Week 2: Lecture B
Message Confidentiality

Thursday, August 29, 2024




Announcements

Project 1: Crypto released (see Assignments page on course website)
= Deadline: Thursday, September 19th by 11:59 PM

(Project 1: Cryptography Table of Contents:

« Helpful Resources

. ¢ Introduction
Deadline: Thursday, September 19 by 11:59PM.
« Objectives
« Start by reading this!
Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies. o Working in the VM
‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have o Testing your Solutions

difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover

. -  Part 1: Hash Collisions
project material, so you and your partner should collaborate on each part.

o Prelude: Collisions
The code and other answers your group submits must be entirely your own work, and you are bound by the o Prelude: FastColl
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your o What to Submit
code comments). Don't risk your grade and degree by cheating!

o Collision Attack

« Part 2: Length Extension
Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any o Prelude: Merkle-Damgar
external dependencies. Use only default Python 3 libraries and/or modules we provide you. o Length Extension Attack:

o What to Submit

Part 3: Cryptanalysis

o Prelude: Ciphers
Helpful Resources °
o Cryptanalysis Attack
« The CS 4440 Course Wiki o Extra Credit
* VM Setup and Troubleshooting o What to Submit

» Terminal Cheat Sheet

Part 4: Signature Forgery
* Python 3 Cheat Sheet o Prelude: RSA Signatures

* PyMD5 Module Documentation o Prelude: Bleichenbacher

CyRoots Module Documentation o Forgery Attacks j

o What to Submit
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http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu
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Last time on CS 4440...

Message Integrity
Kerckhoffs’s Principles
Pseudo-random Functions

Hashes and HMACs




Message Integrity

Goal: communicate answers while taking the final exam
Countermeasure: randomized seating + curved grading
Threat: Mallory may change the message
Counter-countermeasure: ???

’

[Alicew m (Malloryw ik >[ Bob}
J sent L J received

message message
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Message Integrity

Goal: communicate answers while taking the final exam

Approach: include a message-dependent message with the sent message
= Letv=Ff(m)

’

)

m., vy LoV

[AhceJ -— Ll\/\alloryj — >[ Bob}
message message
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Message Integrity

Goal: communicate answers while taking the final exam

Approach: include a message-dependent message with the sent message
= Letv=Ff(m)
Bob accepts message if f(m’) = v’

’

)

m. v LoV

[AhceJ -— LI\/\alloryJ — >[ Bob}
message message
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Message Integrity

If check fails, 22?

) )
[AhceJ -— Ll\/\alloryj — >[ Bob }
message message
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Message Integrity

f 1
If check fails, m’ is untrusted i ]c (m,) 1=y’ !
YOU HAVE NO ——
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What should a strong f(m) look like?

Idea 1: Random Function:

=
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What should a strong f(m) look like?

Idea 1: Random Function:

=  Picking from a seemingly infinite set of functions
= Impractical—why?
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What should a strong f(m) look like?

Idea 1: Random Function:
= Picking from a seemingly infinite set of functions
= Impractical—difficult and slow to use/share
= Secure—why?
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What should a strong f(m) look like?

Idea 1: Random Function:
=  Picking from a seemingly infinite set of functions
= Impractical—difficult and slow to use/share
= Secure—cannot be brute-forced

|dea 2: Pseudo-random Function Family (PRF):

= ??7?
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What should a strong f(m) look like?

Idea 1: Random Function:
=  Picking from a seemingly infinite set of functions
= Impractical—difficult and slow to use/share
= Secure—cannot be brute-forced

|dea 2: Pseudo-random Function Family (PRF):
= Subset so large it seems to be a random function
= Mallory knows ???
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What should a strong f(m) look like?

Idea 1: Random Function:
=  Picking from a seemingly infinite set of functions
= Impractical—difficult and slow to use/share
= Secure—cannot be brute-forced

|dea 2: Pseudo-random Function Family (PRF):
= Subset so large it seems to be a random function
= Mallory knows set, but not which function is chosen
= Practical—why?
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What should a strong f(m) look like?

Idea 1: Random Function:

=  Picking from a seemingly infinite set of functions
= Impractical—difficult and slow to use/share
= Secure—cannot be brute-forced

|dea 2: Pseudo-random Function Family (PRF):
= Subset so large it seems to be a random function
= Mallory knows set, but not which function is chosen

= Practical—easy and fast to use/share
= Secure—why?
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What should a strong f(m) look like?

Idea 1: Random Function:

=  Picking from a seemingly infinite set of functions
= Impractical—difficult and slow to use/share
= Secure—cannot be brute-forced

|dea 2: Pseudo-random Function Family (PRF):
= Subset so large it seems to be a random function

= Mallory knows set, but not which function is chosen
= Practical—easy and fast to use/share

= Secure—brute-forcing insanely costly (but possible)
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What should a strong f(m) look like?

Think of these as
abstract categories
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What should a strong f(m) look like?

Stefan Nagy

Think of these as

abstract categories

=

-

How we “grade”
actual candidate
Implementations

(e.g., SHA-256 vs.
HMAC-SHA-256)

~

/
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Is a pseudo-random function as secure as a random function?

More secure
| 0%

Equally secure
0%

Less secure (but still extremely secure)

' 0%

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



What should a strong f(m) look like?

Think of these as
abstract categories

4 A

How we “grade”
actual candidate
Implementations

. (e.g., SHA-256 vs.
m than random functions—but very secure
= Still too much entropy to feasibly brute-force k HMAC'SHA'256) /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 22



Implementing f(m)

Option 1: Cryptographic Hash
= E.g., SHA256
= Not strong PRFs—why?
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Stefan Nagy

Hash Function

Product to be hashed
(afile, string, something else,
any size! )

oo

SHA-256 KDF

(key derivation function)

oo

fixed length
digest output

* Unkeyed cryptographic hash function
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Implementing f(m)

Option 1: Cryptographic Hash

= Chained construction
= Length extension attacks

= E.g., SHA256
= Not strong PRFs
SCHOOL OF COMPUTING
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Hash Function

Product to be hashed
(afile, string, something else,
any size! )

oo

SHA-256 KDF

(key derivation function)

oo

fixed length
digest output

* Unkeyed cryptographic hash function
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Implementing f(m)

Option 1: Cryptographic Hash
= E.g., SHA256
= Not strong PRFs
m= Chained construction
= Length extension attacks

Option 2: Message Auth. Code (MAC)

= E.g.,, HMAC-SHA256
= Believed to be PRFs—why?
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Hash Function

HMAC Function

Product to be hashed
(afile, string, something else,
any size! )

oo

SHA-256 KDF

(key derivation function)

oo

Product to be
hashed Secret Key
N\ .
NN >’/ s

HMAC-SHA-256 KDF

(key derivation function)

fixed length
digest output

Voo

* Unkeyed cryptographic hash function

fixed length
digest output

* Keyed cryptographic hash function
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Implementing f(m)

Option 1: Cryptographic Hash
= E.g., SHA256
= Not strong PRFs
m= Chained construction
= Length extension attacks

Option 2: Message Auth. Code (MAC)
= E.g.,, HMAC-SHA256
= Believed to be PRFs
= Nested construction
= Thwarts length extension
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Hash Function

HMAC Function

Product to be hashed
(afile, string, something else,
any size! )

Product to be

oo

SHA-256 KDF

(key derivation function)

oo

hashed Secret Key
N\ i
Y ,/ /

HMAC-SHA-256 KDF

(key derivation function)

fixed length
digest output

Voo

* Unkeyed cryptographic hash function

fixed length
digest output

* Keyed cryptographic hash function
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Pitfalls of Hashes

Is every hash functions ever created suitable for cryptographic use today?
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Pitfalls of Hashes

Is every hash functions ever created suitable for cryptographic use today?
= Noway! MD5, SHA-1, and many others have long been defeated

| Lifetimes of popular cryptographic hashes (the rainbow chart) l
1990/[1991/(1992/(1993/(1994/(1995/[1996[1997/[1998[1999/2000([2001[2002([2003 [2004([2005[2006[2007|[2008][2009]|[2010][2011][2012([2013[[2014]2015][ 20162017

|

L] l-------------------------
I L I e | | 0 [ | [ [ [ [ | [ [ | |
|
|

|Functi0n

|
|Snefru ’
IMD2 (128-bif)[1]]
IMD4 \
|
|
|

[ |I l-----------------------
[MDs | o | ! [ ! [ [ ! [ [ [ [ | [ |
[RIPEMD | H |I |I |I II |I | [T N N N N N YN O
pavar-12s0) ] I A AT T I I A N N N N N O O
[SHA-0 | |I ‘I | fl II | II L l-------l------l=
SHA-1
RIPEMD- 160 L = | L] | [
[SHA-2 family || || H | I N AN N s H L

[SHA-3 (Keceal) ||| | A I I | [

[Key||Didn't exist/not public|[Under peer review|[Considered strong [Minor weakness“Weakened]-_l
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Pitfalls of Hashes

To be crypto-safe, a hash function must be resilient to what attacks?
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Pitfalls of Hashes

To be crypto-safe, a hash function must be resilient to what attacks?

1. Collision Attack
= ??7?
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Pitfalls of Hashes

To be crypto-safe, a hash function must be resilient to what attacks?
1. Collision Attack x

= Mallory finds m, !=m, \
such that h(m.) = h (m,) / () H)=H(y)

\Y)
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Pitfalls of Hashes

To be crypto-safe, a hash function must be resilient to what attacks?
1. Collision Attack x

= Mallory finds m, !=m, \
such that h(m.) = h (m,) / () H)=H(y)

&
2. Second Pre-image Attack
= ?7?7?
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Pitfalls of Hashes

To be crypto-safe, a hash function must be resilient to what attacks?
1. Collision Attack x

= Mallory finds m, !=m, \
such that h(m.) = h (m,) / () H)=H(y)

Y
2. Second Pre-image Attack )
= Given m, Mallory finds m,!=m
such that h(m.)=h (m,)

1
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Pitfalls of Hashes

To be crypto-safe, a hash function must be resilient to what attacks?
1. Collision Attack x

= Mallory finds m, !=m, \
such that h(m.) = h (m,) / () H)=H(y)

Y
2. Second Pre-image Attack )
= Given m, Mallory finds m,!=m
such that h(m.)=h (m,)

1

3. First Pre-image Attack
m ?7?7?
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Pitfalls of Hashes

To be crypto-safe, a hash function must be resilient to what attacks?
1. Collision Attack

= Mallory finds m, !=m, \
such that h (m,) = h (m,) / * H&)=H(y)

2. Second Pre-image Attack
= Given m, Mallory finds m,!=m

such that h (m,) = h (m,) 1 |\\kello" | h =D |e7<22.. |

re—-image hash :
P J function mage

3. First Pre-image Attack
= Given h(m), Mallory finds m
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Merkle-Damgard Hashes: Length Extension Attacks

Merkle-Damgard construction: digest is formed from the last chaining value

b, | 512 b, | 512

blts blts
Statey, . State y, . Digest
256 bits 256 bits 256 bits
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Merkle-Damgard Hashes: Length Extension Attacks

Merkle-Damgard construction: digest is formed from the last chaining value

Nothing stopping Mallory from continuing the hash chain...
= Mallory doesn’t need to know the previous blocks’ plaintext

272 | 512 292 | 512 Evil | 572
bits bits Msg | bits

S s
Statey, o State y, o >CD_I;igest

256 bits 256 bits Statey, 256 bits
256 bits
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Merkle-Damgard Hashes: Length Extension Attacks

Merkle-Damgard construction: digest is formed from the last chaining value

Nothing stopping Mallory from continuing the hash chain...
= Mallory doesn’t need to know the previous blocks’ plaintext
= But she does know that the last block was padded to 512 bits

772 | 012 772
bits QQ

Statey, . State y,

256 bits 256 bits

»

Y
bits

bits
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Merkle-Damgard Hashes: Length Extension Attacks

4 _ )
Mallory's resulting hash digest 9 ===--= === ==~

hash ( original || pad || evil )
N 1\ § P / W,

OOOOOOOOOOOOOOOOO
Wk Stefan Nagy 39



Merkle-Damgard Hashes: Length Extension Attacks

Project 1 Part 2: attack a server that accepts commands
= User provides message: a secret password + a list of commands
= User also provides a token that's the MD5 digest of the message
= Server performs verification check: does MD5(message) == digest?

’ ’
) m, V ( ) m ,V
User You . Server
J sent L J received
message, message,
MD5 digest MD5 digest
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Merkle-Damgard Hashes: Length Extension Attacks

Project 1 Part 2: attack a server that accepts commands
User provides message: a secret password + a list of commands
User also provides a token that’s the MD5 digest of the message
Server performs verification check: does

?

=  Your job: intercept/modify message & digest to add evil commands Execute
evilCmd
’ ’
m 2 V W m ’ v
User You >
sent J tampered
message, message,
MD5 digest MD5 digest
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Exercise: Attacks on Message Integrity

Untampered v' Vv m m f(m') v’
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Exercise: Attacks on Message Integrity

Untampered v = v m =m |[f(m’')=v’
Message Truncated v Vv m m |[f(m’) v
Hash Collision v v m m fim’) v’
Length Extension v' oV m m f(m’) v’
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Exercise: Attacks on Message Integrity

o ‘f(m ) 1= v ‘

’=\/‘

Message Truncated ‘ \/

| ——eEpwe msasSaEoaw s \'4 A 4 11 11l | ] \11i ) v
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Exercise: Attacks on Message Integrity

| ——eEpwe msasSaEoaw s \'4 A 4 11 11l | ] \11i ) v
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Exercise: Attacks on Message Integrity

Hash Collision v = v m’ '=m f(m') = v’
Length Extension v I= vy m’ = m f(m’) = v’
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This time on CS 4440...

Message Confidentiality
Simple Substitution Ciphers
Cipher Cryptanalysis




Message Confidentiality




Message Confidentiality

Two parties want to communicate across an untrusted intermediary

Confidentiality: ???

[Alice} m {N\allory} m >[ Bob}
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Message Confidentiality

Two parties want to communicate across an untrusted intermediary

Confidentiality: ensure that only trusted parties can read the message

[Alice} m {I\/\allory} m >[ Bob}
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Message Confidentiality

Confidentiality: ensure that only trusted parties can read the message

Terminology
= p plaintext: original, readable message
= ¢ ciphertext: transmitted, unreadable message
= k secret key: known only to Alice and Bob; facilitates p->c and ¢=>p
= E encryption function: E(p, k)= c
= D decryption function: D(c,k) > p

[Alice } {I\/\allory} >[ Bob }
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Message Confidentiality

Confidentiality: ensure that only trusted parties can read the message

Terminology
= p plaintext: original, readable message
= ¢ ciphertext: transmitted, unreadable message
= secret key: known only to Alice and Bob; facilitates pc and c=>p
= E encryption function: E(p, )= c
= D decryption function: D(c, <) > p

[Alice} - {I\/\allory} - >[ Bob }
E(p, ) D (c, )
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Message Confidentiality

m secret key: known only to Alice and Bob; facilitates p % c and ¢ p
= E encryption function: E(p, )= c
= D decryption function: D(c, <) > p
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Substitution Ciphers
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Substitution Ciphers

We define a substitution cipher key as a set of shifts

Each shift represented by a letter
= Relative position in the alphabet

o[ AlB]C|D
o | 212122
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Substitution Ciphers

We define a substitution cipher key as a set of shifts

Each shift represented by a letter U TIAIHU T E!|S

= Relative position in the alphabet

o [A[B]C[D > LI
0123 'y
2[2]?]?
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Substitution Ciphers

We define a substitution cipher key as a set of shifts

Each shift represented by a letter U T AHU T E S

= Relative position in the alphabet

o [A[B]C[D > LI

8123 RER
AIWW
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Substitution Ciphers

We define a substitution cipher key as a set of shifts

Each shift represented by a letter U TIAIHU T E!|S

= Relative position in the alphabet

D | O
D | >
D | TT]
D |
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Substitution Ciphers

We define a substitution cipher key as a set of shifts

Each shift represented by a letter U TIAIHU T E!|S

= Relative position in the alphabet

a
Y
O

e |— =

D [ ©

RORE o
<
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Substitution Ciphers

We define a substitution cipher key as a set of shifts

Each shift represented by a letter U TIAIHU T E!|S

= Relative position in the alphabet

Shift goes past end of alphabet?

Y
O

0 - =
€L <« o
N @ o
D |-
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Substitution Ciphers

We define a substitution cipher key as a set of shifts

Each shift represented by a letter U T AIHIUT EIS
= Relative position in the alphabet
Shift goes past end of alphabet? | BIAIFIT
= Wrap around to beginning!
O 1 2 3 4 5 6
TIU|V|W[X|Y|Z |10 5/19
,/”7898123456789 ****
‘> A(B|/C|/D|E|F|G|H|[I|J KI/LM B HZM
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Caesar Cipher

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 64




Caesar Ciphers

Really old school cryptography
=  First recorded use: Julius Caesar (100-144 B.C.)

Replaces each plaintext letter with one a

fixed number of places down the alphabet
= Encryption: ¢ := (p; + k) mod 26
= Decryption: p. := (c - k) mod 26
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Caesar Ciphers

Really old school cryptography
=  First recorded use: Julius Caesar (100-144 B.C.)

Replaces each plaintext letter with one a

fixed number of places down the alphabet
= Encryption: ¢ := (p; + k) mod 26
= Decryption: p = (c k) mod 26

Example for k = 3:

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
= +Shift:
= =Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC
= Plain: go utes beat wash st

+Key:
= =Cipher: 2?2 2?22? 22?2 2?2?22 ?2?
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Caesar Ciphers

Really old school cryptography
=  First recorded use: Julius Caesar (100-144 B.C.)

Replaces each plaintext letter with one a

fixed number of places down the alphabet
= Encryption: ¢ := (p; + k) mod 26
= Decryption: p = (c k) mod 26

Example for k = 3:

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
= +Shift:
= =Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC
= Plain: go utes beat wash st

+Key:

= =Cipher:  jr xwhv ehdw zdvk vw
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Caesar Ciphers

[ Are Caesar Ciphers secure? }
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Are Caesar Ciphers secure?

0% 0% 0%

e pe (e
Always! Sometimes Never :(

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Caesar Cipher Cryptanalysis

Observation: simple substitution ciphers don’t alter symbol frequency

Al anl

abcdefghijklmnopgrstuvwxy?z

Letter frequency for the English language
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Caesar Cipher Cryptanalysis

Problem: How can we beat brute forcing?
Observation: simple substitution ciphers don't alter symbol frequency

N p—

etaoinshrdlcumwfgypbvkijxaqgz

Ordered by frequency
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Caesar Cipher Cryptanalysis

Problem: How can we beat brute forcing?
Observation: simple substitution ciphers don't alter symbol frequency

]

etaoinshrdlcumwfgypbvkijxgqgz

l l l l l Ordered by frequency
Shiftbyone = FusPJ ...
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Trial-and-Error Caesar Cryptanalysis

In Caesar ciphers, the key is only
a single shift applied repeatedly

etaoinshrdlcumwfgypbuvk

‘ ‘ ‘ ‘ ‘ Ordered by frequency
Shiftbyone = FuBP J ...
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Trial-and-Error Caesar Cryptanalysis

In Caesar ciphers, the key is only
a single shift applied repeatedly

Thus, there must be one out of 26 -
reverse shifts that, when applied: ‘

etaoinshrdlcumwfgypbuvk

‘ ‘ ¢ ‘ ‘ Ordered by frequency

Shiftbyone = FuBPJ ...

it

Reverse shift = ETAO0TI ...

74
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Trial-and-Error Caesar Cryptanalysis

In Caesar ciphers, the key is only
a single shift applied repeatedly

Thus, there must be one out of 26 .
reverse shifts that, when applied:

= Produces understandable plaintext etaoinshrdlcumwfgypbuvk
= Matches the source language’s H‘*‘ Ordered by frequency
observed letter frequencies .
Shiftbyone = FuUBPJ ...
Before computers, this was all it
done by hand via paper/pencil! Reverse shift = ET A0 I ...
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Trial-and-Error Caesar Cryptanalysis

Observation: simple substitution ciphers don’t alter symbol frequency

Ciphertext: FCWLRMCLWYMCFCSBCYMYKQJBFCGDACKGMX

C Freq P Shift = Shift | Key

C 21% E E->C 24 Y

M 12% ? ? ? ?

21% >>12% - “C” was probably “E” h—

etaoinshrdlcumwfgypbvkijxqz

Ordered by frequency

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 76



Trial-and-Error Caesar Cryptanalysis

Observation: simple substitution ciphers don’t alter symbol frequency

Ciphertext: LJSGUKJYSEKDLJGGAKWOGLHWLJNWFZLVEX

C Freq P Shift = Shift | Key

L 15% E E->L 7 H

L 15% T T->L 18 S

J 13% ? ? ? ?

etaoinshrdlcumwfgypbvkijxgqgz

Look at most common letters (‘E’, ‘T’, ‘A") Ordered by frequency
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Trial-and-Error Caesar Cryptanalysis

Observation: simple substitution ciphers don’t alter symbol frequency

Ciphertext: WLKKAXVGACKLWGKWFFLQSGALWFGAAXWKJ

C Freq P Shift Key

W 15% E,T,A 18,3,22 S,D,W

K 15% | E, T,A 6,17,10 ?

A | 13% E,T,A 22,7.0 ? | 5

etaoinshrdlcumwfgypbvkijxqz

Look at most common letters (‘E’, ‘T’, ‘A") Ordered by frequency
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Trial-and-Error Caesar Cryptanalysis

Narrowing down the search

= If a letter is most common by a large margin, it's probably a shifted E
= Not a large margin? Try to find candidates for shifting E, T, and A

a

A p—

o*inshrdlcumwfgypbvijqz
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Trial-and-Error Caesar Cryptanalysis

Narrowing down the search

= If a letter is most common by a large margin, it's probably a shifted E
= Not a large margin? Try to find candidates for shifting E, T, and A

Trial and error

= Perform incremental decryption and check
= Does one candidate key reveal more English?

a

A p—

oinshrdlcumwfgypbvkijxaqgz
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Statistics-based Caesar Cryptanalysis

A more elegant solution: Chi-square Test
1. Generate all 26 possible reverse-shifted strings from the ciphertext

EA: IYMBWXIXIH N: VLZOJKVKVU i
| B HXLAVWHWHG 0: UKYNIJUJUT :
| C: GWKZUVGVGF P: TIXMHITITS :
! D: FVIYTUFUFE Q: SIWLGHSHSR :
| E: EUIXSTETED R: RHVKFGRGRQ :
! F: DTHWRSDSDC S: QGUJEFQFQP !
| G: CSGVQRCRCB T: PFTIDEPEPO

| H: BRFUPQBQBA U: OESHCDODON

| I: AQETOPAPAZ V: NDRGBCNCNM :
| J: ZPDSNOZOZY W: MCQFABMBML :
| K: YOCRMNYNYX X: LBPEZALALK :
| L: XNBQLMXMXW Y: KAODYZKZKJ :
EM: WMAPKLWLWV Z: JZNCXYJYJII :
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Statistics-based Caesar Cryptanalysis

A more elegant solution: Chi-square Test
1. Generate all 26 possible reverse-shifted strings from the ciphertext
2. Calculate observed letter frequencies for all 26 letters, per all 26 reverse-shifted strings

EA: IYMBWXIXIH N: VLZOJKVKVU i
| B HXLAVWHWHG 0: UKYNIJUJUT :
| C: GWKZUVGVGF P: TIXMHITITS :
! D: FVIYTUFUFE Q: SIWLGHSHSR :
| E: EUIXSTETED R: RHVKFGRGRQ :
! F: DTHWRSDSDC S: QGUJEFQFQP !
| G: CSGVQRCRCB T: PFTIDEPEPO

| H: BRFUPQBQBA U: OESHCDODON

| I: AQETOPAPAZ V: NDRGBCNCNM :
| J: ZPDSNOZOZY W: MCQFABMBML :
| K: YOCRMNYNYX X: LBPEZALALK :
| L: XNBQLMXMXW Y: KAODYZKZKJ :
EM: WMAPKLWLWV Z: JZNCXYJYJII :

SCHOOL OF COMPUTING Stefan Nagy 82

UNIVERSITY OF UTAH



Statistics-based Caesar Cryptanalysis

A more elegant solution: Chi-square Test
1. Generate all 26 possible reverse-shifted strings from the ciphertext
2. Calculate observed letter frequencies for all 26 letters, per all 26 reverse-shifted strings
3. Perform chi-square test on each string to find the best-fit reverse-shift (i.e., lowest score)

N (0 — E)Z | A: IYMBWXIXIH: 291.39  N: VLZOJKVKVU: 341.77 |
2 . . l l |B: HXLAVWHWHG: 107.28  0: UKYNIJUIUT: 306.11 |
X = | C: GWKZUVGVGF: 236.00 P: TIXMHITITS: 145.08 |
; E |D: FVIYTUFUFE: 127.44  Q: SIWLGHSHSR: 25.58 |
=1 l | E: EUIXSTETED: 77.16 R: RHVKFGRGRQ: 159.45 |
| F: DTHWRSDSDC: 29.73 S: QGUIEFQFQP: 1035.24 |
0. = observed count for that letter | G: CSGVQRCRCB: 157.77 T: PFTIDEPEPO: 50.52 |
1 . . . . | H: BRFUPQBQBA: 487.57 [U: OESHCDODON: 20.48 |!
(i.e., its total occurrences in the string) | I: AQETOPAPAZ: 265.38  V: NDRGBCNCNM: 37.56 |
| 3: ZPDSNOZOZY: 1227.21  W: MCQFABMBML: 171.27 |
E. = expected count for that letter | K: YOCRMNYNYX: 118.94  X: LBPEZALALK: 178.02 |
i A g | L: XNBQLMXMXW: 726.79  Y: KAODYZKZKJ: 722.45 |
= EnglishFreq. * StringLength | M: WMAPKLWLWV: 71.82 Z: JZNCXYJYJI: 806.81 |
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Statistics-based Caesar Cryptanalysis

A more elegant solution: Chi-square Test
1. Generate all 26 possible reverse-shifted strings from the ciphertext
2. Calculate observed letter frequencies for all 26 letters, per all 26 reverse-shifted strings
3. Perform chi-square test on each string to find the best-fit reverse-shift (i.e., lowest score)
4. To get the key, convert the reverse-shift to its forward-shift!

N (0 — E)Z | A: IYMBWXIXIH: 291.39  N: VLZOJKVKVU: 341.77 |
2 . . l l |B: HXLAVWHWHG: 107.28  0: UKYNIJUIUT: 306.11 |
X = | C: GWKZUVGVGF: 236.00 P: TIXMHITITS: 145.08 |
. E. |D: FVIYTUFUFE: 127.44  Q: SIWLGHSHSR: 25.58 |
=1 l | E: EUIXSTETED: 77.16 R: RHVKFGRGRQ: 159.45 |
| F: DTHWRSDSDC: 29.73 S: QGUIEFQFQP: 1035.24 |
0. = observed count for that letter | G: CSGVQRCRCB: 157.77 T: PFTIDEPEPO: 50.52 |
i .. . . | H: BRFUPQBQBA: 487.57  [U: OESHCDODON: 20.48 ||
(i.e., its total occurrences in the string) | I: AQETOPAPAZ: 265.38  V: NDRGBCNCNM: 37.56 |
| J: ZPDSNOZOZY: 1227.21  W: MCQFABMBML: 171.27 |
E = expected count for that letter | K: YOCRMNYNYX: 118.94  X: LBPEZALALK: 178.02 |
. . | L: XNBOLMXMXW: 726.79  Y: KAODYZKZK): 722.45 |
= EnglishFreq. * StringLength | M: WMAPKLWLWV: 71.82 Z: JZNCXYJYJI: 806.81 |
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Attacking Ciphers

Brute-forcing
every possible key

{ Cryptanalysis J

OOOOOOOOOOOOOOOOO
Wk Stefan Nagy 85



SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 86



Vigenere Cipher
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Vigenere Ciphers

First described by Bellaso in 1553

= Later misattributed to Vigénere

Encrypts successive letters via sequence of Caesar
ciphers determined by the letters of a keyword

For an n-letter keyword k ..
= Encryption: ¢ := (p, + klmodn)modZG
= Decryption: p = (c, - ) mod 26

|modn
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Vigenere Ciphers

First described by Bellaso in 1553

= Later misattributed to Vigénere

Encrypts successive letters via sequence of Caesar
ciphers determined by the letters of a keyword

For an n-letter keyword k ..
=  Encryption: C:
Decryption: p

(pn kn mod n) mod 26
(c.-k. 4, )mod 26

Examplefork ABC (i.e., k,=0,k =1k, =2)

Plain: bbbbbb amazon
= +Key:
= =Cipher: 2?2727°7?7? 277?777
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Vigenere Ciphers

First described by Bellaso in 1553

= Later misattributed to Vigénere

Encrypts successive letters via sequence of Caesar
ciphers determined by the letters of a keyword

For an n-letter keyword k ..
=  Encryption: C:
Decryption: p

(pn kn mod n) mod 26
(c.-k. 4, )mod 26

Examplefork ABC (i.e., k,=0,k =1k, =2)

Plain: bbbbbb amazon
= +Key:
= =Cipher: bcdbcd anczpp
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UNIVERSITY OF UTAH

Stefan Nagy

90



Vigenere Ciphers

[ Can you brute-force it? }
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Vigenere Ciphers

[ Can you brute-force it? }

{ What about cryptanalysis? }
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Vigenere Cipher Cryptanalysis

Figure out how to simplify a Vigenere cipher into a Caesar cipher
= Break it down into groups of letters—grouped by column (i.e., key-shift position)

--------------------------------------

Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

1

1

1 .
e e e e e e e » 1 - Shift:
|E.LFMASBQDXISZl‘I]\ll"ﬂ-iIBFE‘.FQIMEUVNGLMLRETI-IAZA[JPPDOTE‘.GDI’:‘.DDNLYVZJNWHCKBLPPQ\«YD-l - :
I QZZGFFUKDWCIXWPZKKSIDYBGBATBUMOWFMYGFBPKYVELFHRHBMDMES JLQMZVHSXMCPDIOW I / —————————————————————————————————————————————————

KJKLOVFGOWCBSIOOPAYVDEZWJYKORVFGOAYVHMMZJGDAEEORWYKQYWUYQOKQEXISZMNMCI | /

I UINFCBZLJGWHKZEQFBPORMCIVDKFOVEISWJYKVOGMCOAXOELFRKGBPPMTDNGWXEPZUNSLJ

1 PHCMPOYUPRXVKXYZNIIWIAXBZXISXSDPCSPAWFNASSWSDACPPEEWJLRMESJZALDPPCESIS 1 I l_

IXLXS[]SUGGMOXPXWUUQPXSSAZYZYWBM'EFQBSEUI-DJWNCD ITKEXOJFROMYDKQXIEVAOKARSPR | cowumn 2 ______________________________________
BGBQEFFTKJOWYIPTPZOBSYHGQJSVLXFGKFDPPHVRAKBCRWBMEFQMGISHDMCBZHFOZTOIEW 1 H .

| MSXGGAVMCSSAVLPVFRPZOLFHFQKFFQYGFGPZOUELBHPZOGSEWSPZOECSOULWBAZRBGDWSA / : C I p h er. B C D E F G H I J K L M N o PQ R STUVWXY Z A

1 - Shift: G

1

YXNONJSMOEORYSXBASTGETVGASTGAKCBSIBAKMXBZINCIWIBSIZOOCPWCPPCGAXOLVPIIV | (’
DPPJJFOLDPFKSSWDSHPWUVAQRIGINOZWKUTWUOGWKVOQVGPZKDPXISSJYVRPFPKOCSTVFU |
| WINTPWTHDWI JCIBYKFOWQLJGXSDPCSPAPAVMDFFTKJOTPEWWJYDPPHVRAUKTWWBTPWBBSI \ _________________________________________________
1 NGWQSVREUZASCBTENVKMCMMVPYAFDPPHVRAEOMEWVDSADPSMTPKOVQYKUSWEKBELFZKUKT 1
LPMSUSXLEEMYOLYBSINOXGEBSMTJEGVMYXFBYGEVEISKWDDMCWPPYZKSCIBQPKGQELBBCW | \
IBIyHWSIYOIYGFCY: ZSAXMORKXDMYWQSWCSVRSGVEKDQXITSNNOLTRWWALXIXXPFADKBPXPH 1
1 DWSADYFGHGGETXUSZLRMZHPFAVYVLPERKFXGVISOXSDAZWPTPWXMYXFFEFQKZRWSNKKBTS \ (o0} lu mn 3 ______________________________________

B U A G S B S o | Cipher: EFGHIJKLMNOPQRSTUVWXYZABCD
> ! - Shift: HHHHHHEHHEH
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Vigenere Cipher Cryptanalysis

Figure out how to simplify a Vigenere cipher into a Caesar cipher
= Break it down into groups of letters—grouped by column (i.e., key-shift position)
= Then, use frequency analysis to derive the key (shift) for each letter-column

1 Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC
4 i - Shift:
_7 i =plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
- - e
——————————————————————————————————————
< — _ | Cipher: BCDEFGHIJKLMNOPQRSTUVWXYZA
i - Shift: 11111111111111111111111111
| = Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
* T TTTTTTTTTTTTTTTTTTTT ST oo msmmsomsmomsomsomoes
I L \\ COlUMN3 [ttt
etaoinshrdlcumufgypbvkijxasz ~ _! Cipher: EFGHIJKLMNOPQRSTUVWXYZABCD |
\u - Shift: 44444444444444444444444444 i
Ordered by frequency ' = Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ

_________________________________________________
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Vigenere Cipher Cryptanalysis

How to find key length? The Kasiski method

= Ppublished 1863 by Kasiski Distance = multiple of key
= Repeated strings in long plaintext will sometimes, by length; can find multiple
coincidence, be encrypted with same key letters repeats to narrow down.
Example:

= Plain: CRYPTOISSHORTFORCRYPTOGRAPHY
u +K-ey: ABCDABCDABCDABCDABCDABCDABCD Distance = 16 = — «
= =Cipher: CSASTPKVSIQUTGQUCSASTPIUAQJB PR » ]

‘\ - 7 - - - ‘

B < —
[Key length = m”? }
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Vigenere Cipher Cryptanalysis

How to find key length? The Kasiski method

= Ppublished 1863 by Kasiski Distance = multiple of key
= Repeated strings in long plaintext will sometimes, by length; can find multiple

coincidence, be encrypted with same key letters repeats to narrow down.

Example:
= Plain: CRYPTOISSHORTFORCRYPTOGRAPHY
u +K-ey: ABCDABCDABCDABCDABCDABCDABCD Distance = 16 = — «
= =Cipher: CSASTPKVSIQUTGQUCSASTPIUAQJB PR » ]
’ A -~ 7 - - g ‘
~ - —

[Key length =16, 8, 4,2, or 1 }
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Kasiski Method

Let's look at an example:

THERE ARETW OWAYS OFCON STRUC TINGA SOFTW AREDE SIGNO NEWAY
ISTOM AKEIT SOSIM PLETH ATTHE REARE OBVIO USLYN ODEFI CIENC

Plaintext = TESAN DTHEO THERW AYIST OMAKE ITSOC OMPLI CATED THATT HEREA
RENOO BVIOU SDEFI CIENC IESTH EFIRS TMETH ODISF ARMOR EDIFF
= SYSTE M
LFWKI MJCLP SISWK HJOGL KMVGU RAGKM KMXMA MJCVX WUYLG GIISW
Ciphertext = ALXAE YCXMF KMKBQ BDCLA EFLFW KIMJC GUZUG SKECZ GBWYM OACFV

MQKYF WXTWM LAIDO YQBWF GKSDI ULQGV SYHJA VEFWB LAEFL FWKIM
JCFHS NNGGN WPWDA VMQFA AXWFZ CXBVE LKWML AVGKY EDEMJ XHUXD

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 97



Kasiski Method

Let's look at an example:

p | THERE ARETW OWAYS OFCON STRUC TINGA SOFTW AREDE SIGNO NEWAY
o | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ | LFWKI MJCLP SISWK HJOGL KMVGU RAGKM KMXMA MJCVX WUYLG GIISW

p | ISTOM AKEIT SOSIM PLETH ATTHE REARE OBVIO USLYN ODEFI CIENC
e | STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST
¢ | ALXAE YCXMF KMKBQ BDCLA EFLFW KIMJC GUZUG SKECZ GBWYM OACFV

p | IESAN DTHEO THERW AYIST OMAKE ITSOC OMPLI CATED THATT HEREA
oo | EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM
¢ | MQKYF WXTWM LAIDO YQBWF GKSDI ULQGV SYHJA VEFWB LAEFL FWKIM

p | RENOO BVIOU SDEFI CIENC IESTH EFIRS TMETH ODISF ARMOR EDIFF
e | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ | JCFHS NNGGN WPWDA VMQFA AXWFZ CXBVE LKWML AVGKY EDEMJ XHUXD
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Kasiski Method

Let's look at an example:

p | THERE ARETW OWAYS OFCON STRUC TINGA SOFTW AREDE SIGNO NEWAY
o | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ | LFWKI MJCLP SISWK HJOGL KMVGU RAGKM KMXMA MJCVX WUYLG GIISW

p | ISTOM AKEIT SOSIM PLETH ATTHE REARE OBVIO USLYN ODEFI CIENC
e | STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST
¢ | ALXAE YCXMF KMKBQ BDCLA EFLFW KIMJC GUZUG SKECZ GBWYM OACFV

p | IESAN DTHEO THERW AYIST OMAKE ITSOC OMPLI CATED THATT HEREA
oo | EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM
¢ | MQKYF WXTWM LAIDO YQBWF GKSDI ULQGV SYHJA VEFWB LAEFL FWKIM

p | RENOO BVIOU SDEFI CIENC IESTH EFIRS TMETH ODISF ARMOR EDIFF
e | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ | JCFHS NNGGN WPWDA VMQFA AXWFZ CXBVE LKWML AVGKY EDEMJ XHUXD
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Kasiski Method

Let's look at an example:

p | THERE ARETW OWAYS OFCON STRUC TINGA SOFTW AREDE SIGNO NEWAY
. | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ | LFWKI MJCLP SISWK HJOGL KMVGU RAGKM KMXMA MJCVX WUYLG GIISW

p | ISTOM AKEIT SOSIM PLETH ATTHE REARE OBVIO USLYN ODEFI CIENC
o | STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST
¢ | ALXAE YCXMF KMKBQ BDCLA EFLFW KIMJC GUZUG SKECZ GBWYM OACFV

p | IESAN DTHEO THERW AYIST OMAKE ITSOC OMPLI CATED THATT HEREA
o | EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM
¢ | MQKYF WXTWM LAIDO YQBWF GKSDI ULQGV SYHJA VEFWB LAEFL FWKIM

p | RENOO BVIOU SDEFI CIENC IESTH EFIRS TMETH ODISF ARMOR EDIFF
e | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ | JCFHS NNGGN WPWDA VMQFA AXWFZ CXBVE LKWML AVGKY EDEMJ XHUXD
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Kasiski Method

Let's look at an example:

p | THERE ARETW OWAYS OFCON STRUC TINGA SOFTW AREDE SIGNO NEWAY
. | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ |LFWKI MJCLP SISWK HJOGL KMVGU RAGKM KMXMA MJCVX WUYLG GIISW

p | ISTOM AKEIT SOSIM PLETH ATTHE REARE OBVIO USLYN ODEFI CIENC
o | STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST
¢ | ALXAE YCXMF KMKBQ BDCLA EFLFW KIMJC GUZUG SKECZ GBWYM OACFV

p | IESAN DTHEO THERW AYIST OMAKE ITSOC OMPLI CATED THATT HEREA
o | EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM
¢ | MQKYF WXTWM LAIDO YQBWF GKSDI ULQGV SYHJA VEFWB LAEFL FWKIM

p | RENOO BVIOU SDEFI CIENC IESTH EFIRS TMETH ODISF ARMOR EDIFF
e | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ | JCFHS NNGGN WPWDA VMQFA AXWFZ CXBVE LKWML AVGKY EDEMJ XHUXD
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Kasiski Method

Let's look at an example:

p | THERE ARETW OWAYS OFCON STRUC TINGA SOFTW AREDE SIGNO NEWAY
. | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ |LFWKI MJCLP SISWK HJOGL KMVGU RAGKM KMXMA MJCVX WUYLG GIISW

p | ISTOM AKEIT SOSIM PLETH ATTHE REARE OBVIO USLYN ODEFI CIENC
o | STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST
¢ | ALXAE YCXMF KMKBQ BDCLA EFLFW KIMJC GUZUG SKECZ GBWYM OACFV

p | IESAN DTHEO THERW AYIST OMAKE ITSOC OMPLI CATED THATT HEREA
o | EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM
¢ | MQKYF WXTWM LAIDO YQBWF GKSDI ULQGV SYHJA VEFWB LAEFL FWKIM

p | RENOO BVIOU SDEFI CIENC IESTH EFIRS TMETH ODISF ARMOR EDIFF
o | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ | JCFHS NNGGN WPWDA VMQFA AXWFZ CXBVE LKWML AVGKY EDEMJ XHUXD
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Kasiski Method

Let's look at an example:

p | THERE ARETW OWAYS OFCON STRUC TINGA SOFTW AREDE SIGNO NEWAY
. | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ |LFWKI MJCLP SISWK HJOGL KMVGU RAGKM KMXMA MJCVX WUYLG GIISW

p | ISTOM AKEIT SOSIM PLETH ATTHE REARE OBVIO USLYN ODEFI CIENC
o | STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST
¢ | ALXAE YCXMF KMKBQ BDCLA EFLFW KIMJC GUZUG SKECZ GBWYM OACFV

p | IESAN DTHEO THERW AYIST OMAKE ITSOC OMPLI CATED THATT HEREA
o | EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM
¢ | MQKYF WXTWM LAIDO YQBWF GKSDI ULQGV SYHJA VEFWB LAEFL FWKIM

p | RENOO BVIOU SDEFI CIENC IESTH EFIRS TMETH ODISF ARMOR EDIFF
o | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ | JCFHS NNGGN WPWDA VMQFA AXWFZ CXBVE LKWML AVGKY EDEMJ XHUXD
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Kasiski Method

Let's look at an example:

p | THERE ARETW OWAYS OFCON STRUC TINGA SOFTW AREDE SIGNO NEWAY
. | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ |LFWKI MJCLP SISWK HJOGL KMVGU RAGKM KMXMA MJCVX WUYLG GIISW

p | ISTOM AKEIT SOSIM PLETH ATTHE REARE OBVIO USLYN ODEFI CIENC
o | STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST
¢ | ALXAE YCXMF KMKBQ BDCLA EFLFW KIMJC GUZUG SKECZ GBWYM OACFV

p | IESAN DTHEO THERW AYIST OMAKE ITSOC OMPLI CATED THATT HEREA
o |EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY STEMS YSTEM
¢ | MQKYF WXTWM LAIDO YQBWF GKSDI ULQGV SYHJA VEFWB LAEFL FWKIM

p | RENOO BVIOU SDEFI CIENC IESTH EFIRS TMETH ODISF ARMOR EDIFF
o | SYSTE MSYST EMSYS TEMSY STEMS YSTEM SYSTE MSYST EMSYS TEMSY
¢ | JCFHS NNGGN WPWDA VMQFA AXWFZ CXBVE LKWML AVGKY EDEMJ XHUXD
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Kasiski Method

How can we find the key length?

Substring Length Positions Distances
LWFKIMJC 8
WMLA 4
MJC 3
ISW 3
KMK 3
VMQ 3
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Kasiski Method

Create a table of substring positions; then calculate their distances

Substring Length Positions Distances
LWFKIMJC 8 (0,72) (72,144) (0,144)

WMLA 4 (108,182)

MJC 3 (5,35)

ISW 3 (11,47)

KMK 3 (28,60)

VMQ 3 (99, 165)
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Kasiski Method

Create a table of substring positions; then calculate their distances

Substring Length Positions Distances
LWFKIMJC 8 (0,72) (72,144) (0,144) 72, 72, 144
WMLA 4 (108, 182) 74
MJC 3 (5,35) 30
ISW 3 (11, 47) 36
KMK 3 (28,60) 32
VMQ 3 (99,165) 66
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Kasiski Method

Find the factors (aka divisors) of each substring distance

Substring Length Distance Factors Distances
LWFKIMJC 8 72, 72, 144
WMLA 4 74
MJC 3 30
ISW 3 36
KMK 3 32
VMQ 3 66
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Kasiski Method

Find the factors (aka divisors) of each substring distance

Substring Length Distance Factors Distances
LWFKIMJC 8 1,2,3,4,6,8,9,12,18,24,36,72 72, 72, 144
WMLA 4 1, 2, 37, 74 74
MJC 3 1, 2, 3, 5, 6, 16, 15, 30 30
ISW 3 1, 2, 3, 4, 6, 9, 12, 18, 36 36
KMK 3 1, 2, 4, 8, 16, 32 32
VMQ 3 1, 2, 3, 6, 11, 22, 33, 66 66
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Kasiski Method

Cull abnormalities; recall WMLA is from two different plaintext strings!

Substring Length Distance Factors Distances
LWFKIMJC 8 1,2,3,4,6,8,9,12,18,24,36,72 72, 72, 144
WMLA 4 1, 2, 37, 74 74
MJC 3 1, 2, 3, 5, 6, 16, 15, 30 30
ISW 3 1, 2, 3, 4, 6, 9, 12, 18, 36 36
KMK 3 1, 2, 4, 8, 16, 32 32
VMQ 3 1, 2, 3, 6, 11, 22, 33, 66 66
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Kasiski Method

Compute the greatest common factor of substring distances

Substring Length Distance Factors Distances
LWFKIMJC 8 1,2,3,4,6,8,9,12,18,24,36,72 72, 72, 144
MJC 3 1, 2, 3, 5, 6, 16, 15, 30 30
ISW 3 1, 2, 3, 4, 6, 9, 12, 18, 36 36
VMQ 3 1, 2, 3, 6, 11, 22, 33, 66 66
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Kasiski Method

Compute the greatest common factor of substring distances

Substring Length Distance Factors Distances
LWFKIMJC 8 1,2,3,4,6,8,9,12,18,24,36,72 72, 72, 144
MJC 3 1, 2, 3, 5, 6, 10, 15, 30 30
ISW 3 1, 2, 3, 4, 6, 9, 12, 18, 36 36
VMQ 3 1, 2, 3, 6, 11, 22, 33, 66 66
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Kasiski Method

To find outliers, you can make a table of occurrences of distance factors

Dist 2 3 4 5 6|7 8 9 1 1M 122 13 14 15 16 17 18 19 20
74 X

72 X | X | X X X | X X

66 X | X X X

36 X | X | X X X X

32 X X X X

30 X | X X | X X X
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Kasiski Method

To find outliers, you can make a table of occurrences of distance factors

Dist 2 3 4 5 6 | 7 8 9 10 1 122 13 14 15 16 17 18 19 20
74 X

72 X X | X X X | X X

66 X X X X

36 X | X | X X X X

32 X X X X

30 X X X | X X X
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Kasiski Method

Pick realistic key lengths; a length of two or three is probably short

Dist. 2 3 &4 /5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
74 X

72 X X | X X X | X X

66 X X X X

36 X | X | X X X X

32 X X X X

30 X X X | X X X
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Kasiski Method

With key length in hand, divide ciphertext into key-sized chunks

123456

123456 123456

123456

123456

123456

123456

123456

123456

LFWKIM

JCLPSI SWKHJO GLKMVG

URAGKM

KMXMAM

JCVXWU

YLGGII

SWALXA

123456

123456 123456

123456

123456

123456

123456

123456

123456

EYCXMF

KMKBQB DCLAEF

LFWKIM

JCGUZU

GSKECZ

GBWYMO

ACFVMQ

KYFWXT

123456

123456 123456

123456

123456

123456

123456

123456

123456

WMLAID

OYQBWF GKSDIU

LQGVSY

HJAVEF

WBLAEF

LFWKIM

JCFHSN

NGGNWP

123456

123456 123456

123456

123456

123456

12

WDAVMQ

FAAXWEF ZCXBVE

LKWMLA

VGKYED

EMJXHU

XD
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Kasiski Method

Then, group letters by columns—they received equal shifts!

103456 1123456 103456 [103456 (103456 [103456 103456 103456 [1R3456
LFWKIM |JCLPST |SWKHJO IGLKMVG IURAGKM |KMXMAM [JCVXWU IYLGGIT ISWALXA

123456 [123456 [123456 |123456 [123456 [123456 123456 (123456 [123456
EYCXMF [KMKBQB |DCLAEF [LFWKIM JCGUZU |GSKECZ |GBWYMO |JACFVMQ KYFWXT

123456 [123456 [123456 [123456 [123456 |123456 [123456 [123456 (123456
WMLAID |OYQBWF |GKSDIU [LQGVSY HJAVEF WBLAEF |[LFWKIM |JCFHSN INGGNWP

123456 [123456 [123456 [123456 [123456 [123456 |12
WDAVMQ |[FAAXWF |[ZCXBVE |[LKWMLA VGKYED [EMJXHU |XD
= — Ly L Ly

=

—\
—\

< | =
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Kasiski Method

Then, group letters by columns—they received equal shifts!

108456 128456 128456 128456 108456 108456 108456 128456 12B456
LFWKIM JCLPSI SWKHJO GLKMVG URAGKM KMXMAM JCVXWU YLGGII SWALXA
128456 128456 128456 12B456 128456 128456 128456 128456 123456
EYCXMF KMKBQB DCLAEF LFWKIM JCGUZU GSKECZ GBWYMO ACEVMQ KYEWXT
128456 128456 128456 128456 128456 128456 128456 128456 123456
WMLAID OYQBWF GKSDIU LQGVSY HJAVEF WBLAEF LFWKIM JCEHSN NGGNWP
L1 ()

128456 128456 128456 128456 128456 128456 12

WDAVMQ FAAXWE ZCXBVE LKWMLA VIGKYED EMUXHU XD
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Kasiski Method

Then, group letters by columns—they received equal shifts!

12
LH

12
EY

12
WM

12
WD

456 12
KIM JGC

456 12
XMF KM

456 12
AID OY

456 12
VMQ FA

456 12
PSI SW

456 12
BQB DC

456 12
BWF GK

456 12
XWF ZC

456 12
HJO GL

456 12
AEF LF

456 12
DIU LQ

456 12
BVE LK

456 12
MVG UR

456 12
KIM JC

456 12
VSY HJ

456 12
MLA VG

456 12
GKM KM

456 12
JZU GS

456 12
VEF WB

456 12
YED EM

456 12
MAM JC

456 12
ECZ GB

456 12
AEF LF

456 12
XHU XD

456 12
XWU YL

456 12
YMO AC

456 12
KIM JC

4156 12
GIT SW

4156 12
VMQ KY

456 12
ASN NG

156
L XA

156
WXT

456
NWP

=0 =0 [<[W]

[T [Nw [O]®]

[([O[® [TN[w® [>[W]

=R >0 [O/Ww [>=]W]

=0 Ol =W [X[D]

[Tl [ [® [ AN® [X[XD]

([Elw [OJlw [Rw [rlw]
T<Ww Tnlw [rrw [xR[W]

(B0 [ [Ow [=W]
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Chi-square on Reverse-shifted Column Strings

Column #1 String (with a zero shift): LJSGUKJYSEKDLJGGAKWOGLHWLJNWFZLVEX

_____________________________________________________________________________

{ "A": .08167, "B": .01492, "C": .02782, "D": .04253, "E": .12702, "F": .02228,i
1

"G": .02015, "H": .06094, "I": .06966, "J": .001563, "K": .00772, "L": .04025, i 2 N (01, — Ei)z
! "M": .02406, "N": .06749, "0O": .07507, "P": .01929, "Q": .00095, "R": .05987, | X = - -
, "s": .06327, "T": .09056, "U": .02758, "V": .00978, "W": .02360, "X": .00150, i =1 Ei
'Y 01974, 'z': 00074} ]
O, =observed count for letter ‘L’ =5.0
E, =expected count for letter ‘L’
- L] * L]
= EnglishFreq, * ColumnStringLength
= 0.04025 * 34
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Chi-square on Reverse-shifted Column Strings

Column #1 String (with a zero shift): LJSGUKJYSEKDLJGGAKWOGLHWLJNWFZLVEX

_____________________________________________________________________________

{ "A": .08167, "B": .01492, "C": .02782, "D": .04253, "E": .12702, "F": .02228,i
1

"G": .02015, "H": .06094, "I": .06966, "J": .00153, "K": .00772, "L": .04025, i 2 N (Ol — Ei)z
! "M": .02406, "N": .06749, "0O": .07507, "P": .01929, "Q": .00095, "R": .05987, | X = Z - -
| "s": .06327, "T": .09056, "U": .02758, "V": .00978, "W": .02360, "X": .00150, i =1 Ei
L _'Y": .01974, "z': 00074}
‘ ) - 1 x zL - (5°0 - )2 I
0 = observed count for letter ‘'L’ =5.0 I v
o S~ = 9.6367
E, =expected count for letter ‘L I,
= Eng[ishFreqL * Co[umnStringLength I 1. Repeat for all other letters.
2. Sum = X? score for that shift
= 0.04025 * 34 | :
0.04025% 3 J 3. Repeat for the 25 other shifts
= -- 4, Lowest score = the correct shift!
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Next time on CS 4440...

One-time Pads, Transposition and Block Ciphers




