
Stefan Nagy

Week 3: Lecture B
Block Ciphers

Thursday, September 5, 2024

1

Stefan Nagy

Announcements

￭ Project 1: Crypto released (see Assignments page on course website)
￭ Deadline: Thursday, September 19th by 11:59 PM

2

http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Stefan Nagy

Announcements

3

See Discord for
meeting info!

utahsec.cs.utah.edu

Stefan Nagy

Announcements

4

Stefan Nagy

Questions?

5

Stefan Nagy

Last time on CS 4440…

6

Pseudo-random Keys
One-time Pads

Transposition Ciphers
Cipher Metrics

Stefan Nagy

Generating Random Keys

￭ Physical randomness:
￭ ???

7

Stefan Nagy

Generating Random Keys

￭ Physical randomness:
￭ Coin flips
￭ Atomic decay
￭ Thermal noise
￭ Electromagnetic noise
￭ Physical variation

￭ Clock drift
￭ DRAM decay
￭ Image sensor errors
￭ SRAM startup-state

￭ Lava Lamps

8

Stefan Nagy

Generating Random Keys

￭ Physical randomness:
￭ Coin flips
￭ Atomic decay
￭ Thermal noise
￭ Electromagnetic noise
￭ Physical variation

￭ Clock drift
￭ DRAM decay
￭ Image sensor errors
￭ SRAM startup-state

￭ Lava Lamps

9

Stefan Nagy

Generating Random Keys

￭ Physical randomness:
￭ Coin flips
￭ Atomic decay
￭ Thermal noise
￭ Electromagnetic noise
￭ Physical variation

￭ Clock drift
￭ DRAM decay
￭ Image sensor errors
￭ SRAM startup-state

￭ Lava Lamps

10

Highest guarantees of security

Difficult to use, or rate-limited

Stefan Nagy

Pseudo-random Key Generators

￭ What is true randomness?
￭ ???

11

Stefan Nagy

Pseudo-random Key Generators

￭ What is true randomness?
￭ Physical process that’s inherently random
￭ Secure yet impractical

￭ Scarce, hard to use
￭ Rate-limited

￭ Pseudo-random generator (PRG)
￭ Input: ???
￭ Output: ???

12

Stefan Nagy

Pseudo-random Key Generators

￭ What is true randomness?
￭ Physical process that’s inherently random
￭ Secure yet impractical

￭ Scarce, hard to use
￭ Rate-limited

￭ Pseudo-random generator (PRG)
￭ Input: a small seed that is truly random
￭ Output: long sequence that appears random

13

Stefan Nagy

Pseudo-random Generators (PRGs)

￭ We say a PRG is secure if Mallory can’t do better than random guessing

￭ Problem: How much true randomness is enough?
￭ Example: one coin flip = Mallory needs very few tries to guess

￭ Problem: Is our “true randomness” truly random?
￭ Example: coin flip output = one in two. Lava lamps have way more!

￭ Solutions:
￭ ???

14

Stefan Nagy

Pseudo-random Generators (PRGs)

￭ We say a PRG is secure if Mallory can’t do better than random guessing

￭ Problem: How much true randomness is enough?
￭ Example: one coin flip = Mallory needs very few tries to guess

￭ Problem: Is our “true randomness” truly random?
￭ Example: coin flip output = one in two. Lava lamps have way more!

￭ Solutions:
￭ Generate a bunch of true randomness over a long time from a high entropy source
￭ Run through a PRF to get an easy-to-work-with, fixed-length randomness (e.g., 256 bits)

15

Stefan Nagy

Practical Randomness

￭ Where do you get true randomness?

￭ Modern OSes typically collect randomness

￭ They give you API calls to capture it

￭ e.g., Linux:
￭ /dev/random is a device that gives random bits; it blocks until available
￭ /dev/urandom gives output of a PRG; nonblocking; seeded from /dev/random eventually

16

Stefan Nagy

One-time Pads

￭ Alice and Bob generate ???

17

Stefan Nagy

One-time Pads

￭ Alice and Bob generate a plaintext-length
string of random bits: the one-time pad k
￭ Encryption: ci := pi XOR ki
￭ Decryption: pi := ci XOR ki

￭ Are they practical?
￭ ???

￭ Are they secure?
￭ ???

18

a XOR b XOR b = a
a XOR b XOR a = b

Stefan Nagy

One-time Pads

￭ Alice and Bob generate a plaintext-length
string of random bits: the one-time pad k
￭ Encryption: ci := pi XOR ki
￭ Decryption: pi := ci XOR ki

￭ Are they practical?
￭ ???

￭ Are they secure?
￭ ???

19

a XOR b XOR b = a
a XOR b XOR a = b

Provably Secure
(if key is random + not reused)

Highly Impractical

Stefan Nagy

Attacking OTPs

￭ What happens if the key isn’t truly random?

20

Stefan Nagy

Attacking OTPs

￭ What happens if the key isn’t truly random?
￭ If Mallory correctly guesses some key bits, she can recover parts of the plaintext

21

(a XOR k) XOR g

Guessed
Key g

a k

Stefan Nagy

Attacking OTPs

￭ What if Mallory intercepts multiple messages that reuse the same key?
￭ Mallory can XOR them together to recover partial plaintext information!

22

(a XOR k) (b XOR k)

Stefan Nagy

Attacking OTPs

￭ What if Mallory intercepts multiple messages that reuse the same key?
￭ Mallory can XOR them together to recover partial plaintext information!

23

(a XOR k)

= a XOR b

(b XOR k)

(a XOR k) XOR (b
XOR k)

Stefan Nagy

Stream Cipher

￭ Idea: Use a Pseudo-random Generator instead of a truly random pad

￭ Recall: a secure PRG inputs a true-random seed, outputs a stream that’s
indistinguishable from true randomness (unless attacker knows seed)

1. Start with a shared secret truly random seed (from a lava lamp, mouse clicks, etc.)
2. Alice & Bob each use this seed to seed their PRG and generate k bits of PRG output
3. To encrypt and decrypt, perform the same operations as the One-time Pad:

￭ Encryption: ci := pi XOR ki
￭ Decryption: pi := ci XOR ki

24

Stefan Nagy

Stream Cipher

￭ Idea: Use a pseudorandom generator instead of a truly random pad

￭ Recall: Secure PRG inputs a seed k, outputs a stream practically
indistinguishable from true randomness (unless attacker knows k)

1. Start with shared secret key truly random number k
2. Alice & Bob each use k to seed the PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext

25

What is the tradeoff between
an OTP and Stream Cipher?

Stefan Nagy

Stream Cipher

￭ Idea: Use a pseudorandom generator instead of a truly random pad

￭ Recall: Secure PRG inputs a seed k, outputs a stream practically
indistinguishable from true randomness (unless attacker knows k)

1. Start with shared secret key truly random number k
2. Alice & Bob each use k to seed the PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext

26

What is the tradeoff between
an OTP and Stream Cipher?

Provably Secure
(if key is random + not reused)

Much more practical

Stefan Nagy

Stream Cipher

￭ Idea: Use a pseudorandom generator instead of a truly random pad

￭ Recall: Secure PRG inputs a seed k, outputs a stream practically
indistinguishable from true randomness (unless attacker knows k)

1. Start with shared secret key truly random number k
2. Alice & Bob each use k to seed the PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext

27

Are stream ciphers
vulnerable to attack?

Stefan Nagy

Stream Cipher

￭ Idea: Use a pseudorandom generator instead of a truly random pad

￭ Recall: Secure PRG inputs a seed k, outputs a stream practically
indistinguishable from true randomness (unless attacker knows k)

1. Start with shared secret key truly random number k
2. Alice & Bob each use k to seed the PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext

28

Seed or key reuse helps
Mallory recover plaintext!

Are stream ciphers
vulnerable to attack?

Stefan Nagy

Substitution vs Transposition Ciphers

￭ Substitution: replace plaintext symbols with others
￭ Examples: ???

29

Stefan Nagy

Substitution vs Transposition Ciphers

￭ Substitution: replace plaintext symbols with others
￭ Examples: simple shifts (Caesar, Vigènere), XORs (OTP, stream)
￭ Key weakness: ???

30

Stefan Nagy

Substitution vs Transposition Ciphers

￭ Substitution: replace plaintext symbols with others
￭ Examples: simple shifts (Caesar, Vigènere), XORs (OTP, stream)
￭ Key weakness: although letters changed, frequencies upheld

￭ Transposition: plaintext symbols are rearranged
￭ Examples: ???

31

Stefan Nagy

Substitution vs Transposition Ciphers

￭ Substitution: replace plaintext symbols with others
￭ Examples: simple shifts (Caesar, Vigènere), XORs (OTP, stream)
￭ Key weakness: although letters changed, frequencies upheld

￭ Transposition: plaintext symbols are rearranged
￭ Examples: columnar, rail fence / zig zag / scytale, grids
￭ Key weakness: ???

32

Stefan Nagy

Substitution vs Transposition Ciphers

￭ Substitution: replace plaintext symbols with others
￭ Examples: simple shifts (Caesar, Vigènere), XORs (OTP, stream)
￭ Key weakness: although letters changed, frequencies upheld

￭ Transposition: plaintext symbols are rearranged
￭ Examples: columnar, rail fence / zig zag / scytale, grids
￭ Key weakness: plaintext letters in ciphertext; anagram attacks

33

Stefan Nagy

Columnar Transposition

￭ Rearrange plaintext symbols to create ciphertext
￭ Create a table with |k| columns and |p|/|k| rows (k is the keyword)
￭ Place plaintext symbols in columns (left to right), cycling around to

next row of the first column when current row of last column is filled
￭ Create the ciphertext by writing entire columns (as a serial stream)

to the output, where the keyword determines the column order

￭ Example:
￭ k = “ZEBRAS” (632415)
￭ p = “We are discovered flee at once”
￭ c = EVLNX ACDTQ ESEAM

ROFOP DEECD WIREE
￭ Replace null with nonsense symbol

34

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null

Stefan Nagy

Columnar Transposition

￭ How does Bob decrypt Alice’s columnar-transposition-encrypted message?

35

k = “ZEBRAS” (632415)

p = “We are discovered flee at once”

c = EVLNX ACDTQ ESEAM
 ROFOP DEECD WIREE

Stefan Nagy

Columnar Transposition

￭ How does Bob decrypt Alice’s columnar-transposition-encrypted message?

36

E A E R D W

V C S O E I

L D E F E R

N T A O C E

X Q M P D E

k = “ZEBRAS” (632415)

p = “We are discovered flee at once”

c = EVLNX ACDTQ ESEAM
 ROFOP DEECD WIREE

Stefan Nagy

Columnar Transposition

￭ How does Bob decrypt Alice’s columnar-transposition-encrypted message?

37

E A E R D W

V C S O E I

L D E F E R

N T A O C E

X Q M P D E

k = “ZEBRAS” (632415)

p = “We are discovered flee at once”

c = EVLNX ACDTQ ESEAM
 ROFOP DEECD WIREE

1 2 3 4 5 6

E A E R D W

V C S O E I

L D E F E R

N T A O C E

X Q M P D E

Stefan Nagy

Columnar Transposition

￭ How does Bob decrypt Alice’s columnar-transposition-encrypted message?

38

E A E R D W

V C S O E I

L D E F E R

N T A O C E

X Q M P D E

k = “ZEBRAS” (632415)

p = “We are discovered flee at once”

c = EVLNX ACDTQ ESEAM
 ROFOP DEECD WIREE

1 2 3 4 5 6

E A E R D W

V C S O E I

L D E F E R

N T A O C E

X Q M P D E

Z E B R A S

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E M Q P X D

Stefan Nagy

Columnar Transposition

￭ Can you decrypt the ciphertext?

39

c = SAKSECROYNSBOWOLYUOL

k = “TEAMS”

Stefan Nagy

Columnar Transposition

￭ Can you decrypt the ciphertext?

40

1 2 3 4 5

S E Y O Y

A C N W U

K R S O O

S O B L L

c = SAKSECROYNSBOWOLYUOL

k = “TEAMS” (52134)

Stefan Nagy

Columnar Transposition

￭ Can you decrypt the ciphertext?

41

c = SAKSECROYNSBOWOLYUOL

k = “TEAMS” (52134)

T E A M S

5 2 1 3 4

Y E S Y O

U C A N W

O R K S O

L O S B L

Stefan Nagy

Columnar Transposition

￭ Can you decrypt the ciphertext?

42

T E A M S

5 2 1 3 4

Y E S Y O

U C A N W

O R K S O

L O null null null

c = SAKSECROYNSBOWOLYUOL

k = “TEAMS” (52134)

Stefan Nagy

Columnar Transposition

￭ Can you decrypt the ciphertext?

￭ “Yes, you can work solo” (on projects)
￭ Though we don’t recommend it! 😃

43

T E A M S

5 2 1 3 4

Y E S Y O

U C A N W

O R K S O

L O null null null

c = SAKSECROYNSBOWOLYUOL

k = “TEAMS” (52134)
A crummy
reminder
of course
policy?

Stefan Nagy

Can we make transposition stronger?

44

Stefan Nagy

Can we make transposition stronger?

￭ More Transposition:
￭ Increase entropy!

45

5 6 4 2 3 1

E V L N A C

D T E S E A

R O F O D E

E C W I R I

E null null null null null

k1 = “ZEBRAS” (632415)
c1 = EVLNX ACDTQ ESEAM

ROFOP DEECD WIREE

k2 = “STRIPE” (632415)
c2 = CAEIX NSOIN AEDRX

LEFWS EDREE VTOCG

Stefan Nagy

Can we make transposition stronger?

￭ More Transposition:
￭ Increase entropy!

￭ Apply Fractionation:
￭ Eliminate anagrams!

46

5 6 4 2 3 1

E V L N A C

D T E S E A

R O F O D E

E C W I R I

E null null null null null

k1 = “ZEBRAS” (632415)
c1 = EVLNX ACDTQ ESEAM

ROFOP DEECD WIREE

k2 = “STRIPE” (632415)
c2 = CAEIX NSOIN AEDRX

LEFWS EDREE VTOCG

0101011101100101…

“We’re discovered
flee at once!”

o—— o o— o—o o …

Stefan Nagy

Can we make transposition stronger?

￭ More Transposition:
￭ Increase entropy!

￭ Apply Fractionation:
￭ Eliminate anagrams!

￭ Apply Substitution:
￭ Increase entropy

+ eliminate anagrams!

47

5 6 4 2 3 1

E V L N A C

D T E S E A

R O F O D E

E C W I R I

E null null null null null

k1 = “ZEBRAS” (632415)
c1 = EVLNX ACDTQ ESEAM

ROFOP DEECD WIREE

k2 = “STRIPE” (632415)
c2 = CAEIX NSOIN AEDRX

LEFWS EDREE VTOCG

0101011101100101…

“We’re discovered
flee at once!”

o—— o o— o—o o …

c = EVLNB ACDTA ESEAR
ROFOX DEECB WIREE

c2 = EWNNC CCEVA FUEBT
 RPHOY FEFEB XKRFGk = ABCAB CABCA BCABC

Stefan Nagy

Cipher Metrics

￭ How we “weigh” a cipher’s resilience to cryptanalysis

￭ “Confusion”
￭ ???

￭ “Diffusion”
￭ ???

48

Stefan Nagy

Cipher Metrics

￭ How we “weigh” a cipher’s resilience to cryptanalysis

￭ “Confusion”
￭ Every bit of the ciphertext should depend on several parts of the plaintext
￭ Maintains that the ciphertext is statistically independent of the plaintext

￭ “Diffusion”
￭ A change to one plaintext bit should change 50% of the ciphertext bits
￭ A change to one ciphertext should change 50% of the plaintext bits
￭ Plaintext features spread throughout the entire ciphertext

49

Stefan Nagy

Exercise: Cipher Metrics

50

Cipher Relies on? Strength? Why?

Caesar ? ? ?

Stefan Nagy

Exercise: Cipher Metrics

51

Cipher Relies on? Strength? Why?

Caesar Confusion Weak Frequencies unchanged

Vigenere ? ? ?

One-time Pad,
Stream Cipher ? ? ?

Transposition ? ? ?

Fractionation ? ? ?

Stefan Nagy

Exercise: Cipher Metrics

52

Cipher Relies on? Strength? Why?

Caesar Confusion Weak Frequencies unchanged

Vigenere Confusion Weak Frequencies unchanged

One-time Pad,
Stream Cipher Confusion Strong Key change = relationship

cannot be determined

Transposition Diffusion Weak Symbols unchanged

Fractionation Both! Strong Symbols changed, spread

Stefan Nagy

Food for thought…

￭ Question: do we care about confusion
and diffusion in cryptographic hashes?

53

Stefan Nagy

Food for thought…

￭ Question: do we care about confusion
and diffusion in cryptographic hashes?
￭ Absolutely we do!

￭ Implications of low confusion/diffusion:
￭ Tampering, forgery, collisions
￭ Pre-image attacks

54

Stefan Nagy

Questions?

55

Stefan Nagy

This time on CS 4440…

56

Block Ciphers
DES and AES

Block Cipher Modes
Building a Secure Channel

Stefan Nagy

Message Confidentiality

￭ Confidentiality: ensure that only trusted parties can read the message
￭ Terminology:

￭ p plaintext: original, readable message
￭ c ciphertext: transmitted, unreadable message
￭ k secret key: known only to Alice and Bob; facilitates p → c and c → p
￭ E encryption function: E (p, k) → c
￭ D decryption function: D (c, k) → p

57

c c

E (p, k) D (c, k)
k kAlice BobMallory

Stefan Nagy

Message Confidentiality

￭ Confidentiality: ensure that only trusted parties can read the message
￭ Terminology:

￭ p plaintext: original, readable message
￭ c ciphertext: transmitted, unreadable message
￭ k secret key: known only to Alice and Bob; facilitates p → c and c → p
￭ E encryption function: E (p, k) → c
￭ D decryption function: D (c, k) → p

58

c c

E (p, k) D (c, k)
Alice BobMalloryk k

Stefan Nagy

Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on the same key
￭ Communicating parties must share key in advance
￭ Examples: ???

59

Stefan Nagy

Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on the same key
￭ Communicating parties must share key in advance
￭ Examples:

￭ Caesar, Vigènere
￭ One-time Pad, Stream
￭ Transposition ciphers

60

Stefan Nagy

SKE via Stream Ciphers

￭ Stream cipher: operates on individual bits (or bytes); one at a time
￭ Generates pseudo-random key bits that are XOR’d to plaintext bits

61

Encryption Decryption

H E L L O

A X H J B

K M I V E

plaintext =

key =

ciphertext =

⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓

A X H J Bkey =

⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓

K M I V Eciphertext =

H E L L Oplaintext =

Stefan Nagy

SKE via Stream Ciphers

￭ Stream cipher: operates on individual bits (or bytes); one at a time
￭ Generates pseudo-random key bits that are XOR’d to plaintext bits

62

Encryption Decryption

H E L L O

A X H J B

K M I V E

plaintext =

key =

ciphertext =

⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓

A X H J Bkey =

⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓

K M I V Eciphertext =

H E L L Oplaintext =

Confusion and diffusion?

No diffusion—symbols
are not spread around!

Stefan Nagy

Block Ciphers

63

Stefan Nagy

Block CIpher

￭ Functions that encrypts fixed-size blocks with a reusable key

￭ Inverse function decrypts when used with same key

￭ The most commonly used encryption approach for confidentiality.

64

Enck
key

plaintext

ciphertext

Deck
key

ciphertext

plaintext

Stefan Nagy

Block Ciphers vs. Hashes

￭ Hash functions:
￭ ???

65

Stefan Nagy

Block Ciphers vs. Hashes

￭ Hash functions:
￭ Must not have collisions
￭ Must not be reversible
￭ Goal: integrity

￭ Detect message tampering

66

Stefan Nagy

Block Ciphers vs. Hashes

￭ Hash functions:
￭ Must not have collisions
￭ Must not be reversible
￭ Goal: integrity

￭ Detect message tampering

￭ Block Ciphers:
￭ Must not have collisions
￭ Must be reversible
￭ Goal: confidentiality

￭ Keep secret message secret

67

Stefan Nagy

Block Ciphers vs. Hashes

￭ Hash functions:
￭ Must not have collisions
￭ Must not be reversible
￭ Goal: integrity

￭ Detect message tampering

￭ Block Ciphers:
￭ Must not have collisions
￭ Must be reversible
￭ Goal: confidentiality

￭ Keep secret message secret

68

A block cipher is not a
pseudo-random function

Stefan Nagy

Block Ciphers vs. Hashes

￭ Hash functions:
￭ Must not have collisions
￭ Must not be reversible
￭ Goal: integrity

￭ Detect message tampering

￭ Block Ciphers:
￭ Must not have collisions
￭ Must be reversible
￭ Goal: confidentiality

￭ Keep secret message secret

69

A block cipher is not a
pseudo-random function

A block cipher is
a pseudo-random

permutation

Stefan Nagy

Pseudo-random Permutation (PRP)

￭ Defined similarly to a PRF:
￭ Practically indistinguishable from a random permutation without secret k

￭ Main challenge: design a function that’s invertible… but only with the key

￭ Minimal properties of a good block cipher:
￭ Highly nonlinear (“confusion”)
￭ Mixes input bits together (“diffusion”)
￭ Dependent on the key

70

Stefan Nagy

Pseudo-random Permutation (PRP)

￭ What we want at a high-level:
￭ Function from n-bit input to n-bit output
￭ Ideally, one bit flip of the input results in 50% of output bits flipping
￭ Distinct inputs yield distinct outputs
￭ Thus, an invertible bijection

71

Stefan Nagy

SKE via Block Ciphers

￭ Block cipher: operates on fixed-length groups of bits called blocks
￭ Processes blocks using a reversible, non-colliding function

72

Encryption Decryption

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

B1 B2 B3

C1 C2 C3ciphertext =

key ⟹

plaintext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Dec Dec Dec

Stefan Nagy

Block vs. Stream Ciphers

￭ Major categories of SKE
￭ Stream cipher: operates on individual bits (or bytes); one at a time
￭ Block cipher: operates on fixed-length groups of bits called blocks

￭ Only a few symmetric methods are used today

73

Methods Year approved Comments

Data Encryption Standard (DES) 1977 1998: EFF’s Deep Crack breaks a DES key in 56 hrs

DES-Cipher Block Chaining (DES-CBC)

Triple DES – (TDES or 3DES) 1999

Advanced Encryption Standard (AES) 2001 Among the most used today

Other symmetric encryption methods

IDEA (International Data Encryption Algorithm), RC5 (Rivest Cipher 5), CAST (Carlisle Adams Stafford Tavares), Blowfish

Stefan Nagy

Questions?

74

Stefan Nagy

Data Encryption Standard (DES)

75

Stefan Nagy

Breaking up long messages into “blocks”

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size

76

Stefan Nagy

Breaking up long messages into “blocks”

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size

￭ Solution: Append padding to end of message
￭ Must be able to recognize and remove padding afterward
￭ Common approach: add n bytes that have value n

77

Stefan Nagy

Breaking up long messages into “blocks”

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size

￭ Solution: Append padding to end of message
￭ Must be able to recognize and remove padding afterward
￭ Common approach: add n bytes that have value n

￭ Challenge: What if message terminates a block?
￭ End of message might be misread as padding!

78

Stefan Nagy

Breaking up long messages into “blocks”

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size

￭ Solution: Append padding to end of message
￭ Must be able to recognize and remove padding afterward
￭ Common approach: add n bytes that have value n

￭ Challenge: What if message terminates a block?
￭ End of message might be misread as padding!

￭ Solution: Append an entire new block of padding

79

Stefan Nagy

Data Encryption Standard (DES)

￭ DES is a block, symmetric encryption scheme
￭ Uses a 64-bit key
￭ Plaintext divided and encrypted as fixed-size, 64-bit blocks
￭ Different modes of encryption—each with different security implications

80

Methods Year approved Comments

Data Encryption Standard (DES) 1977 1998: EFF’s Deep Crack breaks a DES key in 56 hrs

DES-Cipher Block Chaining (DES-CBC)

Triple DES – (TDES or 3DES) 1999

Advanced Encryption Standard (AES) 2001 Among the most used today

Other symmetric encryption methods

IDEA (International Data Encryption Algorithm), RC5 (Rivest Cipher 5), CAST (Carlisle Adams Stafford Tavares), Blowfish

Stefan Nagy

Data Encryption Standard (DES)

￭ A variety of “block cipher modes” exist today
￭ As time went on, researchers found issues with them and proposed better ones
￭ We’ll talk about a few of these: Electronic Codebook and Cipher Block Chaining

81

Methods Year approved Comments

Data Encryption Standard (DES) 1977 1998: EFF’s Deep Crack breaks a DES key in 56 hrs

DES-Cipher Block Chaining (DES-CBC)

Triple DES – (TDES or 3DES) 1999

Advanced Encryption Standard (AES) 2001 Among the most used today

Other symmetric encryption methods

IDEA (International Data Encryption Algorithm), RC5 (Rivest Cipher 5), CAST (Carlisle Adams Stafford Tavares), Blowfish

Stefan Nagy

DES Modes: Electronic Codebook

82

Stefan Nagy

Mode #1: Electronic Codebook (ECB)

￭ Electronic Codebook (ECB)
￭ Message divided into code blocks
￭ Each block encrypted separately

83

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

Stefan Nagy

C1 C2 C3

Mode #1: Electronic Codebook (ECB)

￭ Electronic Codebook (ECB)
￭ Message divided into code blocks
￭ Each block encrypted separately; decrypted separately too

84

B1 B2 B3

ciphertext =

key ⟹

plaintext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Dec Dec Dec

Stefan Nagy

Mode #1: Electronic Codebook (ECB)

￭ ECB Strengths:
￭ Construction is un-chained

￭ Message can be ???

85

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

Stefan Nagy

Mode #1: Electronic Codebook (ECB)

￭ ECB Strengths:
￭ Construction is un-chained

￭ Message can be split up and processed in parallel—fast!
￭ No need to wait on previous block’s encryption

86

C1
C2C3

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

C1 C2 C3 C4 C5

thread2thread1 thread1

Stefan Nagy

Mode #1: Electronic Codebook (ECB)

￭ ECB Drawbacks:
￭ Identical plaintext blocks produce same ciphertext

￭ This results in low ???

87

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

Stefan Nagy

Mode #1: Electronic Codebook (ECB)

￭ ECB Drawbacks:
￭ Identical plaintext blocks produce same ciphertext

￭ This results in low diffusion

88

original

encrypted
B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

Stefan Nagy

Mode #1: Electronic Codebook (ECB)

￭ ECB Drawbacks:
￭ Do larger block sizes increase diffusion?

￭ Yes—but at what cost ???

89

Stefan Nagy

Mode #1: Electronic Codebook (ECB)

￭ ECB Drawbacks:
￭ Do larger block sizes increase diffusion?

￭ Yes—but at what cost
￭ Much more impractical
￭ E.g., higher memory footprint

90

Stefan Nagy

How can we increase diffusion?

91

Stefan Nagy

DES Modes: Cipher Block Chaining

92

Stefan Nagy

Mode #2: Cipher Block Chaining (CBC)

￭ Key idea: seed current block with ciphertext from the previous block

93

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

⊕ ⊕ ⊕
↓ ↓ ↓

Stefan Nagy

Mode #2: Cipher Block Chaining (CBC)

￭ Key idea: seed current block with ciphertext from the previous block
￭ Since first block has no “previous” cipher, seed it with a 64-bit initialization vector (I.V.)

￭ A random or pseudo-random block that’s unpredictable

94

B1 B2 B3

C1 C2 C3

plaintext =

key ⟹

ciphertext =

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

⊕ ⊕ ⊕IV
↓ ↓ ↓

Stefan Nagy

key ⟹ k ⟹ k ⟹ Dec Dec Dec

C1 C2 C3

Mode #2: Cipher Block Chaining (CBC)

￭ Decryption operates similarly:

95

B1 B2 B3

ciphertext =

plaintext =

↓ ↓ ↓

↓ ↓ ↓
⊕ ⊕ ⊕

IV
↓ ↓ ↓

Stefan Nagy

Mode #2: Cipher Block Chaining (CBC)

￭ CBC Strengths:
￭ Chained construction far stronger than ECB

￭ More diffusion!
￭ Negates ECB’s need for super-large blocks

96

Stefan Nagy

Mode #2: Cipher Block Chaining (CBC)

￭ CBC Strengths:
￭ Chained construction far stronger than ECB

￭ More diffusion!
￭ Negates ECB’s need for super-large blocks

￭ CBC Drawbacks:
￭ Completely sequential

￭ ???

97

Stefan Nagy

Mode #2: Cipher Block Chaining (CBC)

￭ CBC Strengths:
￭ Chained construction far stronger than ECB

￭ More diffusion!
￭ Negates ECB’s need for super-large blocks

￭ CBC Drawbacks:
￭ Completely sequential

￭ Cannot be parallelized!
￭ No leveraging advances in multi-threading etc.

98

Stefan Nagy

Questions?

99

Stefan Nagy

Advanced Encryption Standard (AES)

100

Stefan Nagy

Advanced Encryption Standard (AES)

￭ Today’s most common block cipher
￭ Designed by NIST competition, with a very long public discussion
￭ Widely believed to be secure… but we don’t know how to prove it

￭ Variable key size:
￭ 128-bit fairly common; also 192-bit and 256-bit versions

￭ Input message is split into 128-bit blocks

￭ Ten rounds:
￭ Split k into ten subkeys (key scheduling)
￭ Performs set of identical operations ten times (each with different subkey)

101

Stefan Nagy

AES Cliff Notes

￭ Systematically designed through a read/blue team competition by NIST
￭ Layered design to remove flaws of individual components
￭ Prevent statistical leakage

￭ Letter frequency of substitution ciphers
￭ Anagrams of transposition ciphers

￭ Many fancier “modes” with ordering counters, etc.
￭ Efficient software and hardware implementations

￭ Exposes security performance tradeoff to user
￭ 128-bit key: 10 rounds
￭ 192-bit key: 12 rounds
￭ 256-bit key: 14 rounds

102

Disclaimer:
details are

hairy—don’t
worry about

them.

Stefan Nagy

Secure Channels

103

Stefan Nagy

Building a Secure Channel

￭ What if you want confidentiality and integrity at the same time?
￭ Which would you perform first: encrypting or hashing? And why?

104

Stefan Nagy 105

Stefan Nagy

Building a Secure Channel

￭ What if you want confidentiality and integrity at the same time?
￭ Which would you perform first: encrypting or hashing? And why?

106

Integrity
Check

Confidentiality
Check

Stefan Nagy

Limitations of Symmetric Crypto

￭ Complex mathematics
￭ Hardware and software efficiency is key
￭ A huge study of modern cryptography research

￭ Requires pre-shared keys
￭ The keys need to stay secret always

107

Stefan Nagy

Limitations of Symmetric Crypto

￭ Complex mathematics
￭ Hardware and software efficiency is key
￭ A huge study of modern cryptography research

￭ Requires pre-shared keys
￭ The keys need to stay secret always

108

Amazing fact: Alice and Bob can
have a public conversation to

derive a shared secret key

Stefan Nagy

Next time on CS 4440…

109

Public-key Encryption, Signatures

