
Stefan Nagy

Week 5: Lecture B
Attacking Applications

Thursday, September 19, 2024

1

Stefan Nagy

Announcements

￭ Project 1: Crypto
￭ Deadline: tonight by 11:59 PM

2

Stefan Nagy

Announcements

￭ Project 2: AppSec released
￭ Deadline: Thursday, October 17th by 11:59PM

3

Stefan Nagy

Wiki Updates

4

Stefan Nagy

Announcements

5

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Questions?

6

Stefan Nagy

Last time on CS 4440…

7

Program Execution
Virtual Memory

The Stack
Stack Corruption

Stefan Nagy

Insecure Code

￭ Software bugs lead to unintended behavior

8

int main(void) {

char buffer[40];

gets(buffer);

// Saves user input
// into the buffer

}

?

?

?

?

Stefan Nagy

Attacking Computer Systems

￭ Problem: attacker can’t load their
own code on to the system

￭ Opportunity: the attacker can
interact with existing programs

￭ Challenge: make the system do
what you want… using only the
existing programs on the system
that you can interact with

9

Stefan Nagy

Software Exploitation

￭ Goal: take over a system by exploiting an application on it

￭ Exploit technique 1: code injection
￭ Insert your own code (as an input)
￭ Redirect the program to execute it

￭ Exploit technique 2: code reuse
￭ Leverage the program’s existing code
￭ Execute it in a way it wasn’t intended to

￭ Attack vector: memory corruption

10

Stefan Nagy

Virtual Memory

11

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

Program Text

Stack Memory

0xFFFFFFFF

The “Break”

Stefan Nagy

Virtual Memory

12

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped
Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

The “Break”

Program Text

Stack Memory

0xFFFFFFFF

Heap grows upwards

Stack grows downwards

Stefan Nagy

Virtual Memory

13

unmapped

Initialized Data

 BBBBBBBBBBBBBBBBB
 BBBBBBB

Uninitialized Data

unmapped
Shared Libraries

unmapped

Kernel Virtual Memory
0xC0000000

0x08048000

0x00000000

Higher
Memory

Lower
Memory

The “Break”

Program Text

 AAAAAAA
 AAAAAAAAAAAAAAAAA

0xFFFFFFFF

Heap grows upwards
- Filled downwards

Stack grows downwards
- Filled upwards

Stefan Nagy

Stack Operation

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF

14

0A
6C
FF SP

SP

Stack grows →
move SP down!

Stefan Nagy

Push and Pop

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF
4. Pop R1

15

0A
6C
FF

FFRegister R1

SP

Pop sends data
at top of stack
to a register

Stefan Nagy

Push and Pop

1. Push 0x0A
2. Push 0x6C
3. Push 0xFF
4. Pop R1

16

0A
6C
FF

FFRegister R1

SP
SP

Stack clears →
move SP up!

Stefan Nagy

Stack Frames

￭ Assume main() calls foo()

17

main()’s local vars

foo()’s arguments

foo()’s return addr

main()’s frame ptr

foo()’s local vars

......

Call-er (main)
Stack Frame

Call-ee (foo)
Stack Frame

Stefan Nagy

Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

18

previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

char * buffer[16]

Stefan Nagy

Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

19

previous frame ptr

BP

SP

AAAAAAAAA...\0

foo()’s first arg

foo()’s return addr

main()’s frame ptr

 AAAAAAA
 AAAAAAAAAAAAAAAAAAA

Stefan Nagy

Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

20

AAAAAAAAAAAAAAAAAAA

BP SP

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

 mov %ebp, %esp
 pop %ebp
 pop %eip

SP

Stefan Nagy

Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

21

AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA

 mov %ebp, %esp
 pop %ebp
 pop %eip

overwritten frame ptr

Stefan Nagy

Buffer Overflow!

void foo(char *str) {

char buffer[16];

strcpy(buffer, str);

}

void main() {

char buf[256];

memset(buf, ‘A’, 255);

buf[255] = ‘\x00’;

foo(buf);

}

22

AAAAAAAAAAAAAAAAAA

SP

AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA
 mov %ebp, %esp
 pop %ebp
 pop %eip

Execution will return to
a garbage address!

“AAAA” = 0x41414141

overwritten return addr

Stefan Nagy

Questions?

23

Stefan Nagy

This time on CS 4440…

24

Shellcode
Constructing Exploits
Pointer Dereferences

Integer Overflows

Stefan Nagy

What goals would an attacker have?

￭ Controlling a local variable
￭ E.g., setting variable grade to an A+

￭ Redirect execution to some function
￭ E.g., calling function print_good_grade()

25

Stefan Nagy

What goals would an attacker have?

￭ Controlling a local variable
￭ E.g., setting variable grade to an A+

￭ Redirect execution to some function
￭ E.g., calling function print_good_grade()

￭ Make the program execute evil code
￭ Ideal goal: gain root access to the system

26

Stefan Nagy

Shellcode

27

Stefan Nagy

Shellcode

￭ Attacker goal: make program open a root shell
￭ Root-level permissions = total system ownage
￭ You’ll do this in Project 2!

￭ Shellcode = code to open a root shell
￭ Inject this somewhere and direct execution to it

28

Stefan Nagy

Shellcode

￭ Attacker goal: make program open a root shell
￭ Root-level permissions = total system ownage
￭ You’ll do this in Project 2!

￭ Shellcode = code to open a root shell
￭ Inject this somewhere and direct execution to it
￭ Basic structure:

1. Call setuid(0) to set user ID to “root”
2. Open a shell with execve(“/bin/sh”)

29

setuid(0) execve(“/bin/sh”)+

Stefan Nagy

Executing Shellcode

￭ Problem: how can we construct our attack to execute our shellcode?

30

RetAddr

Saved EBP

other stuff

buf[100]

90909090909090

90909090909090

90909090909090

90909090909090

9090 shellcode

Stefan Nagy

Executing Shellcode

￭ Problem: how can we construct our attack to execute our shellcode?

￭ Solution: overwrite RetAddr with the address of where our shellcode is!
￭ We put our shellcode in the buffer—so its starting address is the buffer’s location!

31

RetAddr

Saved EBP

other stuff

buf[100]

&buf

90909090909090

90909090909090

90909090909090

9090 shellcode

Stefan Nagy

Executing Shellcode

￭ Problem: how can we construct our attack to execute our shellcode?

￭ Solution: overwrite RetAddr with the address of where our shellcode is!
￭ We put our shellcode in the buffer—so its starting address is the buffer’s location!

32

RetAddr

Saved EBP

other stuff

buf[100]

&buf

90909090909090

90909090909090

90909090909090

9090 shellcode

Stefan Nagy

Questions?

33

Stefan Nagy

Constructing Exploits

34

Stefan Nagy

Project 2 Overview

￭ We give you some binaries to exploit
￭ Limited to some rudimentary attacks

￭ These don’t exist anymore in practice
￭ See Targets 7–8 for more “realistic” ones

￭ Various obstacles and defenses to beat
￭ Targets 0–2: None… unbounded overflow!
￭ Target 3: Bounded overflow (strncpy())
￭ Target 4: Requires a two-step exploit
￭ Target 5: DEP (non-executable stack)
￭ Target 6: ASLR (randomized stack location)

35

Stefan Nagy

Project 2 Overview

￭ These challenges seem daunting
￭ We are covering C, x86, GDB, etc.

￭ Common questions that I’m seeing:
￭ “I have absolutely zero experience with C programming!”
￭ “I’m trying to draw the stack but I don’t know assembly!”
￭ “How do I calculate the exact number of padding bytes?”
￭ “I don’t know where to look to find this thing in memory!”
￭ “My attack should be working, but it SEGFAULTS… why?!?!”

36

Stefan Nagy

Project 2 Overview

￭ These challenges seem daunting
￭ We are covering C, x86, GDB, etc.

￭ Common questions that I’m seeing:
￭ “I have absolutely zero experience with C programming!”
￭ “I’m trying to draw the stack but I don’t know assembly!”
￭ “How do I calculate the exact number of padding bytes?”
￭ “I don’t know where to look to find this thing in memory!”
￭ “My attack should be working, but it SEGFAULTS… why?!”

37

No expertise necessary!
You’ll use just a few skills…

Stefan Nagy

Where to begin?

￭ Mnemonic device to help guide your attack-planning thought process

38

 D : Dive into the source code
 E : Estimate the stack frame
 N : NOP-out the entire frame
 N : NOP-out the return address
 I : Inspect program’s memory
 S : Setup and stabilize attack!

But the high-level steps
will get you a long way!

This acronym is silly…

Stefan Nagy

D.E.N.N.I.S.
Dive into the source code

39

Stefan Nagy

Dive into the Source Code

￭ Objective: understanding the program

￭ Challenge: understanding C programming

40

int main(int argc, char *argv[])

{

char grade[5];

char name[10];

strcpy(grade, "nil");

gets(name);

printf("%s,%s", name, grade);

}

Stefan Nagy 41

Stefan Nagy

Dive into the Source Code

￭ Objective: understanding the program

￭ Challenge: understanding C programming
￭ Don’t sweat it—we don’t expect you to master C!

42

int main(int argc, char *argv[])

{

char grade[5];

char name[10];

strcpy(grade, "nil");

gets(name);

printf("%s,%s", name, grade);

}

Stefan Nagy

Dive into the Source Code

￭ Objective: understanding the program

￭ Challenge: understanding C programming
￭ Don’t sweat it—we don’t expect you to master C!

￭ Ideas from other OOP languages carry over
￭ Functions
￭ Local variables
￭ Function arguments
￭ Same building blocks as Java, Python, C++, etc.
￭ Finding the “best” order of teaching you these remains an unsolved problem in CS education!

43

int main(int argc, char *argv[])

{

char grade[5];

char name[10];

strcpy(grade, "nil");

gets(name);

printf("%s,%s", name, grade);

}

Stefan Nagy

Dive into the Source Code

￭ Objective: understanding the program

￭ Challenge: understanding C programming
￭ Don’t sweat it—we don’t expect you to master C!

￭ Need more info about a function?
￭ Answer: locate and read its manpage

￭ Short for “manual page”
￭ E.g., “How is strcpy different from strncpy?”

￭ https://linux.die.net/man/3/strcpy
￭ Many other helpful resources on the web

44

https://linux.die.net/man/3/strcpy

Stefan Nagy

Dive into the Source Code

￭ Objective: understanding the program

￭ Challenge: understanding C programming
￭ Don’t sweat it—we don’t expect you to master C!

￭ See the C Cheat Sheet on the CS 4440 Wiki

45

C seems daunting, but you don’t need to
master it—just understand the basics, and
keep a link or two bookmarked for the rest!

Stefan Nagy

Dive into the Source Code

￭ Objective: understanding the program

￭ Fundamental questions to consider:
1. What is my target function?

2. What variables does it have?

3. How is data written to stack?

4. How far can data be written?

5. What is the goal of my attack?

46

Stefan Nagy

Example: Target 0

￭ Objective: understanding the program

￭ Fundamental questions to consider:
1. What is my target function?

2. What variables does it have?

3. How is data written to stack?

4. How far can data be written?

5. What is the goal of my attack?

47

int main(int argc, char *argv[])

{

char grade[5];

char name[10];

strcpy(grade, "nil");

gets(name);

printf("%s,%s", name, grade);

}

Stefan Nagy

Example: Target 0

￭ Objective: understanding the program

￭ Fundamental questions to consider:
1. What is my target function?

￭ main()
2. What variables does it have?

￭ char grade[5], char name[10]
3. How is data written to stack?

￭ gets(name)
4. How far can data be written?

￭ As far as we want!
5. What is the goal of my attack?

￭ To overwrite char grade[5]!

48

int main(int argc, char *argv[])

{

char grade[5];

char name[10];

strcpy(grade, "nil");

gets(name);

printf("%s,%s", name, grade);

}

Stefan Nagy

Target Reconnaissance

49

Target What is our
attack’s goal?

How to write
up the stack?

How far
can we write?

0 Overwrite Variable gets() Unbounded

1 Redirect to Function strcpy() Unbounded

2 Redirect to Shellcode strcpy() Unbounded

Stefan Nagy

Target Reconnaissance

50

Target What is our
attack’s goal?

How to write
up the stack?

How far
can we write?

0 Overwrite Variable gets() Unbounded

1 Redirect to Function strcpy() Unbounded

2 Redirect to Shellcode strcpy() Unbounded

3 Redirect to Shellcode strncpy() Bounded

4 Redirect to Shellcode fread() Bounded

Stefan Nagy

Bounded vs. Unbounded Writes

￭ Targets 0–2 permit unbounded writes
￭ We can overwrite anything in the higher stack memory
￭ Thanks to dangerous functions gets() and strcpy()
￭ Definitely don’t use these functions in your own code!

51

Stefan Nagy

Bounded vs. Unbounded Writes

￭ Targets 0–2 permit unbounded writes
￭ We can overwrite anything in the higher stack memory
￭ Thanks to dangerous functions gets() and strcpy()
￭ Definitely don’t use these functions in your own code!

￭ Targets 3–4 are bounded writes… limited reach!
￭ Target 3: we can only write 8 + sizeof(buf) bytes
￭ Target 4: we can only write count bytes (via fread())

52

Stefan Nagy

Bounded vs. Unbounded Writes

￭ Targets 0–2 permit unbounded writes
￭ We can overwrite anything in the higher stack memory
￭ Thanks to dangerous functions gets() and strcpy()
￭ Definitely don’t use these functions in your own code!

￭ Targets 3–4 are bounded writes… limited reach!
￭ Target 3: we can only write 8 + sizeof(buf) bytes
￭ Target 4: we can only write count bytes (via fread())

53

For bounded writes, we have to get creative
and find a way to overwrite what we want!

Stefan Nagy

Questions?

54

Stefan Nagy

Overcoming Bounded Writes:
Pointer Dereferencing

55

Stefan Nagy

Overcoming Bounded Writes

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 3: ???

56

int *p;

int a;

*p = a;

Stefan Nagy

Overcoming Bounded Writes

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 3: a pointer dereference

￭ If we set *p = 5 , whatever p points to will be updated to 5

57

int *p;

int a;

*p = a;

Stefan Nagy

Overcoming Bounded Writes

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 3: a pointer dereference

￭ If we set *p = 5 , whatever p points to will be updated to 5
￭ If we take control over both a and p, we can change arbitrary objects in memory

58

int *p;

int a;

*p = a;

Stefan Nagy

Recap: Process Virtual Memory

59

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual MemoryHigher
Memory

Lower
Memory

Program Text

Stack Memory

Stefan Nagy

Recap: Process Virtual Memory

60

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual MemoryHigher
Memory

Lower
Memory

Program Text

Stack Memory

Program
instructions

Local variables,
and a record of
active functions

(and a whole bunch of other stuff…)

Stefan Nagy

Recap: Process Virtual Memory

61

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual MemoryHigher
Memory

Lower
Memory

Program Text

Stack Memory Key idea: it’s all “things”
pointed to by addresses

Stefan Nagy

Recap: Process Virtual Memory

62

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual MemoryHigher
Memory

Lower
Memory

Program Text

Stack Memory

$ disas vulnerable:

0x0804a17b <+0>: endbr32
0x0804a17f <+4>: push %ebp
0x0804a180 <+5>: mov %esp,%ebp
0x0804a182 <+7>: push %ebx

Example: instructions in the Program Text:

Key idea: it’s all “things”
pointed to by addresses

Stefan Nagy

Recap: Process Virtual Memory

63

unmapped

Initialized Data

Heap Memory

Uninitialized Data

unmapped

Shared Libraries

unmapped

Kernel Virtual MemoryHigher
Memory

Lower
Memory

Program Text

Stack Memory Key idea: it’s all “things”
pointed to by addresses

Example: payload NOPs in Stack Memory:

$ x/32xw 0xfff6d8cc

0xfff6d8cc: 0x90909090 0x90909090
0xfff6d8d4: 0x90909090 0x90909090
0xfff6d8dc: 0x90909090 0x90909090
0xfff6d8e4: 0x90909090 0x90909090

Stefan Nagy

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 3: a pointer dereference

￭ If we set *p = 5 , whatever p points to will be updated to 5
￭ If we take control over both a and p, we can change arbitrary objects in memory

64

int *p;

int a;

*p = a;

Target 3: the return address is stored on the
stack. In other words, an address in stack

memory points to a slot containing it.

Leveraging Pointer Dereferences

Stefan Nagy

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 3: a pointer dereference

￭ If we set *p = 5 , whatever p points to will be updated to 5
￭ If we take control over both a and p, we can change arbitrary objects in memory

65

int *p;

int a;

*p = a;

Target 3: the return address is stored on the
stack. In other words, an address in stack

memory points to a slot containing it.

We can exploit the dereference to overwrite
the value a stack memory address points to!

Leveraging Pointer Dereferences

Stefan Nagy

void foo(char *str) {

int *p;

int a;

*p = a;
}

foo()’s retAddr

Indirect Memory Overwrite

66

caller’s EBP SP

Stefan Nagy

void foo(char *str) {

int *p;

int a;

*p = a;
}

foo()’s retAddr

Indirect Memory Overwrite

67

caller’s EBP

p

int a SP

BP

Stefan Nagy

void foo(char *str) {

int *p;

int a;

*p = a;
}

foo()’s retAddr

Indirect Memory Overwrite

68

caller’s EBP

int a

Address 0x000000

Stefan Nagy

void foo(char *str) {

int *p;

int a;

*p = a;
}

foo()’s retAddr

Indirect Memory Overwrite

69

caller’s EBP

int a

EBP-4

EBP-8

EBP+0

EBP+4

Stack Addresses

Address 0x000000

Stefan Nagy

void foo(char *str) {

int *p;

int a;

*p = a;
}

foo()’s retAddr

Indirect Memory Overwrite

70

caller’s EBP

int a

EBP-4

EBP-8

EBP+0

EBP+4

int a 0x000000

Stack Addresses

Contents of
0x000000

updated to a

Address 0x000000

Stefan Nagy

void foo(char *str) {

int *p;

int a;

*p = a;
}

foo()’s retAddr

Indirect Memory Overwrite

71

caller’s EBP

Address EBP+4

int a

EBP-4

EBP-8

EBP+0

EBP+4

Stack Addresses

Stefan Nagy

void foo(char *str) {

int *p;

int a;

*p = a;
}

foo()’s retAddr

Indirect Memory Overwrite

72

caller’s EBP

Address EBP+4

Shellcode Address

EBP-4

EBP-8

EBP+0

EBP+4

Stack Addresses

Stefan Nagy

Shellcode Addressvoid foo(char *str) {

int *p;

int a;

*p = a;
}

Indirect Memory Overwrite

73

caller’s EBP

Address EBP+4

Shellcode Address

EBP-4

EBP-8

EBP+0

EBP+4

Stack Addresses

Contents of EBP+4 updated to
the shellcode address!

Stefan Nagy

Target Reconnaissance

74

Target What is our
attack’s goal?

How to write
up the stack?

How far
can we write?

0 Overwrite Variable gets() Unbounded

1 Redirect to Function strcpy() Unbounded

2 Redirect to Shellcode strcpy() Unbounded

3 Redirect to Shellcode strncpy() Bounded

4 Redirect to Shellcode fread() Bounded

Dereference Return
Addr’s stack location Now update your

high-level plan!

Stefan Nagy

Other Overwritable Objects

￭ Not just return addresses!
￭ Function pointers
￭ Arbitrary data
￭ C++ exceptions
￭ C++ objects
￭ Heap memory freelist
￭ Any code pointer!

75

Stefan Nagy

Questions?

76

Stefan Nagy

Overcoming Bounded Writes:
Integer Overflows

77

Stefan Nagy

Overcoming Bounded Writes

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 4: ???

78

alloca(count * 4); // allocate our buffer

fread(&buf[i], 4, count, f); // fill buffer

Stefan Nagy

Overcoming Bounded Writes

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 4: a potential mismatch of buffer’s size versus the data read into it

79

alloca(count * 4); // allocate our buffer

fread(&buf[i], 4, count, f); // fill buffer

[0, ¼(MAX_UINT))

Range of count:

[0, MAX_UINT)

Stefan Nagy

Overcoming Bounded Writes

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 4: a potential mismatch of buffer’s size versus the data read into it

￭ If we perform an integer overflow on count, alloca() creates an artificially small buffer
￭ The resulting fill operation will exceed the buffer’s size, resulting in a buffer overflow!

80

alloca(count * 4); // allocate our buffer

fread(&buf[i], 4, count, f); // fill buffer

[0, ¼(MAX_UINT))

Range of count:

[0, MAX_UINT)

Stefan Nagy

￭ Integer overflows behave differently
from stack buffer overflows

Integer Overflows

81

[-2^31, (2^31 - 1)]
[-2147483648, 2147483647]

32-bit Integer Range:

Signed:

Unsigned:[0, (2^32 - 1)]
[0, 4294967295]

Stefan Nagy

￭ Integer overflows behave differently
from stack buffer overflows
￭ Really just integer “wrap-arounds”

Integer Overflows

82

[-2^31, (2^31 - 1)]
[-2147483648, 2147483647]

32-bit Integer Range:

Signed:

Unsigned:[0, (2^32 - 1)]
[0, 4294967295]

Stefan Nagy

￭ Integer overflows behave differently
from stack buffer overflows
￭ Really just integer “wrap-arounds”

￭ Overflowing an unsigned integer “wraps around” to a very small integer!
￭ E.g., 0xFFFFFFFF + 2 = 0x00000002

Integer Overflows

83

[-2^31, (2^31 - 1)]
[-2147483648, 2147483647]

32-bit Integer Range:

Signed:

Unsigned:[0, (2^32 - 1)]
[0, 4294967295]

Stefan Nagy

￭ What is unsafe about this code?

84

void foo(char *array, int len)
{

int buf[100];

if(len >= 100) {
return;

}

memcpy(buf, array, len);
}

Example Integer Overflow

Stefan Nagy

￭ What is unsafe about this code?

85

void foo(char *array, int len)
{

int buf[100];

if(len >= 100) {
return;

}

memcpy(buf, array, len);
}

void *memcpy (void *dest,
const void *src, size_t n);

Example Integer Overflow

Stefan Nagy

￭ What is unsafe about this code?

86

void foo(char *array, int len)
{

int buf[100];

if(len >= 100) {
return;

}

memcpy(buf, array, len);
}

size_t n must be a signed int

void *memcpy (void *dest,
const void *src, size_t n);

Example Integer Overflow

Stefan Nagy

￭ What is unsafe about this code?

87

void foo(char *array, int len)
{

int buf[100];

if(len >= 100) {
return;

}

memcpy(buf, array, len);
}

size_t n must be a signed int

void *memcpy (void *dest,
const void *src, size_t n);

memcpy interprets a negative
len as a huge unsigned value!

Example Integer Overflow

Stefan Nagy

Example Integer Overflow

￭ What is unsafe about this code?

88

void foo(char *array, int len)
{

int buf[100];

if(len >= 100) {
return;

}

memcpy(buf, array, len);
}

size_t n must be a signed int

void *memcpy (void *dest,
const void *src, size_t n);

memcpy interprets a negative
len as a huge unsigned value!

OVERFLOW—Copy way more
than 100 bytes into dst buffer!

Stefan Nagy

Example Integer Overflow

￭ What is unsafe about this code?

89

void foo(char *array, int len)
{

int buf[100];

if(len >= 100) {
return;

}

memcpy(buf, array, len);
}

size_t n must be a signed int

void *memcpy (void *dest,
const void *src, size_t n);

memcpy interprets a negative
len as a huge unsigned value!

OVERFLOW—Copy way more
than 100 bytes into dst buffer!

Stefan Nagy

Overcoming Bounded Writes

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 4: a potential mismatch of buffer’s size versus the data written to it

￭ If we perform an integer overflow on count, alloca() creates an artificially small buffer
￭ The resulting fill operation will exceed the buffer’s size, resulting in a buffer overflow!

90

alloca(count * 4); // allocate our buffer

fread(&buf[i], 4, count, f); // fill buffer

[0, ¼(MAX_UINT))

Range of count:

[0, MAX_UINT)

<MAX_UINT

Stefan Nagy

Overcoming Bounded Writes

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 4: a potential mismatch of buffer’s size versus the data written to it

￭ If we perform an integer overflow on count, alloca() creates an artificially small buffer
￭ The resulting fill operation will exceed the buffer’s size, resulting in a buffer overflow!

91

alloca(count * 4); // allocate our buffer

fread(&buf[i], 4, count, f); // fill buffer

[0, ¼(MAX_UINT))

Range of count:

[0, MAX_UINT)

<MAX_UINT

Target 4: a very large count will trigger an
integer overflow in the buffer’s allocation,
wrapping MAX_UINT to a very small size.

Stefan Nagy

Overcoming Bounded Writes

￭ What observations can we make?
￭ Can they break the program’s assumptions?

￭ Target 4: a potential mismatch of buffer’s size versus the data written to it

￭ If we perform an integer overflow on count, alloca() creates an artificially small buffer
￭ The resulting fill operation will exceed the buffer’s size, resulting in a buffer overflow!

92

alloca(count * 4); // allocate our buffer

fread(&buf[i], 4, count, f); // fill buffer

[0, ¼(MAX_UINT))

Range of count:

[0, MAX_UINT)

<MAX_UINT

Target 4: a very large count will trigger an
integer overflow in the buffer’s allocation,
wrapping MAX_UINT to a very small size.

Since we later write count elements into
the buffer, this will trigger a buffer overflow…
allowing overwriting of objects up the stack!

Stefan Nagy

Target Reconnaissance

93

Target What is our
attack’s goal?

How to write
up the stack?

How far
can we write?

0 Overwrite Variable gets() Unbounded

1 Redirect to Function strcpy() Unbounded

2 Redirect to Shellcode strcpy() Unbounded

3 Redirect to Shellcode strncpy() Bounded

4 Redirect to Shellcode fread() BoundedInteger Overflow on
buf’s allocation size

Now update your
high-level plan!

Stefan Nagy

Questions?

94

Stefan Nagy

D.E.N.N.I.S.
Estimate the stack frame

95

Stefan Nagy

Estimating the Stack

￭ Objective: understand the memory layout
￭ What is needed for our attack to be successful?

￭ Fundamental questions to consider:
1. What stack objects do we control?

2. What stack objects can we reach?

3. What’s our desired final stack state?

96

void vulnerable(char *arg)

{

char buf[100];

strcpy(buf, arg);

}

Stefan Nagy

Estimating the Stack

￭ Objective: understand the memory layout
￭ What is needed for our attack to be successful?

￭ Fundamental questions to consider:
1. What stack objects do we control?

￭ char buf[100]
2. What stack objects can we reach?

￭ Everything upwards of buf!
3. What’s our desired final stack state?

￭ Inject our shellcode within our vulnerable buffer buf
￭ Overwrite vulnerable()’s return address with buf’s address!

97

void vulnerable(char *arg)

{

char buf[100];

strcpy(buf, arg);

}

Stefan Nagy

Drawing the Stack: Where to even begin?

￭ Many of you will try to draw the stack based on the assembly…

98

Dump of assembler code for function vulnerable:

 0x0804a17b <+0>: endbr32

 0x0804a17f <+4>: push %ebp

 0x0804a180 <+5>: mov %esp,%ebp

 0x0804a182 <+7>: push %ebx

 0x0804a183 <+8>: sub $0x74,%esp

 0x0804a186 <+11>: call 0x804a208 <__x86.get_pc_thunk.ax>

 0x0804a18b <+16>: add $0x9fe75,%eax

 0x0804a190 <+21>: sub $0x8,%esp

 0x0804a193 <+24>: pushl 0x8(%ebp)

 0x0804a196 <+27>: lea -0x6c(%ebp),%edx

 ...

??
?

? ?

Stefan Nagy

Drawing the Stack: Where to even begin?

￭ Many of you will try to draw the stack based on the assembly…

99

Dump of assembler code for function vulnerable:

 0x0804a17b <+0>: endbr32

 0x0804a17f <+4>: push %ebp

 0x0804a180 <+5>: mov %esp,%ebp

 0x0804a182 <+7>: push %ebx

 0x0804a183 <+8>: sub $0x74,%esp

 0x0804a186 <+11>: call 0x804a208 <__x86.get_pc_thunk.ax>

 0x0804a18b <+16>: add $0x9fe75,%eax

 0x0804a190 <+21>: sub $0x8,%esp

 0x0804a193 <+24>: pushl 0x8(%ebp)

 0x0804a196 <+27>: lea -0x6c(%ebp),%edx

 ...

??
?

? ?

Ditch the assembly… draw your
stack based on the source code!

Stefan Nagy

Drawing the Stack

￭ Identify your target function
￭ E.g., vulnerable() in this case

￭ Each frame contains a few key things:
1. The function’s return address

￭ Address of next instruction to when
the current function returns

2. The caller’s saved frame pointer
￭ Where EBP will get “reset” to when the

current function returns
3. The function’s local variables

￭ E.g., char buf[100]
￭ Find these from the source code!

100

void vulnerable(char *arg){

char buf[100];

strcpy(buf, arg);

}

RetAddr

Saved EBP

buf [100]

Stefan Nagy

Drawing the Stack

￭ Identify your target function
￭ E.g., vulnerable() in this case

￭ Each frame contains a few key things:
1. The function’s return address

￭ Address of next instruction to when
the current function returns

2. The caller’s saved frame pointer
￭ Where EBP will get “reset” to when the

current function returns
3. The function’s local variables

￭ E.g., char buf[100]

101

void vulnerable(char *arg){

char buf[100];

strcpy(buf, arg);

}

buf [100]

Saved EBP

RetAddr

Your high-level stack diagram should consist
of the Return Address, Saved EBP, and Locals.

Stefan Nagy

Drawing the Stack

￭ Identify your target function
￭ E.g., vulnerable() in this case

￭ Each frame contains a few key things:
1. The function’s return address

￭ Address of next instruction to when
the current function returns

2. The caller’s saved frame pointer
￭ Where EBP will get “reset” to when the

current function returns
3. The function’s local variables

￭ E.g., char buf[100]

102

void vulnerable(char *arg){

char buf[100];

strcpy(buf, arg);

}

buf [100]

Saved EBP

RetAddr

Your high-level stack diagram should consist
of the Return Address, Saved EBP, and Locals.

No assembly required—just look at the source!

Stefan Nagy

Drawing the Stack

￭ Identify your target function
￭ E.g., vulnerable() in this case

￭ Each frame contains a few key things:
1. The function’s return address

￭ Address of next instruction to when
the current function returns

2. The caller’s saved frame pointer
￭ Where EBP will get “reset” to when the

current function returns
3. The function’s local variables

￭ E.g., char buf[100]

103

void vulnerable(char *arg){

char buf[100];

strcpy(buf, arg);

}

buf [100]

Saved EBP

RetAddr

Your high-level stack diagram should consist
of the Return Address, Saved EBP, and Locals.

No assembly required—just look at the source!

You need to get comfortable with this—highly
recommended to revisit All About Applications

Stefan Nagy

D.E.N.N.I.S.
NOP-out everything inside the frame!

Then, NOP-out just the return address!

104

Stefan Nagy

Building your Attack

￭ Question: how to calculate the exact amount
of overflow to reach the return address?
￭ Read the assembly code line by line
￭ Revisit and tweak your stack diagram
￭ If it doesn’t work, go back and look at more assembly

105

RetAddr

Saved EBP

other stuff ???

buf

Stefan Nagy

Building your Attack

￭ Question: how to calculate the exact amount
of overflow to reach the return address?
￭ Read the assembly code line by line
￭ Revisit and tweak your stack diagram
￭ If it doesn’t work, go back and look at more assembly

￭ Don’t do this—you will go insane reading x86

106

RetAddr

Saved EBP

other stuff ???

buf

?
?
?

Stefan Nagy

Building your Attack

￭ Question: how to calculate the exact amount
of overflow to reach the return address?
￭ Read the assembly code line by line
￭ Revisit and tweak your stack diagram
￭ If it doesn’t work, go back and look at more assembly

￭ Don’t do this—you will go insane reading x86

107

RetAddr

Saved EBP

other stuff ???

buf

?
?
?

Ditch the assembly… guesstimate
your padding with a few heuristics!

Stefan Nagy

Padding Heuristics

￭ How large is our vulnerable buffer?
￭ E.g., char buf[100]

108

RetAddr

buf [100]

Stefan Nagy

Padding Heuristics

￭ How large is our vulnerable buffer?
￭ E.g., char buf[100]
￭ Need at least 100 bytes to overflow!

￭ Compilers may add a few “extra”
bytes for memory alignment

109

~100 bytes

RetAddr

buf [100]

Stefan Nagy

Padding Heuristics

￭ How large is our vulnerable buffer?
￭ E.g., char buf[100]
￭ Need at least 100 bytes to overflow!

￭ Compilers may add a few “extra”
bytes for memory alignment

￭ Saved EBP = an extra four bytes

110

RetAddr

Saved EBP 4 bytes

~100 bytes
buf [100]

Stefan Nagy

Padding Heuristics

￭ How large is our vulnerable buffer?
￭ E.g., char buf[100]
￭ Need at least 100 bytes to overflow!

￭ Compilers may add a few “extra”
bytes for memory alignment

￭ Saved EBP = an extra four bytes

￭ Other things above our buffer?
￭ Other locals (e.g., count in Target 3)
￭ Passed-by-reference function args
￭ Other compiler-added artifacts

111

RetAddr

Saved EBP 4 bytes

~100 bytes

other stuff ??? TBD bytes

buf [100]

Stefan Nagy

Write an Initial Payload

￭ Use guesstimated payload bytes as
lower bound for an initial attempt
￭ E.g., we know our payload is 104+ bytes

112

RetAddr

Saved EBP 4 bytes

~100 bytes

other stuff ??? TBD bytes

buf [100]

Stefan Nagy

Write an Initial Payload

￭ Use guesstimated payload bytes as
lower bound for an initial attempt
￭ E.g., we know our payload is 104+ bytes

￭ Goal: overwrite the return address
with a controlled, friendly payload
￭ E.g., 104 bytes of NOP instructions

￭ Did it overwrite the return address?
￭ If yes—SEGFAULT on 0x90909090
￭ If not—program terminates gracefully

113

RetAddr

90909090 4 bytes

~100 bytes

90909090909090 TBD bytes

90909090909090

Stefan Nagy

Write an Initial Payload

￭ Use guesstimated payload bytes as
lower bound for an initial attempt
￭ E.g., we know our payload is 104+ bytes

￭ Goal: overwrite the return address
with a controlled, friendly payload
￭ E.g., 104 bytes of NOP instructions

￭ Did it overwrite the return address?
￭ If yes—SEGFAULT on 0x90909090
￭ If not—program terminates gracefully

114

90909090 4 bytes

~100 bytes

90909090909090 TBD bytes

90909090909090

Keep increasing until
program SEGFAULT

SEGFAULT90909090

Stefan Nagy

Refine your Payload

￭ Keep a table of attempts and results
1. b‘\x90’ * 104 → normal exit

￭ Too little! Didn’t overwrite anything

2. b‘\x90’ * 120 → SEGV on 0x90909090
￭ Too much! Complete RetAddr overwrite

3. b‘\x90’ * 114 → SEGV on 0x08049090
￭ We’re close—just two bytes over!
￭ Our payload should be 112 bytes

115

Tweak it to figure out
the exact payload size

90909090 4 bytes

~100 bytes

90909090909090 TBD bytes

90909090909090

SEGFAULT____9090

Stefan Nagy

Refine your Payload

￭ Keep a table of attempts and results
1. b‘\x90’ * 104 → normal exit

￭ Too little! Didn’t overwrite anything

2. b‘\x90’ * 120 → SEGV on 0x90909090
￭ Too much! Complete RetAddr overwrite

3. b‘\x90’ * 114 → SEGV on 0x08049090
￭ We’re close—just two bytes over!
￭ Our payload should be 112 bytes

116

Tweak it to figure out
the exact payload size

90909090 4 bytes

~100 bytes

90909090909090 TBD bytes

90909090909090

SEGFAULT____9090

Use them and iteratively refine your payload!

SEGFAULTS are your friend—they indicate
you’re on the right track (overwriting things)!

Stefan Nagy

D.E.N.N.I.S.
Inspect the program’s memory

117

Stefan Nagy

Find the Buffer!

￭ After finding the distance to the return address, we now must overwrite it
￭ Recall: the return address is our golden ticket to controlling the program’s execution
￭ Instead of a normal return, we want to redirect execution to our shellcode-laden buffer

118

Stefan Nagy

Find the Buffer!

￭ After finding the distance to the return address, we now must overwrite it
￭ Recall: the return address is our golden ticket to controlling the program’s execution
￭ Instead of a normal return, we want to redirect execution to our shellcode-laden buffer

￭ Approach: pick a known, friendly
payload and locate it in memory
￭ Goal is to find the start of your buffer!

119

Stefan Nagy

Find the Buffer!

￭ After finding the distance to the return address, we now must overwrite it
￭ Recall: the return address is our golden ticket to controlling the program’s execution
￭ Instead of a normal return, we want to redirect execution to our shellcode-laden buffer

￭ Approach: pick a known, friendly
payload and locate it in memory
￭ Goal is to find the start of your buffer!

￭ Helpful GDB commands:
￭ info proc mapping

￭ Locate the stack’s boundaries
￭ E.g., 0xfff6d000 to 0xffffe000

120

$ info proc mapping // list all memory segments

Start Addr End Addr Size Offset objfile

0x8048000 0x8049000 0x1000 0x0 target2

0x8049000 0x80b8000 0x6f000 0x1000 target2

0x80b8000 0x80e8000 0x30000 0x70000 target2

0x80e8000 0x80ea000 0x2000 0x9f000 target2

0x80ea000 0x80ec000 0x2000 0xa1000 target2

0x80ec000 0x810e000 0x22000 0x0 [heap]

0xf7ff8000 0xf7ffc000 0x4000 0x0 [vvar]

0xf7ffc000 0xf7ffe000 0x2000 0x0 [vdso]

0xfff6d000 0xffffe000 0x91000 0x0 [stack]

Stefan Nagy

Find the Buffer!

￭ After finding the distance to the return address, we now must overwrite it
￭ Recall: the return address is our golden ticket to controlling the program’s execution
￭ Instead of a normal return, we want to redirect execution to our shellcode-laden buffer

￭ Approach: pick a known, friendly
payload and locate it in memory
￭ Goal is to find the start of your buffer!

￭ Helpful GDB commands:
￭ find minAddr,maxAddr,“string”

￭ Search memory for address of string
￭ Use stack boundaries from before

121

$ b *vulnerable+45 // breakpoint after buf filled

Breakpoint 1, 0x0804a1a8 in vulnerable… target2.c:8

$ r “AAAA” // run program with “AAAA” as its input

Breakpoint 1, 0x0804a1a8 in vulnerable… target2.c:8

$ find 0xfff6d000,0xffffe000,”AAAA”

0xfff6d8cc // this is likely where buffer begins!

0xfffed930 // when in doubt, pick the lower address

Stefan Nagy

Find the Buffer!

￭ After finding the distance to the return address, we now must overwrite it
￭ Recall: the return address is our golden ticket to controlling the program’s execution
￭ Instead of a normal return, we want to redirect execution to our shellcode-laden buffer

￭ Approach: pick a known, friendly
payload and locate it in memory
￭ Goal is to find the start of your buffer!

￭ Helpful GDB commands:
￭ x/32xw,0xDEADBEEF

￭ Show bytes at address 0xDEADBEEF
￭ Inspect candidates from previous step

122

$ b *vulnerable+45 // breakpoint after buf filled

Breakpoint 1, 0x0804a1a8 in vulnerable… target2.c:8

$ r “AAAA” // run program with “AAAA” as its input

Breakpoint 1, 0x0804a1a8 in vulnerable… target2.c:8

$ x/32xw 0xfff6d8cc // look for “AAAA” bytes here

0xfff6d8cc: 0x41414141 0x00000000 0x00000000 ...

0xfff6d8d0: 0x00000000 0x00000000 0x00000000 ...

Stefan Nagy

Other GDB Resources

￭ Other GDB resources:
￭ CS 4440 GDB Cheat Sheet
￭ Beej's GDB Tutorial
￭ Tudor’s GDB Tutorial

￭ Many others on the web!

123

https://users.cs.utah.edu/~snagy/courses/cs4440/wiki/gdb
https://beej.us/guide/bggdb/
https://users.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/misc/gdb_tutorial.html

Stefan Nagy 124

Stefan Nagy

Other GDB Resources

￭ Other GDB resources:
￭ CS 4440 GDB RefCard
￭ Beej's GDB Tutorial
￭ Tudor’s GDB Tutorial

125

We do NOT expect you to “master” GDB…

http://cs4440.eng.utah.edu/files/project2/gdb-refcard.pdf
https://beej.us/guide/bggdb/
https://users.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/misc/gdb_tutorial.html

Stefan Nagy

Other GDB Resources

￭ Other GDB resources:
￭ CS 4440 GDB RefCard
￭ Beej's GDB Tutorial
￭ Tudor’s GDB Tutorial

126

However, you should keep a link or two handy
for quick referencing. See the CS 4440 Wiki!

We do NOT expect you to “master” GDB…

http://cs4440.eng.utah.edu/files/project2/gdb-refcard.pdf
https://beej.us/guide/bggdb/
https://users.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/misc/gdb_tutorial.html

Stefan Nagy

Other GDB Resources

￭ Other GDB resources:
￭ CS 4440 GDB RefCard
￭ Beej's GDB Tutorial
￭ Tudor’s GDB Tutorial

127

However, you should keep a link or two handy
for quick referencing. See the CS 4440 Wiki!

We do NOT expect you to “master” GDB…

You will definitely be faced with GDB-style
debugging scenarios in your future careers!

http://cs4440.eng.utah.edu/files/project2/gdb-refcard.pdf
https://beej.us/guide/bggdb/
https://users.umiacs.umd.edu/~tdumitra/courses/ENEE757/Fall15/misc/gdb_tutorial.html

Stefan Nagy

D.E.N.N.I.S.
Setup and stabilize your attack!

128

Stefan Nagy

We’re almost there!

￭ By this point, we’ve identified our padding length and buffer start address
￭ Now, introduce our shellcode and finalize the attack payload!

129

RetAddr

Saved EBP

other stuff

buf[100]

&buf

90909090

90909090

90909090909090

9090 shellcode

Stefan Nagy

Troubleshooting

￭ E.g., “My attack segfaults and I don’t know why!”

￭ Check your padding!
￭ Are you correctly overwriting the return address?

￭ Check your payload order!
￭ If shellcode first, you must jump to buffer’s exact start!
￭ If NOPs first, you can jump anywhere in the NOP slide!

￭ Check your destination!
￭ Perform memory inspection to look for known, friendly payloads
￭ Be sure to set breakpoints on a location after the buffer is filled!

130

Stefan Nagy

Troubleshooting

￭ E.g., “My attack segfaults and I don’t know why!”

￭ Check your padding!
￭ Are you correctly overwriting the return address?

￭ Check your payload order!
￭ If shellcode first, you must jump to buffer’s exact start!
￭ If NOPs first, you can jump anywhere in the NOP slide!

￭ Check your destination!
￭ Perform memory inspection to look for known, friendly payloads
￭ Be sure to set breakpoints on a location after the buffer is filled!

131

Most troubleshooting requires just a little trial and error!

Look for signs of progress (e.g., overwriting stack objects),
and test whether your payload tweaks changes things!

Stefan Nagy

Troubleshooting

￭ E.g., “My attack segfaults and I don’t know why!”

￭ Check your padding!
￭ Are you correctly overwriting the return address?

￭ Check your payload order!
￭ If shellcode first, you must jump to buffer’s exact start!
￭ If NOPs first, you can jump anywhere in the NOP slide!

￭ Check your destination!
￭ Perform memory inspection to look for known, friendly payloads
￭ Be sure to set breakpoints on a location after the buffer is filled!

132

Most troubleshooting requires just a little trial and error!

Look for signs of progress (e.g., overwriting stack objects),
and test whether your payload tweaks changes things!

Stefan Nagy

Questions?

133

Stefan Nagy

Next time on CS 4440…

134

Defending Applications
And beating those defenses!

