Week 2: Lecture A
Message Integrity

Tuesday, August 27, 2024

Reminders

Be sure to join the course Canvas and Piazza

= See links at top of course page
= http://cs4440.eng.utah.edu

Finish registering on PollEverywhere
= Account must be <yourUID>@utah.edu
= Location issues should be fixed
= Signin at https://pollev.com/cs4440

Trouble accessing? See me after class!
= Or email me at: snagy@cs.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 2

http://cs4440.eng.utah.edu
https://pollev.com/cs4440
mailto:snagy@cs.utah.edu

Reminders

First weekly Lecture Quiz was due last night
= Next one opens today after lecture!
= Due following Monday by 11:59 PM
= Late submissions are not accepted

You are welcome to consult your notes:
= E.g., Wiki resources, the course VM, etc.
= Designed to test understanding of key concepts
= May see similar questions later in the semester &
= Lowest quiz score will be dropped

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 3

Reminders

Ofﬁ cers H ours sc h ed u le Monday Tuesday Wednesday Thursday Friday
= http://cs4440.eng.utah.edu i

= Cancellations announced via Piazza ot e Rl (it
= Busier near deadlines—start early! Bell's Ofe Hours

2p - 3:20p

Lecture

WEB L105
3p - 6p
Alishia's Office Hours
MEB 3515

4:30p - 6p
Bella's Office Hours
MEB 3515

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 4

http://cs4440.eng.utah.edu

Reminders

Can work in teams of up to two
® Find teammates on Piazza
u Post On FSearchforTeammates! 12/21/;

Why work with someone else?
= Pair programming
= Divide and conquer
= Two sets of eyes to solve problems
= Teaching others helps you learn more

Yes, you are free to work solo...
= But we encourage you to team up!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

add new post:

8 @ I'm one student looking for more people to work with.

E% (O I'm from a group looking for more students.

*Name Pat Mahomes *Email pat@go.chiefs

*About Me |'m |ooking for a teammate for Project 1: Crypto.
I'm free every day of the week except Sundays.

Vz

(Things you could include: your location, grad/undergrad, when you're available...

help people get to know youl)

Stefan Nagy

Announcements

Project 1: Crypto released (see Assignments page on course website)
= Deadline: Thursday, September 19th by 11:59 PM

(Project 1: Cryptography Table of Contents:

« Helpful Resources

. ¢ Introduction
Deadline: Thursday, September 19 by 11:59PM.
« Objectives
« Start by reading this!
Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies. o Working in the VM
‘You may optionally work alone, or in teams of at most two and submit one project per team. If you have o Testing your Solutions

difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover

. - Part 1: Hash Collisions
project material, so you and your partner should collaborate on each part.

o Prelude: Collisions
The code and other answers your group submits must be entirely your own work, and you are bound by the o Prelude: FastColl
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your o What to Submit
code comments). Don't risk your grade and degree by cheating!

o Collision Attack

« Part 2: Length Extension
Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any o Prelude: Merkle-Damgar
external dependencies. Use only default Python 3 libraries and/or modules we provide you. o Length Extension Attack:

o What to Submit

Part 3: Cryptanalysis

o Prelude: Ciphers
Helpful Resources °
o Cryptanalysis Attack
« The CS 4440 Course Wiki o Extra Credit
* VM Setup and Troubleshooting o What to Submit

» Terminal Cheat Sheet

Part 4: Signature Forgery
* Python 3 Cheat Sheet o Prelude: RSA Signatures

* PyMD5 Module Documentation o Prelude: Bleichenbacher

CyRoots Module Documentation o Forgery Attacks j

o What to Submit

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 6

http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Announcements

<<<<<< | See Discord for
i G meeting info!

Announcements

Due to the Utah football game,
Thursday’s class will be hybrid

= Zoom link will be posted on Piazza
= Feel free to join in-person if you can
= We'll poll but not record attendance

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 8

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 9

Last time on CS 4440...

Intro to Python
Debugging Code
Course VM Setup

Languages and Tools in CS 4440

Projects cover a few languages and tools:
= Projectl: Python 3
= Project2: C/C++, x86, GDB
= Project3: SQL, HTML, JavaScript
= Project4: Python 3, Wireshark

This may seem daunting—but don’t panic!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 1

Languages and Tools in CS 4440

Projects cover a few languages and tools:
= Projectl: Python 3
= Project2: C/C++, x86, GDB
= Project3: SQL, HTML, JavaScript
= Project4: Python 3, Wireshark

This may seem daunting—but don’t panic!
= Only using a small subset of their capabilities
= We'll cover some basics in lecture as we go along
= We'll post resources for you on the CS 4440 Wiki

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 12

Writing Python Scripts

You'll be writing relatively simple scripts

= No need for an IDE
= IDEs can/will break things

Recommended text editors:

= VIM s
ilLE88Dj. :jD88888Dj:
.LGitE888D.f8GjjjL8888E;
n Na n 0 iE :8888Et. .G8888.
i E888, ,8888,
D8ss, :8888:
= Emacs D888, :8888:
D8ss, :8888:
= FeatherPad .
. . W88W, :8888:
= Many others—pick one you like! s
:8888:
:W888:
:8888:
E888i
twasp
SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 13

Types you'll likely see:
Integer (int)
= Float (float)
= String (str)
= Boolean (bool)
= Custom classes (e.g., md5)

Variable assignment:

= Assignment uses the sign
= Value changed? So does type!

“ ”

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Variables

Stefan Nagy

>>> X = §
>>> print(type(x))

<class 'int'>

>>> X = "cs4440"
>>> print(type(x))

<class 'str'>

14

Variables

Casting:
= Pick a desired data type >>> X = 5
= “Wrap” your variable in it :
= Re-casting will change type! >>> print(x, type(x))

5 <class 'int'>

>>> x = float(x)
>>> print(x, type(x))
5.0 <class float>

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 5

You will use strings in many exercises
= Super flexible to use and manipulate
= We'll cover some basic conventions

Basic string manipulation:
= Length
= Appending
= Substrings

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

>>> x = "odoyle"
>>> print(len(x))
6

>>> print(x + "rules")

odoylerules

>>> print("odoy" in x)

True

16

Other string manipulations:
= Splitting by a delimiter
= Stripping characters
= Repeating characters

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

>>> X = "cs4440:fa23"
>>> print(x.split(':")
['cs4440', 'fa23']

>>> print(x.strip(':")
cs4440fa23

>>> print('A'*10)
AAAAAAAAAA

17

Byte Strings

Sometimes you will work with data as bytes
= In Python, byte strings appear as b 'data’

Examples:

= Encoding to a byte string
= Decoding a byte string
= Must keep the same codec (e.g., utf-8)

Conceptually can be a little confusing
= Functions print() and type() are your friends!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

"cs4440"

>>> X

>>> X = X.encode(‘utf-8'))
>>> print(x, type(x))
b'cs4440' <class 'bytes'>

>>> y = x.decode(‘utf-8"))

>>> print(y, type(y))
cs4440 <class 'str'>

18

A few other concepts to review
= Check these out in the CS 4440 Wiki

Lists
= Appending
= Prepending
= |nsert, Remove

Control Flow
= Loops
= |f/Else Statements

Functions

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Other Key Concepts

List Manipulation
Indexing:

>>> x = ['cs4440', 'is', 'cool']
>>> print(x[0])

Conditional Statements

If statements:

> X =5

>>> if (5% 2 == 1): # Evaluates to True if x modulo 2 equals 1.
. print("Yes!") # Prints string "Yes!" if condition is True.
Yes!

cs4 -
Functions

>>3
>>3

«d Defining functions:

>>> def foo():

Ins{¢ ... print("Hello!")
return
>>:
el >>> def bar(x, y):
>3 print(x+y)
(o MW oo return

>>:

>>:

(-4 Calling functions:

>>> foo()
Joil Hello!

>>> bar(4000,440)
4440

>3
>

cs4

Definition of function "foo() .

Definition of function “bar()",

which expects two arguments.

Call foo(), which has no arguments.

Call bar(), which has two arguments.

>>>y = ['all', 'day']
>>> print(x + y)
['cs4440', 'is', 'super', 'cool',

> while x != 0: # While x is not equal to 0...
print(x) # Print x and then decrement it.
Xx-=1

3

2

2l

Stefan Nagy

19

Debugging is a Process

Remember: print() and type() are your friend!
= Insert these, re-run your program, and check output [CORRECT]
= Does the output match what you expect?
= If not, investigate further and try again!

u"l" .’.
.

P [ERROR!]

e [ERROR!]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 20

Asking for Help

It's perfectly fine to ask for help

= That's what we / Piazza are here for!

Help others help you! Explain:
= What error code are you getting?
= What do you think it means?
= What fixes have you tried?
= What fixes did not work?

HELP MEHELP YOU

Avoid “instructor private posts”
= We get a lot of these near deadlines
= Impossible to keep up / help everyone!
= We may un-private your post (=)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 21

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 22

This time on CS 4440...

Message Integrity
Kerckhoffs's Principle
Pseudo-random Functions

Hashes and HMACs

Security Policies

What assets are we trying to protect?

What properties are we trying to enforce?
= Confidentiality
= Integrity <— you are here
= Availability
= Privacy
= Authenticity

Security

Availability

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 2

Message Integrity

Two parties want to communicate via an untrusted intermediary or medium

Problem: ensure a message received by one party was sent by the other

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 25

Exercise: cheating the final exam

Goal: communicate answers while taking the final exam

T L

SCHOOL OF COMPUTING
UNIVE

RSITY OF UTAH Stefan Nagy 26

Exercise: cheating the final exam

Goal: communicate answers while taking the final exam
Countermeasure: randomized seating

’

om0 m
[A“CGJ sent receivedb[BOb }
message \C\V)/ message

Stefan Nagy 27

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Exercise: cheating the final exam

Goal: communicate answers while taking the final exam
Countermeasure: randomized seating + curved grading

m o m
Alice —_| Mallory | ——={ Bob

message message

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 28

Exercise: cheating the final exam

Security policy
= Message integrity

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 29

Exercise: cheating the final exam

Security policy
= Message integrity

Threat model

= Mallory can see and tamper Alice’'s messages, and forge her own messages
= Mallory wants to trick Bob into accepting a message Alice didn’t send

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 30

Exercise: cheating the final exam

Security policy
= Message integrity

Threat model

= Mallory can see and tamper Alice’'s messages, and forge her own messages
= Mallory wants to trick Bob into accepting a message Alice didn’t send

Risk assessment
= Very likely Mallory will strategically distort communication between Bob and Alice

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 31

Exercise: cheating the final exam

Countermeasures
= Today's focus

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 32

Message Integrity

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 33

Exercise: cheating the final exam

Goal: communicate answers while taking the final exam
Countermeasure: randomized seating + curved grading
Threat: Mallory may change the message
Counter-countermeasure: ???

’

[Alicew m (Malloryw ik >[Bob}
J sent L J received

message message

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 34

Message Integrity

Goal: communicate answers while taking the final exam

Approach: include a message-dependent message with the sent message
= Letv=Ff(m)

’

)

m., vy LoV

[AhceJ -— Ll\/\alloryj — >[Bob}
message message

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 35

Including a Message-dependent Message

Think of it as a certificate of authenticity
= The output of a particular, pre-chosen function

Unique to the original message
= If message changed, certificate will change too

Alice sends this along with her message
= Bob recomputes this message-dependent code
on the message he thinks came from Alice
= Bob compares his code to the once he received

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 36

Message Integrity

Goal: communicate answers while taking the final exam

Approach: include a message-dependent message with the sent message
= Letv=Ff(m)
Bob accepts message if f(m’) = v’

’

)

m. v LoV

[AhceJ -— LI\/\alloryJ — >[Bob}
message message

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 37

Message Integrity

If check fails, then ??2? i f(m’) IERVA i
s —l --------------
om.vy LMV
[AhceJ Sentg LI\/\alloryJ receivegd >[Bob }

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 38

Message Integrity

f 1
If check fails, m’ is untrusted i]c (m,) 1=y’ !
YOU HAVE NO ——

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 39

Function Properties

Functior! f should: o !
: (C)(:lrelzs-ltic-eonrfeorl::;;ing between m and f(m) :_ _f_. _(T_ _)_ _=_ Y_ L ,:
) /]
oy m, v LV
[AhceJ LI\/\alloryJ >[Bob }
ABC, 123 ABC, 123

ooooooooooooooooo
U UUUUUUUUUUUUUUUU Stefan Nagy 40

Function Properties

Function f should: (T T Ty |
= Consistent output : f (m’) = v’
= One-to-one mapping between m and f(m) 3 ’ y

[Alice} m. Vv {I\/\alloryW m.Yy >[Bob }
3

)
ABC, 123 BDA, 12

ooooooooooooooooo
U UUUUUUUUUUUUUUUU Stefan Nagy 41

Function Properties

Functior! f should: o !
: (C)(:lrelzs-gc-eonrfeorl::;;ing between m and f(m) :_f;(_r_r_‘_’? _!_=_ _Y: _,:
) /]
oy m, v LV
[AhceJ LI\/\alloryJ >[Bob }
ABC, 123 ABC, 321

OOOOOOOOOOOOOOOOO
u UNIVERSITY OF UTAH Stefan Nagy 42

Function Properties

Function f should:
= Consistent output
= One-to-one mapping between m and f(m)

= Be known to Mallory? ,

[Alice} m. Vv {I\/\allory} m.v >[Bob }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 43

Is it okay if Mallory fully knows function f?

Yes
| 0%

No

' 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Function Properties

Function f should: [TTTTTTTT T |
= Consistent output : f (m:) =v’ |
= One-to-one mapping between m and f(m) 1)

= Bednrownte-Mattery? Be unknown to Mallory

[Alice} m. Vv {I\/\allory} m.Y >[Bob }

ABC, 123 BDA, 241

SCHOOL OF COMPUTING
u UNIVERSITY OF UTAH Stefan Nagy 45

Function Properties

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 46

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 47

Choosing an Ideal Function for
Message-dependent Messages

Kerckhoffs's Principles

To be secure, a cryptosystem must...

Be practically—if not mathematically—indecipherable.
Not require total secrecy, and not fail if captured.

Not require reliance on written notes (keys), and

be modifiable by the corresponding parties at will.

Be applicable to telegraph communications.

Be portable and not need many to handle/operate.
Be easy to use, and not require a long list of rules.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 49

Why Kerckhoffs’s principles?

Quantify probability that adversary (Mallory) succeeds

Different people can use same system, different keys:

= Alice and Bob use one key
= Jack and Diane use another
= Mutually distrusting parties

Want to easily change key if something goes wrong

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 50

Candidate 1: Steganographic Encoding

Early form of message secrecy
= Messages hidden in ordinary objects
= |mages, paper, video, music, etc.
= Not plainly visible to the human eye
= Unless known what to look for

Examples:
= Different hidden numbers appear
when viewed under different lights
= “Invisible” ink

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 51

Candidate 1: Steganographic Encoding

Early form of message secrecy
= Messages hidden in ordinary objects
= |mages, paper, video, music, etc.
= Not plainly visible to the human eye
= Unless known what to look for

Examples:
= Different hidden numbers appear
when viewed under different lights
= “Invisible” ink

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

[Impractical. Why? }

52

Candidate 1: Steganographic Encoding

Early form of message secrecy
= Messages hidden in ordinary objects
= |mages, paper, video, music, etc.
= Not plainly visible to the human eye
= Unless known what to look for

Examples:
= Different hidden numbers appear
when viewed under different lights
= “Invisible” ink

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Impractical. Why?

N\

A

Insecure. Why?

53

Candidate 2: Random Functions

—— o o e e e e e e

Random Functions: g s
andom Functions | 0 = 0011111001010001...
= Input: Any size up to huge maximum

= Qutput: Fixed size (e.g., 256 bits) 1 - 11100110710010100...

Think of it as defined by a massive 2= 010101000101000..

lookup table filled in by coin flips

o e o —
— o o

———————————————————————

. . Set of all functions in the universe
Maps inputs independently to any (each outputs 256 random bits)

one of possible outputs

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 54

Candidate 2: Random Functions

—— o o e e e e e e

Random Functions: , N
andom Functions | 0 = 0011111001010001...
= Input: Any size up to huge maximum

= Output: Fixed size (e.g., 256 bits) 1 = 1110011010010100...
2 =»010107000101000...

Think of it as defined by a massive
lookup table filled in by coin flips

o e o —

———————————————————————

Maps inputs independently to any
one of possible outputs

[Provably Secure. Why?}

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 55

Candidate 2: Random Functions

Random Functions: T .
andom Functions | 0 - 0011111001010001...
= Input: Any size up to huge maximum

= Qutput: Fixed size (e.g., 256 bits) 1 - 11100110710010100...

Think of it as defined by a massive 2= 010101000101000..

lookup table filled in by coin flips

o e o —
— o o

———————————————————————

Maps inputs independently to any
one of possible outputs

Provably Secure. Why?

Impractical. Why?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 56

Candidate 3: Pseudo-random Function Family (PRF)

We want a set of functions that are practical but “look” random

“Looks random” roughly means two inputs that differ by 1 will very likely
produce two outputs that are far apart (but no way to know just how far)

“Practical” means efficiently computable

Also want to not rely on pre-sharing all possible input-output pairings

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 57

Candidate 3: Pseudo-random Function Family (PRF)

Can decimal = binary encoding be considered a pseudo-random function?

IP

Decimal

Binary

192.168.1.45
15 Octet 2" Octet 3" Octet 4™ Octet
192 168 1 45
; ; | ;
11000000 | (10101000 | 0o0o0O0O0O0OO1 | | OO101101
8 bits 8 bits 8 bits 8 bits
32 bits

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Is decimal-to-binary a PRF?

Yes
| 0%

No

l 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Candidate 3: Pseudo-random Function Family (PRF)

Can decimal = binary encoding be considered a pseudo-random function?

IP

Decimal

Binary

192.168.1.45
1% Octet 2" Octet 3" Octet 4" Octet
192 168 1 45
! | ! !
11000000| 10101000 | | 00000001 | |00101101

8 bits

8 bits

8 bits

8 bits

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

32 bits

Stefan Nagy

-

-

No! Small changes

in input don’t lead

to BIG changes In
the output.

/

Candidate 3: Pseudo-random Function Family (PRF)

Start with a big family of functions
= Subset of our huge random coin-flip table

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 61

Candidate 3: Pseudo-random Function Family (PRF)

Start with a big family of functions
= Subset of our huge random coin-flip table

for B By e Fipny 4 @lLkNOWN to Mallory

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 62

Candidate 3: Pseudo-random Function Family (PRF)

Start with a big family of functions
= Subset of our huge random coin-flip table

for B By e Fipny 4 @lLkNOWN to Mallory

Use f, where k is a secret value (or key)

= Known only to Alice and Bob
= ks (say) 256 bits, chosen randomly

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 63

Candidate 3: Pseudo-random Function Family (PRF)

How the functions
work Is not secret...

ooooooooooooooooo
U UUUUUUUUUUUUUUUU Stefan Nagy 64

Candidate 3: Pseudo-random Function Family (PRF)

How the functions
work Is not secret...

But which function
Is chosen Is secret

OOOOOOOOOOOOOOOOO
u UNIVERSITY OF UTAH Stefan Nagy 65

Formal Definition of a Secure PRF

We say f is a secure PRF if Mallory can
only beat this via random guessing

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 66

Formal Definition of a Secure PRF

We say f is a secure PRF if Mallory can

only beat this via random guessing
= Function f,_is practically indistinguishable
from a random function (unless k known)

What is Mallory left with?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 67

Formal Definition of a Secure PRF

We say f is a secure PRF if Mallory can

only beat this via random guessing

= Function f,_is practically indistinguishable
from a random function (unless k known)

What is Mallory left with? Brute Forcing
= Mallory would need to enumerate every
possible function to figure out which is f,

How does this guarantee security?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 68

Formal Definition of a Secure PRF

We say f is a secure PRF if Mallory can

only beat this via random guessing

= Function f,_is practically indistinguishable
from a random function (unless k known)

What is Mallory left with? Brute Forcing
= Mallory would need to enumerate every
possible function to figure out which is f,

How does this guarantee security?

= |dea is that Mallory’s cost of brute-forcing is
so high that it's computationally infeasible

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 69

Message Integrity via PRFs

Goal: communicate answers while taking the final exam

Approach: use PRFs

= Let fbe asecure PRF

= In advance, choose random k known only to Alice and Bob
= Letv=f(m)

= Bob checks that f, (m*) == v¥* otherwise m* untrusted

m, v w""'"

)

[Alice J LI\/\alloryJ

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

> Bob

70

Message Integrity for Multiple Messages

Goal: send multiple messages with integrity
Problems: ???

’

[Alice} m. Vv {N\allory} m.v >[Bob }

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 71

Message Integrity for Multiple Messages

Goal: send multiple messages with integrity

Problems:
= Replay attack: Mallory injects messages from an earlier exam question
= Reordering attack: Mallory answers question 1 after answering question 2

)

[Alice} m. Vv {I\/\allory} m.v >[Bob }

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 72

Message Integrity for Multiple Messages

Goal: send multiple messages with integrity

Problems:
= Replay attack: Mallory injects messages from an earlier exam question
= Reordering attack: Mallory answers question 1 after answering question 2

Countermeasures: change k, add a sequence number

[Alice} m. Vv {Mallory} m.v >[Bob }

1A 2B 3C, 642 1A 2B 3C, 642

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 73

Existing PRFs

Annoying question:
= Do PRFs actually exist?

Annoying answer:
= We don't know for sure...
= But we strongly believe they do!

Best we can do:
= Well-studied functions without problems (yet)
= E.g., HMAC-SHA256

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 74

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 75

Obsolete PRFs: Hash Functions

Cryptographic Hash Functions

Based on idea of compression
Input: arbitrary length data
Output: fixed-size digest (n bits)
No key and fixed function

Examples: SHA-256, SHA-512, SHA-3

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Input Digest

- Cryp?gfph'c DFCD 3454 BBEA 788A 7511

2 i 696C 24D9 7009 CA99 2D1]
function

The red fox cryptographic 0086 46BB FB7D CBE2 823C

e Ol hash ACC7 6CD1 90B1 EE6E 3ABC

the blue dog function

The red fox cryptographic 8FD8 7558 7851 4F32 D1C6

Ik oust i 2l 76B1 79A9 ODA4 AEFE 4819

the blue dog function

The red fox cryptographic FCD3 7FDB 5AF2 C6FF 915F

e hash D401 COA9 7D9A 46AF FB4S

the blue dog function

The red fox cryptographic 8ACA D682 D588 4C75 4BFA

sl hash 1799 7D88 BCF8 92B9 6A6C

the blue dog function

Stefan Nagy

77

The SHA-256 Cryptographic Hash

Input: arbitrary-length data
Output: 256-bit hash digest

Input Message

[|
' Digest !
. A * ! c3b10f50 !
\ | 25d33602 |

1 e69ad16b |

N . i ee9c1210 i
i 9d9c1e31 !
— + 20fff3el

! 6€62d8d6 !
, ef882cd9 !

_________/'
256 bits

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 78

The SHA-256 Cryptographic Hash

Input: arbitrary-length data
Output: 256-bit hash digest Input Message

Internal compression function h .

Digest
| c3b10f50
| 25d33602
! e69ad16b
| ee9c1210
\ 9d9c1e31
' 20fff3el |
! 6€62d8d6 !
. ef882cd9 !
_—/'

256 bits

Compress
Function
h

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 79

The SHA-256 Cryptographic Hash

Input: arbitrary-length data
Output: 256-bit hash digest

Input Message

Internal compression function h .

Digest
c3b10f50
25d33602
e69ad16b
ee9c1210
9d9c1e31
20fff3e1
6e62d8d6
ef882cd9

R
256 bits

Compress
Function
h

Inputs to h:

= 256-bit initialization vector
= Public—known to Mallory!

256 bits

e e e e e e
N —— e = 7

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 80

The SHA-256 Cryptographic Hash

Input: arbitrary-length data 512 bits
Output: 256-bit hash digest Message
Block b,

Internal compression function h o ,

Digest !

| c3b10f50 |

| 25d33602 |

Inputs to h: Compress | e69ad16b |

ey e g Function ! ee9c1210 !

= 256-bit initialization vector h | 9docie3l1 |

= Public—known to Mallory! ' 20fff3el |

= 512-bit input message block 256 bits i e:8820d9

= Input split up into 512-bit blocks N’

256 bits

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 81

The SHA-256 Cryptographic Hash

SHA-256, SHA-512, MD5, etc. are called
Merkle-Damgard Construction hashes

OOOOOOOOOOOOOOOOO
u UNIVERSITY OF UTAH Stefan Nagy 82

Merkle-Damgard Hash Construction

Pad input message (using a fixed, public algorithm) to a multiple of 512 bits

Input Message E— ;

512 1 512 1 512 ' 112b
bits ! bits ! bits ! its

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 83

Merkle-Damgard Hash Construction

Pad input message (using a fixed, public algorithm) to a multiple of 512 bits

400
bits

Input Message E— Input Message %

512 1 512 1 512 ' 112b 512 1 512 ¢ 512 '112b !
bits ! bits ! bits ! its bits ! bits ! bits ! its !

512
bits

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 84

Merkle-Damgard Hash Construction

Pad input message (using a fixed, public algorithm) to a multiple of 512 bits

Split input message into 512-bit blocks: b, b,, ..., b_

512
bits

Input Message %

Stefan Nagy 85

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Merkle-Damgard Hash Construction

Pad input message (using a fixed, public algorithm) to a multiple of 512 bits
Split input message into 512-bit blocks: b,b,..b
Initial state y, is an Initialization Vector (not a key!)

b 512 b 512 b 512 b 512
T | bits 2 | bits 3 | bits “ | bits
Statey, . Digest
256 bits 256 bits

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 86

Merkle-Damgard Hash Construction

Pad input message (using a fixed, public algorithm) to a multiple of 512 bits
Split input message into 512-bit blocks: b, b,, ..., b_
Initial state y, is an Initialization Vector (not a key)

Rest of block digests calculated as:y_=h(y_,b_.)

b 512 b 512 b 512 b 512

b|ts 2 blts 3 | bits “ | bits
Statey, . State y, . Digest
256 bits 256 bits 256 bits

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 87

Merkle-Damgard Hash Construction

Pad input message (using a fixed, public algorithm) to a multiple of 512 bits
Split input message into 512-bit blocks: b,b,..b

Initial state y, is an Initialization Vector (not a key!)

Rest of block digests calculated as:y_=h (yn_1, bn_1)

b 512 b 512 b 512 b 512

1 b|ts 2 blts 3 b|ts “ b|ts
Statey, . State y, . Statey, . Statey, . Digest
256 bits 256 bits 256 bits 256 bits 256 bits

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 88

Properties of Cryptographic Hash Functions

Collision resistance: ®

= Can’tfind any m, !=m, such that \) H®)=H(®)
h(m,) = h(m,) .

Second pre-image resistance:
N\

= Givenm,, can't find m,!=m_ such that & | h =—=D|e7<22...
h(m.,)=h(m,)

pre-imqge ; IWSJ:} image
. . un on
Pre-image resistance: -

= Given h(m), can't find m

“Can’t find” = infeasible to compute

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 89

Properties of Cryptographic Hash Functions

Are “secure” hashes
secure forever~

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 90

Are "secure'" hash functions secure forever?

0% 0%

s G
Yes! No :(

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Properties of Cryptographic Hash Functions

Are “secure” hashes
secure forever? No!

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 92

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 93

Attacks on Hash Functions

What are some everyday uses of hashes?

What are some everyday uses of hashes?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 95

What are some everyday uses of hashes?

What are some everyday uses of hashes?

File Blockchain
Transfer

Email
Signing

De-duplication

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 96

Problem: Collision Attacks

Suppose the Crabapple yPhone prompts you to install a software update...
= How do you know the file you downloaded is the file Crabapple wanted you to download?

(-4 AMD64-all-windows6.1 -kb3020369-x64I5393066469758e61 9f21 731fc31ff2d109595445F5u

@ Eigenschaften von AMD64-all-windows6.1-kb30203... IRl

Aligemein Digitale Signaturen Sicherheit
De{ails Prifsummen Vorgéngefvefswnen

Datei: AMDE4-3ll-windows6.1-kb3@28369-x64_539386646975¢
CRC-32: @13eebad

MD4: 56680335689d537386303f520d759del
__MD5: e633be5da243esee377cesagedallaed :
SHA-1: 5393866469758e619f21731fC31ff2d189595445

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 97

Problem: Collision Attacks

EvilUpdate.zip

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 98

Problem: Collision Attacks

"Flame's MD5 collision is N
the most worrisome
security discovery of 2012

Richard Stiennon Former Contributor ®

Industry analyst. Author.

Jun 14, 2012, 06:45am EDT

@ This article is more than 10 years old.

In 2009, while I was researching Surviving Cyberwar, 1
attended the COSAC security conference outside of Dublin for
the first time. During an open session I posed this question to
the attendees: “Can you think of any cyber weapons we may

see in the near future?” There were few responses during the //6\/
e -~

open session but that evening at dinner one of the attendees

leaned towards me and said “I have one for you, Microsoft

update.” What he was implying was that if an attacker could
get between Microsoft's massive update service and an
Qtended target any machine could be compromised. /

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 99

Defeated Hash Functions

= Once ubiquitous
= Broken in 2004
= Now easy to find collisions
= You will in Project 1 2
= Exploited to attack real systems

SHA-1

= All major web browser vendors ceased acceptance of SHA-1 SSL certificates in 2017

February 2017: CWI Amsterdam and Google announced a collision attack against SHA-1

= Created two dissimilar PDF files with same SHA-1 hash
April 2019: Leurent and Peyrin created an attack capable of finding chosen-prefix collisions
in approximately 268 SHA-1 evaluations, requiring only $100,000 of cloud processing

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

100

Defeated Hash Functions

Hashes proven to be insecure—do not use cryptographically!
= valerieaurora.org/hash.html

| Lifetimes of popular cryptographic hashes (the rainbow chart) l

[Function [1990([1991([1992[[1993[[1994/[1995[1996[1997/[1998[1999/[2000|[2001|[2002/[2003]|[2004/|2005][2006| [2007]|2008] [2009]|2010][2011|[2012][2013][2014/|2015|[2016||2017]
[Snefru s ! [[| | | ! { [[| | | ! { { [} { ¥ [f | | |
o2 cazg-binru[T T T[]]) [) [i o
[MD4] N | l-----------------------
[MDs | jo | | | 1 ! [1] f [| I |
[RIPEMD [H |I |I || || || ll 2 | | | | [! [[[1 | [[|
pavac-iasin [I T A I N I A I I
[SHA-0 I II | 1l | | l------H----l--l=
SHA-1

RIPEMD-160 | | [] | |]
sa2famity || |l I L L 0 1 e] “ [I

sHaskeeead | | I T T T T T T T T T 0 0 0 I § 0 [

[Key||Didn't exist/not public|[Under peer review|[Considered strong [Minor weaknessHWeakened]-_l

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 101

https://valerieaurora.org/hash.html

Recap: Mallory-known Function

We talked about the case where Mallory knows the internals of function f
= What happens?

[Alice} m. Vv {Mallory} m.Y >[Bob }

ABC, 123 ?77?

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 102

Recap: Mallory-known Function

We talked about the case where Mallory knows the internals of function f

= What happens? She can forge fake messages and hashes! (TTTTTTTT T T '
flm)=v]
’ —l --------------
LY oy Y
[AhceJ LMalloryJ >[Bob }
ABC, 123 BDA, 247

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 103

Recap: Mallory-known Function

~

.

If our function is a Merkle-Damgard Hash, what
control could Mallory have over the final digest?

~

v

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

104

Problem: Length Extension Attacks

Merkle-Damgard construction: digest is formed from the last chaining value

b, | 512 b, | 512

blts blts
Statey, . State y, . Digest
256 bits 256 bits 256 bits

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 105

Problem: Length Extension Attacks

Merkle-Damgard construction: digest is formed from the last chaining value
Nothing stopping Mallory from continuing the hash chain...

b | 512 b. | 512 Evil | 512
' | bits ? | bits Msg | bits

S s
Statey, o State y, o >CD_I;igest

256 bits 256 bits Statey, 256 bits
256 bits

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 106

Problem: Length Extension Attacks

Merkle-Damgard construction: digest is formed from the last chaining value

Nothing stopping Mallory from continuing the hash chain...
= Mallory doesn’t need to know the previous blocks’ plaintext

272 | 512 292 | 512 Evil | 572
bits bits Msg | bits

= W

256 bits

Statey. State y,

256 bits 256 bits Statey,
256 bits

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 107

Problem: Length Extension Attacks

Merkle-Damgard construction: digest is formed from the last chaining value

Nothing stopping Mallory from continuing the hash chain...
= Mallory doesn’t need to know the previous blocks’ plaintext
= But she does know that the last block was padded to 512 bits

722 | 12 ?7?
bits QQ

»

Y
bits

bits

Statey. State y,
256 bits 256 bits

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 108

Problem: Length Extension Attacks

What if Mallory figures out the length of the input message?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 109

Problem: Length Extension Attacks

What if Mallory figures out the length of the input message?
= She can then calculate the final block’s padding!

Suppose our system validates users’ command strings via their hashes...
] ’
{Ahcej LI\/\alloryJ { Bob J

m - doGood”,
v =123

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 110

Problem: Length Extension Attacks

What if Mallory figures out the length of the input message?
= She can then calculate the final block’s padding!

Suppose our system validates users’ command strings via their hashes...
= Mallory can inject her own commands—just by knowing the original message length!

’ /]
[Ahcej LI\/\alloryJ { Bob J
m - doGood”, m - "“doGood"+“doEvil”.
V =123 v :E

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 111

Problem: Length Extension Attacks

Final outcome:

———————————————————

OOOOOOOOOOOOOOOOO
Wk Stefan Nagy 12

Solution: Use a MAC Instead

Cryptographic Hash Function
= e.g., SHA256

Hash Function

Product to be hashed

| Not a Strong PRF (afile, string, st_)mething else,
= Length-extension attacks l yl, l

SHA-256 KDF

(key derivation function)

oo

fixed length
digest output

* Unkeyed cryptographic hash function

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 113

Solution: Use a MAC Instead

Cryptographic Hash Function
= e.g., SHA256
= Not a strong PRF
= Length-extension attacks

Message Authentication Code (MAC)

= Think of as synonymous with PRF
= Widely believed to be PRFs
= e.g, HMAC-SHA256
= HMAC = keyed-hash MAC
= Currently recommended

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Hash Function

HMAC Function

Product to be hashed
(afile, string, something else,
any size!)

Product to be

b

SHA-256 KDF

(key derivation function)

oo

Secret Ke
hashed ¥
N\ VA,

HMAC-SHA-256 KDF

(key derivation function)

fixed length
digest output

Voo

* Unkeyed cryptographic hash function

fixed length
digest output

* Keyed cryptographic hash function

14

The HMAC-SHA256 Function

HMAC, (m) =

SHA256 ((ke pad_.) I SHA256 (ke pad)|l m))

er Inner

Here, k = secret key

OOOOOOOOOOOOOOOOO
Wk Stefan Nagy 115

The HMAC-SHA256 Function

HMAC, (m) = XOR

- = -~
— —
— —_—
- = —y
- -

SHA256 ((k =‘pad,) || SHA256 (K pad__)|l m))

er Inner
\

~ -

concatenate
Here, k = secret key

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 116

The HMAC-SHA256 Function

HMAC, (m) =

SHA256 ((k@ pad_) || SHA256 (ke pad,)1l m))
A A

er Inner

i |
0x5c5c¢5c5¢... 0x36363636...

Here, k = secret key; padding = 0x5c and 0x36 repeated 64 times

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 117

The HMAC-SHA256 Function

HMAC, (m) =

ter Inner

SHA256 ((k@ pad_) || SHA256 (ke pad,)1l m))
A A

i |
0x5c5c¢5c5¢... 0x36363636...

Here, k = secret key; padding = 0x5c and 0x36 repeated 64 times

Nested construction rather than chained like Merkle-Damgard
= Goodbye length extension and forgery!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 118

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 119

Project Tips

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 120

Project Tips

Projects are challenging—you're performing real-world attacks!
= Build off of lecture concepts
= Make sure you understand the lectures
= Prepare you to defend in the real world

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 121

Project Tips

Projects are challenging—you're performing real-world attacks!
= Build off of lecture concepts
= Make sure you understand the lectures
= Prepare you to defend in the real world

Suggested strategy: get high-level idea down, then start implementing
1. Go through assignment and start sketching-out your approach
2. Come to Office Hours and ask if you’re on the right track!
3. Then start building your program

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 122

Project Tips

Projects are challenging—you're performing real-world attacks!

= Build off of lecture concepts
= Make sure you understand the lectures
= Prepare you to defend in the real world

Suggested strategy: get high-level idea down, then start implementing

1. Go through assignment and start sketching-out your approach
2. Come to Office Hours and ask if you’re on the right track!
3. Then start building your program

Don’t get discouraged—we are here to help!
= Most issues are cleared up in a few minutes of white-boarding

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 123

Next time on CS 4440...

Confidentiality, Substitution Ciphers

