Week 3: Lecture A

Improved Cipher Designs

Tuesday, September 3, 2024

Announcements

Project 1: Crypto released (see Assignments page on course website)
= Deadline: Thursday, September 19th by 11:59 PM

(Project 1: Cryptography Table of Contents:

« Helpful Resources

. ¢ Introduction
Deadline: Thursday, September 19 by 11:59PM.
« Objectives
« Start by reading this!
Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies. o Working in the VM
‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have o Testing your Solutions

difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover

. - Part 1: Hash Collisions
project material, so you and your partner should collaborate on each part.

o Prelude: Collisions
The code and other answers your group submits must be entirely your own work, and you are bound by the o Prelude: FastColl
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your o What to Submit
code comments). Don't risk your grade and degree by cheating!

o Collision Attack

« Part 2: Length Extension
Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any o Prelude: Merkle-Damgar
external dependencies. Use only default Python 3 libraries and/or modules we provide you. o Length Extension Attack:

o What to Submit

Part 3: Cryptanalysis

o Prelude: Ciphers
Helpful Resources °
o Cryptanalysis Attack
« The CS 4440 Course Wiki o Extra Credit
* VM Setup and Troubleshooting o What to Submit

» Terminal Cheat Sheet

Part 4: Signature Forgery
* Python 3 Cheat Sheet o Prelude: RSA Signatures

* PyMD5 Module Documentation o Prelude: Bleichenbacher

CyRoots Module Documentation o Forgery Attacks j

o What to Submit

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 2

http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Progress on Project 1

Finished both Part 1 and Part 2

| 0%
Finished only Part 1

| 0%
Started but haven't finished Part 1

' 0%

Haven't started :(

| 0%

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Project Tips

Projects are challenging—you're performing real-world attacks!

= Build off of lecture concepts
= Make sure you understand the lectures
= Prepare you to defend in the real world

Suggested strategy: get high-level idea down, then start implementing

1. Go through assignment and start sketching-out your approach
2. Come to Office Hours and ask if you’re on the right track!
3. Then start building your program

Don’t get discouraged—we are here to help!
= Most issues are cleared up in a few minutes of white-boarding

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 4

Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 6

Last time on CS 4440...

Message Confidentiality
Substitution Ciphers
Frequency Cryptanalysis

Message Confidentiality

Confidentiality: ???

[Alice } {N\allory} >[Bob }

ooooooooooooooooo
U UUUUUUUUUUUUUUUU Stefan Nagy 8

Message Confidentiality

Confidentiality: ensure that only trusted parties can read the message
Terminology: ???

[Alice } {N\allory} >[Bob }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 9

Message Confidentiality

Confidentiality: ensure that only trusted parties can read the message

Terminology:
= p plaintext: original, readable message
= ¢ ciphertext: transmitted, unreadable message
= secret key: known only to Alice and Bob; facilitates pc and c=>p
= E encryption function: E(p,)= c
= D decryption function: D(c, <) > p

[Alice} - {I\/\allory} - >[Bob }
E(p,) D (c,)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 10

Confidentiality via Ciphers

We define a key as 7?? U T AHUTE S

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 1

Confidentiality via Ciphers

We define a key as a set of shifts

Each shift represented by a letter
= Relative position in the alphabet

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

o | =

LT e o

N & o

= - 3

12

Confidentiality via Ciphers

We define a key as a set of shifts U TIAIHUIT E!S

Each shift represented by a letter
= Relative position in the alphabet P B A F

Shift goes past end of alphabet?

. 11]e@e]5]/19
© 12 3 45 6 ****
Tlulviwlx[y]z

B HZM

-
___————————
—
-

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 13

Confidentiality via Ciphers

We define a key as a set of shifts

Each shift represented by a letter

= Relative position in the alphabet

Shift goes past end of alphabet?

= Wrap around to beginning!

6
TIUVIWX Y|Z

-

©
-
N
w
N
ol

-
___————————
—
-

7 89 01 2 3 456 7 829
‘> A/B|C/D E|F|G

=
[
o
P
-
=

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

AHIUT
B AF|T
1106|519
RERR
B/H|Z|M

14

Caesar Ciphers

Really old school cryptography
= First recorded use: Julius Caesar (100-144 B.C.)

Replaces each plaintext letter with 222

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 15

Caesar Ciphers

Really old school cryptography
= First recorded use: Julius Caesar (100-144 B.C.)

Replaces each plaintext letter with one a

fixed number of places down the alphabet
= Encryption: ¢ := (p; + k) mod 26
= Decryption: p = (c k) mod 26

Example for k = 3:

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
= +Shift:
= =Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC
= Plain: go utes beat wash st

+Key:

= =Cipher: jr xwhv ehdw zdvk vw

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 16

Caesar Cipher Cryptanalysis

Brute-forcing
every possible key

{ Cryptanalysis J

OOOOOOOOOOOOOOOOO
Wk Stefan Nagy 7

Caesar Cryptanalysis via Chi-Square Test

Example ciphertext string (with a zero reverse shift): | JSGUKJYSEKDLJGGAKWOGLHWLJNWFZLVEX

Expected English language letter frequencies:

| { "A": .08167, "B": .01492, "C": .02782, "D": .04253, "E": .12702, "F": .02228, !
| Mgn: 02015, "H": .06094, "I": .06966, "J": .00153, "K": .00772, "L": .04025, |
| "M": .02406, "N": .06749, "0": .07507, "P": .01929, "Q": .00095, "R": .05987,
| "S": 06327, "T": .09056, "U": .02758, "V": .00978, "W': .02360, "X": .00150, !
oy 01974, "Z": .00074 } :

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 18

Caesar Cryptanalysis via Chi-Square Test

Example ciphertext string (with a zero reverse shift): | JSGUKJYSEKDLJGGAKWOGLHWLJNWFZLVEX

Expected English language letter frequencies:
.. , N (0; — E;)?
1 { "A": .08167, "B": .01492, "C": .02782, "D": .04253, "E": .12702, "F": .02228, ! 2 e l l

' "G": .02015, "H": .06094, "I": .06966, "J": .00153, "K": .00772, "L": .04025,

vooTMY .02406, "N": .06749, "0": .07507, "P": .01929, "Q": .00095, "R": .05987,
, "s": .06327, "T": .09056, "U": .02758, "V": .00978, "W": .02360, "X": .00150,

__'Y': .olg74, vzv: 00074} 2 _ a 2
. X L = (5.0 2/
O, =observed count for letter ‘L’ =5.0 !
\) 4 = 9.6367

E, =expected count for letter ‘L’ l,

= EnglishFreq, * StringLength I

= 0.04025 * 34 I'

= -—

SCHOOL OF COMPUTING Stefan Nagy 19

UNIVERSITY OF UTAH

Caesar Cryptanalysis via Chi-Square Test

Example ciphertext string (with a zero reverse shift): | JSGUKJYSEKDLJGGAKWOGLHWLJNWFZLVEX

Expected English language letter frequencies:
.. , N (0; — E;)?

1 { "A": .08167, "B": .01492, "C": .02782, "D": .04253, "E": .12702, "F": .02228, ! 2 e l l

' "G": .02015, "H": .06094, "I": .06966, "J": .00153, "K": .00772, "L": .04025,

vooTMY .02406, "N": .06749, "0": .07507, "P": .01929, "Q": .00095, "R": .05987,
, "s": .06327, "T": .09056, "U": .02758, "V": .00978, "W": .02360, "X": .00150,

__'Y": 01974, 'z': 00074} 2 _ _ 2
. X< =00)2/
O, =observed count for letter ‘L’ =5.0 1
\ _ -V = 9.6367
E = expected count for letter ‘L’ ¢
L P . ‘s ! 1. Add X? scores for all 26 alphabet letters
= EnglishFreq, * StringLength I 2. Final sum = that reverse shift’s X2 score
= 0.04025 * 34 | 3. Repeat for the 25 other reverse shifts
_ _ 4. Lowest score = the correct reverse shift
5. Mapped as forward shift = the key letter
SCHOOL OF COMPUTING Stefan Nagy 20

UNIVERSITY OF UTAH

Vigenere Ciphers

First described by Bellaso in 1553

= Later misattributed to Vigénere

Encrypts successive letters via ???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 21

Vigenere Ciphers

First described by Bellaso in 1553

= Later misattributed to Vigénere

Encrypts successive letters via sequence of Caesar
ciphers determined by the letters of a keyword

For an n-letter keyword k ..
= Encryption: C:
Decryption: p

(pn kn mod n) mod 26
(c.-k. 4,)mod 26

Examplefork ABC (i.e., k,=0,k =1k, =2)

Plain: bbbbbb amazon
= +Key:
= =Cipher: bcdbcd anczpp

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

22

Vigenere Ciphers

Can we still perform frequency
analysis for Vigenere ciphers?

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 23

Vigenere Ciphers

Can we still perform frequency
analysis for Vigenere ciphers?

Yes—just partition it down into N
Caesar ciphers (where N = key size)

SCHOOL OF COMPUTING
u UNIVERSITY OF UTAH Stefan Nagy 2

Finding Key Size via Kasiski Method

Example:

p | THERE ARETW OWAYS OFCON STRUC TINGA SOFTW AREDE SIGNO NEWAY
. | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ |LFWKI MJCLP SISWK HJOGL KMVGU RAGKM KMXMA MJCVX WUYLG GIISW

p | ISTOM AKEIT SOSIM PLETH ATTHE REARE OBVIO USLYN ODEFI CIENC
o | STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST
¢ | ALXAE YCXMF KMKBQ BDCLA EFLFW KIMJC GUZUG SKECZ GBWYM OACFV

p | IESAN DTHEO THERW AYIST OMAKE ITSOC OMPLI CATED THATT HEREA
o |EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM
¢ | MQKYF WXTWM LAIDO YQBWF GKSDI ULQGV SYHJA VEFWB LAEFL FWKIM

p | RENOO BVIOU SDEFI CIENC IESTH EFIRS TMETH ODISF ARMOR EDIFF
o | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ | JCFHS NNGGN WPWDA VMQFA AXWFZ CXBVE LKWML AVGKY EDEMJ XHUXD

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 25

Finding Key Size via Kasiski Method

Pick realistic key lengths; a length of two or three is probably short

Dist. 2 3 &4 /5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
74 X

72 X X | X X X | X X

66 X X X X

36 X | X | X X X X

32 X X X X

30 X X X | X X X

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 26

Finding Key Size via Kasiski Method

Then, group letters by columns—they received equal shifts!

23456

1
LFWKIM

23456

i
S

23456

1
G

23456

23456

1
URAGKM

23456

23456

i
JCVXWU

1]
Y

23456

23456

CLPSI

WKHJO

LKMVG

MXMAM

LGGII

WAL XA

23456

23456

23456

23456

23456

23456

23456

23456

23456

1
E

YCXMF

MKBQB

1
D

CLAEF

1
L

FWKIM

1
J

CGUZU

SKECZ

1
G

BWYMO

1
A

CFVMQ

YFWXT

1

23456

23456

23456

23456

23456

23456

23456

23456

23456

W

MLAID

YQBWF

1
G

KSDIU

1
L

QGVSY

1
H

JAVEF

BLAEF

1
L

FWKIM

CFHSN

GGNWP

1

23456

23456

23456

—

23456

—

23456

23456

2

=

WDAVMQ
=

AAXWFE

1
L

CXBVE

KWMLA

GKYED

MJIXHU

< | =

D

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

27

Recap: Breaking Vigenere

777

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 28

Recap: Breaking Vigenere

Identify the key length:

= Project 1: keys will always be of length eight
= Extra Credit: key varies—use Kasiski method!

???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 29

Recap: Breaking Vigenere

Identify the key length:

= Project 1: keys will always be of length eight
= Extra Credit: key varies—use Kasiski method!

Divide ciphertext into N columns: ,\/J

= Why? Because Vigeénere uses a repeating key Colé = REWU...
= Vigenere cipher is a set of N Caesar ciphers

???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 30

Recap: Breaking Vigenere

Candidate Col4 plaintexts:
o shift, =RGWU..

Identify the key length:
= Project 1: keys will always be of length eight

. : o e shift_ =QFVT..
= Extra Credit: key varies—use Kasiski method! e shift , =PEUS..
e shift_, = ODTR..
Divide ciphertext into N columns: b
e shitt =

= Why? Because Vigeénere uses a repeating key
= Vigenere cipher is a set of N Caesar ciphers

Perform cryptanalysis on each column:
= Find all candidate reverse shifts per column

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 31

Recap: Breaking Vigenere

Candidate Col4 plaintexts:

I ify the | h:
dentify the key lengt e shift, =RGWU..

= Project 1: keys will always be of length eight

. : o e shift_ =QFVT..
= Extra Credit: key varies—use Kasiski method! e shift , =PEUS..
e [shift_, = ODTR..
Divide ciphertext into N columns: b
e shitt =

= Why? Because Vigeénere uses a repeating key
= Vigenere cipher is a set of N Caesar ciphers Candidate Col4 X? scores:

e shift, =10.50
e shift =20.02
e shift, =5.135
[J

T w2 y2 2 2
4 X-XA+XB+Xc

shift_, =2.156 <=

Perform cryptanalysis on each column:

= Find all candidate reverse shifts per column

= Chi-square test: find best-fit reverse shift o X

-~ —/

« o e Z
o shift = k

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 32

Recap: Breaking Vigenere

Candidate Col4 plaintexts:

I ify the | h:
dentify the key lengt e shift, =RGWU..

= Project 1: keys will always be of length eight

. : L e shift_ =QFVT..
= Extra Credit: key varies—use Kasiski method! e shift , =PEUS..
e [shift_, = ODTR..
Divide ciphertext into N columns: b
e shitt =

= Why? Because Vigeénere uses a repeating key
= Vigenere cipher is a set of N Caesar ciphers Candidate Col4 X? scores:
o shift, =10.50
o shift_ =20.02
e shift , =5.135
o shift, =2.156/

X2= X2, + X2+ X2,

+ ...+ X2

Perform cryptanalysis on each column:
= Find all candidate reverse shifts per column
= Chi-square test: find best-fit reverse shift cs
= Compute forward shift = column’s key letter o shift ;= \

]
N\
\
N

-~ —/

z

Smallest X? = correct reverse shift for Cols!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 33

Recap: Breaking Vigenere

Identify the key length:
= Project 1: keys will always be of length eight
= Extra Credit: key varies—use Kasiski method!

Rinse and repeat for
remaining columns
Col1, Col2, Col3, ..."!

Divide ciphertext into N columns:

= Why? Because Vigeénere uses a repeating key
= Vigenere cipher is a set of N Caesar ciphers

Perform cryptanalysis on each column:
= Find all candidate reverse shifts per column
= Chi-square test: find best-fit reverse shift
= Compute forward shift = column’s key letter
= Assemble all N column keys = the Vigenere key!

SCHOOL OF COMPUTING Stefan Nagy 34

UNIVERSITY OF UTAH

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 35

This time on CS 4440...

Pseudo-random Keys
One-time Pads
Transposition Ciphers
Cipher Metrics

Pseudo-random Keys

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 37

Recap: Confidentiality via Substitution Ciphers

Clearly, simple substitution ciphers are vulnerable to frequency analysis
= Root cause: ??7?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 38

Recap: Confidentiality via Substitution Ciphers

Clearly, simple substitution ciphers are vulnerable to frequency analysis
= Root cause: the key length is much smaller than the plaintext length

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 39

Recap: Confidentiality via Substitution Ciphers

How can we create a better key
to improve confidentiality?

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 40

How long should an ideal cipher key be?

Half the size of the plaintext

| 0%
As long as the plaintext

| 0%

None of the above

' 0%

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Recap: Confidentiality via Substitution Ciphers

to improve confidentiality?

[Hovv can we create a better key}

Plaintext-length keys will deter
frequency analysis!

ooooooooooooooooo
U UUUUUUUUUUUUUUUU Stefan Nagy 42

Generating Keys

Functions: ???

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 43

Generating Keys

Functions: takes input y 4 T \

) ey \ ' a6beB4fco6fO3c1f |

and generates output love CS il 4 ™! 1506125960793a13 |

= E.g., Hash functions 4440 \' \ .
= E.g., HMAC functions

Generators: 7?7?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

A

Generating Keys

Generators: produces i/* ;’111aaaa1aaa111a\§
.. ' 1100060600001108180 !

output out of thin air . ’;aaa1aaa1a1aaa1a:
L e111111101101801 |

= E.g., number generators \' ‘ /

= E.g., HMAC secret keys

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 45

An ideal key is random...

OOOOOOOOOOOOOOOOO
U UNIVERSITY OF UTAH Stefan Nagy 46

What are some physical sources of randomness?

Nobody has responded yet.

Hang tight! Responses are coming in.

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Generating Random Keys

Physical randomness:

= Coin flips
= Atomic decay A
= Thermal noise -
= Electromagnetic noise 3 ‘Cy[
= Physical variation s
= Clock drift ||
= DRAM decay S
= Image sensor errors <§
= SRAM startup-state 9O
= lLava Lamps ©
Reference clock e
) ,f‘ "
e

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 48

Generating Random Keys

Harnessing physical randomness: “LavaRand”

= True randomness from lava lamps
= Used by CloudFlare today

lava lamps server service

Consumer
Wall of — Camera Office — LavaRand < Consumer

Consumer

T 1 |

Sensoy Local Local
. entro
ricifnm py entropy
source source

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 49

Generating Random Keys

[Highest guarantees of security }

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 50

Generating Random Keys

[Highest guarantees of security }

E Difficult to use, or rate-limited }

SCHOOL OF COMPUTING
u UNIVERSITY OF UTAH Stefan Nagy 51

“Pseudo” Randomness

What is true randomness?
= Physical process that's inherently random
= Secure yet impractical
= Scarce, hard to use
= Rate-limited

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 52

“Pseudo” Randomness

Pseudo-random generator (PRG)

= Input: a small seed that is truly random
= Output: longsequence that appears random

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 53

“Pseudo” Randomness

-~

PRGs offer the best of both worlds: practical
(fast, easy-to-use) and secure (appear random)

~

W

oI Cy ey TOTTC DT OOoCTTCCTTTrTOr T = T -

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

54

Pseudo-random Generators (PRGs)

We say a PRG is secure if Mallory can’t do better than random guessing

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 55

Pseudo-random Generators (PRGs)

We say a PRG is secure if Mallory can’t do better than random guessing

Problem: How much true randomness is enough?
= Example: one coin flip = Mallory needs very few tries to guess

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 56

Pseudo-random Generators (PRGs)

We say a PRG is secure if Mallory can’t do better than random guessing

Problem: How much true randomness is enough?
= Example: one coin flip = Mallory needs very few tries to guess

Problem: Is our “true randomness” truly random?
= Example: coin flip output = one in two. Lava lamps have way more!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 57

Pseudo-random Generators (PRGs)

Solutions:

= Generate a bunch of true randomness over a long time from a high entropy source
= Run through a PRF to get an easy-to-work-with, fixed-length randomness (e.g., 256 bits)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 58

Constructing a PRG

Idea: Build a PRG using a PRF

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 59

Constructing a PRG

Idea: Build a PRG using a PRF

Input Digest

"yp;"g’ha"h" DFCD 3454 BEEA 788A 751
58 696C 24D9 7009 CA99 2D1
function
heladioy cryptagraphic 0086 46BB FB7D CBE2 823(
e ash ACC7 6CD1 90B1 EEGE 3AEC
the blue dog function
i3 ey CREESIERIE 8FD8 7558 7851 4F32 DIC6
jumps ouer hash §
the blue dog function (LeEIRTPA NODn SRR RRAR,
Teme FCD3 7FDB 5AF2 C6FF 915
At D401 COA9 7DOA 46AF FBA5
e cyptegraphic 8ACA D682 D588 4C75 4BF.
jumps oer hash)
the blue dog function 1799 7DB8 BCES 9289 GAG

Observation: PRF, given consecutive
inputs, produce outputs that are
randomly distributed (hopefully)

cryptographic

the blue dog

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 60

Constructing a PRG

Idea: Build a PRG using a PRF

Observation: PRF, given consecutive
inputs, produce outputs that are
randomly distributed (hopefully)

Result: For truly-random s and PRF f:
= Pseudo-random generated string =

£.0 1 £0) 11 £Q Il £3)..

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 61

Proving a PRG is Secure

Theorem: if f is a secure PRF
= ..andgisseeded from f
= ..then g must be a secure PRG

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 62

Proving a PRG is Secure

Theorem: if f is a secure PRF
= ..andgisseeded from f
= ..then g must be a secure PRG

Proof: if f is a secure PRF, we must show that g is a secure PRG
1. Assume g actually is insecure... then Mallory can break it

2. If that were true, Mallory could also break the PRF too

3. This would contradict the fact that f is a secure PRF!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 63

Proving a PRG is Secure

[How should we seed our PRG? }

L What happens if we fail? }

ooooooooooooooooo
U UUUUUUUUUUUUUUUU Stefan Nagy 64

Proving a PRG is Secure

a N

When our assumptions hold, we
transform a small amount of
“true” randomness into a wealth
of “apparent” randomness

& v

SCHOOL OF COMPUTING
u UNIVERSITY OF UTAH Stefan Nagy 65

Practical Randomness

Where do you get true randomness?

Modern OSes typically collect randomness

They give you API calls to capture it @9@ §

e.g., Linux:
= /dev/random is a device that gives random bits; it blocks until available
= /dev/urandom gives output of a PRG; nonblocking; seeded from /dev/random eventually

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 66

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 67

Plaintext-length Keys:
One-time Pads

Stefan Nagy

One-time Pads

Alice and Bob generate a plaintext-length
string of random bits: the one-time pad k

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 69

One-time Pads

Alice and Bob generate a plaintext-length A
string of random bits: the one-time pad k B Q

= Encryption: ¢, := p. XOR k.
= Decryption: p,:= ¢, XORk,

= O O |P>
R O O|m@
Or = O |0

aXORbXORb=2a
aXORbXORa=b

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 70

One-time Pads

Alice and Bob generate a plaintext-length A
string of random bits: the one-time pad k B Q

= Encryption: ¢, := p. XOR k.
= Decryption: p,:= ¢, XORk,

To be secure:

= Key must be truly random
= Key must never be reused

= O O |P>
R O O|m@
Or = O |0

aXORbXORb=2a
aXORbXORa=b

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 71

Attacking OTPs: Non-random Keys

Suppose the key bits aren’t truly random
= E.g., generated by selecting one of three values

How would this help Mallory?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 72

Attacking OTPs: Non-random Keys

Suppose the key bits aren’t truly random
= E.g., generated by selecting one of three values

How would this help Mallory?

1. She intercepts an encrypted message

k (2 XOR k)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 73

Attacking OTPs: Non-random Keys

Suppose the key bits aren’t truly random
= E.g., generated by selecting one of three values

How would this help Mallory?

1. She intercepts an encrypted message
2. She guesses key values and decrypts

Guessed
Key g

k (2XORk) XORg

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 74

Attacking OTPs: Non-random Keys

Suppose the key bits aren’t truly random
= E.g., generated by selecting one of three values

How would this help Mallory?
1. She intercepts an encrypted message
2. She guesses key values and decrypts
3. She can recover parts of the plaintext!

Guessed
Key g

k (2XORk) XORg

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 75

Attacking OTPs: Key Reuse

(2 XOR k) (b XOR k)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 76

Attacking OTPs: Key Reuse

(2 XOR k) (b XOR k)

(2 XOR k) XOR (b XOR k)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 77

Attacking OTPs: Key Reuse

(2 XOR k) (b XOR k)

(2 XOR k) XOR (b XOR k)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 78

One-time Pads

(if key is random + not reused)

[Provably Secure J

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 79

One-time Pads

(if key is random + not reused)

{ Provably Secure J

{ Highly Impractical }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 80

Impracticality of OTPs

Generating OTPs
= Slow and/or rate-limited
= By hand, LavaRand, etc.

Deploying OTPs
= Potentially very long
= Challenging to conceal

Cold War numbers stations
= Encrypted message sent via
short-wave radio to agents
= Agent decrypts with their OTP
= Throw OTP away after!
= Many remain in service today!
= Lincolnshire Poacher

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

noo@a & BG nnan
@ 2o 8o B Bloce

Stefan Nagy

81

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 82

Plaintext-length Keys:
Stream Ciphers

Stefan Nagy

Stream Cipher

Idea: Use a Pseudo-random Generator instead of a truly random pad

Recall: a secure PRG inputs a true-random seed, outputs a stream that’s
indistinguishable from true randomness (unless attacker knows seed)

1. Start with a shared secret truly random seed (from a lava lamp, mouse clicks, etc.)
2. Alice & Bob each use this seed to seed their PRG and generate k bits of PRG output
3. To encrypt and decrypt, perform the same operations as the One-time Pad:

= Encryption: ¢, := p. XORk

= Decryption: p,:= ¢ XOR k.

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 84

Stream Cipher

What If you reuse the PRG's
random seed or Its output?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 85

Stream Cipher

What If you reuse the PRG's
random seed or its output?

Vulnerable to partial (or full)
recovery of the plaintext!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 86

Stream Cipher

4 N

What Is the tradeoff between
an OTP and Stream Cipher?

o /

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 87

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 88

Transposition Ciphers

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 89

Transposition Ciphers

Substitution ciphers swap-out plaintext symbols for others
= E.g, shifting, XORing, etc.

We've learned about several substitution ciphers

= E.g., Caesar, Vigenere, one-time pad, stream cipher

Can we come up with an alternative to substitution?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 90

Transposition Ciphers

Substitution ciphers swap-out plaintext symbols for others
= E.g, shifting, XORing, etc.

We've learned about several substitution ciphers
= E.g., Caesar, Vigenere, one-time pad, stream cipher

Can we come up with an alternative to substitution?

Transposition: rearrange plaintext symbols to create ciphertext

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 91

Columnar Transposition

Rearrange plaintext symbols to create ciphertext
= Create a table with [k| columns and |pl/1kl rows (k is the keyword)
= Place plaintext symbols in columns (left to right), cycling around to
next row of the first column when current row of last column is filled
= Create the ciphertext by writing entire columns (as a serial stream)
to the output, where the keyword determines the column order

6 3 2

Example:

= k="“ZEBRAS” (632415)
= p="“We are discovered flee at once”

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

92

Columnar Transposition

Rearrange plaintext symbols to create ciphertext
= Create a table with [k| columns and |pl/1kl rows (k is the keyword)
= Place plaintext symbols in columns (left to right), cycling around to
next row of the first column when current row of last column is filled
= Create the ciphertext by writing entire columns (as a serial stream)
to the output, where the keyword determines the column order

Example:

= k="“ZEBRAS" (632415)

= p="“We are discovered flee at once”

6 3 2 4 1 5
W E A R E D
I S C 0 vV E
R E D F L E
E A T 0 N C
E null | null | null | null | null

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

93

Columnar Transposition

Rearrange plaintext symbols to create ciphertext
= Create a table with k| columns and Ipl/lkl rows (k is the keyword)
= Place plaintext symbols in columns (left to right), cycling around to
next row of the first column when current row of last column is filled
= Create the ciphertext by writing entire columns (as a serial stream)
to the output, where the keyword determines the column order

Example:

= k="“ZEBRAS" (632415)

= p="“We are discovered flee at once”

= c¢= EVLN ACDT ESEA

ROFO DEEC WIREE

6 3 2 4 1 5
W E A R E D
I S C 0 vV E
R E D F L E
E A T 0 N C
E null | null | null | null | null

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

9%

Columnar Transposition

Rearrange plaintext symbols to create ciphertext
= Create a table with k| columns and Ipl/lkl rows (k is the keyword)
= Place plaintext symbols in columns (left to right), cycling around to
next row of the first column when current row of last column is filled
= Create the ciphertext by writing entire columns (as a serial stream)
to the output, where the keyword determines the column order

Example:

= k="“ZEBRAS" (632415)
= p="“We are discovered flee at once”
= ¢= EVLNX ACDTQ ESEAM
ROFOP DEECD WIREE
= Replace null with nonsense symbol

> m|lwm| m|lw
—H|lo|lo|x>|N
o|lm|o|lxm|n
Z|lr|i<| m|=
olmi m|lo|lwu

mim| O H|=| O

null null null null null

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 95

Rail Fence (aka Zig Zag or Scytale) Cipher

Rearrange plaintext on downwards, diagonally successive “rails”

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 96

Rail Fence (aka Zig Zag or Scytale) Cipher

Rearrange plaintext on downwards, diagonally successive “rails”

c= WECRLTE ERDSOEEFEAOC AIVDEN

Decryption: use same-diameter cylinder! ' A

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 97

Columnar Cipher Cryptanalysis

What does a brute force attack look like?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 98

Columnar Cipher Cryptanalysis

What does a brute force attack look like?
1. Guess number of columns
2. Rearrange ciphertext in (probably) wrong order
3. Look for anagrams to get correct order
= Harder if null characters are rewritten

Weakness of a transposition cipher?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 99

Columnar Cipher Cryptanalysis

What does a brute force attack look like?

1. Guess number of columns
2. Rearrange ciphertext in (probably) wrong order
3. Look for anagrams to get correct order

= Harder if null characters are rewritten

Weakness of a transposition cipher?
= Plaintext characters end up in the ciphertext

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 100

Is it transposition or substitution?

Given a message ciphertext, how can you determine whether a

transposition or a substitution cipher encrypted the plaintext?
= Hint: frequency analysis

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 101

Is it transposition or substitution?

Given a message ciphertext, how can you determine whether a

transposition or a substitution cipher encrypted the plaintext?
= Hint: frequency analysis

Transposition:
= Letters have expected letter frequencies

Substitution: T —

= Letters have different letter frequencies etacinshrdlceumuigypbviixaz

Ordered by frequency

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 102

Stronger Transposition

How would you build a stronger columnar transposition cipher?
Transpose multiple times with same or different keywords

m| m|O|[H| =] o
> m|w|m|w
A |]O|O[>|DN
oOflm|o|=o| H
Z|Ir|i<|mj=
O/ m|m|oO| o

null null null null null

k,= “ZEBRAS"(632415)
c,= EVLNX ACDTQ ESEAM
ROFOP DEECD WIREE

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 103

Stronger Transposition

How would you build a stronger columnar transposition cipher?
Transpose multiple times with same or different keywords

6 3 2 4 1 5 5 6 4 2 3 1
W E A R E D E v L N A C
I S C 0 v E D T E S E A
R E D F L E R 0 F 0 D E
E A T 0 N C E C W I R I
E null null | null | null null E null | null | null | null null

k,= “ZEBRAS” (632415) k,= “STRIPE" (632415)

c,= EVLNX ACDTQ ESEAM --wh c,= CAEIX NSOIN AEDRX

ROFOP DEECD WIREE LEFWS EDREE VTOCG

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 104

Stronger Transposition

How would you build a stronger columnar transposition cipher?

Transpose multiple times with same or different keywords
= Myszkowski Transposition on recurring letters in key

MmOl =]| >

>mMm|wn|imMm|w|oOo
—A[O]|O|X>|N|=
ZlIr|i<|{m|jo| -
OoOflmm|o| &~| O

0
null null null null null

m(m[{od|lH|=|O0 | -

¢ = ROFOXACDTWESEAZDEECNWIREEEVLNQ

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 105

Stronger Transposition

How would you build a stronger columnar transposition cipher?

Transpose multiple times with same or different keywords
= Myszkowski Transposition on recurring letters in key

T 0 M A T 0 T 0 M A T 0
5 3 2 1 6 4 4 3 2 1 4 3
W E A R E D W E A R E D
I S C 0 v E I S C 0 Vv E
R E D F L E R E D F L E
E A T 0 N C E A T 0 N C
E null null | null | null null E null | null | null | null null
¢ = ROFOXACDTWESEAZDEECNWIREEEVLNQ ¢ = ROFOXACDTBEDSEEEACTWWEIVRLENEQ

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 106

Stronger Transposition

How would you build a stronger columnar transposition cipher?

Fractionation: convert letters into symbols and transpose those
= E.g., morse code encoding, bits instead of letters

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 107

Stronger Transposition

How would you build a stronger columnar transposition cipher?

Fractionation: convert letters into symbols and transpose those
= E.g., morse code encoding, bits instead of letters

Suppose p = “We are discovered...”
u Morse: O0—— 0 02— 0—0 0 —00 00 000 —0—0 ——— 000— 0 0—0 0 —00
= Binary: 01010111 01100101 01100001 01110010 01100101 01100100 01101001 01110011
01100011 01101111 01110110 01100101 01110010 01100101 01100100

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 108

Stronger Transposition

How would you build a stronger columnar transposition cipher?

Combine with a substitution cipher
= Makes anagram discovery more difficult

c,= EVLNB ACDTA ESEAR
ROFOX DEECB WIREE

>Im| wnw|m|w
OO |>=DN
o m|lo|xx| s
2\l r|i<|mj|=-
O/ m({mMm[CO| o

m m| O H|=| O

null null null null null

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 109

Stronger Transposition

How would you build a stronger columnar transposition cipher?

Combine with a substitution cipher
= Makes anagram discovery more difficult

>Im| wnw|m|w
OO |>=DN
o m|lo|xx| s
2\l r|i<|mj|=-
O/ m({mMm[CO| o

m m| O H|=| O

null null null null null

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

c,= EVLNB ACDTA ESEAR
ROFOX DEECB WIREE \\

\

k.= ABCAB CABCA BCABC :

7
c,= EWNNC CCEVA FUEBT »#
RPHOY FEFEB XKRFG

110

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 111

Cipher Metrics

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 112

Confusion and Diffusion

“Confusion”

= Every bit of the ciphertext should depend on several parts of the plaintext
= Maintains that the ciphertext is statistically independent of the plaintext

“Diffusion”

= A change to one plaintext bit should change 50% of the ciphertext bits
= A change to one ciphertext should change 50% of the plaintext bits
= Plaintext features spread throughout the entire ciphertext

These are cipher metrics—how we “weigh” a cipher’s security

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 113

Cipher Metrics: Transposition Ciphers

Do transposition ciphers achieve confusion or diffusion?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 14

Cipher Metrics: Transposition Ciphers

Do transposition ciphers achieve confusion or diffusion?
= Diffusion—they spread the plaintext around!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 115

Cipher Metrics: Substitution Ciphers

What level of confusion & diffusion do simple substitution ciphers have?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 116

Cipher Metrics: Substitution Ciphers

What level of confusion & diffusion do simple substitution ciphers have?

= None—hence why frequency analysis is useful
= Changing one plaintext or key symbol changes one ciphertext symbol

A|IB|C|D|E|F

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 117

Cipher Metrics: Noisy Channels

How does low diffusion impact communication across a noisy channel?

ey
T 1T

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 118

Cipher Metrics: Noisy Channels

How does low diffusion impact communication across a noisy channel?
= Low diffusion = more tolerant to corrupted symbols

“ABCDEF@H a
TTm

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 119

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 120

Next time on CS 4440...

Block ciphers, AES, secure channels

