Week 3: Lecture B
Block Ciphers

Thursday, September 5, 2024




Announcements

Project 1: Crypto released (see Assignments page on course website)
= Deadline: Thursday, September 19th by 11:59 PM

(Project 1: Cryptography Table of Contents:

« Helpful Resources

. ¢ Introduction
Deadline: Thursday, September 19 by 11:59PM.
« Objectives
« Start by reading this!
Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies. o Working in the VM
‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have o Testing your Solutions

difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover

. -  Part 1: Hash Collisions
project material, so you and your partner should collaborate on each part.

o Prelude: Collisions
The code and other answers your group submits must be entirely your own work, and you are bound by the o Prelude: FastColl
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your o What to Submit
code comments). Don't risk your grade and degree by cheating!

o Collision Attack

« Part 2: Length Extension
Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any o Prelude: Merkle-Damgar
external dependencies. Use only default Python 3 libraries and/or modules we provide you. o Length Extension Attack:

o What to Submit

Part 3: Cryptanalysis

o Prelude: Ciphers
Helpful Resources °
o Cryptanalysis Attack
« The CS 4440 Course Wiki o Extra Credit
* VM Setup and Troubleshooting o What to Submit

» Terminal Cheat Sheet

Part 4: Signature Forgery
* Python 3 Cheat Sheet o Prelude: RSA Signatures

* PyMD5 Module Documentation o Prelude: Bleichenbacher

CyRoots Module Documentation o Forgery Attacks j

o What to Submit
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http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu




Announcements

ACM Club Kickoff!

In The Association for Computing Machinery:

* Find like-minded people in the field of ° Gain career and industry connections
computing, and work on projects as a through lectures by professors and
Special Interest Group. companies.

There will be Pizza!
Thurs, Sept 5, 5-6pm
MEB 3147

Scan to RSVP for headcount
and diet restrictions

G‘ e sinery acm.cs.utah.edu @uofuacm M uofuacm@gmail.com
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Last time on CS 4440...

Pseudo-random Keys
One-time Pads
Transposition Ciphers
Cipher Metrics




Generating Random Keys

Physical randomness:

= ?7??
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Generating Random Keys

Physical randomness:

= Coin flips
= Atomic decay A
= Thermal noise -
= Electromagnetic noise 3 ‘Cy[
= Physical variation s
= Clock drift ||
= DRAM decay S
= Image sensor errors  <§
=  SRAM startup-state 9O
= lLava Lamps ©
Reference clock e
) ,f‘ "
e
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Generating Random Keys
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Generating Random Keys

[ Highest guarantees of security }

E Difficult to use, or rate-limited }

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 10



Pseudo-random Key Generators

What is true randomness?

=
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Pseudo-random Key Generators

What is true randomness?
= Physical process that's inherently random
=  Secure yet impractical
= Scarce, hard to use
= Rate-limited

Pseudo-random generator (PRG)
= Input: ?77?
=  Output: 7?7?72
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Pseudo-random Key Generators

What is true randomness?
= Physical process that's inherently random
=  Secure yet impractical
= Scarce, hard to use
= Rate-limited

Pseudo-random generator (PRG)

= Input: a small seed that is truly random
= Output: longsequence that appears random
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Pseudo-random Generators (PRGs)

We say a PRG is secure if Mallory can’t do better than random guessing

Problem: How much true randomness is enough?
= Example: one coin flip = Mallory needs very few tries to guess

Problem: Is our “true randomness” truly random?
= Example: coin flip output = one in two. Lava lamps have way more!

Solutions:

= ?7??
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Pseudo-random Generators (PRGs)

We say a PRG is secure if Mallory can’t do better than random guessing

Problem: How much true randomness is enough?
= Example: one coin flip = Mallory needs very few tries to guess

Problem: Is our “true randomness” truly random?
= Example: coin flip output = one in two. Lava lamps have way more!

Solutions:

= Generate a bunch of true randomness over a long time from a high entropy source
= Run through a PRF to get an easy-to-work-with, fixed-length randomness (e.g., 256 bits)
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Practical Randomness

Where do you get true randomness?

Modern OSes typically collect randomness

They give you API calls to capture it @9@ §

e.g., Linux:
= /dev/random is a device that gives random bits; it blocks until available
= /dev/urandom gives output of a PRG; nonblocking; seeded from /dev/random eventually
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One-time Pads

Alice and Bob generate ???
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One-time Pads

Alice and Bob generate a plaintext-length A
string of random bits: the one-time pad k B Q

= Encryption: ¢, := p. XOR k.
= Decryption: p,:= ¢, XORk,

Are they practical?

. ?2?7?

= O O |P>
R O O|m@
Or = O |0

Are they secure?

= ?7?7?

aXORbXORb=2a
aXORbXORa=b
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One-time Pads

(if key is random + not reused)

[ Provably Secure J

{ Highly Impractical }
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Attacking OTPs

What happens if the key isn’t truly random?
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Attacking OTPs

What happens if the key isn’t truly random?

= If Mallory correctly guesses some key bits, she can recover parts of the plaintext

Guessed
Key g

XOR g
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Attacking OTPs

What if Mallory intercepts multiple messages that reuse the same key?
= Mallory can XOR them together to recover partial plaintext information!

: (b XOR k)
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Attacking OTPs

What if Mallory intercepts multiple messages that reuse the same key?
= Mallory can XOR them together to recover partial plaintext information!

(2 XOR k) (b XOR k)

(2 XOR k) XOR (b
XOR k)
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Stream Cipher

Idea: Use a Pseudo-random Generator instead of a truly random pad

Recall: a secure PRG inputs a true-random seed, outputs a stream that’s
indistinguishable from true randomness (unless attacker knows seed)

1. Start with a shared secret truly random seed (from a lava lamp, mouse clicks, etc.)
2. Alice & Bob each use this seed to seed their PRG and generate k bits of PRG output
3. To encrypt and decrypt, perform the same operations as the One-time Pad:

= Encryption: ¢, := p. XORk

= Decryption: p,:= ¢ XOR k.
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Stream Cipher

What Is the tradeoff between
an OTP and Stream Cipher?

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 25



Stream Cipher

What Is the tradeoff between
an OTP and Stream Cipher~

Provably Secure

(if key is random + not reused)

\o v
\
{ Much more practical
v
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Stream Cipher

Are stream ciphers
vulnerable to attack?
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Stream Cipher

[ Are stream ciphers }

vulnerable to attack?

Seed or key reuse helps
Mallory recover plaintext!
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Substitution vs Transposition Ciphers

Substitution: replace plaintext symbols with others [a[B]cD[ETF]
= Examples: 77?

NOEREE
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Substitution vs Transposition Ciphers

Substitution: replace plaintext symbols with others [a[B]cD[ETF]

= Examples: simple shifts (Caesar, Vigenere), XORs (OTP, stream)
= Key weakness: 7??

NOEREE
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Substitution vs Transposition Ciphers

Substitution: replace plaintext symbols with others [a[B]cD[ETF]

= Examples: simple shifts (Caesar, Vigenere), XORs (OTP, stream)
= Key weakness: although letters changed, frequencies upheld

[a[B]c[p[ETF]
Transposition: plaintext symbols are rearranged S g\g‘&mj:};j
= Examples: 77? .:,: oo
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Substitution vs Transposition Ciphers

Substitution: replace plaintext symbols with others [a[B]cD[ETF]

= Examples: simple shifts (Caesar, Vigenere), XORs (OTP, stream)
= Key weakness: although letters changed, frequencies upheld

NOEREE

Transposition: plaintext symbols are rearranged

= Examples: columnar, rail fence / zig zag / scytale, grids
= Key weakness: 7??
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Substitution vs Transposition Ciphers

Substitution: replace plaintext symbols with others [a[B]cD[ETF]

= Examples: simple shifts (Caesar, Vigenere), XORs (OTP, stream)
= Key weakness: although letters changed, frequencies upheld

NOEREE

Transposition: plaintext symbols are rearranged

= Examples: columnar, rail fence / zig zag / scytale, grids
= Key weakness: plaintext letters in ciphertext; anagram attacks
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Columnar Transposition

Rearrange plaintext symbols to create ciphertext
= Create a table with k| columns and Ipl/lkl rows (k is the keyword)
=  Place plaintext symbols in columns (left to right), cycling around to
next row of the first column when current row of last column is filled
= Create the ciphertext by writing entire columns (as a serial stream)
to the output, where the keyword determines the column order

Example:

= k="“ZEBRAS" (632415)
= p="“We are discovered flee at once”
= ¢= EVLNX ACDTQ ESEAM
ROFOP DEECD WIREE
= Replace null with nonsense symbol

> m|lwm| m|lw
—H|lo|lo|x>|N
o|lm|o|lxm|n
Z|lr|i<| m|=
olmi m|lo|lwu

mim| O H|=| O

null null null null null
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Columnar Transposition

How does Bob decrypt Alice’s columnar-transposition-encrypted message?

k = “ZEBRAS” (632415)
p = “We are discovered flee at once”

c= EVLNX ACDTQ ESEAM
ROFOP DEECD WIREE
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Columnar Transposition

How does Bob decrypt Alice’s columnar-transposition-encrypted message?

k = “ZEBRAS” (632415)

p = “We are discovered flee at once”

c= EVLNX ACDTQ ESEAM - . _
ROFOP DEECD WIREE \\

\\
\
E A E R D ] 1
v C S 0 E I /'
L D E F E R a-’

N T A 0 c E

X Q M P D E
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Columnar Transposition

How does Bob decrypt Alice’s columnar-transposition-encrypted message?

1 2 3 4 5 6
k = “ZEBRAS” (632415) E A E R D W
_» v c s 0 E I
p = “We are discovered flee at once” . L D E F E R
,I N T A 0 c E
c= EVLNX ACDTQ ESEAM - _ l| X q " p b £
ROFOP DEECD WIREE . \
\\ |I
‘ I
E A E R D W : I
v c s 0 E I ;!
. ’
L D E F E R a- of
N T A 0 c E ---7
X Q M P D E

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 37



Columnar Transposition

How does Bob decrypt Alice’s columnar-transposition-encrypted message?

1 2 3 4 5 6
k = “ZEBRAS” (632415) E A E R D W
> v c S 0 E I -
p = “We are discovered flee at once” K L D E F E R \
I N T A 0 c E v
c= EVLNX ACDTQ ESEAM - - _ I| X q M b D £ s
~
ROFOP DEECD WIREE AR \ "
S . z E B R A s s?
\ . ‘/
i 6 3 2 4 1 5
E A E R D W : I
! / w E A R E D
v c s 0 E I ) 4
L D E F E R a-’ of . S ¢ 0 Y .
- R E D F L E
N T A 0 c E o
E A T 0 N c
X Q M P D E
E M Q P X D
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Columnar Transposition

Can you decrypt the ciphertext?

c= SAKSECROYNSBOWOLYUOL
k= “TEAMS”
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Columnar Transposition

Can you decrypt the ciphertext?

c= SAKSECROYNSBOWOLYUOL

k= “TEAMS” (52134)

WIXRIPPIT0V=
oM O M[N
T |2 <|wW
r|lo|l=|0O| A~
rjlo|cCc|<|u
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Columnar Transposition

Can you decrypt the ciphertext?

c= SAKSECROYNSBOWOLYUOL

k= “TEAMS” (52134)

rlo|lc|<|a|H
o|lm|lo|m|N|m
| x> n|l=a>»
wlo|lZz|<|lw|l=
—rlo|l=|o|a|l®n
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Columnar Transposition

Can you decrypt the ciphertext?

c= SAKSECROYNSBOWOLYUOL

k= “TEAMS” (52134)

N[l =|>
wiZ2 <l wl =
O|l=|O0|h~|0n

rjo|lc|<<|o| -
O|lXM|I O MmN M

null null null
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Columnar Transposition

Can you decrypt the ciphertext?

c= SAKSECROYNSBOWOLYUOL

A crummy
k= “TEAMS” (52134) A <) reminder
of course
“Yes, you can work solo” (on projects) policy?

= Though we don’t recommend it! &
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Can we make transposition stronger?
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Can we make transposition stronger?

More Transposition: k= CZEBRAST(632415) o e [ e [« J=T>T-
C1= EVLNX ACDTQ ESEAM N E v L N A c
= Increase entropy! ROFOP DEECD WIREE n : : s : ,
/‘ R 0 F 0 D E
= “STRIPE” (632415) v - - - - - -

c,=  CAEIX NSOIN AEDRX =
E ull ull ull ull 11

LEFWS EDREE VTOCG
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Can we make transposition stronger?

More Transposition: k= "ZEBRAS"(632415)  _ _ _ G L I N N
C_I = EVLNX ACDTQ ESEAM S E v L N A c
= Increase entropy! ROFOP DEECD WIREE LN T T T
k=  “STRIPE” (632415) . T e e B e
Cz = CAEIX NSOIN AEDRX = 3 ull w1l w1l ull 11
LEFWS EDREE VTOCG
Apply Fractionation: P |
o A : _»! O— 0 0— 0-0 O .. |
= Eliminate anagrams! | “We're discovered | _-~ ! !
. " = Z
| flee at once! N [Tttt |
' ! &1 0101011101100101..
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Can we make transposition stronger?

More Transposition:
= |ncrease entropy!

Apply Fractionation:

= Eliminate anagrams!

Apply Substitution:
= |ncrease entropy
+ eliminate anagrams!
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g]

k

“ZEBRAS” (632415)
EVLNX ACDTQ ESEAM
ROFOP DEECD WIREE

“STRIPE” (632415) y
CAEIX NSOIN AEDRX ¥ -
LEFWS EDREE VTOCG

“We’'re discovered
flee at once!”

EVLNB ACDTA ESEAR
ROFOX DEECB WIREE

ABCAB CABCA BCABC

———

Stefan Nagy

m m — £

/
/

m|m|[ o] o|l m|] a
olol|l 4] <| o
Hlol o]l z]| ™
o|lo|lm| »| w

m|l > o] =

null null null null null

¢, = EWNNC CCEVA FUEBT
RPHOY FEFEB XKRFG
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Cipher Metrics

How we “weigh” a cipher’s resilience to cryptanalysis

“Confusion”

= 777

“Diffusion”

= 777
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Cipher Metrics

How we “weigh” a cipher’s resilience to cryptanalysis

“Confusion”

= Every bit of the ciphertext should depend on several parts of the plaintext
= Maintains that the ciphertext is statistically independent of the plaintext

“Diffusion”

= A change to one plaintext bit should change 50% of the ciphertext bits
= A change to one ciphertext should change 50% of the plaintext bits
= Plaintext features spread throughout the entire ciphertext
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Exercise: Cipher Metrics

Cipher Relieson? | Strength? Why?

Caesar ? ? ?
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Exercise: Cipher Metrics

Cipher Relieson? | Strength? Why?
Caesar Confusion Weak Frequencies unchanged
Vigenere ? ? ?
One-time Pad, - - -
Stream Cipher )
Transposition ? ? ?
Fractionation ? ? ?
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Exercise: Cipher Metrics

Cipher Relieson? | Strength? Why?
Caesar Confusion Weak Frequencies unchanged
Vigenere Confusion Weak Frequencies unchanged
Cretmerad: | contusion | swong | ' chanee -eitonh
Transposition Diffusion Weak Symbols unchanged
Fractionation Both! Strong Symbols changed, spread
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Food for thought...

Question: do we care about confusion
and diffusion in cryptographic hashes?
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Food for thought...

Question: do we care about confusion Input Digest

. . . . o crypazgsfphic DFCD 3454 BBEA 788A 7513
. 696C 24D9 7009 CA99 2D17
and diffusion in cryptographic hashes? function

= Absolutely we do! UGl o ey Atad e phe 0086 46BB FB7D CBE2 823(
y ’tﬂr:ﬁfu:vﬁgg fuf;acii: " ACC7 6CD1 90B1 EEGE 3ABC
ihetred fox EhyRodiEphic 8FD8 7558 7851 4F32 DI1C6
{f]r:'glsu‘;u:;g fuf;aciir:) = 76B1 79A9 ODA4 AEFE 4819

Implications of low confusion/diffusion: .

p . . ' Lh;;sigg’: cryp:“;‘-’s':ph'c FCD3 7FDB 5AF2 C6FF 915F
= Tampering, forgery, collisions the blue dog function DAL CORD TDOR 4GAF FBAy
= Pre-image attacks Thetediex cryptearaphic BACA D682 D588 4C75 4BFA

{f\r:gfuzeéog furr“aciir:m 1799 7D88 BCF8 92B9 GAGC
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This time on CS 4440...

Block Ciphers
DES and AES
Block Cipher Modes
Building a Secure Channel




Message Confidentiality

Confidentiality: ensure that only trusted parties can read the message

Terminology:
= p plaintext: original, readable message
= ¢ ciphertext: transmitted, unreadable message
= secret key: known only to Alice and Bob; facilitates pc and c=>p
= E encryption function: E(p, )= c
= D decryption function: D(c, <) > p

[Alice} - {I\/\allory} - >[ Bob }
E(p, ) D (c, )
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Message Confidentiality

= secret key: known only to Alice and Bob; facilitates pc and c=>p
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Key-based Encryption Schemes

“Symmetric” Key
= Encryption and decryption relies on the same key
= Communicating parties must share key in advance
= Examples: 77?
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Key-based Encryption Schemes

“Symmetric” Key
= Encryption and decryption relies on the same key
= Communicating parties must share key in advance
= Examples:
= Caesar, Vigenere
=  One-time Pad, Stream
= Transposition ciphers
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SKE via Stream Ciphers

Stream cipher: operates on individual bits (or bytes); one at a time
= Generates pseudo-random key bits that are XOR'd to plaintext bits

Encryption Decryption

plaintext=| H | E| L | L | O ciphertext=| K [ M | I | V | E

@ ) @ &) ) ) @ S ) @

key=| A | X | H| J | B key=| A | X | H|J | B

ciphertext=| K | M | I | V | E plaintext=| H | E | L | L | O
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SKE via Stream Ciphers

{ Confusion and diffusion? }

No diffusion—symbols
are not spread around!
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Block Ciphers
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Block Cipher

Functions that encrypts fixed-size blocks with a reusable key
Inverse function decrypts when used with same key
The most commonly used encryption approach for confidentiality.

plaintext + ciphertext +

£ £

* ciphertext + plaintext
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Block Ciphers vs. Hashes

Hash functions:

= 777
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Block Ciphers vs. Hashes

Hash functions:

= Must not have collisions
= Must not be reversible
= Goal: integrity
= Detect message tampering
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Block Ciphers vs. Hashes

Hash functions:
= Must not have collisions
= Must not be reversible
= Goal: integrity
= Detect message tampering

Block Ciphers:
= Must not have collisions
= Must be reversible
= Goal: confidentiality
= Keep secret message secret
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Block Ciphers vs. Hashes

4 N

A block cipheris not a
pseudo-random function

N /
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OOOOOOOOOOOOOOOOO

Block Ciphers vs. Hashes

e

-

A block cipher is not a

o

pseudo-random function

/

-

o

A block cipher is
a pseudo-random
permutation

~

Stefan Nagy
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Pseudo-random Permutation (PRP)

Defined similarly to a PRF:

= Practically indistinguishable from a random permutation without secret k

Main challenge: design a function that’s invertible... but only with the key

Minimal properties of a good block cipher:
= Highly nonlinear (“confusion”)
= Mixes input bits together (“diffusion”)
= Dependent on the key
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Pseudo-random Permutation (PRP)

What we want at a high-level:
=  Function from n-bit input to n-bit output
= Ideally, one bit flip of the input results in 50% of output bits flipping
= Distinct inputs yield distinct outputs
= Thus, an invertible bijection
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SKE via Block Ciphers

Block cipher: operates on fixed-length groups of bits called blocks

= Processes blocks using a reversible, non-colliding function

Encryption Decryption
T T N e e T
plaintext= | B, || | B, | ! B, |: 1 :ciphertext=|C, | C, | C, |
B ¥ b » | |
b e P b b b
L L o L L |
I<ey=>@iik=> Enc iik:@i I key=>;ik=> Dec iik=>i
| B o N | |
| | Lo Lo Lo Lo l
ciphertext=| C, || | C, | C, | : plaintext = | B, | | | B, ||| B, ||
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Block vs. Stream Ciphers

Major categories of SKE

= Stream cipher: operates on individual bits (or bytes); one at a time
= Block cipher: operates on fixed-length groups of bits called blocks

Only a few symmetric methods are used today

Methods Year approved Comments

Data Encryption Standard (DES) 1977 1998: EFF's Deep Crack breaks a DES key in 56 hrs

DES-Cipher Block Chaining (DES-CBC)

Triple DES - (TDES or 3DES) 1999

Advanced Encryption Standard (AES) 2001 Among the most used today

Other symmetric encryption methods

IDEA (International Data Encryption Algorithm), RC5 (Rivest Cipher 5), CAST (Carlisle Adams Stafford Tavares), Blowfish
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Data Encryption Standard (DES)




Breaking up long messages into “blocks”

Challenge: How to encrypt longer messages?

= Can only encrypt in units of cipher block size...
= But message might not be multiples of block size
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Breaking up long messages into “blocks”

Challenge: How to encrypt longer messages?

= Can only encrypt in units of cipher block size...
= But message might not be multiples of block size

Solution: Append padding to end of message

= Must be able to recognize and remove padding afterward
= Common approach: add n bytes that have value n
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Breaking up long messages into “blocks”

Challenge: How to encrypt longer messages?

= Can only encrypt in units of cipher block size...
= But message might not be multiples of block size

Solution: Append padding to end of message

= Must be able to recognize and remove padding afterward
= Common approach: add n bytes that have value n

Challenge: What if message terminates a block?
= End of message might be misread as padding!
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Breaking up long messages into “blocks”

Challenge: How to encrypt longer messages?

= Can only encrypt in units of cipher block size...
= But message might not be multiples of block size

Solution: Append padding to end of message
= Must be able to recognize and remove padding afterward
= Common approach: add n bytes that have value n

Challenge: What if message terminates a block?
= End of message might be misread as padding!

Solution: Append an entire new block of padding
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Data Encryption Standard (DES)

DES is a block, symmetric encryption scheme
= Uses a 64-bit key
= Plaintext divided and encrypted as fixed-size, 64-bit blocks
= Different modes of encryption—each with different security implications

Methods Year approved Comments

Data Encryption Standard (DES) 1977 1998: EFF’s Deep Crack breaks a DES key in 56 hrs

DES-Cipher Block Chaining (DES-CBC)

Triple DES - (TDES or 3DES) 1999

Advanced Encryption Standard (AES) 2001 Among the most used today

Other symmetric encryption methods

IDEA (International Data Encryption Algorithm), RC5 (Rivest Cipher 5), CAST (Carlisle Adams Stafford Tavares), Blowfish
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Data Encryption Standard (DES)

A variety of “block cipher modes” exist today

= Astime went on, researchers found issues with them and proposed better ones
= We'll talk about a few of these: Electronic Codebook and Cipher Block Chaining

DES-Cipher Block Chaining (DES-CBC)
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DES Modes: Electronic Codebook




Mode #1: Electronic Codebook (ECB)

Electronic Codebook (ECB)

= Message divided into code blocks
= Each block encrypted separately

plaintext = B, B, B,
! l !
key = @ k=>| Enc k= @
! ! !
ciphertext = | C. C, C,
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Mode #1: Electronic Codebook (ECB)

Electronic Codebook (ECB)

= Message divided into code blocks
= Each block encrypted separately; decrypted separately too

ciphertext =

C

1

!
key=> k=
!

plaintext =

SCHOOL OF COMPUTING
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B

1

C, Cs
! \
Dec k=
l !
B, B,
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Mode #1: Electronic Codebook (ECB)

ECB Strengths:

= Construction is un-chained
= Message can be ??7?

plaintext = B, B, B,
! ! !
key = @ k= | Enc k= @
l ! !
ciphertext= | C, C, C,
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Mode #1: Electronic Codebook (ECB)

ECB Strengths:

= Construction is un-chained
= Message can be split up and processed in parallel—fast!
= No need to wait on previous block’s encryption

B ... B
" plaintext=| B, | ! B. | B, || / \

L 2| S 11 C
l b \ C C

i ! . : \ ’
i I<ey=>@: k= | Enc | ik:@i \ A K
: L Do : \ P

! L L : \

| NS U / [
iciphertext= C C C
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Mode #1: Electronic Codebook (ECB)

ECB Drawbacks:

= Identical plaintext blocks produce same ciphertext
= This results in low ???

plaintext =

B

1

!
key:@ k=
!

ciphertext =
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C

1

B, B,
! \
Enc k= @
l !
C, Cs
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Mode #1: Electronic Codebook (ECB)

ECB Drawbacks:

= Identical plaintext blocks produce same ciphertext
= This results in low diffusion

plaintext = B, B, B, enypted
! ! !
key = @ k= | enc | k= @
! ! !
ciphertext = ['C, C, C, original
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Mode #1: Electronic Codebook (ECB)

ECB Drawbacks:

= Do larger block sizes increase diffusion?

=  Yes—but at what cost 7??

(a) Plaintext image, 2000 by 1400
pixels, 24 bit color depth.

SCHOOL OF COMPUTING
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(b) ECB mode ciphertext, 5 pixel (120
bit) block size.

(c) ECB mode ciphertext, 30 pixel
(720 bit) block size.

| {F
LT

A ANAETIRRR

(e) ECB mode ciphertext, 400 pixel
(9600 bit) block size.

(d) ECB mode ciphertext, 100 pixel
(2400 bit) block size.
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Mode #1: Electronic Codebook (ECB)

ECB Drawbacks: |

= Do larger block sizes increase diffusion? l |
=  Yes—but at what cost LHJAL 1l
Much more impractical b Y ) {

E.g., higher memory footprint ‘

(b) ECB mode ciphertext, 5 pixel (120 (c) ECB mode ciphertext, 30 pixel
bit) block size. (720 bit) block size.

e “‘ ‘l :::w [l
il

A ANAETIRRR

(a) Plaintext image, 2000 by 1400 (d) ECB mode ciphertext, 100 pixel (e) ECB mode ciphertext, 400 pixel

pixels, 24 bit color depth. (2400 bit) block size. (9600 bit) block size.
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How can we increase diffusion?
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DES Modes: Cipher Block Chaining




Mode #2: Cipher Block Chaining (CBC)

Key idea: seed current block with ciphertext from the previous block

plaintext = B, B, B,
l 1 l
® —---> & —---> 9
! | ! | !
| |
key:@  k=>| Enc | k=@
| |
! : ! : !
ciphertext = | C. L. C, B C,
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Mode #2: Cipher Block Chaining (CBC)

Key idea: seed current block with ciphertext from the previous block

= Since first block has no “previous” cipher, seed it with a 64-bit initialization vector (1.V.)
= Arandom or pseudo-random block that's unpredictable

plaintext = B, B, B,
l ! l
IVF----=-=--- > @ —---> & —---> 9
! | ! | !
| |
key:@  k=>| Enc | k=@
| |
! : ! : !
ciphertext = | C. L. C, B C,
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Mode #2: Cipher Block Chaining (CBC)

Decryption operates similarly:

ciphertext=| C, -~ C, - C,
| |
! | 1 | !
IV F-- . .
| key = i k= pec i k=
: : :
| ! : } : !
- > ® @ e--—- O R p—— > o
l 1 !
plaintext = | B, B, B,
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Mode #2: Cipher Block Chaining (CBC)

CBC Strengths:
= Chained construction far stronger than ECB
= More diffusion!
= Negates ECB's need for super-large blocks
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Mode #2: Cipher Block Chaining (CBC)

CBC Strengths:
= Chained construction far stronger than ECB
= More diffusion!
= Negates ECB's need for super-large blocks

CBC Drawbacks:
= Completely sequential
] ???
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Mode #2: Cipher Block Chaining (CBC)

CBC Strengths:
= Chained construction far stronger than ECB
= More diffusion!
= Negates ECB's need for super-large blocks

CBC Drawbacks:
= Completely sequential
= Cannot be parallelized!
= No leveraging advances in multi-threading etc.
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Advanced Encryption Standard (AES)




Advanced Encryption Standard (AES)

Today’s most common block cipher

= Designed by NIST competition, with a very long public discussion
= Widely believed to be secure... but we don’t know how to prove it

Variable key size:
= 128-bit fairly common; also 192-bit and 256-bit versions

Input message is split into 128-bit blocks

Ten rounds:
= Split k into ten subkeys (key scheduling)
= Performs set of identical operations ten times (each with different subkey)
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AES Cliff Notes

Systematically designed through a read/blue team competition by NIST
= Layered design to remove flaws of individual components
= Prevent statistical leakage
= Letter frequency of substitution ciphers
= Anagrams of transposition ciphers

Many fancier “modes” with ordering counters, etc. . N
= Efficient software and hardware implementations Disclaimer:
details are
Exposes security performance tradeoff to user hairy—don’t
= 128-bit key: 10 rounds worry about
= 192-bit key: 12 rounds
= 256-bit key: 14 rounds \_ @i -
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Secure Channels
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Building a Secure Channel

What if you want confidentiality and integrity at the same time?
=  Which would you perform first: encrypting or hashing? And why?
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Which would you perform first?
Encrypt (Confidentiality) first
0%

Hash (Integrity) first
0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Building a Secure Channel

What if you want confidentiality and integrity at the same time?
=  Which would you perform first: encrypting or hashing? And why?

Integrity Confidentiality
Check Check

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 106



Limitations of Symmetric Crypto

Complex mathematics

= Hardware and software efficiency is key
= A huge study of modern cryptography research

Requires pre-shared keys
= The keys need to stay secret always
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Limitations of Symmetric Crypto

4 ) , )
Amazing fact: Alice and Bob can

have a public conversation to

derive a shared secret key
- /
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Next time on CS 4440...

Public-key Encryption, Signatures




