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Week 3: Lecture B 
Block Ciphers

Thursday, September 5, 2024
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Announcements

￭ Project 1: Crypto released (see Assignments page on course website)
￭ Deadline: Thursday, September 19th by 11:59 PM
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http://cs.utah.edu/~snagy/courses/cs4440/assignments/
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Announcements
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See Discord for 
meeting info!

utahsec.cs.utah.edu
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Announcements

4



Stefan Nagy

Questions?

5



Stefan Nagy

Last time on CS 4440…
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Pseudo-random Keys
One-time Pads

Transposition Ciphers
Cipher Metrics



Stefan Nagy

Generating Random Keys

￭ Physical randomness:
￭ ???
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Stefan Nagy

Generating Random Keys

￭ Physical randomness:
￭ Coin flips
￭ Atomic decay
￭ Thermal noise
￭ Electromagnetic noise
￭ Physical variation

￭ Clock drift
￭ DRAM decay
￭ Image sensor errors
￭ SRAM startup-state

￭ Lava Lamps
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Stefan Nagy

Generating Random Keys

￭ Physical randomness:
￭ Coin flips
￭ Atomic decay
￭ Thermal noise
￭ Electromagnetic noise
￭ Physical variation

￭ Clock drift
￭ DRAM decay
￭ Image sensor errors
￭ SRAM startup-state

￭ Lava Lamps

10

Highest guarantees of security

Difficult to use, or rate-limited
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Pseudo-random Key Generators

￭ What is true randomness?
￭ ???
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Stefan Nagy

Pseudo-random Key Generators

￭ What is true randomness?
￭ Physical process that’s inherently random
￭ Secure yet impractical

￭ Scarce, hard to use
￭ Rate-limited

￭ Pseudo-random generator (PRG)
￭ Input: ???
￭ Output: ???
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Pseudo-random Key Generators

￭ What is true randomness?
￭ Physical process that’s inherently random
￭ Secure yet impractical

￭ Scarce, hard to use
￭ Rate-limited

￭ Pseudo-random generator (PRG)
￭ Input: a small seed that is truly random 
￭ Output: long sequence that appears random
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Pseudo-random Generators (PRGs)

￭ We say a PRG is secure if Mallory can’t do better than random guessing

￭ Problem: How much true randomness is enough?
￭ Example: one coin flip = Mallory needs very few tries to guess

￭ Problem: Is our “true randomness” truly random?
￭ Example: coin flip output = one in two. Lava lamps have way more!

￭ Solutions: 
￭ ???
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Stefan Nagy

Pseudo-random Generators (PRGs)

￭ We say a PRG is secure if Mallory can’t do better than random guessing

￭ Problem: How much true randomness is enough?
￭ Example: one coin flip = Mallory needs very few tries to guess

￭ Problem: Is our “true randomness” truly random?
￭ Example: coin flip output = one in two. Lava lamps have way more!

￭ Solutions: 
￭ Generate a bunch of true randomness over a long time from a high entropy source
￭ Run through a PRF to get an easy-to-work-with, fixed-length randomness (e.g., 256 bits)
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Practical Randomness

￭ Where do you get true randomness?

￭ Modern OSes typically collect randomness 

￭ They give you API calls to capture it

￭ e.g., Linux:
￭ /dev/random  is a device that gives random bits; it blocks until available 
￭ /dev/urandom gives output of a PRG; nonblocking; seeded from /dev/random eventually
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One-time Pads

￭ Alice and Bob generate ???
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One-time Pads

￭ Alice and Bob generate a plaintext-length 
string of random bits: the one-time pad k
￭ Encryption:  ci  :=  pi XOR ki
￭ Decryption:  pi  :=  ci XOR ki 

￭ Are they practical?
￭ ??? 

￭ Are they secure?
￭ ??? 

18

a XOR b XOR b = a
a XOR b XOR a = b
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One-time Pads

￭ Alice and Bob generate a plaintext-length 
string of random bits: the one-time pad k
￭ Encryption:  ci  :=  pi XOR ki
￭ Decryption:  pi  :=  ci XOR ki 

￭ Are they practical?
￭ ??? 

￭ Are they secure?
￭ ??? 
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a XOR b XOR b = a
a XOR b XOR a = b

Provably Secure
(if key is random + not reused)

Highly Impractical
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Attacking OTPs

￭ What happens if the key isn’t truly random?
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Attacking OTPs

￭ What happens if the key isn’t truly random?
￭ If Mallory correctly guesses some key bits, she can recover parts of the plaintext 
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(a XOR k) XOR g 

Guessed 
Key g

a k 
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Attacking OTPs

￭ What if Mallory intercepts multiple messages that reuse the same key?
￭ Mallory can XOR them together to recover partial plaintext information!

22

(a XOR k) (b XOR k) 
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Attacking OTPs

￭ What if Mallory intercepts multiple messages that reuse the same key?
￭ Mallory can XOR them together to recover partial plaintext information!
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(a XOR k) 

= a XOR b

(b XOR k) 

(a XOR k) XOR (b 
XOR k) 
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Stream Cipher

￭ Idea: Use a Pseudo-random Generator instead of a truly random pad

￭ Recall: a secure PRG inputs a true-random seed, outputs a stream that’s 
indistinguishable from true randomness (unless attacker knows seed)

1. Start with a shared secret truly random seed (from a lava lamp, mouse clicks, etc.)
2. Alice & Bob each use this seed to seed their PRG and generate k bits of PRG output
3. To encrypt and decrypt, perform the same operations as the One-time Pad:

￭ Encryption:  ci  :=  pi XOR ki
￭ Decryption:  pi  :=  ci XOR ki 
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Stream Cipher

￭ Idea: Use a pseudorandom generator instead of a truly random pad

￭ Recall: Secure PRG inputs a seed k, outputs a stream practically 
indistinguishable from true randomness (unless attacker knows k)

1. Start with shared secret key truly random number k
2. Alice & Bob each use k to seed the PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext

25

What is the tradeoff between 
an OTP and Stream Cipher?
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Stream Cipher

￭ Idea: Use a pseudorandom generator instead of a truly random pad

￭ Recall: Secure PRG inputs a seed k, outputs a stream practically 
indistinguishable from true randomness (unless attacker knows k)

1. Start with shared secret key truly random number k
2. Alice & Bob each use k to seed the PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext
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What is the tradeoff between 
an OTP and Stream Cipher?

Provably Secure
(if key is random + not reused)

Much more practical
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Stream Cipher

￭ Idea: Use a pseudorandom generator instead of a truly random pad

￭ Recall: Secure PRG inputs a seed k, outputs a stream practically 
indistinguishable from true randomness (unless attacker knows k)

1. Start with shared secret key truly random number k
2. Alice & Bob each use k to seed the PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext

27

Are stream ciphers 
vulnerable to attack?
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Stream Cipher

￭ Idea: Use a pseudorandom generator instead of a truly random pad

￭ Recall: Secure PRG inputs a seed k, outputs a stream practically 
indistinguishable from true randomness (unless attacker knows k)

1. Start with shared secret key truly random number k
2. Alice & Bob each use k to seed the PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext
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Seed or key reuse helps 
Mallory recover plaintext!

Are stream ciphers 
vulnerable to attack?
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Substitution vs Transposition Ciphers

￭ Substitution: replace plaintext symbols with others 
￭ Examples: ???
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Stefan Nagy

Substitution vs Transposition Ciphers

￭ Substitution: replace plaintext symbols with others 
￭ Examples: simple shifts (Caesar, Vigènere), XORs (OTP, stream)
￭ Key weakness: ???
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Substitution vs Transposition Ciphers

￭ Substitution: replace plaintext symbols with others 
￭ Examples: simple shifts (Caesar, Vigènere), XORs (OTP, stream)
￭ Key weakness: although letters changed, frequencies upheld

￭ Transposition: plaintext symbols are rearranged
￭ Examples: ???
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Substitution vs Transposition Ciphers

￭ Substitution: replace plaintext symbols with others 
￭ Examples: simple shifts (Caesar, Vigènere), XORs (OTP, stream)
￭ Key weakness: although letters changed, frequencies upheld

￭ Transposition: plaintext symbols are rearranged
￭ Examples: columnar, rail fence / zig zag / scytale, grids
￭ Key weakness: ???
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Substitution vs Transposition Ciphers

￭ Substitution: replace plaintext symbols with others 
￭ Examples: simple shifts (Caesar, Vigènere), XORs (OTP, stream)
￭ Key weakness: although letters changed, frequencies upheld

￭ Transposition: plaintext symbols are rearranged
￭ Examples: columnar, rail fence / zig zag / scytale, grids
￭ Key weakness: plaintext letters in ciphertext; anagram attacks 
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Columnar Transposition

￭ Rearrange plaintext symbols to create ciphertext
￭ Create a table with |k| columns and |p|/|k| rows (k is the keyword)
￭ Place plaintext symbols in columns (left to right), cycling around to 

next row of the first column when current row of last column is filled
￭ Create the ciphertext by writing entire columns (as a serial stream) 

to the output, where the keyword determines the column order

￭ Example:
￭ k = “ZEBRAS” (632415) 
￭ p = “We are discovered flee at once”
￭ c = EVLNX ACDTQ ESEAM 

ROFOP DEECD WIREE
￭ Replace null with nonsense symbol

34

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E null null null null null
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Columnar Transposition

￭ How does Bob decrypt Alice’s columnar-transposition-encrypted message?

35

k = “ZEBRAS” (632415) 

p = “We are discovered flee at once”

c = EVLNX ACDTQ ESEAM 
  ROFOP DEECD WIREE
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Columnar Transposition

￭ How does Bob decrypt Alice’s columnar-transposition-encrypted message?

36

E A E R D W

V C S O E I

L D E F E R

N T A O C E

X Q M P D E

k = “ZEBRAS” (632415) 

p = “We are discovered flee at once”

c = EVLNX ACDTQ ESEAM 
  ROFOP DEECD WIREE
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Columnar Transposition

￭ How does Bob decrypt Alice’s columnar-transposition-encrypted message?

37

E A E R D W

V C S O E I

L D E F E R

N T A O C E

X Q M P D E

k = “ZEBRAS” (632415) 

p = “We are discovered flee at once”

c = EVLNX ACDTQ ESEAM 
  ROFOP DEECD WIREE

1 2 3 4 5 6

E A E R D W

V C S O E I

L D E F E R

N T A O C E

X Q M P D E
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Columnar Transposition

￭ How does Bob decrypt Alice’s columnar-transposition-encrypted message?
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E A E R D W

V C S O E I

L D E F E R

N T A O C E

X Q M P D E

k = “ZEBRAS” (632415) 

p = “We are discovered flee at once”

c = EVLNX ACDTQ ESEAM 
  ROFOP DEECD WIREE

1 2 3 4 5 6

E A E R D W

V C S O E I

L D E F E R

N T A O C E

X Q M P D E

Z E B R A S

6 3 2 4 1 5

W E A R E D

I S C O V E

R E D F L E

E A T O N C

E M Q P X D



Stefan Nagy

Columnar Transposition

￭ Can you decrypt the ciphertext?

39

c = SAKSECROYNSBOWOLYUOL

k = “TEAMS” 
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Columnar Transposition

￭ Can you decrypt the ciphertext?
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1 2 3 4 5

S E Y O Y

A C N W U

K R S O O

S O B L L

c = SAKSECROYNSBOWOLYUOL

k = “TEAMS” (52134) 
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Columnar Transposition

￭ Can you decrypt the ciphertext?

41

c = SAKSECROYNSBOWOLYUOL

k = “TEAMS” (52134) 

T E A M S

5 2 1 3 4

Y E S Y O

U C A N W

O R K S O

L O S B L
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Columnar Transposition

￭ Can you decrypt the ciphertext?

42

T E A M S

5 2 1 3 4

Y E S Y O

U C A N W

O R K S O

L O null null null

c = SAKSECROYNSBOWOLYUOL

k = “TEAMS” (52134) 
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Columnar Transposition

￭ Can you decrypt the ciphertext?

￭ “Yes, you can work solo” (on projects)
￭ Though we don’t recommend it! 😃
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T E A M S

5 2 1 3 4

Y E S Y O

U C A N W

O R K S O

L O null null null

c = SAKSECROYNSBOWOLYUOL

k = “TEAMS” (52134) 
A crummy 
reminder 
of course 
policy?
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Can we make transposition stronger?
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Can we make transposition stronger?

￭ More Transposition:
￭ Increase entropy!

45

5 6 4 2 3 1

E V L N A C

D T E S E A

R O F O D E

E C W I R I

E null null null null null

k1 = “ZEBRAS” (632415) 
c1 = EVLNX ACDTQ ESEAM 

ROFOP DEECD WIREE

k2 = “STRIPE” (632415) 
c2 = CAEIX NSOIN AEDRX 

LEFWS EDREE VTOCG
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Can we make transposition stronger?

￭ More Transposition:
￭ Increase entropy!

￭ Apply Fractionation:
￭ Eliminate anagrams!

46

5 6 4 2 3 1

E V L N A C

D T E S E A

R O F O D E

E C W I R I

E null null null null null

k1 = “ZEBRAS” (632415) 
c1 = EVLNX ACDTQ ESEAM 

ROFOP DEECD WIREE

k2 = “STRIPE” (632415) 
c2 = CAEIX NSOIN AEDRX 

LEFWS EDREE VTOCG

0101011101100101…

“We’re discovered 
flee at once!”

o—— o o— o—o o …
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Can we make transposition stronger?

￭ More Transposition:
￭ Increase entropy!

￭ Apply Fractionation:
￭ Eliminate anagrams!

￭ Apply Substitution: 
￭ Increase entropy 

+ eliminate anagrams!
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5 6 4 2 3 1

E V L N A C

D T E S E A

R O F O D E

E C W I R I

E null null null null null

k1 = “ZEBRAS” (632415) 
c1 = EVLNX ACDTQ ESEAM 

ROFOP DEECD WIREE

k2 = “STRIPE” (632415) 
c2 = CAEIX NSOIN AEDRX 

LEFWS EDREE VTOCG

0101011101100101…

“We’re discovered 
flee at once!”

o—— o o— o—o o …

c  = EVLNB ACDTA ESEAR 
ROFOX DEECB WIREE

c2 = EWNNC CCEVA FUEBT 
   RPHOY FEFEB XKRFGk  = ABCAB CABCA BCABC 



Stefan Nagy

Cipher Metrics

￭ How we “weigh” a cipher’s resilience to cryptanalysis

￭ “Confusion”
￭ ??? 

￭ “Diffusion”
￭ ???

48
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Cipher Metrics

￭ How we “weigh” a cipher’s resilience to cryptanalysis

￭ “Confusion”
￭ Every bit of the ciphertext should depend on several parts of the plaintext
￭ Maintains that the ciphertext is statistically independent of the plaintext

￭ “Diffusion”
￭ A change to one plaintext bit should change 50% of the ciphertext bits
￭ A change to one ciphertext should change 50% of the plaintext bits
￭ Plaintext features spread throughout the entire ciphertext
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Exercise: Cipher Metrics

50

Cipher Relies on? Strength? Why?

Caesar ? ? ?
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Exercise: Cipher Metrics

51

Cipher Relies on? Strength? Why?

Caesar Confusion Weak Frequencies unchanged

Vigenere ? ? ?

One-time Pad, 
Stream Cipher ? ? ?

Transposition ? ? ?

Fractionation ? ? ?
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Exercise: Cipher Metrics

52

Cipher Relies on? Strength? Why?

Caesar Confusion Weak Frequencies unchanged

Vigenere Confusion Weak Frequencies unchanged

One-time Pad, 
Stream Cipher Confusion Strong Key change = relationship 

cannot be determined

Transposition Diffusion Weak Symbols unchanged

Fractionation Both! Strong Symbols changed, spread
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Food for thought…

￭ Question: do we care about confusion 
and diffusion in cryptographic hashes?

53



Stefan Nagy

Food for thought…

￭ Question: do we care about confusion 
and diffusion in cryptographic hashes?
￭ Absolutely we do!

￭ Implications of low confusion/diffusion:
￭ Tampering, forgery, collisions
￭ Pre-image attacks

54
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Questions?
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This time on CS 4440…

56

Block Ciphers
DES and AES

Block Cipher Modes
Building a Secure Channel
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Message Confidentiality

￭ Confidentiality: ensure that only trusted parties can read the message
￭ Terminology:

￭ p  plaintext: original, readable message
￭ c  ciphertext: transmitted, unreadable message
￭ k  secret key: known only to Alice and Bob; facilitates  p → c  and  c → p
￭ E  encryption function:   E (p, k) → c
￭ D  decryption function:  D (c, k) → p

57

c c

E (p, k) D (c, k)
k kAlice BobMallory
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Message Confidentiality

￭ Confidentiality: ensure that only trusted parties can read the message
￭ Terminology:

￭ p  plaintext: original, readable message
￭ c  ciphertext: transmitted, unreadable message
￭ k  secret key: known only to Alice and Bob; facilitates  p → c  and  c → p
￭ E  encryption function:   E (p, k) → c
￭ D  decryption function:  D (c, k) → p

58

c c

E (p, k) D (c, k)
Alice BobMalloryk k
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Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on the same key
￭ Communicating parties must share key in advance
￭ Examples: ???
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Key-based Encryption Schemes

￭ “Symmetric” Key
￭ Encryption and decryption relies on the same key
￭ Communicating parties must share key in advance
￭ Examples:

￭ Caesar, Vigènere
￭ One-time Pad, Stream
￭ Transposition ciphers

60
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SKE via Stream Ciphers

￭ Stream cipher: operates on individual bits (or bytes); one at a time
￭ Generates pseudo-random key bits that are XOR’d to plaintext bits

61

Encryption Decryption

H E L L O

A X H J B

K M I V E

plaintext = 

key = 

ciphertext = 

⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓

A X H J Bkey = 

⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓

K M I V Eciphertext = 

H E L L Oplaintext = 
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SKE via Stream Ciphers

￭ Stream cipher: operates on individual bits (or bytes); one at a time
￭ Generates pseudo-random key bits that are XOR’d to plaintext bits
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Encryption Decryption

H E L L O

A X H J B

K M I V E

plaintext = 

key = 

ciphertext = 

⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓

A X H J Bkey = 

⊕ ⊕ ⊕ ⊕ ⊕

↓ ↓ ↓ ↓ ↓

K M I V Eciphertext = 

H E L L Oplaintext = 

Confusion and diffusion?

No diffusion—symbols 
are not spread around!
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Block Ciphers

63
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Block CIpher

￭ Functions that encrypts fixed-size blocks with a reusable key

￭ Inverse function decrypts when used with same key

￭ The most commonly used encryption approach for confidentiality.

64

Enck
key

plaintext

ciphertext

Deck
key

ciphertext

plaintext
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Block Ciphers vs. Hashes

￭ Hash functions:
￭ ??? 
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Block Ciphers vs. Hashes

￭ Hash functions:
￭ Must not have collisions
￭ Must not be reversible
￭ Goal: integrity

￭ Detect message tampering
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Block Ciphers vs. Hashes

￭ Hash functions:
￭ Must not have collisions
￭ Must not be reversible
￭ Goal: integrity

￭ Detect message tampering

￭ Block Ciphers:
￭ Must not have collisions
￭ Must be reversible
￭ Goal: confidentiality

￭ Keep secret message secret 
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Block Ciphers vs. Hashes

￭ Hash functions:
￭ Must not have collisions
￭ Must not be reversible
￭ Goal: integrity

￭ Detect message tampering

￭ Block Ciphers:
￭ Must not have collisions
￭ Must be reversible
￭ Goal: confidentiality

￭ Keep secret message secret

68

A block cipher is not a 
pseudo-random function
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Block Ciphers vs. Hashes

￭ Hash functions:
￭ Must not have collisions
￭ Must not be reversible
￭ Goal: integrity

￭ Detect message tampering

￭ Block Ciphers:
￭ Must not have collisions
￭ Must be reversible
￭ Goal: confidentiality

￭ Keep secret message secret

69

A block cipher is not a 
pseudo-random function

A block cipher is 
a pseudo-random 

permutation
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Pseudo-random Permutation (PRP)

￭ Defined similarly to a PRF: 
￭ Practically indistinguishable from a random permutation without secret k

￭ Main challenge: design a function that’s invertible… but only with the key

￭ Minimal properties of a good block cipher:
￭ Highly nonlinear (“confusion”)
￭ Mixes input bits together (“diffusion”)
￭ Dependent on the key
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Pseudo-random Permutation (PRP)

￭ What we want at a high-level:
￭ Function from n-bit input to n-bit output
￭ Ideally, one bit flip of the input results in 50% of output bits flipping
￭ Distinct inputs yield distinct outputs
￭ Thus, an invertible bijection
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SKE via Block Ciphers

￭ Block cipher: operates on fixed-length groups of bits called blocks
￭ Processes blocks using a reversible, non-colliding function

72

Encryption Decryption

B1 B2 B3

C1 C2 C3

plaintext = 

key ⟹ 

ciphertext = 

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

B1 B2 B3

C1 C2 C3ciphertext = 

key ⟹ 

plaintext = 

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Dec Dec Dec
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Block vs. Stream Ciphers

￭ Major categories of SKE
￭ Stream cipher: operates on individual bits (or bytes); one at a time
￭ Block cipher: operates on fixed-length groups of bits called blocks

￭ Only a few symmetric methods are used today

73

Methods Year approved Comments

Data Encryption Standard (DES) 1977 1998:  EFF’s Deep Crack breaks a DES key in 56 hrs

DES-Cipher Block Chaining (DES-CBC)

Triple DES – (TDES or 3DES) 1999

Advanced Encryption Standard (AES) 2001 Among the most used today

Other symmetric encryption methods

IDEA (International Data Encryption Algorithm), RC5 (Rivest Cipher 5), CAST (Carlisle Adams Stafford Tavares), Blowfish
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Questions?
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Data Encryption Standard (DES)
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Breaking up long messages into “blocks”

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size
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Breaking up long messages into “blocks”

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size

￭ Solution: Append padding to end of message
￭ Must be able to recognize and remove padding afterward
￭ Common approach: add n bytes that have value n
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Breaking up long messages into “blocks”

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size

￭ Solution: Append padding to end of message
￭ Must be able to recognize and remove padding afterward
￭ Common approach: add n bytes that have value n

￭ Challenge: What if message terminates a block?
￭ End of message might be misread as padding!
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Breaking up long messages into “blocks”

￭ Challenge: How to encrypt longer messages?
￭ Can only encrypt in units of cipher block size…
￭ But message might not be multiples of block size

￭ Solution: Append padding to end of message
￭ Must be able to recognize and remove padding afterward
￭ Common approach: add n bytes that have value n

￭ Challenge: What if message terminates a block?
￭ End of message might be misread as padding!

 
￭ Solution: Append an entire new block of padding
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Data Encryption Standard (DES)

￭ DES is a block, symmetric encryption scheme
￭ Uses a 64-bit key 
￭ Plaintext divided and encrypted as fixed-size, 64-bit blocks
￭ Different modes of encryption—each with different security implications
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Methods Year approved Comments

Data Encryption Standard (DES) 1977 1998:  EFF’s Deep Crack breaks a DES key in 56 hrs

DES-Cipher Block Chaining (DES-CBC)

Triple DES – (TDES or 3DES) 1999

Advanced Encryption Standard (AES) 2001 Among the most used today

Other symmetric encryption methods

IDEA (International Data Encryption Algorithm), RC5 (Rivest Cipher 5), CAST (Carlisle Adams Stafford Tavares), Blowfish
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Data Encryption Standard (DES)

￭ A variety of “block cipher modes” exist today
￭ As time went on, researchers found issues with them and proposed better ones
￭ We’ll talk about a few of these: Electronic Codebook and Cipher Block Chaining
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Methods Year approved Comments

Data Encryption Standard (DES) 1977 1998:  EFF’s Deep Crack breaks a DES key in 56 hrs

DES-Cipher Block Chaining (DES-CBC)

Triple DES – (TDES or 3DES) 1999

Advanced Encryption Standard (AES) 2001 Among the most used today

Other symmetric encryption methods

IDEA (International Data Encryption Algorithm), RC5 (Rivest Cipher 5), CAST (Carlisle Adams Stafford Tavares), Blowfish
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DES Modes: Electronic Codebook
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Mode #1: Electronic Codebook (ECB) 

￭ Electronic Codebook (ECB)
￭ Message divided into code blocks
￭ Each block encrypted separately
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B1 B2 B3

C1 C2 C3

plaintext = 

key ⟹ 

ciphertext = 

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc
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C1 C2 C3

Mode #1: Electronic Codebook (ECB) 

￭ Electronic Codebook (ECB)
￭ Message divided into code blocks
￭ Each block encrypted separately; decrypted separately too
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B1 B2 B3

ciphertext = 

key ⟹ 

plaintext = 

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Dec Dec Dec
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Mode #1: Electronic Codebook (ECB)

￭ ECB Strengths:
￭ Construction is un-chained

￭ Message can be ???
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ciphertext = 
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Mode #1: Electronic Codebook (ECB)

￭ ECB Strengths:
￭ Construction is un-chained

￭ Message can be split up and processed in parallel—fast!
￭ No need to wait on previous block’s encryption
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C1
C2C3

B1 B2 B3

C1 C2 C3

plaintext = 

key ⟹ 

ciphertext = 

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

C1 C2 C3 C4 C5

thread2thread1 thread1
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Mode #1: Electronic Codebook (ECB) 

￭ ECB Drawbacks:
￭ Identical plaintext blocks produce same ciphertext

￭ This results in low ???
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Mode #1: Electronic Codebook (ECB) 

￭ ECB Drawbacks:
￭ Identical plaintext blocks produce same ciphertext

￭ This results in low diffusion
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original

encrypted
B1 B2 B3

C1 C2 C3

plaintext = 

key ⟹ 

ciphertext = 

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc
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Mode #1: Electronic Codebook (ECB) 

￭ ECB Drawbacks:
￭ Do larger block sizes increase diffusion?

￭ Yes—but at what cost ???
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Mode #1: Electronic Codebook (ECB) 

￭ ECB Drawbacks:
￭ Do larger block sizes increase diffusion?

￭ Yes—but at what cost
￭ Much more impractical
￭ E.g., higher memory footprint
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How can we increase diffusion?
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DES Modes: Cipher Block Chaining
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Mode #2: Cipher Block Chaining (CBC)

￭ Key idea: seed current block with ciphertext from the previous block
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B1 B2 B3

C1 C2 C3

plaintext = 

key ⟹ 

ciphertext = 

↓ ↓ ↓

↓ ↓ ↓

k ⟹ k ⟹ Enc Enc Enc

⊕ ⊕ ⊕
↓ ↓ ↓
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Mode #2: Cipher Block Chaining (CBC)

￭ Key idea: seed current block with ciphertext from the previous block
￭ Since first block has no “previous” cipher, seed it with a 64-bit initialization vector (I.V.)

￭ A random or pseudo-random block that’s unpredictable
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B1 B2 B3

C1 C2 C3

plaintext = 

key ⟹ 

ciphertext = 

↓ ↓ ↓

↓ ↓ ↓
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⊕ ⊕ ⊕IV
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key ⟹ k ⟹ k ⟹ Dec Dec Dec

C1 C2 C3

Mode #2: Cipher Block Chaining (CBC)

￭ Decryption operates similarly:
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B1 B2 B3

ciphertext = 

plaintext = 

↓ ↓ ↓

↓ ↓ ↓
⊕ ⊕ ⊕

IV
↓ ↓ ↓
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Mode #2: Cipher Block Chaining (CBC)

￭ CBC Strengths:
￭ Chained construction far stronger than ECB

￭ More diffusion!
￭ Negates ECB’s need for super-large blocks
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Mode #2: Cipher Block Chaining (CBC)

￭ CBC Strengths:
￭ Chained construction far stronger than ECB

￭ More diffusion!
￭ Negates ECB’s need for super-large blocks

￭ CBC Drawbacks: 
￭ Completely sequential

￭ ??? 
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Mode #2: Cipher Block Chaining (CBC)

￭ CBC Strengths:
￭ Chained construction far stronger than ECB

￭ More diffusion!
￭ Negates ECB’s need for super-large blocks

￭ CBC Drawbacks: 
￭ Completely sequential

￭ Cannot be parallelized!
￭ No leveraging advances in multi-threading etc.
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Questions?
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Advanced Encryption Standard (AES)
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Advanced Encryption Standard (AES)

￭ Today’s most common block cipher
￭ Designed by NIST competition, with a very long public discussion
￭ Widely believed to be secure… but we don’t know how to prove it

￭ Variable key size: 
￭ 128-bit fairly common; also 192-bit and 256-bit versions

￭ Input message is split into 128-bit blocks

￭ Ten rounds: 
￭ Split k into ten subkeys (key scheduling)
￭ Performs set of identical operations ten times (each with different subkey)
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AES Cliff Notes

￭ Systematically designed through a read/blue team competition by NIST 
￭ Layered design to remove flaws of individual components 
￭ Prevent statistical leakage

￭ Letter frequency of substitution ciphers
￭ Anagrams of transposition ciphers

￭ Many fancier “modes” with ordering counters, etc.
￭ Efficient software and hardware implementations

￭ Exposes security performance tradeoff to user
￭ 128-bit key: 10 rounds
￭ 192-bit key: 12 rounds
￭ 256-bit key: 14 rounds
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Disclaimer:
details are 

hairy—don’t 
worry about 

them.
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Secure Channels
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Building a Secure Channel

￭ What if you want confidentiality and integrity at the same time?
￭ Which would you perform first: encrypting or hashing? And why?
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Building a Secure Channel

￭ What if you want confidentiality and integrity at the same time?
￭ Which would you perform first: encrypting or hashing? And why?
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Integrity 
Check

Confidentiality 
Check
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Limitations of Symmetric Crypto

￭ Complex mathematics
￭ Hardware and software efficiency is key
￭ A huge study of modern cryptography research

￭ Requires pre-shared keys
￭ The keys need to stay secret always
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Limitations of Symmetric Crypto

￭ Complex mathematics
￭ Hardware and software efficiency is key
￭ A huge study of modern cryptography research

￭ Requires pre-shared keys
￭ The keys need to stay secret always
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Amazing fact: Alice and Bob can 
have a public conversation to 

derive a shared secret key
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Next time on CS 4440…
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Public-key Encryption, Signatures


