Week 5: Lecture A
All About Applications

Tuesday, September 17, 2024

Announcements

Project 1: Crypto released (see Assignments page on course website)
= Deadline: this Thursday, September 19th by 11:59 PM

[Project 1: Cryptography Table of Contents:

« Helpful Resources

. ¢ Introduction
Deadline: Thursday, September 19 by 11:59PM.
« Objectives
« Start by reading this!
Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies. o Working in the VM
‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have o Testing your Solutions

difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover

. - Part 1: Hash Collisions
project material, so you and your partner should collaborate on each part.

o Prelude: Collisions
The code and other answers your group submits must be entirely your own work, and you are bound by the o Prelude: FastColl
University’s Student Code. You may consult with other students about the conceptualization of the project and the E
P " 5 i 5 o Collision Attack
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your o What to Submit

code comments). Don't risk your grade and degree by cheating! « Part 2: Length Extension

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any o Prelude: Merkle-Damgar
external dependencies. Use only default Python 3 libraries and/or modules we provide you. o Length Extension Attack:

o What to Submit

Part 3: Cryptanalysis

o Prelude: Ciphers
Helpful Resources °
o Cryptanalysis Attack
« The CS 4440 Course Wiki o Extra Credit
* VM Setup and Troubleshooting o What to Submit

» Terminal Cheat Sheet

Part 4: Signature Forgery
* Python 3 Cheat Sheet o Prelude: RSA Signatures

* PyMD5 Module Documentation o Prelude: Bleichenbacher

CyRoots Module Documentation o Forgery Attacks j

o What to Submit

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 2

http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Progress on Project 1

Finished everything!
f 0%

Finished Parts 1 -3
0 0%

Finished Parts 1 -2
] 0%

Finished Part 1
f) 0%

Haven't started :(
g 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
.u UNIVERSITY OF UTAH Steran nNagy

Announcements

Project 2: AppSec released

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Deadline: Thursday, October 17th by 11:59PM

/Project 2: Application Security

Deadline: Thursday, October 17 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

Helpful Resources

* The CS 4440 Course Wiki

¢ VM Setup and Troubleshooting
 Terminal Cheat Sheet

* GDB Cheat Sheet

 x86 Cheat Sheet

kc Cheat Sheet

~

Table of Contents:

Helpful Resources
Introduction
Objectives
Start by reading this!
o Setup Instructions
o Important Guidelines
Part 1: Beginner Exploits
o Target 0: Variable Overwrite
o Target 1: Execution Redirect
o What to Submit
Part 2: Intermediate Exploits
> Target 2: Shellcode Redirect
o Target 3: Indirect Overwrite
o Target 4: Beyond Strings
o What to Submit
Part 3: Advanced Exploits
o Target 5: Bypassing DEP
o Target 6: Bypassing ASLR
What to Submit
Part 4: Super L33T Pwnage
o Extra Credit: Target 7
o Extra Credit: Target 8
o What to Submit
Submission Instructions /

Stefan Nagy

Wiki Updates

Tutorials and Cheat Sheets

Page
VM Setup & Troubleshooting
Terminal Cheat Sheet

Python 3 Cheat Sheet

CS 4440 Wiki: All Things CS 4440

This Wiki is here to help you with all things CS 4440: from setting up your VM to introducing the languages and tools that
you'll use. Check back here throughout the semester for future updates.

Have ideas for other pages? Let us know on Piazzal

Description
Instructions for setting up your CS 4440 Virtual Machine (VM).
Navigating the terminal, manipulating files, and other helpful tricks.

A gentle introduction to Python 3 programming.

x86 Assembly Cheat Sheet
C Cheat Sheet

GDB Cheat Sheet

Common x86 instructions and instruction procedures.
Information on C functions, and storing and reading data.

A quick reference for useful GNU Debugger (GDB) commands.

JavaScript Cheat Sheet

A gentle introduction to relevant JavaScript commands.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 7

Last time on CS 4440...

Cryptocurrency
Distributed Consensus
Mining
Fairness

“The Gang Invents a New Currency”

Cryptocurrency
= Invented in 2008 (Bitcoin) by Satoshi Nakamoto
= His/their real identify remains a mystery
= Modern cryptocoins: Bitcoin, Litecoin, Ethereum

I don't understand

Key PrinCipleS how the US economy works,
= Integrity
= Distributed Consensus
= Cryptographic Hash Function
= Public-key Crypto
= Proof-of-Work

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 9

Transactions

141 1 “ 1 ” : Asledger - - _ B's ledger :
Traditional banking uses a “centralized” ledger | = oo | |
= You have as much $$$ as your bank (and US Govt.) says! | mrmc
i k C's ledger * 1
\\ $5A-B ! :
: _ — ”/ $A-BC 1
° ° . | « !
Cryptocurrency = Distributed Public Ledger
= Everyone has access to every transaction +
= Everyone knows how much money everyone else has
= Transactions are chained using previous transactions | weews DR sotetger |
= To determine how much money you have, must search o - i
the list of transactions to determine your balance | k ’ R
= Trust that < 50% of the network is corrupt ; \ . ;o
! Sl -t :
1 <«
SCHOOL OF COMPUTING Stefan Nagy 10

UNIVERSITY OF UTAH

Security

Transactions must be “committed”
= Resource intensive and competitive
= Requires massive computing power to fool
= Need to out-compute the entire network
= Can't work “ahead” due to block chaining

Security via “distributed consensus”
= It's hard to to fool everyone in the room
= Specifically, have to fool 51% of network

= Majority vote wins
= Longer ledger wins

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 1

“Mining” Cryptocurrency

We want to print our own money!

Super high-level idea: reward who

first “validates” a transaction

= Validators are called “miners”
= Given a small commision

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Bitcoin Mining
['bit-koin mi-nin]

The process of verifying
transactions on the
Bitcoin blockchain by
solving mathematical
puzzles, for which
miners are rewarded
with new bitcoin.

2 Investopedia /

12

“Mining” Cryptocurrency

We want to print our own money! o ” ' Keeping

the-money
movmg

.
"R

Super high-level idea: reward who

first “validates” a transaction

= Validators are called “miners”
= Given a small commision

|deally: a fair process (no entry fee)
= Anyone can start mining!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 13

“Mining” Cryptocurrency

Bitcoin Mining Energy Consumption
(% of Total Energy Consumption)

In practice, not really fair...
= Hardware and GPU cost

= Electricity cost -
= Environmental cost -

Saudi Arabia 0.00%
00%OT% 02% 03% 0% O05% 06% O7% 0% 0% 0% 1% 12% 13% 1%

= More money gives an advantage!

coindesk sourse: caecy a4

AMD Radeon RX 6000 & nVidia GeF
g of the respective lowest prices al major Germd

142% &f1izy, 149

1%

TS Jantl Janzz Fe2 Febls Febd Marld Als May2 Mays Maydd w20 Jud

SCHOOL OF COMPUTING Stefan Nagy 14

UNIVERSITY OF UTAH

“Mining” Cryptocurrency

In practice, not really fair...
= Hardware and GPU cost
= Electricity cost
= Environmental cost
= More money gives an advantage!

Don’t buy into the hype!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 5

“Mining” Cryptocurrency

In practice, not really fair...

= Hardware and GPU cost

= Electricity cost

= Environmental cost

= More money gives an advantage!

Don’t buy into the hype!

= Blockchain has other cool uses

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Fund Higher Education

o Student Financial Aid
@@ E-commerce

Global Payments
@ Remittance
@ P2P Lending

@ Microfinance

Intellectual Property

@ Healthcare
@ Title Records

Equity @
Private Markets @

®

Debt €)
Ownership
Crowdfunding @ @ @9 Voting
Derivatives eID Higher Education Student Records
Stefan Nagy 16

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 17

This time on CS 4440...

Program Execution
Virtual Memory
The Stack
Stack Corruption

Coding Challenge

As part of a job interview, you are tasked
with writing a program—in C—that:

(1) reads characters from the user; and
(2) prints out the reverse of that message.

You are expected to write a working
program in less than 5 minutes. Go!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 19

Coding Challenge

If you wrote a program like:

//;;t main(void) { ‘\\\

char buffer[40];

gets(buffer);

// Saves user input
// into the buffer

. Y,

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 20

This program will...

ALWAYS run normally!

| 0%
NEVER run normally!

' 0%

None of the above!

' 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Coding Challenge

If you wrote a program like:

int maln(VO"*A-LQ;
P n‘?i?fk

char ¢

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 22

Coding Challenge

If you wrote a program like:

int main(Y2f5°

#

char {

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

CWE-242: Use of Inherently Dangerous Function

‘Weakne: D: 242
Abstraction: Base
Structure: Simple

View customized information: (___ Conceptual) (operational)

Mapping-Friendly) Complete
~ Description
The product calls a function that can never be guaranteed to
work safely.
+~ Extended Description
Certain functions behave in dangerous ways regardless of
how they are used. Functions in this category were often
implemented without taking security concerns into account.
The gets() function is unsafe because it does not perform
bounds checking on the size of its input. An attacker can
easily send arbitrarily-sized input to gets() and overflow the
destination buffer. Similarly, the >> operator is unsafe to
use when reading into a statically-allocated character array
because it does not perform bounds checking on the size of
its input. An attacker can easily send arbitrarily-sized input
to the >> operator and overflow the destination buffer.

23

Attacking Computer Systems

Problem: attacker can’t load their
own code on to the system

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 2

Attacking Computer Systems

Problem: attacker can’t load their
own code on to the system

I Office o
<AnviDiA

o= Windows \

Opportunity: the attacker can
interact with existing programs

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 25

Attacking Computer Systems

Problem: attacker can’t load their
own code on to the system

Opportunity: the attacker can
interact with existing programs

Q101010110 01011010110 0101010110 Q101010

01011010110 0101191010 Q1oneIoNna

: make the system do
Ch a lle n ge. 01011010110 G1011010110 - G 01011010110
. 01011010110 A on

what you want... using only the Y
y oo y 10101010

i { lj

existing programs on the system
that you can interact with

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 26

Software Exploitation

Goal: take over a system by exploiting an application on it

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 27

Software Exploitation

Goal: take over a system by exploiting an application on it

Exploit technique 1: code injection
= Insert your own code (as an input)
= Redirect the program to execute it

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 28

Software Exploitation

Goal: take over a system by exploiting an application on it

Exploit technique 1: code injection
= Insert your own code (as an input)
= Redirect the program to execute it

Exploit technique 2: code reuse

= Leverage the program'’s existing code
= Execute it in a way it wasn’t intended to

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 29

Software Exploitation

Goal: take over a system by exploiting an application on it

Exploit technique 1: code injection
= Insert your own code (as an input)
= Redirect the program to execute it

Exploit technique 2: code reuse

= Leverage the program'’s existing code
= Execute it in a way it wasn’t intended to

Attack vector: memory corruption

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 30

Program Execution

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 31

What is execution?

Double-clicking a shortcut on your desktop

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 32

What is execution?

Double-clicking a shortcut on your desktop

Tapping an app icon on your smartphone

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 33

What is execution?

Double-clicking a shortcut on your desktop

Tapping an app icon on your smartphone

“Hey Siri, play Midnights on Spotify”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 34

What really is execution?

Programs made up of instructions

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

LEVEL

LOWER

— PYTHON/JS

def add(x,y) return x + vy

— C

int addInts(int x, int y)
{

}

return x + vy;

— ASSEMBLY

LOAD $X

LOAD $Y

SET $RESULT, 0

ADD $RESULT, $X, $Y

— MACHINE CODE
01101110 01101111

ABSTRACTION

MORE

35

What really is execution?

Programs made up of instructions

High-level: programming languages
= Higher level: interpreted (Python, JS, etc.)
= Lower level: compiled (C/C++, Rust, Go)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

LEVEL

LOWER

— PYTHON/JS

def add(x,y) return x + vy

— C

int addInts(int x, int y)
{

return x + vy;

}

— ASSEMBLY

LOAD $X

LOAD $Y

SET $RESULT, 0

ADD $RESULT, $X, $Y

— MACHINE CODE
01101110 01101111

ABSTRACTION

MORE

36

What really is execution?

Programs made up of instructions

High-level: programming languages
= Higher level: interpreted (Python, JS, etc.)
= Lower level: compiled (C/C++, Rust, Go)

Low-level: assembly and machine code

= Machine code = what the computer executes
= Assembly = one level higher (human-readable)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

LEVEL

LOWER

— PYTHON/JS

def add(x,y) return x + vy

— C

int addInts(int x, int y)
{

return x + vy;

}

— ASSEMBLY

LOAD $X

LOAD $Y

SET $RESULT, 0

ADD $RESULT, $X, $Y

— MACHINE CODE
01101110 01101111

ABSTRACTION

MORE

37

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

What really is execution?

Programs made up of instructions

High-level: programming languages
= Higher level: interpreted (Python, JS, etc.)
= Lower level: compiled (C/C++, Rust, Go)

Low-level: assembly and machine code
= Machine code = what the computer executes

= Assembly = one level higher (human-readable)

Execution = executing instructions

Stefan Nagy

LEVEL

LOWER

— PYTHON/JS
def add(x,y) return x + vy

— C

int addInts(int x, int y)
{

return x + vy;

}

— ASSEMBLY

LOAD $X

LOAD $Y

SET $RESULT, 0

ADD $RESULT, $X, $Y

— MACHINE CODE
01101110 01101111

ABSTRACTION

MORE

38

What really is execution?

Execution comprised of three steps
= Fetch an instruction from the program
= Decode the instruction into what it does
= Execute that instruction

Fetch

Decode

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 39

What really is execution?

Execution comprised of three steps
= Fetch an instruction from the program
= Decode the instruction into what it does
= Execute that instruction

Fetch

Decode

Execution is the job of the CPU

= Central Processing Unit i i
= The brain of your computer N

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 40

Fetcher

4

[Instruction

Memory
Interface

P ——
P ——

Registers memory

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

41

The CPU

CPU state held in registers Fetchor

[Instruction
= Analogous to source code variables ‘

Memory
Interface

memory

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 42

The CPU

CPU state held in registers ['”E‘gt‘éﬁg?”

= Analogous to source code variables ‘

General-purpose registers:
= EAX, EBX, ECX, EDX, EDT, EST

Special-purpose registers:
= EIP =Instruction Pointer
= ESP =Stack Pointer
= E = Frame/Base Pointer

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 43

The CPU

: . . Instruction
State modified by assembly instructions Fetcher
= ADD, SUB, XOR, CMP, CALL, JMP, RET ‘
= And many more! Instruction
""" . Decoder |

Memory
Interface

Assembly instruction syntaxes
= AT&T = Source Destination
= Intel = Destination Source
= Example: MOV SRC, DST versus MOV DST, SRC

= This lecture: AT&T syntax

P ——
P ——

Registers memory

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy Lt

The CPU

Software state = registers and memory ['”sgqgﬁ;"

/

0010
0100
0110

\ CPU Memory /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 45

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 46

Process Virtual Memory

Memory layout of a 32-bit Linux process

(e o) OxXFFFFFFFF &)
Higher Kernel Virtual Memory
Memory 0xC0000000 &
A Stack Memory
unmapped

Shared Libraries

unmapped
The “Break” i
Heap Memory
Uninitialized Data
Initialized Data
v Program Text
Lower 0x08048000 >
Memory) 9x00000000 —m unmapped

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 48

Memory layout of a 32-bit Linux process

(e o) OxXFFFFFFFF =)
Higher Kernel Virtual Memory
Memory 0xC0000000 =
A Stack Memory
unmapped

Shared Libraries

unmapped
The “Break” >
Heap Memory
Uninitialized Data
Initialized Data 5
v Program Text <+ : rogra.m
Lower 0x08048000 = Instructions
Memory) 9x00000000 —m unmapped

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 49

Memory layout of a 32-bit Linux process

(e o) OxXFFFFFFFF =)
Higher Kernel Virtual Memory
Memory 0xC0000000 =
A Stack Memory
unmapped

Shared Libraries

unmapped
The “Break” =
Heap Memory
Uninitialized Data L
o Initialized
Initialized Data .
v global variables
Program Text
Lower 0x08048000
Memory) 9x00000000 —m unmapped

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 50

Memory layout of a 32-bit Linux process

(e o) OxXFFFFFFFF =)
Higher Kernel Virtual Memory
Memory 0xC0000000 =
A Stack Memory
unmapped

Shared Libraries

unmapped
The “Break” o
Heap Memory -
Uninitialized Data T Un-in Itla.llzed
— global variables
Initialized Data
v Program Text
Lower Ox08048000 {
Memory | 5400000000 — unmapped

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 51

Memory layout of a 32-bit Linux process

(e o) OxXFFFFFFFF =)
Higher Kernel Virtual Memory
Memory 0xC0000000 =
A Stack Memory
unmapped

Shared Libraries

unmapped i
The “Break” {2 Dynamically
Heap Memory <+— | allocated memory
Uninitialized Data viamalloc()

Initialized Data

¥ Program Text
Lower 0x08048000
Memory) 9x00000000 —m unmapped

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 52

Memory layout of a 32-bit Linux process

(e o) OxXFFFFFFFF &)
Higher Kernel Virtual Memory
Memory 0xC0000000 &
A Stack Memory
unmapped

E.g, libc.so

Shared Libraries
text and data

unmapped
The “Break” i
Heap Memory
Uninitialized Data
Initialized Data
v Program Text
Lower 0x08048000 >
Memory) 9x00000000 —m unmapped

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 53

Memory layout of a 32-bit Linux process

rioner) OXFFFFFFFF —» P —

igher ernet Virtua emor .
Me?nory 0xC0000000 > y Local variables,
A StaciMemory <—| and a record of
unmapped active functions

Shared Libraries

unmapped
The “Break” =
Heap Memory
Uninitialized Data
Initialized Data
v Program Text
Lower 0x08048000
Memory) 9x00000000 —m unmapped

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 54

Lower

Memory

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Memory layout of a 32-bit Linux process

@xFFFFFFFF
8xC0000000

The “Break”

0x08048000
0x00000000

=

Kernel Virtual Memory

=

—>

>

Stack Memory

unmapped

Shared Libraries

unmapped

Heap Memory

Uninitialized Data

Initialized Data

Program Text

>

unmapped

Stefan Nagy

Stack grows downwards

grows upwards

55

Memory layout of a 32-bit Linux process

Lower

Memory

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

@xFFFFFFFF
8xC0000000

The “Break”

0x08048000
0x00000000

I :
Kernel Virtual Memory
>
AAAAAAA 5
AAAAAAAAAAAAAAAAA
unmapped
Shared Libraries
unmapped
——p» | BBBBBBBBBBBBBBBBB
BBBBBBB >
Uninitialized Data
Initialized Data
Program Text
> d
nmappe
> unmapp

Stefan Nagy

Stack grows downwards
- Filled upwards

grows upwards
- Filled downwards

56

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 57

The Stack

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 58

The Stack

Memory for storing function data -
INACTIVE

= Local variables RETURN LINK TO N-3 3451
= Return address NactvE N-2 e 23
O 22

21

Provides a running “record” of the —_— RETURNUNKTONZ 170
active subroutine(s) in a program e DATA e
RETURN LINK TO N-1 16

15

14
ACTIVE 13
rrame N < 12
11
10
_ 9
8
7

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 59

The Stack

Begins at highest address o8
bl
26

Grows toward lower addresses ———
= Think of it as a stack of plates Merame N-2 DATA - 2
that grows upside-down o1
RETURN LINK TO N-2 20
. INACTIVE 19
Three key registers to know: rrave N=1 DATA 18
n E = The FramelBase POinteI’ RETURN LINK TO N-1 1; <=
= Highest address of current frame 1‘51
= ESP =The Stack Pointer ACTIVE ny 13
= Denotes the top of the stack FRAME 112
= Topmost (lowest) address of the stack 10
= EIP =Address of next instruction to be executed . o <~ SP

8
7

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 60

Stack Operation

Push Bx0A

Push sends data
to the topmost
area of the stack

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 61

Stack Operation

Push Bx0A
Push Ox6C

BA - -
6C -+

|U’

B
A
!

Stack grows -
move SP down!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 62

Stack Operation

Push Bx0A
Push 6x6C
Push OxFF

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

OA

6C
FF -

Stefan Nagy

|(ﬂ
O

Stack grows -
move SP down!

63

Stack Operation

Push Bx0A

e z

Pop R1 6C

P FE |« SP

7
Register R1 - Pop sends data
at top of stack

to a register

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 64

Stack Operation

Push Ox0A
e .
PUS R':(6C = SP --
op FF -
T
i
/
/

V4
Register R1 <
: Stack clears -

move SP up!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 65

Stack Operation

Push Bx0A

P

ush @x6C oA - S

Push OxFF .
6C _

Pop R1

Pop R2

. I
Resister &1 [r ' Stack clears =
/
: J Y move SP up!
RegisterR2 | 6C

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 66

Stack Operation

Push Ox0A
o T
PUS R1X 88 - P <
op

FF
Pop R2
Push 0x88

Register R1 | FF Stack grows -
move SP down!
RegisterR2 | 6C

Stefan Nagy 67

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Assume main() calls foo()

=® | main()'’'s local vars

foo()'s arguments < SP «-

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 68

Assume main() calls foo()

=® | main()'’'s local vars

foo()'s arguments

foo()’'s return addr

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

69

Assume main() calls foo()

=® | main()'’'s local vars

foo()'s arguments

foo()’'s return addr

main()'s frame ptr | - sp «-

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 70

Assume main() calls foo()

main()’'s local vars

foo()'s arguments

foo()’'s return addr

> — | main()’'s frame ptr | g

|(ﬂ
=

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 71

Assume main() calls foo()

main()’'s local vars

foo()'s arguments

foo()’'s return addr

— | main()’'s frame ptr -

foo()'’'s local vars

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 72

Assume main() calls foo()

Call-er (main) main()’'s local vars

Stack Frame
foo()'s arguments A

foo()’'s return addr

: , Call-ee (foo)
main()’s frame ptr \T' Stack Frame

foo()'s local vars

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 73

Example Program

void foo(int 2, int b) : main:
{ : pushl %ebp

char bufi1[10]; : novl %esp, %ebp
} : subl $8, %esp

: movl $6,

void main() | movl $3, (%esp)
{ : call foo

foo(3,6); : leave
} : ret

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 74

Example Program

main:
pushl %ebp
movl %esp, %ebp
subl S8, %esp
movl $6, 4(%esp)
movl $3, (%esp)
call foo
leave

ret

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 75

main:
pushl
movl
subl
movl
movl
call
leave

ret

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

%ebp

%esp, %ebp
S8, %esp
$6, 4(%esp)
$3, (%esp)

foo

Example Program

previous frame ptr

Stefan Nagy

|U)
B

76

Example Program

main:

pushl %ebp -

|U)
B

previous frame ptr |

movl %esp, %ebp
subl S8, %esp
movl $6, 4(%esp)
movl S3, (%esp)
call foo

leave

ret

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 77

main:
pushl
movl
subl
movl
movl
call
leave

ret

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

%ebp

%esp, %ebp
$8, %esp
$6, 4(%esp)
$3, (%esp)

foo

Example Program

previous frame ptr

Stefan Nagy

78

main:
pushl
movl
subl
movl
movl
call
leave

ret

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

%ebp

%esp, %ebp
S8, %esp
$6, 4(%esp)
$3, (%esp)

foo

Example Program

previous frame ptr

6

Stefan Nagy

Fﬂ
o

79

Example Program

main:
pushl %ebp —» | previous frame ptr
movl %esp, %ebp 6
subl S8, %esp
3 = SP

movl $6, 4(%esp)

movl $3, (%esp)

call foo

leave Function args are
pushed in reverse

ret

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 80

Example Program

main:
pushl %ebp —» | previous frame ptr
movl %esp, %ebp 6
subl S8, %esp]

movl $6, 4(%esp)

foo()’'s return addr
movl $3, (%esp) () - SP «

call foo

leave

ret

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 81

Example Program

main:
pushl “%ebp —»| previous frame ptr
movl %esp, %ebp 6
subl S8, %esp]

movl $6, 4(%esp)

foo()'s return addr |« SP

movl $3, (%esp) -

call foo =~ .
¢SS __- foo will return to

main’'s post-call
ret Instruction

leave W -~

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 82

foo:
pushl
movl
subl
leave

ret

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

%ebp
%esp, %ebp

$16, %esp

Example Program

—» | previous frame ptr
6
3

foo()'s return addr

main()’'s frame ptr |« SP <!

Stefan Nagy 83

foo:
pushl
movl
subl
leave

ret

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

%ebp
%esp, %ebp

S16, %esp

Example Program

previous frame ptr

6

3

foo()'s return addr

main()’'s frame ptr

Stefan Nagy

|U)
B

84

foo:
pushl
movl
subl
leave

ret

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

%ebp
%esp, %ebp

$16, %esp

Example Program

previous frame ptr

6

3

foo()'s return addr

main()’'s frame ptr

Stefan Nagy

|(ﬂ
=

85

foo:
pushl
movl
subl
leave

ret

%ebp
%esp, %ebp

S16, %esp

-—-—

Example Program

previous frame ptr

6

3

foo()'s return addr

mov %ebp, %esp
pop %ebp

main()’'s frame ptr

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

|(ﬂ
=

86

foo:
pushl
movl
subl
leave

ret

%ebp

%esp, %ebp

S16, %esp
\I\

Example Program

previous frame ptr
6
3

foo()'s return addr

mov %ebp, %esp
pop %ebp

N, —»| main()’'s frame ptr |4 SP <«

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 87

Example Program

foo:
pushl %ebp - —» | previous frame ptr
movl %esp, %ebp 6
subl $16, %esp 3

leave ---- foo()'s return addr

ret ,~——~--7"=----=-=-~ N
A Y

mov %ebp, %esp
pop %ebp

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 88

Example Program

foo:

pushl %ebp —» | previous frame ptr

movl %esp, %ebp 6

subl $16, %esp 3 < SP <,
|

leave _

ret -7,

/“\ _______

pop %eip

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 89

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 90

Stack Corruption

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 91

Vulnerable Program

void foo(char *str) {
char buffer[16];
strcpy(buffer, str);

}

void main() {
char buf[256];
memset(buf, ‘A’, 255);
buf[255] = ‘\x080';
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 92

Vulnerable Program

void foo(char *str) {

char buffer[16]; :
el = | previous frame ptr

strcpy(buffer, str);
AAAAAAAAA. . .\0O <=

Fﬂ
o

}

void main() {
char buf[256];
memset (buf, ‘A’, 255);

buf[255] = ‘\x00’;
foo(buf);

SCHOOL OF COMPUTING Stefan Nagy 93

UNIVERSITY OF UTAH

Vulnerable Program

void foo(char *str) {

char buffer[16]; :
el = | previous frame ptr

strcpy(buffer, str);
AAAAAAAAA. . .\0O <=

Fﬂ
o

}

void main() {
char buf[256];
memset (buf, ‘A’, 255);

foo()'s first arg

buf[255] = ‘\x00’;
foo(buf);

SCHOOL OF COMPUTING Stefan Nagy ER

UNIVERSITY OF UTAH

Vulnerable Program

void foo(char *str) {

char buffer[16]; .
—» | previous frame ptr
strcpy(buffer, str);

Fﬂ
o

}

void main() {
char buf[256];
memset (buf, ‘A’, 255);

(AAAAAAAAA. . .\0O <+

foo()'s first arg

buf[255] = ‘\x00’;
foo(buf);

SCHOOL OF COMPUTING Stefan Nagy 95

UNIVERSITY OF UTAH

Vulnerable Program

void foo(char *str) {

char buffer[16]; .
previous frame ptr
strcpy(buffer, str);
\ <: AAAAAAAAA. . .\O
void main() { foo()'s first arg
char buf[256]; foo()'s return addr
memset (buf, ‘A’, 255);] () , £ t
main s frame r
buf[255] = ‘\x60': -> P - SP
foo(buf);
}

SCHOOL OF COMPUTING Stefan Nagy %6

UNIVERSITY OF UTAH

Vulnerable Program

void foo(char *str) {
char buffer[16];
strcpy(buffer, str);

}

void main() {

char buf[256];

memset (buf, ‘A’, 255);

buf[255] = ‘\x00’;
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

previous frame ptr

AAAAAAAAA. . .\0O

foo()'s first arg

foo()’'s return addr

main()’'s frame ptr

char * buffer[16]

Stefan Nagy

Fﬂ
=

97

Vulnerable Program

void foo(char *str) {

char buffer[16]; .
previous frame ptr
strcpy(buffer, str);
\ (AAAAAAAAA. . .\O
void main() { foo()'s first arg
char buf[256]; foo()'s return addr
memset (buf, ‘A’, 255);] () , £ t
main()’'s frame ptr
buf[255] = ‘\x00'; - P
foo(buf); 22272222222222?? | 4 SP
}

SCHOOL OF COMPUTING Stefan Nagy 28

UNIVERSITY OF UTAH

What will happen when we execute strcpy?

It will copy only as many bytes as the buffer can hold.
0%

It will realize we're trying to copy more bytes than there's room for, and exit.
| 0%

None of the above

' 0%

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Buffer Overflow!

void foo(char *str) {

char buffer[16]; .
previous frame ptr
strcpy(buffer, str);
(AAAAAAAAA. . .\0O

foo()’'s first arg

}

void main() {

char buf[256]; foo()'s return addr
memset (buf, ‘A’, 255);

— | main()’'s frame ptr

buf[255] = ‘\x00':
foo(buf): AAAAAA A= = ====~— >
AAAAAAAAAAAAAAAAAAA

SCHOOL OF COMPUTING Stefan Nagy 100

UNIVERSITY OF UTAH

Buffer Overflow!

void foo(char *str) {

char buffer[16];)
[16] previous frame ptr

<: AAAAAAAAA. . .\0O

strcpy(buffer, str);
}

void main() { foo()'s first arg
char buf[256]; foo()'s return addr
memset (buf, ‘A’, 255);
—» | AAAAA A A-=-===--~- S
buf[255] = ‘\x00':
foo(buf) AAAAAAAAAAAAAAAAAAA |
AAAAAAAAAAAAAAAAAAA =

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 101

Buffer Overflow!

void foo(char *str) {
char buffer[16];
strcpy(buffer, str);

}

void main() {

char buf[256];

memset (buf, ‘A’, 255);

buf[255] = ‘\x00':
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

previous frame ptr

AAAAAAAAA. . .\0O

foo()'s first arg

AAAAAA A= == ===~ T

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

Stefan Nagy

Fﬂ
=

102

Buffer Overflow!

void foo(char *str) {
char buffer[16];
strcpy(buffer, str);

}

void main() {

char buf[256];

memset (buf, ‘A’, 255);

buf[255] = ‘\x00':
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

Stefan Nagy

Fﬂ
=

103

Why does it overflow?

void foo(char *str) {
char *strcpy(char *dest, const char *src);

char buffer[16];
The strcpy() function copies the string pointed

strcpy(buffer, str); . . T
to by src, including the terminating null byte

b ("\0"), to the buffer pointed to by dest. The
void main() { strings may not overlap, and the destination
char buf[256]: string dest must be large enough to receive the

nemset(buf, ‘A’, 255): \copy. Beware of buffer overruns! (See BUGS.))

buf[255] = ‘\x00':
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 104

Why does it overflow?

void foo(char *str) {
char buffer[16];

strcpy(buffer, str);

void main() {
char buf[256];
memset (buf, ‘A’, 255);
buf[255] = ‘\x00’;
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

-

char *strcpy(char *dest, const char *src);

The strcpy() function copies the string pointed
to by src, including the terminating null byte
("\0"), to the buffer pointed to by dest. The
strings may not overlap, and the destination
string[dest must be large enougm]to receive the

\copy. Beware of buffer overruns! (See BUGS.))

We are copying 256 bytes
into a 16-byte buffer!

Stefan Nagy

105

Why does it overflow?

4)

Observation: any stack objects within reach
of the overflow can be overwritten!

\ /

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 106

Why does it overflow?

4)

Observation: any stack objects within reach
of the overflow can be overwritten!

. /
4)

Examples: local variables, function
arguments, return addresses, etc.!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 107

Why does it overflow?

to clear the entire cache lin
§ Hack Paylosdforal 11 a3, 0
i1 A5

wpsadbiil

Watch on @3YouTube E&

https://icode4.coffee/?p=954

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 108

https://icode4.coffee/?p=954

Buffer Overflow (continued)

void foo(char *str) {
char buffer[16];
strcpy(buffer, str);

}

void main() {

char buf[256];

memset (buf, ‘A’, 255);

buf[255] = ‘\x00':
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

Stefan Nagy

Fﬂ
=

109

Buffer Overflow (continued)

void foo(char *str) {
char buffer[16];

strcpy(buffer, str);

} mov %ebp, %esp
void main()| pop %ebp
char b pop “%eip

memset (buf, ‘A’, 255);
buf[255] = ‘\x00’;
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAA

Stefan Nagy

110

Buffer Overflow (continued)

void foo(char *str) {

char buffer[16];

char b

AAAAAAAAAAAAAAAAAA
strcpy(buffer, str);
AAAAAAAAAAAAAAAAAA
} mov %ebp, %esp <:
void main()| POpP %ebp = = AAAAAAAAAAAAAAAAAA
pop %eip \
\ AAAAAAAAAAAAAAAAAA
memset (buf, ‘A’, 255); \

buf[255] = ‘\x00':
foo(buf);

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

overwritten frame ptr

Stefan Nagy

|Uh
o

111

Buffer Overflow (continued)

void foo(char *str) {

char buffer[16]; AAAAAAAAAAAAAAAAAA
strcpy(buffer, str);

<: AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA |

} mov %ebp, %esp

void main()| pop %ebp
pop %eip = = =

Fﬂ
o

char b
memset (buf, ‘A’, 255);

s | overwritten return addr

buf[255] = ‘\x@8’;

£ £):
oo(buf); 2DIIIIVIVIVIIIID

SCHOOL OF COMPUTING Stefan Nagy 12

UNIVERSITY OF UTAH

Buffer Overflow (continued)

void foo(char *str) {

char buffer[16]; AAAAAAAAAAAAAAAAAA
strcpy(buffer, str);

<: AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA |

} mov %ebp, %esp

void main()| pop %ebp
pop %eip = = =

Fﬂ
o

char b
memset (buf, ‘A’, 255);

s | overwritten return addr

buf[255] = ‘\xe8’; _ -
oo lbut) - Execution will return to
Polburs a garbage address!

} “AAAA" = 0x41414141

SCHOOL OF COMPUTING Stefan Nagy 13

UNIVERSITY OF UTAH

Buffer Overflow (continued)

N\

=

<

segmentation fault.
(Core dumped)

Stefan Nagy 14

N\

* 7 x

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Redirecting Execution

/

o

Observation: when a function returns, execution
continues to whatever its return address is...

~

v

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

115

Redirecting Execution

-

.

Observation: when a function returns, execution
continues to whatever its return address is...

~

v

/

-

Implication: If Mallory overwrites the return
address with something else, it will be executed!

~

/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

116

Redirecting Execution

void foo(char *str) {

char buffer[16]; AAAAAAAAAAAAAAAAAA
strcpy(buffer, str);

<: AAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAA |

} mov %ebp, %esp

void main()| pop %ebp
pop %eip = = =

Fﬂ
o

char b
memset (buf, ‘A’, 255);

~» | Address of some Evil Code

buf[255] = ‘\x00';

£ £):
oo(buf); 2DIIIIVIVIVIIIID

SCHOOL OF COMPUTING Stefan Nagy 17

UNIVERSITY OF UTAH

Redirecting Execution

void foo(char *str) {
char buffer[16];

strcpy(buffer, str);

} mov %ebp, %esp

void main()| pop %ebp
pop %eip = = =

char b
memset (buf, ‘A’, 255);

~» | Address of some Evil Code

buf[255] = ‘\x00’:
foo(buf): Execution will return to
the Evil Code’s address!

SCHOOL OF COMPUTING Stefan Nagy 18

UNIVERSITY OF UTAH

Redirecting Execution

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 119

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 120

Next time on CS 4440...

Attacking Applications

