Week 4: Lecture A
Public Key Cryptography

Tuesday, September 10, 2024




Announcements

Project 1: Crypto released (see Assignments page on course website)
= Deadline: Thursday, September 19th by 11:59 PM

(Project 1: Cryptography Table of Contents:

« Helpful Resources

. ¢ Introduction
Deadline: Thursday, September 19 by 11:59PM.
« Objectives
« Start by reading this!
Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies. o Working in the VM
‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have o Testing your Solutions

difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover

. -  Part 1: Hash Collisions
project material, so you and your partner should collaborate on each part.

o Prelude: Collisions
The code and other answers your group submits must be entirely your own work, and you are bound by the o Prelude: FastColl
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your o What to Submit
code comments). Don't risk your grade and degree by cheating!

o Collision Attack

« Part 2: Length Extension
Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any o Prelude: Merkle-Damgar
external dependencies. Use only default Python 3 libraries and/or modules we provide you. o Length Extension Attack:

o What to Submit

Part 3: Cryptanalysis

o Prelude: Ciphers
Helpful Resources °
o Cryptanalysis Attack
« The CS 4440 Course Wiki o Extra Credit
* VM Setup and Troubleshooting o What to Submit

» Terminal Cheat Sheet

Part 4: Signature Forgery
* Python 3 Cheat Sheet o Prelude: RSA Signatures

* PyMD5 Module Documentation o Prelude: Bleichenbacher

CyRoots Module Documentation o Forgery Attacks j

o What to Submit
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http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Progress on Project 1

Finished Parts 1 -3

| 0%
Finished Parts 1 -2

| 0%
Finished Parts 1

' 0%

Haven't started :(

| 0%

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu




Announcements

ACM Club Kickoff!

In The Association for Computing Machinery:

* Find like-minded people in the field of ° Gain career and industry connections
computing, and work on projects as a through lectures by professors and
Special Interest Group. companies.

There will be Pizza!
Thurs, Sept 5, 5-6pm
MEB 3147

Scan to RSVP for headcount
and diet restrictions

G‘ e sinery acm.cs.utah.edu @uofuacm M uofuacm@gmail.com
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Last time on CS 4440...

Symmetric Key Encryption
DES and AES
Block Cipher Modes
Building a Secure Channel




Key-based Encryption Schemes

“Symmetric” Key
= Encryption and decryption relies on ???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 8



Key-based Encryption Schemes

“Symmetric” Key
= Encryption and decryption relies on the same key
= Communicating parties must ???
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Key-based Encryption Schemes

“Symmetric” Key
= Encryption and decryption relies on the same key
= Communicating parties must share key in advance
= Examples: 77?
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Key-based Encryption Schemes

“Symmetric” Key
= Encryption and decryption relies on the same key
= Communicating parties must share key in advance
= Examples:
= Caesar, Vigenere
=  One-time Pad, Stream
= Transposition ciphers
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Symmetric Key Encryption

Categories of SKE

= Stream cipher: operates on ?7??
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Symmetric Key Encryption

Categories of SKE
= Stream cipher: operates on individual bits (or bytes); one at a time
= Generates pseudo-random key bits that are XOR'd to plaintext bits

Encryption Decryption

plaintext=| H | E| L | L | O ciphertext=| K [ M | I | V | E

@ ) @ &) ) ) @ S ) @

key=| A | X | H| J | B key=| A | X | H|J | B

ciphertext=| K | M | I | V | E plaintext=| H | E | L | L | O
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Symmetric Key Encryption

Categories of SKE

= Block cipher: operates on ???
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Symmetric Key Encryption

Categories of SKE

= Block cipher: operates on fixed-length groups of bits called blocks
=  Processes blocks using a 7??

Encryption Decryption
T T N e e T
plaintext= | B, || | B, | ! B, |: 1 :ciphertext=|C, | C, | C, |
B ¥ b » | |
b e P b b b
L L o L L |
I<ey=>@iik=> Enc iik:@i I key=>;ik=> Dec iik=>i
| B o N | |
| Lo Lo oo Lo Lo L
ciphertext=| C, || | C, | C, | : plaintext = | B, | | | B, ||| B, ||

SCHOOL OF COMPUTING Stefan Nagy 15

UNIVERSITY OF UTAH



Symmetric Key Encryption

Categories of SKE

= Block cipher: operates on fixed-length groups of bits called blocks
= Processes blocks using a reversible, non-colliding function

Encryption Decryption
T T N e e T
plaintext= | B, || | B, | ! B, |: 1 :ciphertext=|C, | C, | C, |
B ¥ b » | |
b R RN b b b
L L o L L |
I<ey=>@iik=> Enc iik:@i I key=>;ik=> Dec iik=>i
| | o | | i
| | Lo Lo Lo Lo l
ciphertext=| C, || | C, | C, | : plaintext = | B, | | | B, ||| B, ||
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Handling Long Messages

Challenge: How to encrypt longer messages? 5 ?

plaintext = N 5
= Can only encrypt in units of cipher block size... :
= But message might not be multiples of block size

l
- o=
Solution: 7??
l

ciphertext = C

N

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 17



Handling Long Messages

Challenge: How to encrypt longer messages?

= Can only encrypt in units of cipher block size...
= But message might not be multiples of block size

Solution: Append padding to end of message

= Must be able to recognize and remove padding afterward
= Common approach: add n bytes that have value n

SCHOOL OF COMPUTING
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plaintext =

B

N

U>'UI

!
o=
l

ciphertext =

C

N

18



Handling Long Messages

. 1 1 ? , P9
Challenge: What if message terminates a block: - plaintext= [ B, ||
= End of message might be misread as padding! : l ; ?
. el
Solution: 77? | |
| ! i

ciphertext=| C

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 19



Handling Long Messages

Challenge: What if message terminates a block? plaintext = [ By | | | ")
= End of message might be misread as padding! i l I ¢D X
key = @ k= @

Solution: Append an entire new block of padding B 5
= Padding is necessary to know we're at message end I [
ciphertext = | C, C..

________________________________________
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DES Modes: Electronic Codebook (ECB)

Electronic Codebook (ECB)

= Message divided into code blocks
= Each block encrypted/decrypted ?2?

plaintext = | B B B
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DES Modes: Electronic Codebook (ECB)

Electronic Codebook (ECB)

= Message divided into code blocks
= Each block encrypted/decrypted separately

plaintext = B, B, B,
! l !
key = @ k=>| Enc k= @
! ! !
ciphertext = | C. C, C,
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DES Modes: Electronic Codebook (ECB)

ECB Strengths: 77?
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DES Modes: Electronic Codebook (ECB)

ECB Strengths: c, c
= Construction is un-chained \ ch 2
= Message can be processed in parallel—fast! w .
= No wait on previous block’s encryption 4 »%4
C,[C,[C,|C,|C.

ECB Drawbacks: 7??

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 2



DES Modes: Electronic Codebook (ECB)

ECB Strengths: C. c
= Construction is un-chained A C, L2
= Message can be processed in parallel—fast! w .\
= No wait on previous block’s encryption 4 »%4
C,[C,[C,|C,|C.
ECB Drawbacks:
= Identical plaintext blocks produce same ciphertext encrypted

= This results in low diffusion
= Do larger block sizes increase diffusion?
= Yes—but at cost of higher memory footprint

original
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DES Modes: Cipher Block Chaining (CBC)

Cipher Block Chaining (CBC):

= Construction is 2??

plaintext = B, B, B,
! 1 !
® ® ®
! ! !
key = @ k=>| Enc k= @
! 1 !
ciphertext = C, C, C,
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DES Modes: Cipher Block Chaining (CBC)

Cipher Block Chaining (CBC):

= Construction is chained using previous cipher block (initialization vector for first block)

plaintext = B, B, B,
l 1 l
= = = = = = > © r—=—p @ r——p o
! : ! ! !
| |
key = @ : k=>| Enc : k= @
! : l | l
ciphertext = C,——1 C,——1 C,
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DES Modes: Cipher Block Chaining (CBC)

CBC Strengths: 77?

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 28



DES Modes: Cipher Block Chaining (CBC)

CBC Strengths:
= Chained construction far stronger than ECB
= More diffusion!
= Negates ECB's need for super-large blocks

encrypted

CBC Drawbacks: 7?2

original
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DES Modes: Cipher Block Chaining (CBC)

CBC Strengths:

= Chained construction far stronger than ECB
= More diffusion!
= Negates ECB's need for super-large blocks

CBC Drawbacks:

= Completely sequential
= Cannot be parallelized—slower to process!

= No leveraging advances in multi-threading etc.

SCHOOL OF COMPUTING
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Exercise: Stream vs. Block Ciphers

. Must wait Parallel . ee -
Cipher for data? processing? Confusion? Diffusion?
Stream
Ciphers
Block
Ciphers
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Exercise: Stream vs. Block Ciphers

. Must wait Parallel . ee -
Cipher for data? processing? Confusion? Diffusion?
>tream No No Yes No
Ciphers

BlOCk Yes Yes Yes Yes
Ciphers
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This time on CS 4440...

Key Exchange
Diffie Hellman

RSA
Attacking RSA
Key Management




Key Exchange
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Recap: Integrity

Problem: Send message via untrusted channel without being changed
Provably-secure solution: truly random function (e.g., LavaRand)

Practical solution: Pseudo-random Function Family (PRF)
= Input: arbitrary-length key k
=  Output: fixed-length message digest
= Secure if practically indistinguishable from a random function (unless Mallory knows k)

Real-world: message authentication codes built with cryptographic hashes
= E.g, HMAC-SHA256 (m)
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Recap: Confidentiality

Problem: Send message with secrecy in presence of an eavesdropper
Provably-secure solution: one-time pad with a key as long as m

Practical solution: Pseudo-random Generator (PRG)

= Input: a small, truly random seed
= OQOutput: arbitrary-length key stream
= Secure if practically indistinguishable from a random stream (unless Mallory knows k)

Real-world: steam ciphers, block ciphers
= Eg. AES-128 + CBC mode
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Integrity and Confidentiality

Common theme: ???
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Integrity and Confidentiality

Common theme: the key

Key requirements

=  Must be known by both Alice and Bob
= Must be unknown by anyone else
= Must be infeasible to guess

We'd like Alice and Bob to agree on a
key that satisfies those properties by
sending public messages to each other
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Multi-party Secure Communication

Required initialization: pre-sharing the key
= Total keys to be shared: at most two

[Alice} - >[ Bob }
[Alice }4 — [ Bob }

Stefan Nagy 40
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Recap: Secure Channels

What if you want confidentiality and integrity at the same time?
=  Which would you perform first: encrypting or hashing? And why?

Integrity Confidentiality
Check Check

SCHOOL OF COMPUTING
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Multi-party Secure Communication

Total keys to be shared: at most two

Four if you want confidentiality and integrity

Required initialization: pre-sharing the key

[ Alice }

Alice

Stefan Nagy

One set of keys
for integrity,
another for

confidentiality

42



Multi-party Secure Communication

Problem: all keys must be shared securely

= What if Mallory intercept our key?
= Man in the Middle attack (MITM)

[ Alice } :' - '. [ Bob }
[Mallory}
[Alice } :. - ’,' [ Bob }
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Asymmetric Encryption (aka “Public Key”)

Key idea: want a asymmetric approach to find a symmetric key
= Don’t want to have to pre-share keys in advance

Suppose users can have two keys: encryption and decryption
= Keys generated in pairs using well-understood mathematical relationship
= One key kept private (aka private key)

: Bob L‘r.'v'
[ Alice } - Tony %'v'
P O Silvio |5
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Asymmetric Encryption (aka “Public Key”)

Key idea: want a asymmetric approach to find a symmetric key
= Don’t want to have to pre-share keys in advance

Suppose users can have two keys: encryption and decryption
= Keys generated in pairs using well-understood mathematical relationship
= One key kept private (aka private key)

= One key shared publicly (aka public k f )
ne key shared publicly (aka public key) \ BOb )m
. w - T N ’
[Ahce ] " ~fony ey
b Pove Sl \‘C/:'“"
- - \ Silvio | priv
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Diffie-Hellman Key Exchange




Diffie Hellman

Protocol for public key exchange

= Forward secrecy via a public conversation
without any pre-shared information

Relies on a mathematical hardness
assumption called discrete log problem
(a problem believed to be NP-hard)

Alice Bob
Bob's % combine| _ |751A696C Alice's Y combine| _ |751A696C

> —

Public Key keys 24D97009 Public Key keys 24D97009
H Alice and Bob's Alice and Bob's
shared secret

shared secret

Alice's Bob's
Private Key Private Key
SCHOOL OF COMPUTING Stefan Nagy 47
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Diffie Hellman

Initialization: Alice and Bob agree on protocol parameters
= p:alarge prime such that (p-1) / 2 is also prime
= g:asmallinteger called the generator (e.g., 2)
= Thisis likely in a standard

[ Alice } {N\allory} >[ Bob }

P, 8 P, 8 P, 8
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Diffie Hellman

Secret Generation: Alice and Bob independently generate secret values
= ..suchthat: 0 < secret_value < p
= : Alice’s secret value
= B:Bob’s secret value

[ Alice } {N\allory} >[ Bob }

P, S, P, S P, 8,
B
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Diffie Hellman

Transmit Secret: Alice and Bob independently create, exchange a message

u =g modp
= M,=g"modp

Alice | m, | Mallory " Bob
¢ N ) N
P, S P, 8 P, S,
B
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Diffie Hellman

Circular Mixing:
= Alice computes: X, =(M_)" modp & Genmioroip 6

- B
- (g mOd p) mOd p [ Randomly generate a Private Key ]
=g mod p -0 =
(6"5) MoD 13 Calculate Public Key: (5'\4) MOD 13
(7776) MOD 13 (1296) MOD 13
= Bobcomputes: X. =(v )*modp il o 2 £ TR SRS o ¢
= (g" mod p)® mod p |

Calculate the Shared Secret
(Shared PublicrPrivatey yop p

P Prime Number 13

[ Agree upon two numbers: J

(2~%) mop 13
(16) MOD 13
Shared Secret = 3

(9~5) MoD 13
(59049) MOD 13
Shared Secret = 3
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Diffie Hellman

Circular Mixing:

= Alice computes:

= Bob computes:

= Observe that X

i)

=g mod p

(6~%) MoD 13
(7776) MOD 13
X Public = 2

= ¢’ mod
g'® mod p -

P Prime Number 13
G Generatorof P 6

[ Agree upon two numbers: J

[ Randomly generate a Private Key ]

Calculate Public Key:
(G,\Private) MOD P

Exchange Public Keys

e

(6~%) mop 13
(1296) MOD 13
Public = 9

P

(9~5) MoD 13
(59049) MOD 13
Shared Secret = 3

X, =X

(2~%) mop 13
(16) MOD 13
Shared Secret = 3

Calculate the Shared Secret
(Shared PublicrPrivatey yop p

Alice and Bob derive k := HMAC (X) as their shared key
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A visual analogy of Diffie-Hellman

Alice
Mixing in a new color is a little bit like

Diffie-Hellman’s exponentiation

Common paint

Secret colours

Public transport
(assume that

i XUl

Y
A

i R

\
A

Hard to invert to original colors? Yes!

a mi).(ture sepallra;ion %
Two different ways of arriving to the _ ’ _
same final result (i.e., the shared key) - N 9

Common secret
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RSA
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Authenticity

So far we've talked about confidentiality via public-key encryption

Suppose Alice messages many people that all want to verify authenticity
= They want to know a message came from Alice—not someone else!

Alice can’t share an with everybody...
= Or else anybody—like Mallory—could forge messages!

Real-world example: administrator of a source code repository
= [|f anyone had Alice’s authenticity key, they could submit fraudulent code patches!
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Authenticity via Digital Signatures

Key generation: Alice generates key pair: K oub (public) and (private)

[Alice } {N\allory} >[ Bob }
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Authenticity via Digital Signatures

Key generation: Alice generates key pair: K oub (public) and (private)

Alice signs message M with resulting in signature S = Sign ( M, )
= M, S ——
[AhceJ LI\/\alloryJ >[ Bob }
Sign (M, k) Kou
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Authenticity via Digital Signatures

Key generation: Alice generates key pair: K oub (public) and (private)
Alice signs message M with resulting in signature S = Sign ( M, )

Anyone possessing Alice’s kpub can check signature via Verf ( S, kpub )

M,S M, S
[Alice } {I\/\allory} >[ Bob }
Sign (\, ) Verf (S, kpub)

SCHOOL OF COMPUTING
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Authenticity via Digital Signatures

Key generation: Alice generates key pair: K oub (public) and (private)
Alice signs message M with resulting in signature S = Sign ( M, )

Anyone possessing Alice’s kpub can check signature via Verf ( S, kpub )

= If received message and signature verified, then message is authentic—from Alice!

M,S M, S
[Alice } {I\/\allory} >[ Bob }
Sign (\, ) Verf (S, kpub)

SCHOOL OF COMPUTING
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Authenticity via Digital Signatures

4 )
Unforgeability: computationally infeasible

for Mallory to guess S or Alice’s
. /
4 N
.. even if Mallory knows Alice’s kpub or
other signatures from other messages!
- /
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A scheme for public-key encryption
= We'll use it primarily for digital signatures

Best know and most common algorithm
for public-key message encryption

Relies on integer factorization problem
(maybe believed to be NP-hard?)

Inspired by Diffie-Hellman!
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RSA Digital Signatures

Pick large (e.g., 1024 bits), and random, and prime numbers p and q

= N=p*q
= N serves as the modulus for exponentiation

Alice lI { Mallory } Bob

Stefan Nagy 63
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RSA Digital Signatures

Public key = (e, N) where e is relatively prime to (p-1) (q-1)

Alice lI { Mallory } Bob

N e, N

Stefan Nagy 64
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RSA Digital Signatures

Public key = (e, N) where e is relatively prime to (p-1) (q-1)

= (d,N) where (e*d) mod ((p-1)(q-1)) = 1

Alice lI { Mallory } Bob

, N e, N

Stefan Nagy 65
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RSA Digital Signatures

Public key = (e, N) where e is relatively prime to (p-1) (q-1)
= (d,N) where (e*d) mod ((p-1)(g-1)) = 1

Alice signs: S=Sign( M, ¢, N ) = (M)" mod N

D. M,S ¢ )
Alice l Malloryj Bob

Sign (M, ¢, N) e, N

Stefan Nagy 66
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RSA Digital Signatures

Public key = (e, N) where e is relatively prime to (p-1) (q-1)
= (d,N) where (e*d) mod ((p-1)(q-1)) = 1
Alice signs: S=Sign( M, ¢, N ) = (M)" mod N

Bob verifies: Verif( S’, e, N )

(S')* mod N == M’

_ M,S Yy M, S
Alice } l Malloryj Bob
Sign (M, c, N) Verif (S', e, N) == W’

UNIVERSITY OF UTAH Stefan Nagy
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Messages as Integers

Here, message M really means a really-large integer
= Both Alice and Bob generate these from the plaintext message

Transmitted/received alongside the plaintext message
= Used by both Alice/Bob in signature generation/verification

Example based on PKCS #1 v1.5 standard:
0001 FFFFFF --- FF 00 30213009 06052B0E03021A050004 14 XX XX XX XX --- XX

k/8 —3% bytes ASN.1 “magic” bytes den;)tring type of hash algoritm  SHA-1 dig:st (20 bytes)

[ SHA1(“Go Chiefs!”) }
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RSA for Confidentiality and Integrity

Subtle fact: RSA can also be used for integrity and confidentiality

RSA for integrity:
= Goal: Prove that message wasn’t tampered
= Encrypt (“sign”) with sender’s private key
= Decrypt (“verify”) with sender’s public key
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RSA for Confidentiality and Integrity

Subtle fact: RSA can also be used for integrity and confidentiality

RSA for integrity:
= Goal: Prove that message wasn’t tampered
= Encrypt (“sign”) with sender’s private key
= Decrypt (“verify”) with sender’s public key

RSA for confidentiality:

= Goal: Allow only intended recipient to read
= Encrypt with recipient’s public key
= Decrypt with recipient’s private key
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To generate an RSA key-pair:

$ openssl genrsa -out private.pem 1024

S openssl rsa -pubout -in private.pem > public.pem

To sign a message with RSA:

S openssl rsautl -sign -inkey private.pem -in a.txt > sig

To verify a signed message with RSA:

S openssl rsautl -verify -pubin -inkey public.pem -in sig

SCHOOL OF COMPUTING
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Recap: Advanced Encryption Standard (AES)

Today’s most common block cipher

= Designed by NIST competition, with a very long public discussion
= Widely believed to be secure... but we don’t know how to prove it

Variable key size:
= 128-bit fairly common; also 192-bit and 256-bit versions

Input message is split into 128-bit blocks

Ten rounds:
= Split k into ten subkeys (key scheduling)
= Performs set of identical operations ten times (each with different subkey)
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RSA is 1000x slower than AES

RSA is more complex than AES

RSA has 10x larger keys than AES (e.g., 2048 bits vs. 192 bits)
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So why prefer RSA instead of AES?
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RSA > AES because...

RSA is faster than AES

| 0%
RSA is less complex than AES

| 0%
RSA requires shared secrets

' 0%

RSA does not require shared secrets

| 0%

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



So why prefer RSA instead of AES? RSA requires no shared secrets
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Attacking RSA Digital Signatures:
Bleichenbacher’s Attack

Stefan Nagy



Recap: Authenticity via Digital Signatures

Key generation: Alice generates key pair: K oub (public) and (private)
Alice signs message M with resulting in signature S = Sign ( M, )

Anyone possessing Alice’s kpub can check signature via Verf ( S, kpub )

= If received message and signature verified, then message is authentic—from Alice!

M,S M, S
[Alice } {I\/\allory} >[ Bob }
Sign (\, ) Verf (S, kpub)
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Recap: Authenticity via Digital Signatures

4 )
Unforgeability: computationally infeasible

for Mallory to guess S or Alice’s
\ /
4 N
.. even if Mallory knows Alice’s kpub or
other signatures from other messages!
N\ /

SCHOOL OF COMPUTING
U UNIVERSITY OF UTAH Stefan Nagy 80



Recap: Authenticity via Digital Signatures

RSA’s Verification: (S')° mod N == M’
4 . N
Mallory wants to forge signatures to
Impersonate Alice, but she doesn’t
have Alice’s —It's private!

. /

OOOOOOOOOOOOOOOOO
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Bleichenbacher’s Signature Forgery Attack

Pencil-and-paper attack by Daniel
Bleichenbacher at CRYPTO 2006

Exploits signature verification in

insecure RSA implementations
= Specifically the RSA PKCS #1 standard

Wreaked havoc on OpenSSL, Firefox
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Can we exploit signature verification?

Bob checks if message == (signature) modulo (N)
= Inthis problem, we know message and want to find signature
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Can we exploit signature verification?

Bob checks if message == (signature) modulo (N)
= Inthis problem, we know message and want to find signature

Recall N computed by multiplying two huge prime numbers
= Mallory has zero hope of figuring these factors out (integer factorization problem)
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Can we exploit signature verification?

Bob checks if message == (signature) modulo (N)
= Inthis problem, we know message and want to find signature

Recall N computed by multiplying two huge prime numbers
= Mallory has zero hope of figuring these factors out (integer factorization problem)

Bob checks if message == (signature) modulo
(HugeUnfactorableNum)
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Can we exploit signature verification?

Bob checks if == ) modulo (N)
In this problem, we know and want to find

Recall N computed by multiplying two huge prime numbers
Mallory has zero hope of figuring these factors out (integer factorization problem)

Bob checks if == ( ) modulo
( )
Question: What if the is a really small integer?
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Detour: Modulo Mania!

What does (A mod B) equal if...

Ais greater than B
= 10mod7 =7?
= 10mod8 =7?
= 8mod3 =7?
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Detour: Modulo Mania!

What does (A mod B) equal if...

Ais greater than B
= 10mod7 =3
= 10mod8 =2
= 8mod3 =2

Ais less than B
= 7mod10 =7?
= 8mod10 =7?
= 3mod8 =7?
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Detour: Modulo Mania!

What does (A mod B) equal if...

Ais greater than B
= 10mod7 =3
= 10mod8 =2
= 8mod3 =2

Ais less than B
= 7mod10 =7
= 8mod10 =8
= 3mod8 =3
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Detour: Modulo Mania!

What does (A mod B) equal if...

Ais greater than B

= 10mod7 =3 / . \
= 10mod8 =2 Observation:
* 8mod3 =2 If A is less than B...
Ais less than B Then (A mod B) =A
= 7mod10 =7 K /

= 8mod10 =8
= 3mod8 =3
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Exploiting Small Exponents

if message == (signature) modulo (HugeUnfactorableNumber)
= But, we know that (signature) << modulo (HugeUnfactorableNumber)
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Exploiting Small Exponents

if message == (signature) modulo (HugeUnfactorableNumber)
= But, we know that (signature) << modulo (HugeUnfactorableNumber)
if message == (signature) modttof }
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Exploiting Small Exponents

if message == (signature) modulo (HugeUnfactorableNumber)
= But, we know that (signature) << modulo (HugeUnfactorableNumber)

if message == (signature) modttof }

if message == (signature) - if message == (signature)
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Exploiting Small Exponents

if == ( ) modulo ( )
But, we know that ( ) << modulo ( )

if == ( )

if == ( ) > if == ( )

Problem: With only the message, how can Mallory forge Alice’s signature?
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Exploiting Small Exponents

o N
Taking the RSA message’'s Nth

root will reveal the signature!
.. where N = our tiny !

o J
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A Correct Message Construction

0001 FFFFFF --- FF 00 3021300906052BOE03021A050004 14 XXXXXXXX --- XX
k/8 —3% bytes ASN.1 “magic” bytes dengtring type of hash algorithm SHA-1 dig;srt (20 bytes)

S— e

e

[ SHA1(“Go Chiefs!”) }

Assume key is 2048 bits long

Prefix FF's must be ((2048/8)—38) bytes
= =218 total FF's

Where does 38 come from?
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A Correct Message Construction

0001 FFFFFF --- FF 00 3021300906052BOE03021A050004 14 XXXXXXXX --- XX
k/8 — 38 bytes ASN.1 “magic” bytes denoting type of hash algorithm  SHA-1 digest (20 bytes)

S— e

-

[ SHA1(“Go Chiefs!”) }

Assume key is 2048 bits long

Prefix FF's must be ((2048/8)—38) bytes
= =218 total FF's

Where does 38 come from? " 1 -
= 20-byte SHA-1 digest numpber o S don

= 15-byte ASN.1 hash specifier match 218, reject message!
= 3 more bytes (00, 01, 00)
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Can we take its Nth root?

Nth-rooting the correct message construction likely won't work—why?

0001 FFFFFF --- FF 00 3021300906 052BOE03021A050004 14 XXXXXXXX --- XX
k/8 _§§ bytes ASN.1 “magic” bytes den:)tring type of hash algorithm SHA-1 dig;srt (20 bytes)
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Can we take its Nth root?

Nth-rooting the correct message construction likely won't work—why?

0001 FFFFFF --- FF 00 3021300906 052BOE03021A050004 14 XXXXXXXX --- XX
k/8 —gg bytes ASN.1 “magic” bytes den:)tring type of hash algorithm SHA-1 dig;srt (20 bytes)

= Itis highly unlikely that you get a perfect root!

= Your signature has to be an integer—no decimal remainder!
= Thus, message will not equal (signature)
= Attack fails!
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An Insecure Message Construction

0001 FF 00 3021300906052BOE03021A050004 14 XXXXXX --- XX YYYYYYYY --- YY

J

ASN.1 “magic” bytes denoting type of hash algorithm SHA-1 digest (20 bytes) k/8 — 39 arbitrary bytes

Y Y

[ SHA1(“Go Chiefs!”) }

Assume key is 2048 bits long

?

What if server doesn’t count FF-’'s?
= We could use just one [ 2272272072072 }
= And ??? at the end
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An Insecure Message Construction

0001 FF 00 3021300906052BOE03021A050004 14 XXXXXX --- XX YYYYYYYY --- YY

J

ASN.1 “magic” bytes denoting type of hash algorithm SHA-1 digest (20 bytes) k/8 — 39 arbitrary bytes

Y Y

[ SHA1(“Go Chiefs!”) }

Assume key is 2048 bits long

?

What if server doesn’t count FF's?

= We could use just one [ 217 arbitrary bytes }
= And 217 arbitrary bytes at the end
= These end up not being checked!
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Can we take its Nth root?

How about Nth-rooting the insecure message construction?

0001 FF 00 302130 09 06 05 2B 0E 0302 1A 050004 14 XXXXXX --- XX YYYYYYYY --- YY
ASN.1 “magic” bytes den?)gng type of hash algorithm SHA-1 diggg{ (20 bytes) k/8—39 a;t)ranry bytes
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Can we take its Nth root?

How about Nth-rooting the insecure message construction?

0001 FF 00 302130 09 06 05 2B 0E 0302 1A 050004 14 XXXXXX --- XX YYYYYYYY --- YY
ASN.1 “magic” bytes den?)gng type of hash algorithm SHA-1 diggg{ (20 bytes) k/8—39 a;t)ranry bytes

= Itis highly unlikely that you get a perfect root!

= Your signature has to be an integer—no decimal remainder!
= Thus, message will not equal (signature)
= Attack fails!
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Can we take its Nth root?

How about Nth-rooting the insecure message construction?

AT T A,
i N
0001 FF 00 30213009 06 05 2B 0E 0302 1A 050004 14 XXXXXX --- XX YYYYYYYY --- YY
ASN.1 “magic” bytes den?)gng type of hash algorithm SHA-1 dig;; (20 bytes’ k/8 —39 a?t;ritrary bytes /’
\

—————--—

It is highly unlikely that you get a perfect root!

Your signature has to be an integer—no decimal remainder!
Thus, ( )
Attack fails!

= But... we know that the last 217 bytes of the message aren’t checked by the server!
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Can we take its Nth root?

How about Nth-rooting the insecure message construction?

AT T A,
[ S
0001 FF 00 30213009 06 05 2B 0E 0302 1A 050004 14 XXXXXX --- XX YYYYYYYY --- YY
ASN.1 “magic” bytes den?)gng type of hash algorithm SHA-1 diggg{ (20 bytes) & /8—39 a;t)ranry bytes /’
\

——— -

It is highly unlikely that you get a perfect root!

Your signature has to be an integer—no decimal remainder!
Thus, ( )
Attack fails!

= But... we know that the last 217 bytes of the message aren’t checked by the server!
= Thus, we can “tweak” our signature such that message == (signature)
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Can we take its Nth root?

How about Nth-rooting the insecure message construction?

AT T A,
[ S
0001 FF 00 30213009 06 05 2B 0E 0302 1A 050004 14 XXXXXX --- XX YYYYYYYY --- YY
ASN.1 “magic” bytes den?)gng type of hash algorithm SHA-1 diggg{ (20 bytes) & /8—39 a;t)ranry bytes /’
\

——— -

It is highly unlikely that you get a perfect root!

Your signature has to be an integer—no decimal remainder!
Thus, ( )
Attack fails!

= But... we know that the last 217 bytes of the message aren’t checked by the server!
= Thus, we can “tweak” our signature such that message == (signature)
= When server computes (signature) , Will get slightly different message—that’s ok!
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Exploiting Weak Padding Checking

Write the number 300 in binary:
1060101100
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Exploiting Weak Padding Checking

Write the number 300 in binary:
1060101100

Take its cube root:

3007 (%) = 6.6943 (not an integer!)
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Exploiting Weak Padding Checking

Write the number 300 in binary:
1060101100

Take its cube root:

3007 (%) = 6.6943 (not an integer!)

Round up to the nearest integer, cube that, and write in binary form:

7°(3) =1010108111
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Exploiting Weak Padding Checking

Compare 300 and 343 side-by-side:
109010110 0 (bytes3-9don’t match!)
10616010111
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Exploiting Weak Padding Checking

Compare 300 and 343 side-by-side:
109010110 0 (bytes3-9don’t match!)
106160610111

Pretend that everything after the first two bytes is ignored by the server
100101100 (onlycareabout bytes 1-2)
1061010111
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Exploiting Weak Padding Checking

Compare 300 and 343 side-by-side:
109010110 0 (bytes3-9don’t match!)
106160610111

Pretend that everything after the first two bytes is ignored by the server
100101100 (onlycareabout bytes 1-2)
1061010111

Success! Check passes
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OOOOOOOOOOOOOOOOO

Exploiting Weak Padding Checking

-

Small exponent + insecure padding

enables Mallory to forge signatures..

without knowing Alice’s private key!

-

=

/

Stefan Nagy
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Key Management Rules
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Each key should have only one purpose
= Different RSA keys for signing and encrypting
= Different symmetric keys for encrypting and MACing
= Different keys for Alice - Bob and Bob - Alice
= Different keys for different protocols

Reason: prevent attacker from “repurposing” content
= Example: reflection attack
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Vulnerability of a key increases with time and use

Change your keys periodically!
= Use session keys
= Encrypt your keys
= Erase keys from memory when you're done with them
= Don't let your keys get swapped out to disk
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Keep your keys far from the attacker!
= Memory of networked and unguarded PC = bad
= Memory of non-networked, guarded PC =
= Stored in tamper-resistant device: better
= Hardware Security Module (HSM)
= See FIPS 140-2: “Requirements for Crypto Modules”

Stored HSM in locked safe: best

= Layered defenses / defense-in-depth
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Rule #4

Protect yourself against compromise of old keys

= Bad practice: Alice tells Bob, “Here’s the new key: ..." encrypted under the old key
= Adversary can record this, then attack old key
= Old key then used to uncover new key

Worse yet:
= |f long chain of keys, he can attack anyone—chain unravels!
= Chain only as strong as its weakest link!

Forward secrecy: learning old key shouldn’t help adversary learn new key
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Next time on CS 4440...

Security in Practice: Cryptocurrency




