Week 5: Lecture B
Attacking Applications

Thursday, September 19, 2024

Announcements

Project 1: Crypto
= Deadline: tonight by 11:59 PM

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

[Project 1: Cryptography
Deadline: Thursday, September 19 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Helpful Resources

« The CS 4440 Course Wiki

* VM Setup and Troubleshooting
» Terminal Cheat Sheet

* Python 3 Cheat Sheet

* PyMD5 Module Documentation

CyRoots Module Documentation

Table of Contents:

Helpful Resources
Introduction

Objectives

Start by reading this!

o Working in the VM

o Testing your Solutions
Part 1: Hash Collisions

o Prelude: Collisions

o Prelude: FastColl

o Collision Attack

© What to Submit

Part 2: Length Extension

o Prelude: Merkle-Damgar
o Length Extension Attack:
o What to Submit

Part 3: Cryptanalysis

o Prelude: Ciphers

o Cryptanalysis Attack

o Extra Credit

o What to Submit

Part 4: Signature Forgery
o Prelude: RSA Signatures

o Prelude: Bleichenbacher|

o Forgery Attacks
o What to Submit j

Stefan Nagy

Announcements

Project 2: AppSec released

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Deadline: Thursday, October 17th by 11:59PM

/Project 2: Application Security

Deadline: Thursday, October 17 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Helpful Resources

* The CS 4440 Course Wiki

¢ VM Setup and Troubleshooting
 Terminal Cheat Sheet

* GDB Cheat Sheet

 x86 Cheat Sheet

kc Cheat Sheet

~

Table of Contents:

Helpful Resources
Introduction
Objectives
Start by reading this!
o Setup Instructions
o Important Guidelines
Part 1: Beginner Exploits
o Target 0: Variable Overwrite
o Target 1: Execution Redirect
o What to Submit
Part 2: Intermediate Exploits
> Target 2: Shellcode Redirect
o Target 3: Indirect Overwrite
o Target 4: Beyond Strings
o What to Submit
Part 3: Advanced Exploits
o Target 5: Bypassing DEP
o Target 6: Bypassing ASLR
What to Submit
Part 4: Super L33T Pwnage
o Extra Credit: Target 7
o Extra Credit: Target 8
o What to Submit
Submission Instructions /

Stefan Nagy

Wiki Updates

Tutorials and Cheat Sheets

Page
VM Setup & Troubleshooting
Terminal Cheat Sheet

Python 3 Cheat Sheet

CS 4440 Wiki: All Things CS 4440

This Wiki is here to help you with all things CS 4440: from setting up your VM to introducing the languages and tools that
you'll use. Check back here throughout the semester for future updates.

Have ideas for other pages? Let us know on Piazzal

Description
Instructions for setting up your CS 4440 Virtual Machine (VM).
Navigating the terminal, manipulating files, and other helpful tricks.

A gentle introduction to Python 3 programming.

x86 Assembly Cheat Sheet
C Cheat Sheet

GDB Cheat Sheet

Common x86 instructions and instruction procedures.
Information on C functions, and storing and reading data.

A quick reference for useful GNU Debugger (GDB) commands.

JavaScript Cheat Sheet

A gentle introduction to relevant JavaScript commands.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 6

Last time on CS 4440...

Program Execution
Virtual Memory
The Stack
Stack Corruption

Insecure Code

Software bugs lead to unintended behavior

CWE-242: Use of Inherently Dangerous Function

‘Weakne: D: 242
Abstraction: Base
Structure: Simple

. . - o 1 ized i jon: onceptua erational
1 n_t ma 1 n (VQ_I ;,,‘A {"_ s View customized information: (___Conceptual) (_on)
}a S e ¢ \-"l(; - Mapping-Friendly) Complete)
"y y ""‘n 1:" L - Description
C h ar > A The product calls a function that can never be guaranteed to
; work safely.

+~ Extended Description

Certain functions behave in dangerous ways regardless of
how they are used. Functions in this category were often

- implemented without taking security concerns into account.
y The gets() function is unsafe because it does not perform
bounds checking on the size of its input. An attacker can
easily send arbitrarily-sized input to gets() and overflow the
destination buffer. Similarly, the >> operator is unsafe to
use when reading into a statically-allocated character array
because it does not perform bounds checking on the size of
its input. An attacker can easily send arbitrarily-sized input
to the >> operator and overflow the destination buffer.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 8

Attacking Computer Systems

Problem: attacker can’t load their
own code on to the system

Opportunity: the attacker can
interact with existing programs

Q101010110 01011010110 0101010110 Q101010

01011010110 0101191010 Q1oneIoNna

: make the system do
Ch a lle n ge. 01011010110 G1011010110 - G 01011010110
. 01011010110 A on

what you want... using only the Y
y oo y 10101010

i { lj

existing programs on the system
that you can interact with

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 9

Software Exploitation

Goal: take over a system by exploiting an application on it

Exploit technique 1: code injection
= Insert your own code (as an input)
= Redirect the program to execute it

Exploit technique 2: code reuse

= Leverage the program'’s existing code
= Execute it in a way it wasn’t intended to

Attack vector: memory corruption

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 10

Virtual Memory

: OXFFFFFFFF =i .
Higher Kernel Virtual Memory
Memory | ©XxC0000800 ——i-
A Stack Memory
|
: unmapped
|
: Shared Libraries
: unmapped
: The “Break” >
I Heap Memory
|
: Uninitialized Data
: Initialized Data
v Program Text
Lower 0x08048000 >
Memory) 9x00000000 —m unmapped

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 1

Virtual Memory

(e o) OxXFFFFFFFF &)
Higher Kernel Virtual Memory
Memory 0xC0000000 &
. SHETS AL stack grows downwards
unmapped

Shared Libraries

unmapped

The “Break” =—» grows upwards

Heap Memory

Uninitialized Data

Initialized Data

¥ Program Text
Lower 0x08048000 >
Memory unmapped

- 7/ 0x00000000 >

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 12

Virtual Memory

Lower

Memory

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

@xFFFFFFFF
8xC0000000

The “Break”

0x08048000
0x00000000

I :
Kernel Virtual Memory
>
AAAAAAA 5
AAAAAAAAAAAAAAAAA
unmapped
Shared Libraries
unmapped
——p» | BBBBBBBBBBBBBBBBB
BBBBBBB >
Uninitialized Data
Initialized Data
Program Text
> d
nmappe
> unmapp

Stefan Nagy

Stack grows downwards
- Filled upwards

grows upwards
- Filled downwards

13

Stack Operation

Push Bx0A
Push 6x6C
Push OxFF

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

OA

6C
FF -

Stefan Nagy

|(ﬂ
O

Stack grows -
move SP down!

14

Push and Pop

Push Bx0A

e z

Pop R1 6C

P FE |« SP

7
Register R1 - Pop sends data
at top of stack

to a register

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 5

Push and Pop

Push Ox0A
e .
PUS R':(6C = SP --
op FF -
T
i
/
/

V4
Register R1 <
: Stack clears -

move SP up!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 16

Assume main() calls foo()

Call-er (main) main()’'s local vars

Stack Frame
foo()'s arguments A

foo()’'s return addr

: , Call-ee (foo)
main()’s frame ptr \T' Stack Frame

foo()'s local vars

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 17

Buffer Overflow!

void foo(char *str) {
char buffer[16];
strcpy(buffer, str);

}

void main() {

char buf[256];

memset (buf, ‘A’, 255);

buf[255] = ‘\x00’;
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

previous frame ptr

AAAAAAAAA. . .\0O

foo()'s first arg

foo()’'s return addr

main()’'s frame ptr

char * buffer[16]

Stefan Nagy

Fﬂ
=

18

Buffer Overflow!

void foo(char *str) {

char buffer[16]; .
previous frame ptr
strcpy(buffer, str);
(AAAAAAAAA. . .\0O

foo()’'s first arg

}

void main() {

char buf[256]; foo()'s return addr
memset (buf, ‘A’, 255);

— | main()’'s frame ptr

buf[255] = ‘\x00':
foo(buf): AAAAAA A= = ====~— >
AAAAAAAAAAAAAAAAAAA

SCHOOL OF COMPUTING Stefan Nagy 19

UNIVERSITY OF UTAH

Buffer Overflow!

void foo(char *str) {
char buffer[16];

strcpy(buffer, str);

} mov %ebp, %esp
void main()| pop %ebp
char b pop “%eip

memset (buf, ‘A’, 255);
buf[255] = ‘\x00’;
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

Stefan Nagy

Fﬂ
=

—)

20

Buffer Overflow!

void foo(char *str) {

char buffer[16];

char b

AAAAAAAAAAAAAAAAAA
strcpy(buffer, str);
AAAAAAAAAAAAAAAAAA
} mov %ebp, %esp <:
void main()| POpP %ebp = = AAAAAAAAAAAAAAAAAA
pop %eip \
\ AAAAAAAAAAAAAAAAAA
memset (buf, ‘A’, 255); \

buf[255] = ‘\x00':
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

overwritten frame ptr

Stefan Nagy

|Uh
o

21

Buffer Overflow!

void foo(char *str) {

char buffer[16]; AAAAAAAAAAAAAAAAAA
strcpy(buffer, str);

<: AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA |

} mov %ebp, %esp

void main()| pop %ebp
pop %eip = = =

Fﬂ
o

char b
memset (buf, ‘A’, 255);

s | overwritten return addr

buf[255] = ‘\xe8’; _ -
oo lbut) - Execution will return to
Polburs a garbage address!

} “AAAA" = 0x41414141

SCHOOL OF COMPUTING Stefan Nagy 22

UNIVERSITY OF UTAH

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 23

This time on CS 4440...

Shellcode
Constructing Exploits
Pointer Dereferences

Integer Overflows

What goals would an attacker have?

Controlling a local variable
= E.g, setting variable grade to an A+

Redirect execution to some function
= E.g, calling function print_good_grade()

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 25

What goals would an attacker have?

Controlling a local variable
E.g., setting variable grade to an A+

Redirect execution to some function
E.g., calling function print_good_grade()

Make the program execute evil code
= Ideal goal: gain root access to the system

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 26

Shellcode

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 27

Shellcode

Attacker goal: make program open a root shell
= Root-level permissions = total system ownage _
= You'll do this in Project 2! # whoaml

Shellcode = code to open a root shell r OOt

= Inject this somewhere and direct execution to it

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 28

Shellcode

Attacker goal: make program open a root shell
= Root-level permissions = total system ownage
= You'll do this in Project 2! # whoaml

Shellcode = code to open a root shell r OOt

= Inject this somewhere and direct execution to it
= Basic structure:
1. Call setuid(©) to set user ID to “root”
2. Open ashell with execve(“/bin/sh”)

setuid(0) + execve(“/bin/sh”)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 29

Executing Shellcode

Problem: how can we construct our attack to execute our shellcode?

RetAddr —_ 90909090909090
Saved EBP —_— 90909090909090
other stuff e 90909090909090
90909090909090

buf[100] —
9090 shellcode

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 30

Executing Shellcode

Problem: how can we construct our attack to execute our shellcode?

Solution: overwrite RetAddr with the address of where our shellcode is!
= We put our shellcode in the buffer—so its starting address is the buffer’s location!

RetAddr — &buf
Saved EBP —_— 90909090909090
other stuff = 9090909609069090
90909090909090
buf[100] —
9090 shellcode

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 31

Executing Shellcode

0101010110 Q1011110 T G TR
- 01011310110 0101010110 g1o1Me1Iomao o

WhO am 1 01011010110 C1011010110 - S 0101101010
S 01011010110 SIBICIONE GRS

oI0No1010 1

ot _
ro ~ HACKED -

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 33

Constructing Exploits

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 34

Project 2 Overview

We give you some binaries to exploit
= Limited to some rudimentary attacks
= These don't exist anymore in practice
= See Targets 7-8 for more “realistic” ones

Various obstacles and defenses to beat

= Targets 0-2: None... unbounded overflow!

= Target3: Bounded overflow (strncpy())
= Target 4: Requires a two-step exploit

= Target5: DEP (non-executable stack)

= Target6: ASLR (randomized stack location)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

35

Project 2 Overview

These challenges seem daunting
= We are covering C, x86, GDB, etc.

Common questions that I'm seeing:

= “| have absolutely zero experience with C programming!”
“I'm trying to draw the stack but | don't know assembly!”
“How do | calculate the exact number of padding bytes?”
“I don’t know where to look to find this thing in memory!”
“My attack should be working, but it SEGFAULTS... why?!?!"

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 36

Project 2 Overview

No expertise necessary!
You'll use just a few skills...

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 37

Where to begin?

Mnemonic device to help guide your attack-planning thought process

~ D : Dive into the source code
(.) / ™
> E : Estimate the stack frame < This acronym is silly...

N : NOP-out the entire frame > B
> < e N
~ N : NOP-out the return address | But the high-level steps
I : Inspect program’s memory . will get you a long way!)
S Setup and stabilize attack!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 38

D.E.N.N.LS.

Dive into the source code

Stefan Nagy

Dive into the Source Code

Objective: understanding the program

Challenge: understanding C programming

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

//;;t main(int argc, char *argv[]) \\\\

{
char grade[5];
char name[10];
strcpy(grade, "nil");
gets(name) ;

printf("%s,%s", name, grade);

\ /

40

Experience with C?

None (that's totally okay!)

| 0%
Some

' 0%

Lots!

' 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Dive into the Source Code

Objective: understanding the program / (o \
int main(int argc, char *argv

Challenge: understanding C programming {

char grade[5];
= Don't sweat it—we don’t expect you to master C!

char name[10];
strcpy(grade, "nil");
gets(name) ;

printf("%s,%s", name, grade);

\ /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 42

Dive into the Source Code

Objective: understanding the program

Challenge: understanding C programming
= Don't sweat it—we don’t expect you to master C!

Ideas from other OOP languages carry over
= Functions
= Local variables
= Function arguments
= Same building blocks as Java, Python, C++, etc.

//;;t main(int argc, char *argv[]) \\\\

{

\

char grade[5];
char name[10];
strcpy(grade,

gets(name);

printf("%s,%s", name, grade);

"nil");

/

= finding the “best” order of teaching you these remains an unsolved problem in CS education!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

43

Dive into the Source Code

Objective: understanding the program

Challenge: understanding C programming

= Don’t sweat it—we don’t expect you to master C!

Need more info about a function?
= Answer: locate and read its manpage
= Short for “manual page”
= Eg., “How is strcpy different from strncpy?”
m https://linux.die.net/man/3/strcpy
= Many other helpful resources on the web

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Gtrcpy(B) - Linux man page

Name
strcpy, strnepy - copy a string
Synopsis

#include <string.h>

char *strcpy(char *dest, const char *src);
char *strncpy(char *dest, const char *src, size_t n);

Description

The strepy() function copies the string pointed to by src, including the terminating null byte
("\0"), to the buffer pointed to by dest. The strings may not overlap, and the destination string
dest must be large enough to receive the copy. Beware of buffer overruns! (See BUGS.)

The strncpy() function is similar, except that at most n bytes of src are copied. Warning: If
there is no null byte among the first n bytes of src, the string placed in dest will not be null-
terminated.

If the length of src is less than n, strncpy() writes additional null bytes to dest to ensure that a
@tal of n bytes are written. /

A

https://linux.die.net/man/3/strcpy

Dive into the Source Code

Objective: understanding the program ('CS 4440 Wiki: C Cheat Sheet h

The following gives a quick overview of C concepts most relevant to Project 2.
We recommend you familiarize yourself with other detailed C resources. Some great examples are:

* W3 Schools' C Tutorial

Challenge: understanding C programming | =™
= Don’t sweat it—we don’t expect you to master C! Functions

Declarations

S e e t h e C Ch ea t S h ee t O n t h e C S 4 4 4 O W i ki Function declarations include a function's name, the type of the data it returns, and its arguments.

void hello() // This function's return type is "void", meaning it returns nothin

int add(int a, int b) // This function returns an integer, and takes in two integers a and b

char *xgets(char xs) // This function returns a char pointer, and tak

\ , an es in one as an arg.

C seems daunting, but you don’t need to
master it—just understand the basics, and
keep a link or two bookmarked for the rest!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 45

Dive into the Source Code

Objective: understanding the program

Fundamental questions to consider:
1. What is my target function?

2. What variables does it have?
3. How is data written to stack?
4. How far can data be written?

5. What is the goal of my attack?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 46

Example: Target 0

Objective: understanding the program

Fundamental questions to consider:
1. What is my target function?

2. What variables does it have?
3. How is data written to stack?
4. How far can data be written?

5. What is the goal of my attack?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

//;;t main(int argc, char *argv[]) \\\\

{
char grade[5];

char name[10];
strcpy(grade, "nil");
gets(name);

printf("%s,%s", name, grade);

\ /

47

Example: Target 0

Objective: understanding the program

Fundamental questions to consider:
1. What is my target function?
= main()
2. What variables does it have?
= chargrade[5], char name[10]
3. How is data written to stack?
= gets(name)
4, How far can data be written?
= Asfar as we want!
5. What is the goal of my attack?
= To overwrite char grade[5]!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

//;;t main(int argc, char *argv[]) \\\\

{
char grade[5];

char name[10];
strcpy(grade, "nil");
gets(name);

printf("%s,%s", name, grade);

\ /

48

Target Reconnaissance

Target What'is our How to write How fal.'
attack’s goal? up the stack? can we write?
0 Overwrite Variable gets() Unbounded
1 Redirect to Function strcpy() Unbounded
2 Redirect to Shellcode strcpy() Unbounded

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 49

Target Reconnaissance

Target What'is our How to write How fal.'
attack’s goal? up the stack? can we write?
0 Overwrite Variable gets() Unbounded
1 Redirect to Function strcpy() Unbounded
2 Redirect to Shellcode strcpy() Unbounded
3 Redirect to Shellcode | strncpy() Bounded
A Redirect to Shellcode fread() Bounded

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 50

Bounded vs. Unbounded Writes

Targets 0-2 permit unbounded writes
= We can overwrite anything in the higher stack memory
= Thanks to dangerous functions gets() and strcpy()
= Definitely don't use these functions in your own code!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 51

Bounded vs. Unbounded Writes

Targets 0-2 permit unbounded writes
= We can overwrite anything in the higher stack memory
= Thanks to dangerous functions gets() and strcpy()
= Definitely don't use these functions in your own code!

Targets 3-4 are bounded writes... limited reach!
= Target 3: we can only write 8 + sizeof (buf) bytes
= Target 4 we can only write count bytes (via fread())

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

52

Bounded vs. Unbounded Writes

Targets 0-2 permit unbounded writes

= We can overwrite anything in the higher stack memory
= Thanks to dangerous functions gets() and strcpy()
= Definitely don’t use these functions in your own code!

Targets 3-4 are bounded writes... limited reach!
= Target 3: we can only write 8 + sizeof (buf) bytes
= Target &4 we can only write count bytes (via fread())

For bounded writes, we have to get creative
and find a way to overwrite what we want!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 53

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 54

Overcoming Bounded Writes:
Pointer Dereferencing

Stefan Nagy

Overcoming Bounded Writes

What observations can we make?
= Canthey break the program’s assumptions?

Target 3: ?2?7?

int *p;
int a;

*p:a;

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 56

Overcoming Bounded Writes

What observations can we make? MEMORY
= Can they break the program’s assumptions? ox07
: b Ox03 | 9xo6
Target 3: a pointer dereference pointer 0x05
to object c Ox04

int *p; C 5 0x03
int a; P |\ 0x02
5 oxo1

*p = a;
C 0x00

= Ifweset *p = 5, whatever p points to will be updated to 5

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 57

Overcoming Bounded Writes

What observations can we make?

Can they break the program’s assumptions?
_ p | 6x63
Target 3: a pomtgr
to object c
int : C 5
int ; P
= ° 5
C
If we set = 5, whatever p points to will be updated to

= If we take control over both a and p, we can change arbitrary objects in memory

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 58

Recap: Process Virtual Memory

(e) .
Higher Kernel Virtual Memory
Meonry Stack Memory
unmapped

Shared Libraries

unmapped

Heap Memory

Uninitialized Data

Initialized Data

v
Program Text
Lower g
nmapped
Memory u pp

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 59

Recap: Process Virtual Memory

Lower

Memory

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Kernel Virtual Memory

Stack Memory

unmapped

Shared Libraries

unmapped

Heap Memory

Uninitialized Data

Initialized Data

Program Text

unmapped

<+

Local variables,
and a record of
active functions

(and a whole bunch of other stuff...)

Stefan Nagy

Program
Instructions

60

Lower

Memory

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Recap: Process Virtual Memory

Kernel Virtual Memory

Stack Memory

unmapped

Shared Libraries

unmapped

Heap Memory

Uninitialized Data

Initialized Data

Program Text

unmapped

Stefan Nagy

Key idea: it's all “things”
pointed to by addresses

61

Recap: Process Virtual Memory

Memory \l . %, Hala? ”

A : Key idea: it's all “things

: > pointed to by addresses

| /

|

. i

| [

: || Example: instructions in the Program Text:

|

|

: ‘\ /$ disas vulnerable: \

: ! 0x0804a17b <+0>: endbr32

I ! 0x0804a17f <+4>: push %ebp

*', ! 0x0804a180 <+5>: mov %esp, %ebp

Lower Program Text) /’ kexese4a182 <+7>: push %ebx Py

Memory

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 62

Recap: Process Virtual Memory

\
Memory . ., .
A Stack Memory " Key idea: it's all “things”
: > pointed to by addresses
| /
|
. i
| [
: || Example: payload NOPs in Stack Memory:
|
|
: ‘\ /s x/32xw @xfff6d8cc \
: i oxfff6dScc: ©0x90909090 ©0x90909090
- 1 Oxfff6dsd4: ©0x90909090 0x96909090
v | oxfff6dsdc: 0x90909090 ©x90909090
. oxfff6d8ed: 0x90909090 ©6x96909090
Lower _/ _ -
Memory

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 63

Leveraging Pointer Dereferences

4)
Target 3: the return address is stored on the
stack. In other words, an address in stack
memory points to a slot containing it.

. /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 64

Leveraging Pointer Dereferences

4)
Target 3: the return address is stored on the
stack. In other words, an address in stack
memory points to a slot containing it.

. /

We can exploit the dereference to overwrite
the value a stack memory address points to!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 65

Indirect Memory Overwrite

void foo(char *str) ({ foo()’s retAddr
int *p; caller’'s EBP < SP
int a;
*p = a,

}

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 66

Indirect Memory Overwrite

void foo(char *str) { foo()'s retAddr
int *p; caller’s EBP (@
int a; D
*p = a; int a < SP

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 67

Indirect Memory Overwrite

void foo(char *str) {

int *p; ----- .
int a; TTeee > Address 9x000000
*p — a,

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

68

Indirect Memory Overwrite

void foo(char *str) {

——

\—~
o -

Address 0x000000

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Stack Addresses
@ EBP+4

EBP+0

-+
% EBP-4
- EBP-8

69

Indirect Memory Overwrite

void foo(char *str) {

Contents of
Px000000

updated to a

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

“““““ » Address 9x000000

int a

Stefan Nagy

Stack Addresses
«— EBP+4

«— EBP+0
- EBP-4
e

EBP-8

-4— 0x000000

70

Indirect Memory Overwrite

void foo(char *str) {

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

foo()'s retAddr

caller’'s EBP

----- > Address EBP+4

int a

Stefan Nagy

Stack Addresses

-+

EBP+4

71

Indirect Memory Overwrite

void foo(char *str) {

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

foo()'s retAddr

caller’'s EBP

----- > Address EBP+4

Shellcode Address

Stefan Nagy

Stack Addresses

-+

EBP+4

72

Indirect Memory Overwrite

void foo(char *str) {

Shellcode Address

caller’'s EBP

\\\\\ > Address EBP+4

Shellcode Address

Contents of EBP+4 updated to
the shellcode address!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Stack Addresses

-+

EBP+4

73

Target Reconnaissance

™

3 | Redirect to Shellcode | 2ereference Retum 4_[Now update your
—) L high-level plan!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 74

Other Overwritable Objects

Not just return addresses!
= Function pointers
= Arbitrary data
= C++ exceptions
= (C++objects
= Heap memory freelist
= Any code pointer!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 75

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 76

Overcoming Bounded Writes:
Integer Overflows

Stefan Nagy

Overcoming Bounded Writes

What observations can we make?
= Canthey break the program’s assumptions?

Target 4: 272

alloca(count * 4); // allocate our buffer

fread(&buf[i], 4, count, f); // fill buffer

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

78

Overcoming Bounded Writes

What observations can we make?
= Canthey break the program’s assumptions?

Target 4: a potential mismatch of buffer's size versus the data read into it

Range of count:
alloca(count * 4); // allocate our buffer [0, %(MAX_UINT))
fread(&buf[i], 4, count, f); // fill buffer [0, MAX_UINT)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 79

Overcoming Bounded Writes

What observations can we make?
= Canthey break the program’s assumptions?

Target 4: a potential mismatch of buffer’s size versus the data read into it

Range of count:
alloca(count * 4); // allocate our buffer [0, %(MAX_UINT))
fread(&buf[i], 4, count, f); // fill buffer [0, MAX_UINT)

= If we perform an integer overflow on count, alloca() creates an artificially small buffer
= The resulting fill operation will exceed the buffer's size, resulting in a buffer overflow!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 80

Integer Overflows

Integer overflows behave differently
from stack buffer overflows

4 32-bit Integer Range: I

Unsigned: [0, (2732 - 1)]
[0, 4294967295]

Signed:[-2731, (2731 - 1)]
[-2147483648, 2147483647]

.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 81

Integer Overflows

Integer overflows behave differently

from stack buffer overflows
= Really just integer “wrap-arounds”

-

.

32-bit Integer Range: I
Unsigned: [0, (2732 - 1)]

[0, 4294967295]

Signed: [-231, (2731 - 1)]

[-2147483648, 2147483647]

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

UINT_MIN

UINT_MAX 0x0

Oxff...fff

ox1

Unsigned Int

Circle of Integers

/
0x80...001

|
0x80..000

\
Ox7f...fff

Signed Int

Circle of Integers

0x80...001 | Ox7f...fff
0x80..000 INT_MAX
INT_MIN

82

Integer Overflows

Integer overflows behave differently

from stack buffer overflows
= Really just integer “wrap-arounds”

UINT_MIN
UINT_MAX 0x0
Oxff...fff | ox1

4 32-bit Integer Range: I

Unsigned: [0, (2732 - 1)]
[0, 4294967295]

Signed: [-231, (2731 - 1)]
[-2147483648, 2147483647]

Unsigned Int

Circle of Integers

/ \

0x80...001 | Ox7f..fff
0x80..000

.

Overflowing an unsigned integer “wraps around” to a very small integer!
= E.g,0xFFFFFFFF + 2 = 8x00000002

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 83

Example Integer Overflow

What is unsafe about this code?

void foo(char *array, int len)

{
int buf[160];

if(len >= 100) {
return;
}

memcpy (buf, array, len);

}

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 84

Example Integer Overflow

What is unsafe about this code? , _
void *memcpy (void *dest,

void foo(char *array, int len) const void *src, size_t n);
{

int buf[100];

if(len >= 100) {

return;

}

memcpy (buf, array, len);
}

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 85

Example Integer Overflow

What is unsafe about this code? 4 , _ A
void *memcpy (void *dest,

- : _
void foo(char *array, int len) const void *src, size_t n);

_ v
{ r)
int buf[166]; size_t n must be a signed int

if(len >= 100) {
return;
}

memcpy (buf, array, len);

}

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 86

Example Integer Overflow

What is unsafe about this code? 4 , _ h
void *memcpy (void *dest,

void foo(char *array, int len) 9 const void *src, size.t n); y

{ - N
int buf[106]; size_t n must be a signed int

. v

if(len >= 100) { s 2
return; memcpy interprets a negative
} len as a huge unsigned value!

\. /

memcpy (buf, array, len);

}

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 87

Example Integer Overflow

What is unsafe about this code? 4 B
void *memcpy (void *dest,
void foo(char *array, int len) 9 const void *src, size.t n); y
{ ; <
int buf[100]; size_t n must be a signed int
if(len >= 100) { s 2
return; memcpy interprets a negative
} len as a huge unsigned value!
\. /
memcpy (buf, array, len); e N
} OVERFLOW—Copy way more
than 100 bytes into dst buffer!

. J

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 88

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Example Integer Overflow

010111010 Q1QTICIGTO
010110110 91011310110
01011010110 C1011010T10

0101010110

01011010 01011010110
0101101010 -
G101010110

signed int

01011010110 ¢

1101010 o
= negative

ed value!

Ist buffer!

Stefan Nagy

Overcoming Bounded Writes

What observations can we make?
= Canthey break the program’s assumptions?

Target 4: a potential mismatch of buffer’s size versus the data written to it

Range of count:
alloca([<MAX_UINT]); // allocate our buffer [0, %“(MAX_UINT))
fread(&buf[i], 4, count, f); // fill buffer [0, MAX_UINT)

= If we perform an integer overflow on count, alloca() creates an artificially small buffer
= The resulting fill operation will exceed the buffer's size, resulting in a buffer overflow!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 90

Overcoming Bounded Writes

4)
Target 4: a very large count will trigger an
integer overflow in the buffer’s allocation,

wrapping MAX_UINT to a very small size.

. /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 91

Overcoming Bounded Writes

4)
Target 4: a very large count will trigger an
integer overflow in the buffer’s allocation,

wrapping MAX_UINT to a very small size.

. /

Since we later write count elements into
the buffer, this will trigger a buffer overflow...
allowing overwriting of objects up the stacl!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 92

Target Reconnaissance

-
4 Redirect to Shellcode | reser Overfiow on 4_ Now update your
=21 high-level plan!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 93

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 94

D.E.N.N.LS.

Estimate the stack frame

Stefan Nagy

Estimating the Stack

Objective: understand the memory layout /“void vulnerable(char *arg))

= What is needed for our attack to be successful? (
. . char buf[100];
Fundamental questions to consider:
] strcpy(buf, arg);
1. What stack objects do we control? \

2. What stack objects can we reach?

3. What's our desired final stack state?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 96

Estimating the Stack

Objective: understand the memory layout

] //;oid vulnerable(char *arg;\\
= What is needed for our attack to be successful?

{
char buf[100];

Fundamental questions to consider:
strcpy(buf, arg);

1. What stack objects do we control?

= char buf[100] Q j

2. What stack objects can we reach?
= Everything upwards of buf!

3. What's our desired final stack state?
= Inject our shellcode within our vulnerable buffer buf
= Qverwrite vulnerable()’s return address with buf’s address!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

97

Drawing the Stack: Where to even begin?

Many of you will try to draw the stack based on the assembly...

//bump of assembler code for function vulnerable: ‘\\
0x0804a17b <+0>: endbr32
0x0804a17f <+4>: push %ebp
0x0804a180 <+5>: mov %esp, %ebp
0x0804a182 <+7>: push %ebx
0x0804a183 <+8>: sub SOx74, %esp
0x0804a186 <+11>: call ©x804a208 <__x86.get_pc_thunk.ax>
0x08064a18b <+16>: add $0x9fe75, %eax
0x0804a190 <+21>: sub S0x8, %esp
0x0804a193 <+24>: pushl ©x8(%ebp)
0x0804a196 <+27>: lea -0x6c (%ebp) , %edx

L P

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 98

Drawing the Stack: Where to even begin?

Ditch the assembly... draw your
stack based on the source code!

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 99

Drawing the Stack

Identify your target fllﬂCtiOﬂ void vulnerable(char *arg){
= Eg,vulnerable() inthis case char buf[100];
strcpy(buf, arg); =~ N
Each frame contains a few key things: | } N
1. The function’s return address E
n | i i
Address of next |rlstruct|on to when RetAddr
the current function returns 7
2. The caller's saved frame pointer Saved EBP _ /
= Where EBP will get “reset” to when the - -
current function returns buf [100]
3. The function’s local variables
= Eg,char buf[100]

= Find these from the source code!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 100

Drawing the Stack

Your high-level stack diagram should consist
of the Return Address, Saved EBP, and Locals.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 101

Drawing the Stack

Your high-level stack diagram should consist
of the Return Address, Saved EBP, and Locals.

[No assembly required—just look at the source! }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 102

Drawing the Stack

Your high-level stack diagram should consist
of the Return Address, Saved EBP, and Locals.

[No assembly required—just look at the source! }

You need to get comfortable with this—highly
recommended to revisit All About Applications

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 103

D.E.N.N.LS.

NOP-out everything inside the frame!
Then, NOP-out just the return address!

Stefan Nagy

Building your Attack

Question: how to calculate the exact amount RetAddr
of overflow to reach the return address?
)) Saved EBP
= Read the assembly code line by line
= Revisit and tweak your stack diagram other stuff ???

= Ifit doesn't work, go back and look at more assembly

buf

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 105

Building your Attack

Question: how to calculate the exact amount

of overflow to reach the return address?

= Read the assembly code line by line
= Revisit and tweak your stack diagram
= Ifit doesn't work, go back and look at more assembly

Don’t do this—you will go insane reading x86

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

RetAddr
Savad EBP

106

Building your Attack

Ditch the assembly... guesstimate
your padding with a few heuristics!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 107

Padding Heuristics

How large is our vulnerable buffer? RetAddr
= Eg,char buf[100]

buf [100]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 108

Padding Heuristics

How large is our vulnerable buffer?
= Eg,char buf[100]
= Need at least 100 bytes to overflow!
= Compilers may add a few “extra”
bytes for memory alignment

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

RetAddr

buf [100]

~100 bytes

109

Padding Heuristics

How large is our vulnerable buffer?
= Eg,char buf[100]
= Need at least 100 bytes to overflow!
= Compilers may add a few “extra”
bytes for memory alignment

Saved EBP = an extra four bytes

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

RetAddr

Saved EBP

buf [100]

4 bytes

~100 bytes

110

Padding Heuristics

How large is our vulnerable buffer?
= Eg,char buf[100]
= Need at least 100 bytes to overflow!
= Compilers may add a few “extra”
bytes for memory alignment

Saved EBP = an extra four bytes

Other things above our buffer?

= Other locals (e.g.,, count in Target 3)
= Passed-by-reference function args
= Other compiler-added artifacts

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

RetAddr

Saved EBP

other stuff ???

buf [100]

4 bytes

TBD bytes

~100 bytes

111

Write an Initial Payload

Use guesstimated payload bytes as RetAddr

lower bound for an initial attempt
= E.g., we know our payload is 104+ bytes

Saved EBP 4 bytes

other stuff ??? | TBD bytes

~100 bytes
buf [100] vt

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 112

Write an Initial Payload

Use guesstimated payload bytes as

lower bound for an initial attempt
= E.g., we know our payload is 104+ bytes

Goal: overwrite the return address

with a controlled, friendly payload
= E.g., 104 bytes of NOP instructions

Did it overwrite the return address?
= |f yes—SEGFAULT on 6x909609090
= |f not—program terminates gracefully

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

RetAddr

90909690

90909090909096

90909090909096

4 bytes

TBD bytes

~100 bytes

113

Write an Initial Payload

Use guesstimated payload bytes as

lower bound for an initial attempt
= E.g., we know our payload is 104+ bytes

Goal: overwrite the return address

with a controlled, friendly payload
= E.g., 104 bytes of NOP instructions

Did it overwrite the return address?
= |f yes—SEGFAULT on 6x909609090
= |f not—program terminates gracefully

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

90909090 SEGFAULT

Keep increasing until
program SEGFAULT

14

Refine your Payload

Keep a table of attempts and results

1. b'\x90’ * 104 - normal exit
= Too little! Didn't overwrite anything

9090 SEGFAULT

2. b'\x90’ * 120 - SEGV on 0x960909090
= Too much! Complete RetAddr overwrite

3. b‘\x908’ * 114 - SEGV on 0x08049090
= We're close—just two bytes over!
= Qur payload should be 112 bytes

Tweak It to figure out
the exact payload size

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 115

Refine your Payload

4)

SEGFAULTS are your friend—they indicate
you're on the right track (overwriting things)!

N /
Use them and iteratively refine your payload!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 116

D.E.N.N.LS.

Inspect the program’s memory

Stefan Nagy

Find the Buffer!

After finding the distance to the return address, we now must overwrite it

= Recall: the return address is our golden ticket to controlling the program’s execution
= |nstead of a normal return, we want to redirect execution to our shellcode-laden buffer

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 118

Find the Buffer!

After finding the distance to the return address, we now must overwrite it

= Recall: the return address is our golden ticket to controlling the program’s execution
= |nstead of a normal return, we want to redirect execution to our shellcode-laden buffer

Approach: pick a known, friendly

payload and locate it in memory
= Goal is to find the start of your buffer!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 119

Find the Buffer!

After finding the distance to the return address, we now must overwrite it

= Recall: the return address is our golden ticket to controlling the program’s execution
= |nstead of a normal return, we want to redirect execution to our shellcode-laden buffer

/S info proc mapping // list all memory segments \

Approach: pick a known, friendly . -
.. Start Addr End Addr Size Offset objfile
payload and locate it in memory Bx8048000 0x8049000 6x1000 Bx@ target2
= Goal is to find the start of your buffer! 0x8049000 0x80b8000 0x6f000 0x1000 target2
0x80b800A 0Ox80e8000 0x30000 0x70000 target2
Ox80e8000 0x80eadbod 0x2000 0x9f0B00 target2
Helpfl‘“‘ GDB CommandS: Ox80eabld 0Ox80ecbo0 0x2000 Oxa1000 target2
= 1info proc mapping 0x80ec000 ©0x810e600 ©x22000 0x@ [heap]
n Locate the stack’s boundaries oxf7ff8000 Oxf7ffcooo 0x4000 0x0 [vvar]
- E-g-, @Xfff6d@@@ tO @Xffffe@@@ oxf7ffcoo0 oxf7ffe000 0x2000 0x0 [VdSO]
oxfff6doeo oxffffeooo 0x91006 0x0 [stack]

.

Stefan Nagy 120

s

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Find the Buffer!

After finding the distance to the return address, we now must overwrite it

= Recall: the return address is our golden ticket to controlling the program’s execution
= |nstead of a normal return, we want to redirect execution to our shellcode-laden buffer

Approach: pick a known, friendly 4 h
.. $ b *vulnerable+45 // breakpoint after buf filled
payload and locate It In memOl’y Breakpoint 1, 0x0864ala8 in vulnerable.. target2.c:8

= Goal is to find the start of your buffer!
S r “AAAA" // run program with “AAAA” as its input

Breakpoint 1, ©x0804al1a8 in vulnerable.. target2.c:8

Helpful GDB commands:
= find minAddr,maxAddr, “string” $ find Oxfff6dees, Oxffffeeos, "AAAA"

(] Search memory for address of st r-j_ng Oxfffed8cc // this is likely where buffer begins!
- Use stack boundaries from before Oxfffed93@ // when in doubt, pick the lower address

. s

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 121

Find the Buffer!

After finding the distance to the return address, we now must overwrite it

= Recall: the return address is our golden ticket to controlling the program’s execution
= |nstead of a normal return, we want to redirect execution to our shellcode-laden buffer

Approach: pick a known, friendly 4 h
.. $ b *vulnerable+45 // breakpoint after buf filled
payload and locate It In memOl’y Breakpoint 1, 0x0864ala8 in vulnerable.. target2.c:8

= Goal is to find the start of your buffer!
S r “AAAA" // run program with “AAAA” as its input

Breakpoint 1, ©x0804al1a8 in vulnerable.. target2.c:8

Helpful GDB commands:
= x/32xw,O9xDEADBEEF $ x/32xw oxffféd8cc // look for “AAAA” bytes here
= Show bytes at address OxDEADBEEF oxffféd8cc: 0x41474741 0x00000000 0x00000000 . ..

Oxfff6d8do: 0x00000000 B0x000OBOOO 0x000BLEOO ...

. s

= Inspect candidates from previous step

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 122

Other GDB Resources

Other GDB resources: /" CS 4440 Wiki: GDB Cheat Sheet Table of Contents:)
u CS 4440 G D B C h eat S h e et The following is a brief introduction of GDB commands that you will likely make use of in this course. If = RISy one

o Start i
you think of any others worth including here, please let us know on Piazzal Riartaisestion

. . o run
1

L] B eel's (5 D B I u to ria l The commands within this document are by no means comprehensive—GDB has many other o Kill

features not shown here. If you'd like to learn more about GDB's capabilities, we encourage you to o quit

? M review its manual (man gdb) or consult one of the many other GDB cheat sheets on the web. X
u TUdOf S GDB TUtOl’Ial Breakpoints

Commands are listed in the form (c)ommand . Bracketed letter(s) represent the abbreviated version of o break
the command (often one or two letters). For example, (q)uit means q is the abbreviation of quit.

o delete

Stepping

l ostep-
Many others on the web! Running GDB

o next
Starting a GDB session: ° nexh-
o continue

$ gdb ——args /path/to/program argl arg2 arg3 ...

Inspect Memory

o disas
(ryun: run the program to be debugged: o backtrace
o print
(gdb) run o print/x

o X (examine)

(k)ill: kill the currently-running program: » Other Info
o info break
(gdb) kill o info args
o info locals
(q)uit : quit the active GDB session: o info reg

(gdb) quit

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 123

https://users.cs.utah.edu/~snagy/courses/cs4440/wiki/gdb
https://beej.us/guide/bggdb/
https://users.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/misc/gdb_tutorial.html

Experience with GDB?

None (that's totally okay!)

| 0%
Some

| 0%
Lots!

' 0%

Not with GDB, but other debuggers

| 0%

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Other GDB Resources

[We do NOT expect you to “master” GDB... }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 125

http://cs4440.eng.utah.edu/files/project2/gdb-refcard.pdf
https://beej.us/guide/bggdb/
https://users.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/misc/gdb_tutorial.html

Other GDB Resources

4)
We do NOT expect you to “master” GDB...

L /

~ ™

However, you should keep a link or two handy
for quick referencing. See the CS 4440 Wili!

. y

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 126

http://cs4440.eng.utah.edu/files/project2/gdb-refcard.pdf
https://beej.us/guide/bggdb/
https://users.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/misc/gdb_tutorial.html

Other GDB Resources

4)
We do NOT expect you to “master” GDB...

L /

4 I

However, you should keep a link or two handy
for quick referencing. See the CS 4440 Wili!

s A
You will definitely be faced with GDB-style

debugging scenarios in your future careers!
- y,

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 127

http://cs4440.eng.utah.edu/files/project2/gdb-refcard.pdf
https://beej.us/guide/bggdb/
https://users.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/misc/gdb_tutorial.html

D.E.N.N.LS.

Setup and stabilize your attack!

Stefan Nagy

We're almost there!

By this point, we've identified our padding length and buffer start address

= Now, introduce our shellcode and finalize the attack payload!

RetAddr —I &buf
Saved EBP —_— 90909090
other stuff —_— 90909090
90909090909090
buf[100] —
9090 shellcode

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 129

Troubleshooting

E.g., “My attack segfaults and | don't know why!”

Check your padding!

= Are you correctly overwriting the return address?

Check your payload order!
= |f shellcode first, you must jump to buffer’s exact start!
= |f NOPs first, you can jump anywhere in the NOP slide!

Check your destination!
= Perform memory inspection to look for known, friendly payloads
= Be sure to set breakpoints on a location after the buffer is filled!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

130

Troubleshooting

~

[Most troubleshooting requires just a little trial and error!
J

Look for signs of progress (e.g., overwriting stack objects),
and test whether your payload tweaks changes things!

v

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 131

Troubleshooting

OOOOOOOOOOOOOOOOO
u UNIVERSITY OF UTAH Stefan Nagy 132

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 133

Next time on CS 4440...

Defending Applications

And beating those defenses!

