7°7°27°7727?7°7°727
pushl $.LC@
call execve ?297?79979797?7°979°?7°°7?7°7
leave
ret ?297?7997°797?7°9797?°°7?7°7
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 57

Invoking a Shell

main: L
pushl — %ebp . main()’'s locals |
movl %esp, %ebp ! J
pushl S0
pushl $0 execve()'s 3rd arg
pushl $.LC@
call execve 22222222222222272727?
leave
ret ?7?727272727272727°7°7°7°7°7°7°7°7
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 58

Invoking a Shell

main: L
pushl — %ebp . main()’'s locals |
movl %esp, %ebp ! J
pushl S0
pushl $o arg3 = NULL
pushl $.LC@
call execve 22222722222222222772
leave
ret ?7?727272727272727°7°7°7°7°7°7°7°7

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 59

Invoking a Shell

main: o
pushl %ebp ! main()'s locals |
movl %esp, %ebp ! J
pushl S0
pushl $0 arg3 = NULL
pushl $.LCO
call execve execve()’s 2nd arg
leave
ret ??72727270999797272727°7°727
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 60

Invoking a Shell

main: o
pushl — %ebp . main()'s locals |
movl %esp, %ebp ! J
pushl S0
pushl $0 arg3 = NULL
pushl $.LCO
call execve argZ = NULL
leave
ret ??72727270999797272727°7°727
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 61

Invoking a Shell

main: e ,
pushl %ebp . main()'s locals |
movl %esp, %ebp ! J
pushl S0
pushl $0 arg3 = NULL
pushl $.LCe@
call execve argZ = NULL
leave
ret execve()’'s 1st arg
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 62

Invoking a Shell

main: e
pushl “%ebp i main()’'s locals i
movl %esp, %ebp])
pushl S0
pushl $0 arg3 = NULL
pushl $.LCo
call execve argZ = NULL
leave
ret Ll addr to “/bin/sh”

.LCo: "

.string "/bin/sh" J
<_ -

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 63

Invoking a Shell

main()’'s locals

arg3 = NULL
arg2 = NULL
addr to “/bin/sh”

execve(“/bin/sh” NULL, NULL);

execve()'s ret addr

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 64

Invoking a Shell

4 N

How can we prevent
code injection attacks?

N /

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 65

Application Defense:
Address Space Layout Randomization

Caveats

Our provided shellcode requires an executable buffer

s Start addr of buffer

Padding to reach RetAddr

- NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
setuid(@) + execve(“/bin/sh”)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 67

Caveats

Our provided shellcode requires an executable buffer

What if the buffer is relocated on every new run?

_fg;aL Start addr of buffer = 2?2?7722

—
/7 -
e

¢ 7 7 Padding to reach RetAddr

2V Y WHERE?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 68

Defense: ASLR

Address Space Layout Randomization
= One of the most common defenses today

Changes location of stack on each execution
= As well as other memory areas (the heap, libc, etc.)

Makes buffer overflows significantly harder

= Can’t “hardcode” address of buffer’'s start
= ..it changes every time!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

69

Defense: ASLR

Boot 1

QLSS user32.dll
address -

Space kernel32.dll

R

£
<

<
<

R /i

ntdll.dll
_ ——

Boot 3

= i kernel32.dll

[app.exe]

ntdll.dll

kernel32.dll

user32.dll

How can we overcome ASLR?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

70

Recap: Stack Growth vs. Filling

High
igher Stack grows downwards

e
MeTory - Filled upwards
; 4141414141

Lower
Memory

47474141414141414141 417

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 71

Recap: Redirection to Buffer

2® RetAddr = &buf
o\ !
Higher | Stack grows downwards
Memory | | 9090909090909090909090 - Filled upwards
A l
; ! 9090909090909090909090
I
Lower \
Memory ~ p| shellcode 909690969096 v
-

Payload = shellcode + NOPs + &buf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 72

Workaround: NOP Slide!

™™ RetAddr = &buf
!
Higher | | ‘ Srows
Memory | | 909090909090 shellcode - Filled
A |
v : 9090909090909090909090
Lower ‘\ Execution moves upwards
Memory ~ pp| 9090909090909090909090 - Lower to higher instructions
-

Payload = NOPs + shellcode + &buf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 73

Workaround: NOP Slide!

o™ ™ RetAddr = &buf + 50
— [/
Higher | | ‘ Srows
Memory | | 909090909090 shellcode _ Filled
A 1
; ‘e p| 9090909090909090909090
Lower Execution moves upwards
Memory 4090949020300090909050 - Lower to higher instructions
-/ - NOP slide leverages this!

Payload = NOPs + shellcode + (&buf + 50)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 74

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Workaround: NOP Slide!

~

.

We can't reliably guess the buffer’s
start—it changes every execution!

\

J

Stefan Nagy

75

Workaround: NOP Slide!

. R
We can't reliably guess the buffer’s

start—it changes every execution!
N | Y

4 |)
But, If we prepended our shellcode with

a huge NOP slide, jumping to the middle

of it it will “slide” to our shellcode!
N /

OOOOOOOOOOOOOOOOO
U UNIVERSITY OF UTAH Stefan Nagy 76

Defeating ASLR

Suppose the buffer is sufficiently large

= We can still place our shellcode there
= Prepend it with a ton of NOPs

setuid(@) + execve(“/bin/sh”)
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 77

Defeating ASLR

Suppose the buffer is sufficiently large

= We can still place our shellcode there
= Prepend it with a ton of NOPs

We cannot know buffer’'s exact start...

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Start addr of buffer = ?2??

setuid(@) + execve(“/bin/sh”)
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP

78

Defeating ASLR

Suppose the buffer is sufficiently large

= We can still place our shellcode there
= Prepend it with a ton of NOPs

We cannot know buffer’'s exact start...

= But we can guess an address inside of it
= |tis areally large buffer, after all

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Start addr of buffer = ?2??

setuid(@) + execve(“/bin/sh”)

NOP, NOP, NOP, NOP
NOP, NOP, ,NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP

79

Defeating ASLR

Suppose the buffer is sufficiently large

= We can still place our shellcode there
= Prepend it with a ton of NOPs Guessed addr within buffer

Guessed addr within buffer

Guessed addr within buffer

We cannot know buffer’'s exact start...

= But we can guess an address inside of it
= |tis areally large buffer, after all

Guessed addr within buffer

Guessed addr within buffer

Idea: spam “guessed” buffer addr up the stack | setuid(e) + execve("/bin/sh")
NOP, NOP, NOP, NOP, NOP, NOP, NOP

NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 80

Defeating ASLR

Suppose the buffer is sufficiently large

= We can still place our shellcode there
= Prepend it with a ton of NOPs Guessed addr within buffer

Overwritten Return Addr

Guessed addr within buffer

We cannot know buffer’'s exact start...

= But we can guess an address inside of it
= |tis areally large buffer, after all

Guessed addr within buffer

Guessed addr within buffer

Idea: spam “guessed” buffer addr up the stack | setuid(e) + execve("/bin/sh")
NOP, NOP, NOP, NOP, NOP, NOP, NOP

= Eventually we'll overwrite some return address NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 81

Defeating ASLR

Suppose the buffer is sufficiently large

= We can still place our shellcode there
= Prepend it with a ton of NOPs

We cannot know buffer’'s exact start...

= But we can guess an address inside of it
= |tis areally large buffer, after all

Idea: spam “guessed” buffer addr up the stack
= Eventually we'll overwrite some return address

= When that function returns, jump inside buffer
= Hit the huge NOP sled -» BOOM!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Guessed addr within buffer

Guessed addr within buffer

Overwritten Return Addr

Guessed addr within buffer

Guessed addr within buffer

setuid(@) + execve(“/bin/sh”)

NOP, NOP, NOP, NOP, NOP, NOP, NOP
P, NOP, NOP, NOP, NOP, NOP
NOP, NO™ NOP, NOP, NOP, NOP, NOP

NOP, NOP, NOP, NOP, NOP, NOP, NOP

NOP, NOP, NOP, NOP, NOP, NOP, NOP

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 83

Application Defense:
Data Execution Prevention

Stefan Nagy

Caveats

Our provided shellcode requires an executable buffer

s Start addr of buffer

Padding to reach RetAddr

- NOP, NOP, NOP, NOP, NOP, NOP, NOP
NOP, NOP, NOP, NOP, NOP, NOP, NOP
setuid(@) + execve(“/bin/sh”)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 85

Caveats

Our provided shellcode requires an executable buffer

What if the buffer is prohibited from being executable?

s Start addr of buffer

Padding to reach RetAddr

NOPE

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 86

Defense: DEP

Data Execution Prevention e ot
= Aka Non-eXecutable (NX) Stack 0000000
= Another common defense seen today X00000K
XO00000KK :
2000000 Non executable memory
Attacker can’t execute code on stack 000000 ;
- Mark pages as ElTHER (never both) Addicas ofmaicois code
= Read OR write (stack/heap) —
= Executable (.text/code segments) YOKXXHXHKKX
2000000
) 6.6 ¢GRI
Challenges: i
= Self-modifying code, JIT compilation I
= Requires hardware support (MMU/MPU)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 87

Defeating DEP

Suppose we can still overwrite buffer

= We cannot place our shellcode there
= But, we can overwrite other stack items

Suppose the program calls a function

that can execute arbitrary commands
= execve()
= system()

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

pushl
movl
subl
pushl
call
leave
ret

%ebp

%esp, %ebp
$16, %esp

“/bin/1ls”

system

88

Dangerous Calls

Why are functions like execve () and system() considered dangerous?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 89

Dangerous Calls

Why are functions like execve () and system() considered dangerous?

———

Use of the system () function can result in exploitable vulnerabilities, in the worst case allowing execution of arbitrary
system commands. Situations in which calls to system () have high risk include the following:

i e When passing an unsanitized or improperly sanitized command string originating from a tainted source i
i e |f a command is specified without a path name and the command processor path name resolution mechanism is i
i accessible to an attacker i
i « If a relative path to an executable is specified and control over the current working directory is accessible toan |
i attacker i
i |f the specified executable program can be spoofed by an attacker .

Do not invoke a command processor via system() or equivalent functions to execute a command.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 90

Defeating DEP by Controlling Arguments

Suppose we can still overwrite buffer

= We cannot place our shellcode there pushl %ebp

= But, we can overwrite other stack items mov1l %esp, %ebp

subl $16, %esp .
Address of “/bin/1s”

Suppose the program calls a function
that can execute arbitrary commands

= execve() system()’s ret addr
= system() '

S Buffer (non-executable)

Idea #1: overwrite argument to system()
= Replace it with our shell command (“/bin/sh")

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 91

Defeating DEP by Controlling Arguments

Suppose we can still overwrite buffer

= We cannot place our shellcode there pushl %ebp

= But, we can overwrite other stack items mov1l %esp, %ebp

subl $16, %esp .
Address of “/bin/sh”

Suppose the program calls a function
that can execute arbitrary commands

= execve() system()’s ret addr
= system() '

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Idea #1: overwrite argument to system()
= Replace it with our shell command (“/bin/sh")
= Will now execute system(“/bin/sh”)!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 92

Defeating DEP by Controlling Arguments

Suppose

Suppose

that can e

Idea #1: 0
Replag
Will ng

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

010111010 Q1QTICIGTO
010110110 91011310110
01011010110 C1011010T10

0101010110

O101GT0 010110110
o) (o iwylay) (ORSEIFIINAIORN (S
G101010110

01011010110
1a1010110

Stefan Nagy

“/bin/sh”

Defeating DEP via Code Reuse

Suppose system() isn't executed, but a call to it exists somewhere
= You can examine the objdump to look for “interesting” functions in the program

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 94

Defeating DEP via Code Reuse

Suppose system() isn't executed, but a call to it exists somewhere
= You can examine the objdump to look for “interesting” functions in the program

void foo(char *str) { previous frame ptr
char buffer[16];
strcpy(buffer, str) <: AAAAAAAAA. . .\O
} foo()’'s first arg
void main() { ,
char buf[256]: foo()'s return addr
memset (buf, ‘A’, 255); main()’'s frame ptr
buf[255] = ‘\x00’;
foo(buf); Buffer (non-executable)
}

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 95

Idea #2: create a “fake” call frame for system() with our desired arg

Defeating DEP via Code Reuse

previous frame ptr

AAAAAAAAA. . .\0O

foo()'s first arg

foo()'s return addr

main()’'s frame ptr

Buffer (non-executable)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Stefan Nagy

previous frame ptr

AAAAAAAAA. . .\0O

foo()’'s first arg

foo()'s return addr

main()’'s frame ptr

Buffer (non-executable)

96

Defeating DEP via Code Reuse

Idea #2: create a “fake” call frame for system() with our desired arg

previous frame ptr previous frame ptr
AAAAAAAAA. . .\0O AAAAAAAAA. . .\0O
<: foo()'s first arg <: foo()’'s first arg
foo()'s return addr foo()'s return addr
main()’'s frame ptr main()’'s frame ptr

AAAAAAAAAAAAAAAAAAAAAA

Buffer (non-executable) | -9 AAAAAAAAAAAAAAAAAAAAAA

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 97

Defeating DEP via Code Reuse

Idea #2: create a “fake” call frame for system() with our desired arg

previous frame ptr previous frame ptr
AAAAAAAAA. . .\0O AAAAAAAAA. . .\0O
(foo()'s first arg (foo()’'s first arg
foo()'s return addr foo()'s return addr
main()’'s frame ptr —> AAAAAAAAAAAAAAAAAAAAAA
Buffer (non-executable) - AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 98

Defeating DEP via Code Reuse

Idea #2: create a “fake” call frame for system() with our desired arg

previous frame ptr previous frame ptr
AAAAAAAAA. . .\0O AAAAAAAAA. . .\O
(foo()'s first arg (foo()’'s first arg
foo()'s return addr —> Address of system()
main()’'s frame ptr —> AAAAAAAAAAAAAAAAAAAAAA
Buffer (non-executable) —- AAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAA

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 99

Defeating DEP via Code Reuse

Idea #2: create a “fake” call frame for system() with our desired arg

previous frame ptr previous frame ptr

<: AAAAAAAAA. . .\0O AAAAAAAAA. . .\0O

foo()'s first arg system()’'s return addr

foo()'s return addr Address of system()

AAAAAAAAAAAAAAAAAAAAAA

main()’'s frame ptr

v oYYy

AAAAAAAAAAAAAAAAAAAAAA

Buffer (non-executable) AAAAAAAAAAAAAAAAAAAAAA

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 100

Defeating DEP via Code Reuse

Idea #2: create a “fake” call frame for system() with our desired arg

previous frame ptr previous frame ptr
AAAAAAAAA. . .\0O —> system()'s first arg
(foo()'s first arg - system()’'s return addr
foo()'s return addr —> Address of system()
main()’'s frame ptr —> AAAAAAAAAAAAAAAAAAAAAA
Buffer (non-executable) | —b | L AAAAAAAAAAA

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 101

Defeating DEP via Code Reuse

<: string “/bin/sh”
Address of “/bin/sh”

Argument to system() is the
address of string “/bin/sh”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 102

Defeating DEP via Code Reuse

<: string “/bin/sh”
Address of “/bin/sh”

4)
Argument to system() is the
address of string “/bin/sh”
_ v
-)
Possible locations: inside the

.DATA section, or just the stack!
. /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 103

Defeating DEP via Code Reuse

Idea #2: create a “fake” call frame for system() with our desired arg

previous frame ptr

<: string “/bin/sh”
Address of “/bin/sh”

<: AAAAAAAAA. . .\0O

foo()'s first arg system()’'s return addr

foo()'s return addr Address of system()

AAAAAAAAAAAAAAAAAAAAAA

main()’'s frame ptr

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

v YYY YW

Buffer (non-executable)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 104

Defeating DEP via Code Reuse

010111010 Q1QTICIGTO Q10NMMOT0 0101101010
010110110 91011310110 0101101010 -

0101010110 G1011070710 ' G101010110

01011010110
01011010110
1a1010110

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Defeating DEP via Code Reuse

system()'s return addr

What happens if system()’s
return address is overwritten?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 106

What happens to our exploit when system() returns?

It crashes!

| 0%
It executes normally...

| 0%

None of the above

' 0%

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Defeating DEP via Code Reuse

\

3

<

segmentation fault.
(Core dumped)

Stefan Nagy 108

x V. N X\

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Defeating DEP via Code Reuse... stealthily!

/Description)

The function _exit() terminates the calling process
"immediately". Any open file descriptors belonging
to the process are closed; any children of the
process are inherited by process 1, init, and the
process's parent is sent a SIGCHLD signal.

D999 99?99°97?7?

The value status is returned to the parent process
as the process's exit status, and can be collected
using one of the wait(2) family of calls.

Qhe function _Exit() is equivalent to _exit(). Y,

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 109

Defeating DEP via Code Reuse... stealthily!

Idea #2: create a “fake” call frame for system() with our desired arg

previous frame ptr = (string “/bin/sh”
AAAAAAAAA. . .\0O —»> Address of “/bin/sh”
(foo()'s first arg - Address of _exit()
foo()'s return addr —> Address of system()
main()’'s frame ptr —> AAAAAAAAAAAAAAAAAAAAAA
Buffer (non-executable) | = | 4 AAAAAAAAAA

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 110

Defeating DEP via Code Reuse... stealthily!

SCHOOL OF COMPUTING
U UNIVERSITY OF UTAH Stefan Nagy 111

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 112

Other Attacks

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 113

Return Oriented Programming (ROP)

Don’t have to jump only to function starts

= Canjump in the middle of any code
= x86 has variable instruction lengths
= Most sequences of “bytes” can be an instruction

Idea: Construct Turing-complete set of “gadgets” out of program’s code
Use Return-to-libc like chaining to execute multiple gadgets in sequence!

ROP is hard to master—we will not expect you to solve this
= But you can for extra credit ;)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 114

1997
Function ptr
hijacking

1997
Ret-2-Libc
attacks

I
I
I
I
|
|
|
|
1996 I
Stack I
overflows
I
1972 I
First known |

overflows 1
V4

-_—

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

/

Other Exploitation Techniques

1998 \\ 2007
Heap \ Heap
overflows grooming

\
1998 1 2005
StackGuard 1 Ret oriented
bypasses 1 programming
|
1999 1 2005
Format I Hardware DEP
strings 1 bypasses
i
2002 I 2002
Integer | ASLR
overflows bypasses
~ -

B en

|
|
1
I
I
I
I
I
I
|
I
I

/ 2007 \
I Null pointer \
I dereference

2007
Double
frees

2009
Heap
spraying

2010
JIT
spraying

Stefan Nagy

|
|
I
1
|
1
|
I
I
I
|
|

\

\
\

2021
Zero-click
exploits

2016
Data oriented
programming

2014
Call oriented
programming

2011
Jmp oriented
programming

~_—_—’

115

Attack Resources

Aleph One’s “Smashing the Stack for Fun and Profit”

= http://insecure.org/stf/smashstack.html

Paul Makowski’s “Smashing the Stack in 2011”
= http://paulmakowski.wordpress.com/2011/01/25/smashing-the-stack-in-2011/

Blexim'’s “Basic Integer Overflows”
= http://www.phrack.org/issues.html?issue=608&id=10

Return-to-libc demo:
= http://www.securitytube.net/video/258

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 116

http://insecure.org/stf/smashstack.html
http://paulmakowski.wordpress.com/2011/01/25/smashing-the-stack-in-2011/
http://www.phrack.org/issues.html?issue=60&id=10
http://www.securitytube.net/video/258

Other Defenses

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 17

Stack Canaries

Basic idea: place a value near the buffer, check at runtime if it's overwritten
= Analogous to the real-world concept of “canary in a coalmine”

RetAddr
v Saved EBP

<;\\\\ Stack Canary

buf[100]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 118

Stack Canaries

Basic idea: place a value near the buffer, check at runtime if it's overwritten
= Analogous to the real-world concept of “canary in a coalmine”

RetAddr
Z Saved EBP

<;\\\\ Stack Canary

buf[100]

SRR

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

&buf

90909090

90909090

90909090909090
9090 shellcode

119

Stack Canaries

ceoe Stack Smashing Detected

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 120

Application-level Changes

Memory error detectors (e.g., AddressSanitizer)
= Key idea: inject “red zones” before and after all memory objects
= Force a crash when accessing a red zone
= Catch all subtle (non-crashing) corruptions

= Implement via instrumentation, custom malloc() int8_t alg]
= Trade-off: over 6x execution overhead
uint32_tb uint32_tb
uffer All ted buff ffer .
Chtcrtiow Josatoamuer || BulCow int8_t c[16] g trz292)
Poison ggggggggg Poison
int8_t c[16]
Underflow 0x6b6b6b6b Overflow
Poison 0x6b6b6b6b Poison
0x6b6b6b6b

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 121

Application-level Changes

Avoiding unsafe functions

Unsafe:
= strcpy and friends (str¥)
= sprintf
= Gets

Use instead:
= strncpy and friends (strn¥)
= spnprintf
= fgets

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

CWE-242: Use of Inherently Dangerous Function

Weakness ID: 242
Abstraction: Base
Structure: Simple

View customized information: (__ Conceptual) (__operational)

((_Mapping-Friendly)
~ Description

The product calls a function that can never be guaranteed to
work safely.

v Extended Description

Certain functions behave in dangerous ways regardless of
how they are used. Functions in this category were often
implemented without taking security concerns into account.
The gets() function is unsafe because it does not perform
bounds checking on the size of its input. An attacker can
easily send arbitrarily-sized input to gets() and overflow the
destination buffer. Similarly, the >> operator is unsafe to
use when reading into a statically-allocated character array
because it does not perform bounds checking on the size of
its input. An attacker can easily send arbitrarily-sized input
to the >> operator and overflow the destination buffer.

(_complete)

122

Preventative Measures

Refactoring:

= Add bounds checking
= “Sanitizer” user input

Static bug detection tools:

= C:Secure Programming Lint
= (C++: CPPCheck

Hire CS4440™ graduates

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

FIX ALL TVWE

BUGS!

123

Preventative Measures

Refactoring:

Add bounds checking F|X A___L-_':‘— T Y E
“Sanitizer” user input BUVGS! '

Static bug detection tools:
C: Secure Programming Lint
C++: CPPCheck

Hire ™ graduates

Deploy automated testing (next lecture’s topic)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 124

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 125

Next time on CS 4440...

Automated Bug Finding

