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Week 13: Lecture A 
Side Channels & Hardware Security

Tuesday, November 19, 2024
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Stefan Nagy

Announcements

￭ Project 3 grades are now available on Canvas

￭ Statistics:
￭ Average score: 97%
￭ Last year’s avg: 90%

￭ Fantastic job!

￭ Regrades coming soon! 
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Announcements

￭ Project 4: NetSec released
￭ Deadline: Thursday, December 5th by 11:59PM
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Stefan Nagy

Final Exam

￭ Save the date: 1–3PM on Tuesday, December 10
￭ CDA accommodations: schedule exam via CDA Portal

￭ High-level details (more to come):
￭ One exam covering all course material
￭ Similar to project/quiz/lecture exercises
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Stefan Nagy

Final Exam

￭ Save the date: 1–3PM on Tuesday, December 10
￭ CDA accommodations: schedule exam via CDA Portal

￭ High-level details (more to come):
￭ One exam covering all course material
￭ Similar to project/quiz/lecture exercises

￭ Practice Exam will be released this Thursday
￭ See Assignments page on the CS 4440 website

￭ Final lecture will serve as a review session
￭ Practice Exam solutions discussed in-class only—don’t skip!
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Announcements

7

See Discord for 
meeting info!

utahsec.cs.utah.edu
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Questions?
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No Class Next Week
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Last time on CS 4440…
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Binary Reverse Engineering
Instruction Recovery
Control Flow Analysis
Structure Recovery

RE Challenges
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Recap: the Compilation Process
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Recap: the Compilation Process
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Stefan Nagy

Closed-source Software

￭ It’s everywhere!
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Stefan Nagy

Closed-source Software

￭ It’s everywhere!

14

Freely-distributed proprietary software

Commercialized applications and libraries

Legacy software whose source code is lost
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Reverse Engineering (RE)

￭ What is RE?

15

“A process or method through which one 
attempts to understand through deductive 
reasoning how a previously made device, 
process, system, or piece of software 
accomplishes a task with very little (if any) 
insight into exactly how it does so.”
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Three Pillars of RE

1. ??? 
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Stefan Nagy

Three Pillars of RE

1. Instruction Recovery 
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Stefan Nagy

Pillar #1: Instruction Recovery

￭ Goal: ??? 
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Stefan Nagy

Pillar #1: Instruction Recovery

￭ Goal: translate bytes into logical instructions
￭ Called instruction decoding
￭ Analogous to what CPU does
￭ General output: disassembly
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Read bytes from input executable

Group bytes Decode instructions



Stefan Nagy

Three Pillars of RE

1. Instruction Recovery 
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. ???
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Stefan Nagy

Three Pillars of RE

1. Instruction Recovery 
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. Control Flow Recovery
￭ Intra-procedural execution flow
￭ Inter-procedural execution flow 
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Pillar #2: Control Flow Recovery

￭ Direct Edges
￭ ???
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Stefan Nagy

Pillar #2: Control Flow Recovery

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ ???
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Target is pre-set staticallyjmp 0x4001AB3
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Pillar #2: Control Flow Recovery

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ ???

24

Target is pre-set statically

Target found at runtime

jmp 0x4001AB3

call %eax; where?
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Pillar #2: Control Flow Recovery

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

￭ Tail Calls
￭ ???

25

Target is pre-set statically

Target found at runtime

Necessary to recover all paths

jmp 0x4001AB3

call %eax; where?

ret; goes where?
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Pillar #2: Control Flow Recovery

￭ Direct Edges
￭ Jump/call a function

￭ Indirect Edges
￭ Transfer to a register
￭ Function pointers
￭ Switch-case tables

￭ “Pseudo” Edges
￭ Post-call returns

￭ Tail Calls
￭ Call at function’s end
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Target is pre-set statically

Target found at runtime

Necessary to recover all paths

Expressed as jumps, not calls

jmp 0x4001AB3

call %eax; where?

ret; goes where?

jmp &foo; call?
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Three Pillars of RE

1. Instruction Recovery 
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. Control Flow Recovery 
￭ Intra-procedural execution flow
￭ Inter-procedural execution flow

3. ??? 
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Three Pillars of RE

1. Instruction Recovery 
￭ Decode bytes to instructions
￭ Disambiguate code from data

2. Control Flow Recovery 
￭ Intra-procedural execution flow
￭ Inter-procedural execution flow

3. Program Structure Recovery 
￭ Identify program basic blocks
￭ Higher-level constructs (e.g., loops)
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Pillar #3: Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Functions: 
￭ Start: 

￭ ???
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Pillar #3: Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Functions: 
￭ Start: 

￭ Target of a call 
￭ Target of a tail call
￭ A known prologue
￭ A dispatch table entry

￭ End:  
￭ ???

30

Prologue

C-level Switch Table
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Pillar #3: Structure Recovery

￭ Largely heuristic-based
￭ Construct-specific rules

￭ Functions: 
￭ Start: 

￭ Target of a call 
￭ Target of a tail call
￭ A known prologue
￭ A dispatch table entry

￭ End:  
￭ Location of a ret 
￭ Location of a tail call
￭ A known epilogue
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Prologue

Epilogue

C-level Switch Table
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Challenges to RE

￭ ??? 
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Challenges to RE

￭ Compiler Craziness
￭ Data-in-code
￭ Optimizations

￭ Haphazard Heuristics
￭ Weird/esoteric patterns
￭ E.g., all jump table variants

￭ Obtuse Obfuscations
￭ Control-flow flattening
￭ Opaque predicates
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Questions?
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This time on CS 4440…

35

Side Channels
Hardware Security

Hardware Supply Chain Attacks
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Exploitable Security Flaws

36

￭ So far, we have studied attacks that exploit design flaws
string “/bin/sh”

system()’s first arg

system()’s ret addr

Address of system()

AAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s ret addr

main()’s frame ptr

Buffer 
(non-executable)

http://cs4440.eng.utah
.edu/project3/search
?q=%3Cscript%3E...

Buffer Overflows SYN Flooding

Cross-site ScriptingECB Diffusion Analysis Hash Collisions

Sniffing Unencrypted Data
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Exploitable Security Flaws

37

￭ So far, we have studied attacks that exploit design flaws
string “/bin/sh”

system()’s first arg

system()’s ret addr

Address of system()

AAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

previous frame ptr

AAAAAAAAA...\0

foo()’s first arg

foo()’s ret addr

main()’s frame ptr

Buffer 
(non-executable)

http://cs4440.eng.utah
.edu/project3/search
?q=%3Cscript%3E...

Buffer Overflows SYN Flooding

Cross-site ScriptingECB Diffusion Analysis Hash Collisions

Sniffing Unencrypted Data

What if I told you that
implementation flaws 
can be just as severe?
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Side Channel Attacks
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Side Channel Attacks

“Any attack based on extra information 
that can be gathered because of the 
fundamental way a computer protocol 
or algorithm is implemented, or minor, 
but potentially devastating, mistakes or 
oversights in the implementation.” 
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Stefan Nagy

Side Channels

￭ What are some potential sources of indirect info emitted by your computer?
￭ Additional channels of information beyond what is directly visible/accessible to you

40

Execution TimeEmitted Radiation Power Consumption
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Side Channels

￭ What are some potential sources of indirect info emitted by your computer?
￭ Additional channels of information beyond what is directly visible/accessible to you

41

Execution TimeEmitted Radiation Power Consumption

These (and other) side channels reveal 
critical information that is exploitable
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Optical and Acoustic Side Channels

42
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Stealing Passwords
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Stefan Nagy

Stealing Passwords

44

How did we know the passcode is 000000?

We can directly see him press those exact keys
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Stealing Passwords

￭ What if we can’t directly see 
keys that someone is pressing?
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Stefan Nagy

Stealing Passwords

￭ What if we can’t directly see 
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements
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Stealing Passwords

￭ What if we can’t directly see 
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements
￭ Assume attacker knows (or can 

easily guess) the key interface
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Stealing Passwords

￭ What if we can’t directly see 
keys that someone is pressing?

￭ Optical side channel:
￭ Capture visible hand movements
￭ Assume attacker knows (or can 

easily guess) the key interface
￭ Attacker maps movements to 

pressed keys on the interface
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Stealing Information
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Stealing Information

50
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Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware
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Stefan Nagy

Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware

￭ Build model of key press noises
￭ Model refinement:

￭ ???
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Acoustic Side Channels

￭ Sound can leak information, too!
￭ Keyboard enthusiasts beware

￭ Build model of key press noises
￭ Model refinement: 

￭ Consider microphone
￭ Remove ambient noise

￭ Use model to infer entered data
￭ Passwords
￭ Usernames
￭ Phone numbers
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Questions?
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Timing Side Channels
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Password Checking

￭ Password verification—how would you implement this?

56

bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}

Analogous to 
memcmp()



Stefan Nagy

bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}

Password Checking

￭ Password verification—how would you implement this?

57

Analogous to 
memcmp()

Does this password 
checking code reveal 

a security flaw?
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bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}
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Password Checking

￭ Password verification—how would you implement this?

59

ABCDEFGH == PASSWORD
￭ ???

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}
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Password Checking

￭ Password verification—how would you implement this?

60

PASSEFGH == PASSWORD
￭ ???

ABCDEFGH == PASSWORD
￭ False on first iteration

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}
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Password Checking

￭ Password verification—how would you implement this?

61

ABCDEFGH == PASSWORD
￭ False on first iteration

PASSEFGH == PASSWORD
￭ True on iterations 1–4
￭ False on fifth iteration

More code executed 
for a correct symbol!

Password Login Attempts:
bool checkPW(char *testPW, char *realPW, int len) {

    for (int i = 0; i < len; i++) {

        if (testPW[i] != realPW[i]) {
            return false;
        }
    }

    return true;
}
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Password Checking

62

How can this side channel be exploited?
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Password Checking
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How can this side channel be exploited?

Attacker: ABCDEF
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Password Checking

64

How can this side channel be exploited?

Attacker: ABCDEF

Server: False
Server took 1ms to respond
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Password Checking
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How can this side channel be exploited?

Attacker: ABCDEF

Server: False
Server took 1ms to respond

Attacker: CBCDEF

Server: False
Server took 2ms to respond

“C” took 
longer!
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Password Checking

66

How can this side channel be exploited?

Server: False

Attacker: CRCDEF

Server took 2ms to respond
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Password Checking

67

How can this side channel be exploited?

Attacker: CRCDEF

Server: False
Server took 2ms to respond

Attacker: CHIDEF

Server: False
Server took 4ms to respond

“CHI”…
Getting 
warmer!
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Password Checking

68

How can this side channel be exploited?

Attacker: CHIEFS

Server: True
Server took 7ms to respond
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Password Checking

69

How can this side channel be exploited?

Attacker: CHIEFS

Server: True
Server took 7ms to respond

Through timing analysis, attacker can infer the 
correctness of individual password symbols!
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Password Checking

￭ Solution:
￭ ???
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Password Checking

￭ Solution:
￭ Constant-time implementation (e.g., using bitwise AND-ing)

71

bool checkPW(char *testPW, char *realPW, int len) {

bool result = 1; // integer equiv of “true” 

for (int i = 0; i < len; i++) {

        result &= ca[i] == cb[i];

        return result;
    }
}

Guess: PASSEFGH
Bit: 11110000
Result: False
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Password Checking

￭ Solution:
￭ Constant-time implementation (e.g., using bitwise AND-ing)

72

bool checkPW(char *testPW, char *realPW, int len) {

bool result = 1; // integer equiv of “true” 

for (int i = 0; i < len; i++) {

        result &= ca[i] == cb[i];

        return result;
    }
}

PASSEFGH == PASSWORD
￭ False on last iteration

ABCDEFGH == PASSWORD
￭ False on last iteration

PASSWORD == PASSWORD
￭ True on last iteration

Guess: PASSEFGH
Bit: 11110000
Result: False

Password Login Attempts:

True and False run 
for identical time!
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Password Checking

￭ Implications:
￭ ???
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Password Checking

￭ Implications:
￭ Never use timing-unsafe string compares when handling sensitive data!
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Questions?
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Power Side Channels
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Recap: RSA Encryption

￭ Summary:
￭ ???
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Recap: RSA Encryption

￭ Summary:
￭ Encrypt with public key
￭ Decrypt with private key
￭ Public key = (e,N) 
￭ Private key = (d,N)

￭ To encrypt:  
￭ E(x) = xe mod N

￭ To decrypt:  
￭ D(x) = xd mod N

78
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Recap: RSA Encryption

￭ Summary:
￭ Encrypt with public key
￭ Decrypt with private key
￭ Public key = (e,N) 
￭ Private key = (d,N)

￭ To encrypt:  
￭ E(x) = xe mod N

￭ To decrypt:  
￭ D(x) = xd mod N

79

Modular exponentiation must 
be implemented efficiently
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Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

80

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N)

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Does this decryption code 
reveal a security flaw?
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x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N)

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x
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Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

82

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N) 

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Bit-specific Operations:

privKey[i] == 1
1. Find square of x
2. Take modulo N

privKey[i] == 0
1. Find square of x
2. Take modulo N
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Modular Exponentiation

￭ Decryption: D(x) = C privKey mod N

83

x = C

for (int i = 0; i < len; i++){

x = (x·x) mod(N) 

if (privKey[i] == 1){
x = (x·C) mod(N)

}
}
return x

Bit-specific Operations:

privKey[i] == 1
1. Find square of x
2. Take modulo N
3. Multiply by C
4. Take modulo N

privKey[i] == 0
1. Find square of x
2. Take modulo N

Timing and power will differ 
between key bits 0 versus 1!



Stefan Nagy

RSA Power Analysis

84

How can this side channel be exploited?
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RSA Power Analysis
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How can this side channel be exploited?

Attacker can retrieve a user’s private key!
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Realistic Power Analysis
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Questions?

87
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Cache-based Side Channels

88
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CPU Caches

￭ RAM is expensive to load from
￭ Disk is even more expensive!

￭ Fastest retrieval: ???

89

Storage Read Time Capacity Managed By

Hard Disk 10ms 1 TB Software/OS

Flash Drive 10–100us 100 GB Software/OS

RAM 200 cycles 10 GB Software/OS

https://computationstructures.org/lectures/caches/caches.html
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CPU Caches

￭ RAM is expensive to load from
￭ Disk is even more expensive!

￭ Fastest retrieval: the CPU cache
￭ Small storage built-in to CPU
￭ Common hierarchy: L1, L2, L3, L4

￭ Key purpose: accelerate retrieval 
of commonly-accessed data

90

Storage Read Time Capacity Managed By

Hard Disk 10ms 1 TB Software/OS

Flash Drive 10–100us 100 GB Software/OS

RAM 200 cycles 10 GB Software/OS

L3 Cache 40 cycles 10 MB Hardware

L2 Cache 10 cycles 256 KB Hardware

L1 Cache 2–4 cycles 32 KB Hardware

https://computationstructures.org/lectures/caches/caches.html
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Program Execution

￭ What do you expect to happen here?
￭ index < arraySize

￭ ??? 

91

int read(int index){
int result = -1;
result = array[index];
return result;

}
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Program Execution

￭ What do you expect to happen here?
￭ index < len(array) 

￭ Within-bounds read… success
￭ index > len(array) 

￭ ???

92

int read(int index){
int result = -1;
result = array[index];
return result;

}
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Program Execution

￭ What do you expect to happen here?
￭ index < len(array) 

￭ Within-bounds read… success
￭ index > len(array)

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution
￭ Perform the OOB read anyways

93

int read(int index){
int result = -1;
result = array[index];
return result;

}
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Program Execution

￭ What do you expect to happen here?
￭ index < len(array) 

￭ Within-bounds read… success
￭ index > len(array) 

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution 
￭ Perform the OOB read anyways
￭ Cache whatever data is accessed
￭ Check if it’s allowed… after the fact
￭ Roll-back the cache to correct state

94

int read(int index){
int result = -1;
result = array[index];
return result;

}

Save time by having data 
pre-cached and ready to go!
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Program Execution

￭ What do you expect to happen here?
￭ index < arraySize 

￭ Within-bounds read… success
￭ index > arraySize …

￭ Out-of-bounds read… prevent

￭ Optimization: Speculative Execution 
￭ Perform the OOB read anyways
￭ Cache whatever data is accessed
￭ Check if it’s allowed… after the fact
￭ Roll-back the cache to correct state

95

int read(int index){
int result = -1;
result = array[index];
return result;

}

Save time by having data 
pre-cached and ready to go!

Implication: data we shouldn’t have access 
to (e.g., from another program) is cached

Cache lookup is faster… can we exploit a 
timing side channel to recover this data? 
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Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

96

// index > len(array) 
int read(int index){

int result = -1;
result = array[index];
return result;

}
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Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

97

// index > len(array) 
int read(int index){

int result = -1;
result = array[index];
return result;

}

1. Cache array[index]

2. Bounds check index

3. Clear array[index]

Due to roll-back, we 
can’t retrieve result!
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Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

98

// index > len(array) 
int read(int index){

int result = -1;
result = array[index];
int dummy = hugeArray[result];
return result;

}

1. Cache array[index]

2. Cache hugeArray[result] 

3. Bounds check index, result 

4. Clear array[index]

5. hugeArray[result] stays…
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Attacking Speculative Execution

￭ Suppose speculative execution caches a secret result of 4440

99

// index > len(array) 
int read(int index){

int result = -1;
result = array[index];
int dummy = hugeArray[result];
return result;

}

1. Cache array[index]

2. Cache hugeArray[result] 

3. Bounds check index, result 

4. Clear array[index]

5. hugeArray[result] stays…

How can attacker figure out result is 4440?

Since 4440 was cached, hugeArray[4440] 
has the fastest access time of all array indices!

for (int i=0; i<...; i++){
int x = hugeArray[i];

}

index

ac
ce
ss

 t
im
e 4440
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Questions?
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Hardware Security

101
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Hardware

102

Hardware

Firmware

Hypervisor

Operating System

Applications

The foundation 
of our computers
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Hardware

103

Untrusted Hardware

Firmware

Hypervisor

Operating System

Applications

Weaknesses weaken 
the entire system

The foundation 
of our computers
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Hardware

104

Untrusted Hardware

Firmware

Hypervisor

Operating System

Applications

Weaknesses weaken 
the entire system

The foundation 
of our computers
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Creating Hardware

105

DesignSpecification Synthesis

Text HDL

Design Time
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Creating Hardware
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DesignSpecification Synthesis

Text HDL

Design Time

Similar to software design
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Creating Hardware

107

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design
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Creating Hardware

108

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device



Stefan Nagy

Creating Hardware

109

DesignSpecification Synthesis Layout Fabrication Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing
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Hardware Bugs

110

DesignSpecification Synthesis Layout Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing

Fabrication

Cannot be patched 
following Fabrication



Stefan Nagy

Hardware Bugs

111

DesignSpecification Synthesis Layout Package Deployment

Text HDL Netlist GDSII Wafer/ Die Chip / PCB

Design Time Fabrication Time/Supply Chain

Similar to software design Required to build a physical device
Verification Testing

Fabrication

Cannot be patched 
following Fabrication
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Hardware Bugs
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Hardware Threats

113
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Hardware Trojans

￭ Trojan Horse: 
￭ ???
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Hardware Trojans
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￭ Attack pre-inserted into chip
￭ Will be exploited at run time
￭ Remotely triggered by attacker
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Hardware Trojans

￭ Trojan Horse: 
￭ Attack pre-inserted into chip
￭ Will be exploited at run time
￭ Remotely triggered by attacker

￭ Ideal characteristics:
￭ Small
￭ Stealthy
￭ Controllable
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Hardware Trojans

￭ Trojan Horse: 
￭ Attack pre-inserted into chip
￭ Will be exploited at run time
￭ Remotely triggered by attacker

￭ Ideal characteristics:
￭ Small
￭ Stealthy
￭ Controllable

￭ Engineering a trigger
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Division sets 
div-by-zero flag

Addition resets 
div-by-zero flag

Software state will 
affect analog state!
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Hardware Trojans
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Recycled and Counterfeit Hardware
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Recycled and Counterfeit Hardware

￭ Counterfeit and recycled chips have a shorter lifespan 
￭ Absolutely dangerous for security-critical use cases
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Recycled and Counterfeit Hardware

￭ Counterfeit and recycled chips have a shorter lifespan 
￭ Absolutely dangerous for security-critical use cases
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Secure Hardware

￭ Can we ever know for sure that a chip is secure? 
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Next time on CS 4440…
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Election Security


