
Stefan Nagy

Week 2: Lecture A
Message Integrity

Tuesday, August 27, 2024

1

Stefan Nagy

Reminders

￭ Be sure to join the course Canvas and Piazza
￭ See links at top of course page
￭ http://cs4440.eng.utah.edu

￭ Finish registering on PollEverywhere
￭ Account must be <yourUID>@utah.edu
￭ Location issues should be fixed
￭ Sign in at https://pollev.com/cs4440

￭ Trouble accessing? See me after class!
￭ Or email me at: snagy@cs.utah.edu

2

http://cs4440.eng.utah.edu
https://pollev.com/cs4440
mailto:snagy@cs.utah.edu

Stefan Nagy

Reminders

￭ First weekly Lecture Quiz was due last night
￭ Next one opens today after lecture!
￭ Due following Monday by 11:59 PM
￭ Late submissions are not accepted

￭ You are welcome to consult your notes:
￭ E.g., Wiki resources, the course VM, etc.
￭ Designed to test understanding of key concepts
￭ May see similar questions later in the semester 😃
￭ Lowest quiz score will be dropped

3

Stefan Nagy

Reminders

￭ Officers Hours schedule
￭ http://cs4440.eng.utah.edu
￭ Cancellations announced via Piazza
￭ Busier near deadlines—start early!

4

Monday Tuesday Wednesday Thursday Friday

http://cs4440.eng.utah.edu

Stefan Nagy

Reminders

￭ Can work in teams of up to two
￭ Find teammates on Piazza
￭ Post on

￭ Why work with someone else?
￭ Pair programming
￭ Divide and conquer
￭ Two sets of eyes to solve problems
￭ Teaching others helps you learn more

￭ Yes, you are free to work solo…
￭ But we encourage you to team up!

5

Stefan Nagy

Announcements

￭ Project 1: Crypto released (see Assignments page on course website)
￭ Deadline: Thursday, September 19th by 11:59 PM

6

http://cs.utah.edu/~snagy/courses/cs4440/assignments/

Stefan Nagy

Announcements

7

See Discord for
meeting info!

Stefan Nagy

Announcements

￭ Due to the Utah football game,
Thursday’s class will be hybrid
￭ Zoom link will be posted on Piazza
￭ Feel free to join in-person if you can
￭ We’ll poll but not record attendance

8

Stefan Nagy

Questions?

9

Stefan Nagy

Last time on CS 4440…

10

Intro to Python
Debugging Code
Course VM Setup

Stefan Nagy

Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

￭ This may seem daunting—but don’t panic!

11

Stefan Nagy

Languages and Tools in CS 4440

￭ Projects cover a few languages and tools:
￭ Project1: Python 3
￭ Project2: C/C++, x86, GDB
￭ Project3: SQL, HTML, JavaScript
￭ Project4: Python 3, Wireshark

￭ This may seem daunting—but don’t panic!
￭ Only using a small subset of their capabilities
￭ We’ll cover some basics in lecture as we go along
￭ We’ll post resources for you on the CS 4440 Wiki

12

Stefan Nagy

Writing Python Scripts

￭ You’ll be writing relatively simple scripts
￭ No need for an IDE
￭ IDEs can/will break things

￭ Recommended text editors:
￭ VIM
￭ Nano
￭ Emacs
￭ FeatherPad
￭ Many others—pick one you like!

13

Stefan Nagy

Variables

￭ Types you’ll likely see:
￭ Integer (int)
￭ Float (float)
￭ String (str)
￭ Boolean (bool)
￭ Custom classes (e.g., md5)

￭ Variable assignment:
￭ Assignment uses the “=” sign
￭ Value changed? So does type!

14

 >>> x = 5

 >>> print(type(x))

 < c lass 'int'>

 >>> x = "cs4440"

 >>> print(type(x))

 < c lass 'str'>

Stefan Nagy

Variables

￭ Casting:
￭ Pick a desired data type
￭ “Wrap” your variable in it
￭ Re-casting will change type!

15

 >>> x = 5

 >>> print(x, type(x))

 5 < c lass 'int'>

 >>> x = float(x)

 >>> print(x, type(x))

 5.0 < c lass float>

Stefan Nagy

Strings

￭ You will use strings in many exercises
￭ Super flexible to use and manipulate
￭ We’ll cover some basic conventions

￭ Basic string manipulation:
￭ Length
￭ Appending
￭ Substrings

16

 >>> x = "odoyle"

 >>> print(len(x))

 6

 >>> print(x + "rules")

 odoylerules

 >>> print("odoy" in x)

 True

Stefan Nagy

Strings

￭ Other string manipulations:
￭ Splitting by a delimiter
￭ Stripping characters
￭ Repeating characters

17

 >>> x = "cs4440:fa23"

 >>> print(x.split(':')

 ['cs4440', 'fa23']

 >>> print(x.strip(':')

 cs4440fa23

 >>> print('A'*10)

 AAAAAAAAAA

Stefan Nagy

Byte Strings

￭ Sometimes you will work with data as bytes
￭ In Python, byte strings appear as b'data'

￭ Examples:
￭ Encoding to a byte string
￭ Decoding a byte string
￭ Must keep the same codec (e.g., utf-8)

￭ Conceptually can be a little confusing
￭ Functions print() and type() are your friends!

18

 >>> x = "cs4440"

 >>> x = x.encode(‘utf-8’))

 >>> print(x, type(x))

 b'cs4440' <class 'bytes'>

 >>> y = x.decode(‘utf-8’))

 >>> print(y, type(y))

 cs4440 <class 'str'>

Stefan Nagy

Other Key Concepts

￭ A few other concepts to review
￭ Check these out in the CS 4440 Wiki

￭ Lists
￭ Appending
￭ Prepending
￭ Insert, Remove

￭ Control Flow
￭ Loops
￭ If/Else Statements

￭ Functions

19

Stefan Nagy

Debugging is a Process

￭ Remember: print() and type() are your friend!
￭ Insert these, re-run your program, and check output
￭ Does the output match what you expect?
￭ If not, investigate further and try again!

20

ERROR!

ERROR!

CORRECT

Stefan Nagy

Asking for Help

￭ It’s perfectly fine to ask for help
￭ That’s what we / Piazza are here for!

￭ Help others help you! Explain:
￭ What error code are you getting?
￭ What do you think it means?
￭ What fixes have you tried?
￭ What fixes did not work?

￭ Avoid “instructor private posts”
￭ We get a lot of these near deadlines
￭ Impossible to keep up / help everyone!
￭ We may un-private your post 🙂

21

Stefan Nagy

Questions?

22

Stefan Nagy

This time on CS 4440…

23

Message Integrity
Kerckhoffs’s Principle

Pseudo-random Functions
Hashes and HMACs

Stefan Nagy

Security Policies

￭ What assets are we trying to protect?

￭ What properties are we trying to enforce?
￭ Confidentiality
￭ Integrity <— you are here
￭ Availability
￭ Privacy
￭ Authenticity

24

Stefan Nagy

Message Integrity

￭ Two parties want to communicate via an untrusted intermediary or medium

￭ Problem: ensure a message received by one party was sent by the other

25

Stefan Nagy

Exercise: cheating the final exam

￭ Goal: communicate answers while taking the final exam

26

Alice Bob
m

a message

Stefan Nagy

Exercise: cheating the final exam

￭ Goal: communicate answers while taking the final exam
￭ Countermeasure: randomized seating

27

Alice Bob
m m ’
sent

message
received
message

Stefan Nagy

Exercise: cheating the final exam

￭ Goal: communicate answers while taking the final exam
￭ Countermeasure: randomized seating + curved grading

28

Alice Bob
m

Mallory
m ’

sent
message

received
message

Stefan Nagy

Exercise: cheating the final exam

￭ Security policy
￭ Message integrity

29

Stefan Nagy

Exercise: cheating the final exam

￭ Security policy
￭ Message integrity

￭ Threat model
￭ Mallory can see and tamper Alice’s messages, and forge her own messages
￭ Mallory wants to trick Bob into accepting a message Alice didn’t send

30

Stefan Nagy

Exercise: cheating the final exam

￭ Security policy
￭ Message integrity

￭ Threat model
￭ Mallory can see and tamper Alice’s messages, and forge her own messages
￭ Mallory wants to trick Bob into accepting a message Alice didn’t send

￭ Risk assessment
￭ Very likely Mallory will strategically distort communication between Bob and Alice

31

Stefan Nagy

Exercise: cheating the final exam

￭ Security policy
￭ Message integrity

￭ Threat model
￭ Mallory can see and tamper Alice’s messages, and forge her own messages
￭ Mallory wants to trick Bob into accepting a message Alice didn’t send

￭ Risk assessment
￭ Very likely Mallory will strategically distort communication between Bob and Alice

￭ Countermeasures
￭ Today's focus

32

Stefan Nagy

Message Integrity

33

Stefan Nagy

Exercise: cheating the final exam

￭ Goal: communicate answers while taking the final exam
￭ Countermeasure: randomized seating + curved grading
￭ Threat: Mallory may change the message
￭ Counter-countermeasure: ???

34

Alice Bob
m

Mallory
m ’

sent
message

received
message

Stefan Nagy

Message Integrity

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)

35

Alice BobMallory
m , v m ’ , v ’

sent
message

received
message

Stefan Nagy

Including a Message-dependent Message

￭ Think of it as a certificate of authenticity
￭ The output of a particular, pre-chosen function

￭ Unique to the original message
￭ If message changed, certificate will change too

￭ Alice sends this along with her message
￭ Bob recomputes this message-dependent code

on the message he thinks came from Alice
￭ Bob compares his code to the once he received

36

Stefan Nagy

Message Integrity

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Bob accepts message if f (m’) = v’

37

Alice BobMallory
m , v m ’ , v ’

sent
message

received
message

Stefan Nagy

Message Integrity

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Bob accepts message if f (m’) = v’
￭ If check fails, then ???

38

Alice BobMalloryMallory
m , v m ’ , v ’

sent
message

received
message

f (m ’) != v ’

Stefan Nagy

Message Integrity

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Bob accepts message if f (m’) = v’
￭ If check fails, m’ is untrusted

39

Alice BobMallory
m , v m ’ , v ’

sent
message

received
message

f (m ’) != v ’

Stefan Nagy

Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)

40

Alice BobMallory

ABC, 123 ABC, 123

f (m ’) = v ’

m , v m ’ , v ’

Stefan Nagy

Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)

41

Alice BobMallory

ABC, 123 BDA, 123

f (m ’) != v ’

m , v m ’ , v ’

Stefan Nagy

Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)

42

Alice BobMallory

ABC, 123 ABC, 321

f (m ’) != v ’

m , v m ’ , v ’

Stefan Nagy

Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)
￭ Be known to Mallory?

43

Alice BobMallory
m , v m ’ , v ’

Stefan Nagy 44

Stefan Nagy

Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)
￭ Be known to Mallory? Be unknown to Mallory

45

Alice BobMallory

ABC, 123 BDA, 241

f (m ’) = v ’

m , v m ’ , v ’

Stefan Nagy

Function Properties

￭ Goal: communicate answers while taking the final exam
￭ Approach: include a message-dependent message with the sent message

￭ Let v = f (m)
￭ Function f should:

￭ Consistent output
￭ One-to-one mapping between m and f (m)
￭ Be known to Mallory? Be unknown to Mallory

46

Alice BobMallory

ABC, 123 BDA, 241

f (m ’) = v ’

m , v m ’ , v ’

Stefan Nagy

Questions?

47

Stefan Nagy

Choosing an Ideal Function for
Message-dependent Messages

48

Stefan Nagy

Kerckhoffs’s Principles

To be secure, a cryptosystem must…

1. Be practically—if not mathematically—indecipherable.
2. Not require total secrecy, and not fail if captured.
3. Not require reliance on written notes (keys), and

be modifiable by the corresponding parties at will.
4. Be applicable to telegraph communications.
5. Be portable and not need many to handle/operate.
6. Be easy to use, and not require a long list of rules.

49

Stefan Nagy

Why Kerckhoffs’s principles?

￭ Quantify probability that adversary (Mallory) succeeds

￭ Different people can use same system, different keys:
￭ Alice and Bob use one key
￭ Jack and Diane use another
￭ Mutually distrusting parties

￭ Want to easily change key if something goes wrong

50

Stefan Nagy

Candidate 1: Steganographic Encoding

￭ Early form of message secrecy
￭ Messages hidden in ordinary objects

￭ Images, paper, video, music, etc.
￭ Not plainly visible to the human eye

￭ Unless known what to look for

￭ Examples:
￭ Different hidden numbers appear

when viewed under different lights
￭ “Invisible” ink

51

Stefan Nagy

Candidate 1: Steganographic Encoding

￭ Early form of message secrecy
￭ Messages hidden in ordinary objects

￭ Images, paper, video, music, etc.
￭ Not plainly visible to the human eye

￭ Unless known what to look for

￭ Examples:
￭ Different hidden numbers appear

when viewed under different lights
￭ “Invisible” ink

52

Impractical. Why?

Stefan Nagy

Candidate 1: Steganographic Encoding

￭ Early form of message secrecy
￭ Messages hidden in ordinary objects

￭ Images, paper, video, music, etc.
￭ Not plainly visible to the human eye

￭ Unless known what to look for

￭ Examples:
￭ Different hidden numbers appear

when viewed under different lights
￭ “Invisible” ink

53

Impractical. Why?

Insecure. Why?

Stefan Nagy

Candidate 2: Random Functions

￭ Random Functions:
￭ Input: Any size up to huge maximum
￭ Output: Fixed size (e.g., 256 bits)

￭ Think of it as defined by a massive
lookup table filled in by coin flips

￭ Maps inputs independently to any
one of possible outputs

54

0 → 0011111001010001…

1 → 1110011010010100…

2 → 010101000101000…

… → …………………………………

Set of all functions in the universe
(each outputs 256 random bits)

Stefan Nagy

Candidate 2: Random Functions

￭ Random Functions:
￭ Input: Any size up to huge maximum
￭ Output: Fixed size (e.g., 256 bits)

￭ Think of it as defined by a massive
lookup table filled in by coin flips

￭ Maps inputs independently to any
one of possible outputs

55

0 → 0011111001010001…

1 → 1110011010010100…

2 → 010101000101000…

… → …………………………………

Provably Secure. Why?

Stefan Nagy

Candidate 2: Random Functions

￭ Random Functions:
￭ Input: Any size up to huge maximum
￭ Output: Fixed size (e.g., 256 bits)

￭ Think of it as defined by a massive
lookup table filled in by coin flips

￭ Maps inputs independently to any
one of possible outputs

56

Provably Secure. Why?

Impractical. Why?

0 → 0011111001010001…

1 → 1110011010010100…

2 → 010101000101000…

… → …………………………………

Stefan Nagy

Candidate 3: Pseudo-random Function Family (PRF)

￭ We want a set of functions that are practical but “look” random

￭ “Looks random” roughly means two inputs that differ by 1 will very likely
produce two outputs that are far apart (but no way to know just how far)

￭ “Practical” means efficiently computable

￭ Also want to not rely on pre-sharing all possible input–output pairings

57

Stefan Nagy

Candidate 3: Pseudo-random Function Family (PRF)

￭ Can decimal → binary encoding be considered a pseudo-random function?

58

Stefan Nagy 59

Stefan Nagy

Candidate 3: Pseudo-random Function Family (PRF)

￭ Can decimal → binary encoding be considered a pseudo-random function?

60

No! Small changes
in input don’t lead
to BIG changes in

the output.

Stefan Nagy

Candidate 3: Pseudo-random Function Family (PRF)

￭ Start with a big family of functions
￭ Subset of our huge random coin-flip table

61

Stefan Nagy

Candidate 3: Pseudo-random Function Family (PRF)

￭ Start with a big family of functions
￭ Subset of our huge random coin-flip table

￭ f0, f1, f2, …, f(2^N)-1 all known to Mallory

62

Stefan Nagy

Candidate 3: Pseudo-random Function Family (PRF)

￭ Start with a big family of functions
￭ Subset of our huge random coin-flip table

￭ f0, f1, f2, …, f(2^N)-1 all known to Mallory

￭ Use fk where k is a secret value (or key)
￭ Known only to Alice and Bob
￭ k is (say) 256 bits, chosen randomly

63

Stefan Nagy

Candidate 3: Pseudo-random Function Family (PRF)

￭ Start with a big family of functions
￭ Subset of our huge random coin-flip table

￭ f0, f1, f2, …, f(2^N)-1 all known to Mallory

￭ Use fk where k is a secret value (or key)
￭ Known only to Alice and Bob
￭ k is (say) 256 bits, chosen randomly

64

How the functions
work is not secret…

Stefan Nagy

Candidate 3: Pseudo-random Function Family (PRF)

￭ Start with a big family of functions
￭ Subset of our huge random coin-flip table

￭ f0, f1, f2, …, f(2^N)-1 all known to Mallory

￭ Use fk where k is a secret value (or key)
￭ Known only to Alice and Bob
￭ k is (say) 256 bits, chosen randomly

65

How the functions
work is not secret…

But which function
is chosen is secret

Stefan Nagy

Formal Definition of a Secure PRF

￭ We say f is a secure PRF if Mallory can
only beat this via random guessing

66

How the functions
work is not secret…

But which function
is chosen is secret

Stefan Nagy

Formal Definition of a Secure PRF

￭ We say f is a secure PRF if Mallory can
only beat this via random guessing
￭ Function fk is practically indistinguishable

from a random function (unless k known)

￭ What is Mallory left with?

67

How the functions
work is not secret…

But which function
is chosen is secret

Stefan Nagy

Formal Definition of a Secure PRF

￭ We say f is a secure PRF if Mallory can
only beat this via random guessing
￭ Function fk is practically indistinguishable

from a random function (unless k known)

￭ What is Mallory left with? Brute Forcing
￭ Mallory would need to enumerate every

possible function to figure out which is fk

￭ How does this guarantee security?

68

How the functions
work is not secret…

But which function
is chosen is secret

Stefan Nagy

Formal Definition of a Secure PRF

￭ We say f is a secure PRF if Mallory can
only beat this via random guessing
￭ Function fk is practically indistinguishable

from a random function (unless k known)

￭ What is Mallory left with? Brute Forcing
￭ Mallory would need to enumerate every

possible function to figure out which is fk

￭ How does this guarantee security?
￭ Idea is that Mallory’s cost of brute-forcing is

so high that it’s computationally infeasible

69

How the functions
work is not secret…

But which function
is chosen is secret

Stefan Nagy

Message Integrity via PRFs

￭ Goal: communicate answers while taking the final exam
￭ Approach: use PRFs

￭ Let f be a secure PRF
￭ In advance, choose random k known only to Alice and Bob
￭ Let v = fk(m)
￭ Bob checks that fk(m*) == v*, otherwise m* untrusted

70

Alice BobMallory
m , v m ’ , v ’

Stefan Nagy

Message Integrity for Multiple Messages

￭ Goal: send multiple messages with integrity
￭ Problems: ???

71

Alice BobMallory
m , v m ’ , v ’

Stefan Nagy

Message Integrity for Multiple Messages

￭ Goal: send multiple messages with integrity
￭ Problems:

￭ Replay attack: Mallory injects messages from an earlier exam question
￭ Reordering attack: Mallory answers question 1 after answering question 2

72

Alice BobMallory
m , v m ’ , v ’

Stefan Nagy

Message Integrity for Multiple Messages

￭ Goal: send multiple messages with integrity
￭ Problems:

￭ Replay attack: Mallory injects messages from an earlier exam question
￭ Reordering attack: Mallory answers question 1 after answering question 2

￭ Countermeasures: change k, add a sequence number

73

1A 2B 3C, 642 1A 2B 3C, 642
Alice BobMallory

m , v m ’ , v ’

Stefan Nagy

Existing PRFs

￭ Annoying question:
￭ Do PRFs actually exist?

￭ Annoying answer:
￭ We don’t know for sure…
￭ But we strongly believe they do!

￭ Best we can do:
￭ Well-studied functions without problems (yet)

￭ E.g., HMAC-SHA256

74

Stefan Nagy

Questions?

75

Stefan Nagy

Obsolete PRFs: Hash Functions

76

Stefan Nagy

Cryptographic Hash Functions

￭ Based on idea of compression

￭ Input: arbitrary length data

￭ Output: fixed-size digest (n bits)

￭ No key and fixed function

￭ Examples: SHA-256, SHA-512, SHA-3

77

Stefan Nagy

The SHA-256 Cryptographic Hash

￭ Input: arbitrary-length data
￭ Output: 256-bit hash digest

78

256 bits

Input Message

Digest
c3b10f50
25d33602
e69ad16b
ee9c1210
9d9c1e31
20fff3e1
6e62d8d6
ef882cd9

Stefan Nagy

The SHA-256 Cryptographic Hash

￭ Input: arbitrary-length data
￭ Output: 256-bit hash digest

￭ Internal compression function h

79

256 bits

Digest
c3b10f50
25d33602
e69ad16b
ee9c1210
9d9c1e31
20fff3e1
6e62d8d6
ef882cd9

Compress
Function

h

Input Message

Stefan Nagy

The SHA-256 Cryptographic Hash

￭ Input: arbitrary-length data
￭ Output: 256-bit hash digest

￭ Internal compression function h

￭ Inputs to h:
￭ 256-bit initialization vector

￭ Public—known to Mallory!

80

256 bits

Digest
c3b10f50
25d33602
e69ad16b
ee9c1210
9d9c1e31
20fff3e1
6e62d8d6
ef882cd9

Init.
Vector

I.V.

256 bits

Compress
Function

h

Input Message

Stefan Nagy

The SHA-256 Cryptographic Hash

￭ Input: arbitrary-length data
￭ Output: 256-bit hash digest

￭ Internal compression function h

￭ Inputs to h:
￭ 256-bit initialization vector

￭ Public—known to Mallory!
￭ 512-bit input message block

￭ Input split up into 512-bit blocks

81

256 bits

Init.
Vector

I.V.

256 bits

Compress
Function

h

Message
Block b3

Message
Block b2

Message
Block b1

512 bits

Digest
c3b10f50
25d33602
e69ad16b
ee9c1210
9d9c1e31
20fff3e1
6e62d8d6
ef882cd9

Stefan Nagy

The SHA-256 Cryptographic Hash

￭ Input: arbitrary-length data
￭ Output: 256-bit hash digest

￭ Internal compression function h

￭ Inputs to h:
￭ 256-bit initialization vector

￭ Public—known to Mallory!
￭ 512-bit input message block

￭ Input split up into 512-bit blocks

82

256 bits

Init.
Vector

I.V.

256 bits

Compress
Function

h

Message
Block b3

Message
Block b2

Message
Block b1

512 bits

Digest
c3b10f50
25d33602
e69ad16b
ee9c1210
9d9c1e31
20fff3e1
6e62d8d6
ef882cd9

SHA-256, SHA-512, MD5, etc. are called
Merkle–Damgård Construction hashes

Stefan Nagy

Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits

83

512
bits

512
bits

512
bits

Input Message ?
112b
its

Stefan Nagy

Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits

84

512
bits

512
bits

512
bits

Input Message

512
bits

512
bits

512
bits

112b
its

Input Message

400
bits

112b
its

512
bits

Stefan Nagy

Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits
2. Split input message into 512-bit blocks: b1, b2, …, bn

85

b1
512
bits

b2 b3 b4
512
bits

512
bits

512
bits

Input Message

Stefan Nagy

Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits
2. Split input message into 512-bit blocks: b1, b2, …, bn
3. Initial state y1 is an Initialization Vector (not a key!)

86

I.V.

256 bits

h

b1
512
bits

b2 b3
512
bits

512
bits

512
bits

State y1 Digest
256 bits

b4

Stefan Nagy

Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits
2. Split input message into 512-bit blocks: b1, b2, …, bn
3. Initial state y1 is an Initialization Vector (not a key!)
4. Rest of block digests calculated as: yn = h (yn-1, bn-1)

87

I.V.

256 bits

h

b1
512
bits

h

b2 b3
512
bits

512
bits

512
bits

State y1 State y2 Digest
256 bits256 bits

b4

Stefan Nagy

Merkle–Damgård Hash Construction

1. Pad input message (using a fixed, public algorithm) to a multiple of 512 bits
2. Split input message into 512-bit blocks: b1, b2, …, bn
3. Initial state y1 is an Initialization Vector (not a key!)
4. Rest of block digests calculated as: yn = h (yn-1, bn-1)

88

I.V.

256 bits

h

b1
512
bits

h

b2 b3

h h

512
bits

512
bits

512
bits

State y1 State y2 State y3 State y4 Digest
256 bits 256 bits 256 bits256 bits

b4

Stefan Nagy

Properties of Cryptographic Hash Functions

￭ Collision resistance:
￭ Can’t find any m1 != m2 such that

h (m1) = h (m2)

￭ Second pre-image resistance:
￭ Given m1 , can’t find m2 != m1 such that

h (m1) = h (m2)

￭ Pre-image resistance:
￭ Given h (m), can’t find m

￭ “Can’t find” = infeasible to compute

89

Stefan Nagy

Properties of Cryptographic Hash Functions

￭ Collision resistance:
￭ Can’t find any m1 != m2 such that

h (m1) = h (m2)

￭ Second pre-image resistance:
￭ Given m1 , can’t find m2 != m1 such that

h (m1) = h (m2)

￭ Pre-image resistance:
￭ Given h (m), can’t find m

￭ “Can’t find” = infeasible to compute

90

Are “secure” hashes
secure forever?

Stefan Nagy 91

Stefan Nagy

Properties of Cryptographic Hash Functions

￭ Collision resistance:
￭ Can’t find any m1 != m2 such that

h (m1) = h (m2)

￭ Second pre-image resistance:
￭ Given m1 , can’t find m2 != m1 such that

h (m1) = h (m2)

￭ Pre-image resistance:
￭ Given h (m), can’t find m

￭ “Can’t find” = infeasible to compute

92

Are “secure” hashes
secure forever? No!

Stefan Nagy

Questions?

93

Stefan Nagy

Attacks on Hash Functions

94

Stefan Nagy

What are some everyday uses of hashes?

￭ What are some everyday uses of hashes?

95

Alice Bob
m

Mallory
m*

v

Stefan Nagy

What are some everyday uses of hashes?

￭ What are some everyday uses of hashes?

96

Alice Bob
m

Mallory
m*

vDe-duplication

File
Transfer

Email
Signing

Blockchain

Stefan Nagy

Problem: Collision Attacks

￭ Suppose the Crabapple yPhone prompts you to install a software update…
￭ How do you know the file you downloaded is the file Crabapple wanted you to download?

97

Stefan Nagy

Problem: Collision Attacks

98

￭ Suppose the Crabapple yPhone prompts you to install a software update…
￭ How do you know the file you downloaded is the file Crabapple wanted you to download?

EvilUpdate.zip Hash=5393066469
7580619f21731fc
31ff20109595445

Stefan Nagy

Problem: Collision Attacks

99

Stefan Nagy

Defeated Hash Functions

￭ MD5
￭ Once ubiquitous
￭ Broken in 2004
￭ Now easy to find collisions

￭ You will in Project 1 😁
￭ Exploited to attack real systems

￭ SHA-1
￭ All major web browser vendors ceased acceptance of SHA-1 SSL certificates in 2017
￭ February 2017: CWI Amsterdam and Google announced a collision attack against SHA-1

￭ Created two dissimilar PDF files with same SHA-1 hash
￭ April 2019: Leurent and Peyrin created an attack capable of finding chosen-prefix collisions

in approximately 268 SHA-1 evaluations, requiring only $100,000 of cloud processing

100

Stefan Nagy

Defeated Hash Functions

￭ Hashes proven to be insecure—do not use cryptographically!
￭ valerieaurora.org/hash.html

101

https://valerieaurora.org/hash.html

Stefan Nagy

Recap: Mallory-known Function

￭ We talked about the case where Mallory knows the internals of function f
￭ What happens?

102

Alice BobMallory

ABC, 123 ???

m , v m ’ , v ’

Stefan Nagy

Recap: Mallory-known Function

￭ We talked about the case where Mallory knows the internals of function f
￭ What happens? She can forge fake messages and hashes!

103

Alice BobMallory

ABC, 123 BDA, 241

f (m ’) = v ’

m , v m ’ , v ’

Stefan Nagy

Recap: Mallory-known Function

￭ We talked about the case where Mallory knows the internals of function f
￭ What happens? She can forge fake messages and hashes!

104

Alice BobMallory

ABC, 123 BDA, 241

f (m ’) = v ’

m , v m ’ , v ’ If our function is a Merkle–Damgård Hash, what
control could Mallory have over the final digest?

Stefan Nagy

Problem: Length Extension Attacks

￭ Merkle–Damgård construction: digest is formed from the last chaining value

105

I.V.

256 bits

h

b1
512
bits

h

b2
512
bits

State y1 State y2 Digest
256 bits256 bits

Stefan Nagy

Problem: Length Extension Attacks

￭ Merkle–Damgård construction: digest is formed from the last chaining value
￭ Nothing stopping Mallory from continuing the hash chain…

106

I.V.

256 bits

h

b1
512
bits

h

b2

h

Evil
Msg

512
bits

512
bits

State y1 State y2 Digest
State y3

Digest
256 bits256 bits

256 bits

Stefan Nagy

Problem: Length Extension Attacks

￭ Merkle–Damgård construction: digest is formed from the last chaining value
￭ Nothing stopping Mallory from continuing the hash chain…

￭ Mallory doesn’t need to know the previous blocks’ plaintext

107

I.V.

256 bits

h

??? 512
bits

h

???

h

Evil
Msg

512
bits

512
bits

State y1 State y2 Digest
State y3

Digest
256 bits256 bits

256 bits

Stefan Nagy

Problem: Length Extension Attacks

￭ Merkle–Damgård construction: digest is formed from the last chaining value
￭ Nothing stopping Mallory from continuing the hash chain…

￭ Mallory doesn’t need to know the previous blocks’ plaintext
￭ But she does know that the last block was padded to 512 bits

108

I.V.

256 bits

h

??? 512
bits

h

???

h

Evil
Msg

512
bits

512
bits

State y1 State y2 Digest
State y3

Digest
256 bits256 bits

256 bits

b2

X
bits

Y
bits

512
bits

=+

Stefan Nagy

Problem: Length Extension Attacks

￭ What if Mallory figures out the length of the input message?

109

Stefan Nagy

Problem: Length Extension Attacks

￭ What if Mallory figures out the length of the input message?
￭ She can then calculate the final block’s padding!

￭ Suppose our system validates users’ command strings via their hashes…

110

Alice BobMallory
m , v m ’ , v ’

m = “doGood”,
v = 123

Stefan Nagy

Problem: Length Extension Attacks

￭ What if Mallory figures out the length of the input message?
￭ She can then calculate the final block’s padding!

￭ Suppose our system validates users’ command strings via their hashes…
￭ Mallory can inject her own commands—just by knowing the original message length!

111

Alice BobMallory

m = “doGood”,
v = 123

m , v m ’ , v ’
m = “doGood”+“doEvil”,

v = 241

Stefan Nagy

Problem: Length Extension Attacks

￭ What if Mallory figures out the length of the input message?
￭ She can then calculate the final block’s padding!

￭ Suppose our system validates users’ command strings via their hashes…
￭ Mallory can inject her own commands—just by knowing the original message length!

112

Alice BobMallory
m , v m ’ , v ’

m = “doGood”,
v = 123

m = “doGood”+“doEvil”,
v = 241

f (m ’) = v ’

Final outcome:

Stefan Nagy

Solution: Use a MAC Instead

￭ Cryptographic Hash Function
￭ e.g., SHA256
￭ Not a strong PRF

￭ Length-extension attacks

113

Stefan Nagy

Solution: Use a MAC Instead

￭ Cryptographic Hash Function
￭ e.g., SHA256
￭ Not a strong PRF

￭ Length-extension attacks

￭ Message Authentication Code (MAC)
￭ Think of as synonymous with PRF

￭ Widely believed to be PRFs
￭ e.g., HMAC-SHA256

￭ HMAC = keyed-hash MAC
￭ Currently recommended

114

Stefan Nagy

The HMAC-SHA256 Function

￭ HMACk (m) =

SHA256 ((k ⊕ padouter) || SHA256 ((k ⊕ padinner) || m))

￭ Here, k = secret key

115

Stefan Nagy

The HMAC-SHA256 Function

￭ HMACk (m) =

SHA256 ((k ⊕ padouter) || SHA256 ((k ⊕ padinner) || m))

￭ Here, k = secret key

116

XOR

concatenate

Stefan Nagy

The HMAC-SHA256 Function

￭ HMACk (m) =

SHA256 ((k ⊕ padouter) || SHA256 ((k ⊕ padinner) || m))

￭ Here, k = secret key; padding = 0x5c and 0x36 repeated 64 times

117

0x5c5c5c5c… 0x36363636…

Stefan Nagy

The HMAC-SHA256 Function

￭ HMACk (m) =

SHA256 ((k ⊕ padouter) || SHA256 ((k ⊕ padinner) || m))

￭ Here, k = secret key; padding = 0x5c and 0x36 repeated 64 times
￭ Nested construction rather than chained like Merkle–Damgård

￭ Goodbye length extension and forgery!

118

0x5c5c5c5c… 0x36363636…

Stefan Nagy

Questions?

119

Stefan Nagy

Project Tips

120

Stefan Nagy

Project Tips

￭ Projects are challenging—you’re performing real-world attacks!
￭ Build off of lecture concepts
￭ Make sure you understand the lectures
￭ Prepare you to defend in the real world

121

Stefan Nagy

Project Tips

￭ Projects are challenging—you’re performing real-world attacks!
￭ Build off of lecture concepts
￭ Make sure you understand the lectures
￭ Prepare you to defend in the real world

￭ Suggested strategy: get high-level idea down, then start implementing
1. Go through assignment and start sketching-out your approach
2. Come to Office Hours and ask if you’re on the right track!
3. Then start building your program

122

Stefan Nagy

Project Tips

￭ Projects are challenging—you’re performing real-world attacks!
￭ Build off of lecture concepts
￭ Make sure you understand the lectures
￭ Prepare you to defend in the real world

￭ Suggested strategy: get high-level idea down, then start implementing
1. Go through assignment and start sketching-out your approach
2. Come to Office Hours and ask if you’re on the right track!
3. Then start building your program

￭ Don’t get discouraged—we are here to help!
￭ Most issues are cleared up in a few minutes of white-boarding

123

Stefan Nagy

Next time on CS 4440…

124

Confidentiality, Substitution Ciphers

