Week 13: Lecture A

Side Channels & Hardware Security

Tuesday, November 19, 2024




Announcements

Project 3 grades are now available on Canvas

Statistics:
= Average score: 97%
= lLastyear’s avg: 90%

Fantastic job!

Regrades coming soon!
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Announcements

Project 4: NetSec released
= Deadline: Thursday, December 5th by 11:59PM

4 )
Project 4: Network Security

Deadline: Thursday, December 5 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

\. v
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Project 4 Progress

Working on Part 1

Finished Part 1, working on Part 2

Finished both Part 1 and Part 2

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%




Save the date: 1-3PM on Tuesday, December 10

= CDA accommodations: schedule exam via CDA Portal

High-level details (more to come):
= One exam covering all course material
= Similar to project/quiz/lecture exercises
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Save the date: on
schedule exam via CDA Portal

High-level details (more to come):
One exam covering all course material
Similar to project/quiz/lecture exercises

Practice Exam will be released this Thursday
= See Assignments page on the CS 4440 website

Final lecture will serve as a review session
= Practice Exam solutions discussed in-class only—don’t skip!
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Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu
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No Class Next Week




Last time on CS 4440...

Binary Reverse Engineering
Instruction Recovery
Control Flow Analysis

Structure Recovery
RE Challenges




Recap: the Compilation Process

Preprocessor =———p Compiler ——p Linker ]
Source Code / N\ Binary

Executable
substitutes #include generates combines binary
directives with content binary machine code and
standard library of included files machine code connects function calls
header file ’
iostream hello.cpp > »| hello.o g hello.exe
#include <iostream> ]
. cout = .. - COUTE = . bﬁmarY
object file
int main() { int main() {
std::cout <« std::cout <«
"Hello World\n"; "Hello World\n";
} }
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Recap: the Compilation Process

Binary
Executable

f \
8 o )
1

!
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Closed-source Software

It's everywhere!
W ﬂ Office <A NVIDIA
$2Dropbox @ @4 Outlook
== Windows 0S macOS 3 ||'s: ! IC;.
Tl P NETGEAR

PlayStation.
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Closed-source Software

L

Legacy software whose source code is lost

/
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Reverse Engineering (RE)

What is RE?

SCHOOL OF COMPUTING
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“A process or method through which one
attempts to understand through deductive
reasoning how a previously made device,
process, system, or piece of software
accomplishes a task with very little (if any)
insight into exactly how it does so”
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Three Pillars of RE

?27?
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Three Pillars of RE

Instruction Recovery

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 17



Pillar #1: Instruction Recovery

Goal: ?2??
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Pillar #1: Instruction Recovery

Goal: translate bytes into logical instructions

= Called instruction decoding
= Analogous to what CPU does
= General output: disassembly

B8

Instruction stream

B8 22 11 00 FF 01 CA 31 F6 53 8B 5C 24
04 8D 34 48 39 C3 72 EB C3

01
31
53
8B

Read bytes from input executable
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8D
39
72
c3

Machine code bytes

22 11 00 FF
CA
F6

5C 24 04
34 48

C3

EB

Assembly language statements

foo:

movl $O0xXFF001122, %eax
addl %ecx, %edx

xorl %esi, %esi

pushl %ebx

movl 4 (%esp), %ebx

leal (%eax,%ecx,2), %esi
cmpl %eax, %ebx

jnae foo

retl

Group bytes

Stefan Nagy

Decode instructions
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Three Pillars of RE

Instruction Recovery

= Decode bytes to instructions
= Disambiguate code from data

???
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Three Pillars of RE

Instruction Recovery

= Decode bytes to instructions
= Disambiguate code from data

Control Flow Recovery

= Intra-procedural execution flow
= Inter-procedural execution flow
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Pillar #2: Control Flow Recovery

Direct Edges

= 777
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Pillar #2: Control Flow Recovery

Direct Edges [ } . .
= Jump/callafunction | JmMp Ox4001AB3 Target is pre-set statically

Indirect Edges

= 772
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Pillar #2: Control Flow Recovery

Direct Edges [ \i | .
= Jump/callafunction | JMP Ox400TAB3 Target is pre-set statically
Indirect Edges D — \.

* Transfertoaregister | call %eax; where? | Target found at runtime
=  Function pointers ' j

= Switch-case tables

“Pseudo” Edges

= 777

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 2



Pillar #2: Control Flow Recovery

Direct Edges [ } . .

= Jump/call afunction | JMP O@x4001AB3 ! Target is pre-set statically
Indirect Edges T \ \

= Transfertoaregister | c311 %eax: where? ! [ Target found at runtime

=  Function pointers ' i )

= Switch-case tables

(T \ A

“Pseudo” Edges . ret; goeswhere? | [ Necessary to recover all paths

= Post-call returns | " J
Tail Calls

= ??7?
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Pillar #2: Control Flow Recovery

Direct Edges

= Jump/call a function

Indirect Edges
= Transfer to a register
= Function pointers
= Switch-case tables

“Pseudo” Edges

= Post-call returns

Tail Calls

= Call at function’s end

SCHOOL OF COMPUTING
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________________________________

/

________________________________

\I e

AN

Necessary to recover all paths

~

/

________________________________

jmp &foo; call?

\ 4

AN

Expressed as jumps, not calls

~

/

Stefan Nagy
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Three Pillars of RE

Instruction Recovery
= Decode bytes to instructions
= Disambiguate code from data

Control Flow Recovery
= Intra-procedural execution flow
= |Inter-procedural execution flow

???
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Three Pillars of RE

Instruction Recovery

= Decode bytes to instructions
= Disambiguate code from data

Control Flow Recovery

= Intra-procedural execution flow
= |Inter-procedural execution flow

Program Structure Recovery

= |dentify program basic blocks
= Higher-level constructs (e.g., loops)
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Pillar #3: Structure Recovery

Largely heuristic-based
= Construct-specific rules

Functions:

= Start:
. ?7?7?
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Pillar #3: Structure Recovery

Largely heuristic-based

add(first, second);

sub(first, second);

mult(first, second);

divide(first, second);

C-level Switch Table

= Construct-specific rules push ebp
switch(choice) {
mov ebp, esp el e
° 1
Functions: sub esp, N beonks
. case 1 :
- Start' result
= Target ofacall Prologue break;
. case 2 :
= Target of a tail call result
= Aknown prologue e Sen
= Adispatch table entry result
break;
= End:
. 2772
SCHOOL OF COMPUTING
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Pillar #3: Structure Recovery

Largely heuristic-based
= Construct-specific rules

Functions:
= Start:
= Targetofacall
= Target of a tail call
= A known prologue
= Adispatch table entry

= |ocationofaret
= Location of a tail call
= A known epilogue

SCHOOL OF COMPUTING
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add(first, second);

sub(first, second);

mult(first, second);

divide(first, second);

C-level Switch Table

push ebp
switch(choice) {
mov ebpl esp case 0 :
result
sub esp, N break;
case 1 :
result
PrOlOgue break;
case 2 :
result
break;
case 3 :
mov eSp, ebp result
pop ebp break;
ret
Epilogue

Stefan Nagy
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Challenges to RE

?27?
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Challenges to RE

Compiler Craziness
= Data-in-code
= Optimizations

Haphazard Heuristics
= Weird/esoteric patterns
= E.g, all jump table variants

Obtuse Obfuscations

= Control-flow flattening
= Opaque predicates

SCHOOL OF COMPUTING
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This time on CS 4440...

Side Channels
Hardware Security
Hardware Supply Chain Attacks




Exploitable Security Flaws

So far, we have studied attacks that exploit design flaws

previous frame ptr

string “/bin/sh”

AAAAAAAAA. . .\0

system()’'s first arg

foo()’'s first arg

system()’'s ret addr

foo()'s ret addr

Address of system()

main()’'s frame ptr

AAAAAAAAAAAAAAAAAAAAA

Buffer
(non-executable)

RAALL

AAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA

Buffer Overflows

ECB Diffusion Analysis

SCHOOL OF COMPUTING
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SYN Flooding
\‘ . H®)=H(y)

Hash Collisions

Stefan Nagy

Hypertext Transfer Protocol
» GET /libs/qimessaging/1.0/qimessaging.js?v=1.2.0 HTTP/1.1\r\n
Host: 10.0.0.6\r\n
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101
Accept: */*\r\n
Accept-Language: en-US,en;q=0.5\r\n
Accept-Encoding: gzip, deflate\r\n
Referer: http://10.0.0.6/\r\n
Connection: keep-alive\r\n

-| Authorization: Basic bmFvOmNhcmVzc2VzLTIWMDE=\r\n
Credentials: nao:

Sniffing Unencrypted Data

http://cs4440.eng.utah
.edu/project3/search
?79=%3Cscript%3E. ..

Cross-site Scripting

36



Exploitable Security Flaws

4 )
What if | told you that

implementation flaws
can be just as severe?

- J
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Side Channel Attacks
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Side Channel Attacks

“Any attack based on extra information
that can be gathered because of the
fundamental way a computer protocol
or algorithm is implemented, or minor,
but potentially devastating, mistakes or
oversights in the implementation.”

SCHOOL OF COMPUTING
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Side Channels

What are some potential sources of indirect info emitted by your computer?
= Additional channels of information beyond what is directly visible/accessible to you

Emitted Radiation Execution Time Power Consumption

SCHOOL OF COMPUTING
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Side Channels

These (and other) side channels reveal
critical information that is exploitable
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Optical and Acoustic Side Channels




Stealing Passwords
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Stealing Passwords

How did we know the passcode is 0000007

We can directly see him press those exact keys

SCHOOL OF COMPUTING
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Stealing Passwords

What if we can’t directly see
keys that someone is pressing?

SCHOOL OF COMPUTING
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Stealing Passwords

What if we can’t directly see
keys that someone is pressing?

Optical side channel:
= Capture visible hand movements

SCHOOL OF COMPUTING
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Stealing Passwords

What if we can’t directly see
keys that someone is pressing?

Optical side channel:
= Capture visible hand movements
= Assume attacker knows (or can
easily guess) the key interface

SCHOOL OF COMPUTING
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Stealing Passwords

What if we can’t directly see
keys that someone is pressing?

Optical side channel:
= Capture visible hand movements
= Assume attacker knows (or can
easily guess) the key interface
= Attacker maps movements to
pressed keys on the interface

SCHOOL OF COMPUTING
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Stealing Information

Hard Drive LED Allows Data Theft
From Air-Gapped PCs

Researchers at Ben-Gurion University of the Negev in Israel have
disclosed yet another method that can be used to exfiltrate data
from air-gapped computers, and this time it involves the activity
LED of hard disk drives (HDDs).

Researchers at Ben-Gurion University of the Negev in Israel
have disclosed yet another method that can be used to
exfiltrate data from air-gapped computers, and this time it
involves the activity LED of hard disk drives (HDDs).

Many desktop and laptop computers have an HDD activity
indicator, which blinks when data is being read from or written
to the disk. The blinking frequency and duration depend on the
type and intensity of the operation being performed.

SCHOOL OF COMPUTING
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Stealing Information

A piece of malware that is installed on the targeted air-gapped
device can harvest data and exfiltrate it using one of these
encoding systems. As for reception and decoding, the attacker
must find a way to observe the targeted device's activity LED,
either using a local hidden camera, a high-resolution camera
that can capture images from outside the building, a camera
mounted on a drone, a compromised security camera, a
camera carried by a malicious insider, or optical sensors.
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Acoustic Side Channels

Sound can leak information, too!
= Keyboard enthusiasts beware
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Acoustic Side Channels

))

Sound can leak information, too!
= Keyboard enthusiasts beware

Build model of key press noises

=  Model refinement:
. ?27?

v

"password"

SCHOOL OF COMPUTING
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Acoustic Side Channels

))

Sound can leak information, too!
= Keyboard enthusiasts beware

Build model of key press noises

= Model refinement:
= Consider microphone
=  Remove ambient noise
= Use model to infer entered data
=  Passwords
= Usernames

v

= Phone numbers "paSSWOrd"
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Timing Side Channels
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Password Checking

Password verification—how would you implement this?

( N

bool checkPW(char *testPW, char *realPW, int len) { e = = Analogous to

mememp ()

for (int 1 = 0; i < len; i++) {

if (testPW[i] != realPW[i]) {
return false
}

}

return true

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 56



Password Checking

Password verification—how would you implement this?

e D
bool checkPW(char *testPW, char *realPW, int len) { - - - ANELOEEUS Lo
memcmp ()
for (int i = 0; 1 < len; i++) {
if (testPW[i] '= realPW[i]) {
return false 4 . A
} Does this password
) checking code reveal
i ?
R a security flaw:
} N /

SCHOOL OF COMPUTING
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Does this password-checking code reveal a security flaw?

No—an attacker could only brute-force guess!

0%
Yes—the design is vulnerable (e.g., buffer overflow).

0%
None of the above

0%

( \
bool checkPW(char *testPW, char *realPW, int len) {

for (int i = @; 1 < len; i++) {

if (testPW[i] != realPW[i]) {
return false
}

}

return true

}

. /

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Password Checking

Password verification—how would you implement this?

4 )

bool checkPW(char *testPW, char *realPW, int len) {

Password Login Attempts:
ABCDEFGH == PASSWORD

for (int i = 0; i < len; i++) { = ?7?7?

if (testPW[i] != realPW[i]) {
return false
}

}

return true

SCHOOL OF COMPUTING
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Password Checking

Password verification—how would you implement this?

4 )

bool checkPW(char *testPW, char *realPW, int len) {

Password Login Attempts:
ABCDEFGH == PASSWORD

for (int 1 = @; i < len; i++) { = False on first iteration
if (testPW[i] != realPW[i]) { PAS%EEGH == PASSWORD
return false 7?72
}
}
return true
}
» Y
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Password Checking

Password verification—how would you implement this?

4 )

bool checkPW(char *testPW, char *realPW, int len) {

Password Login Attempts:
ABCDEFGH == PASSWORD

for (int 1 = @; i < len; i++) { = False on first iteration
if (testPW[i] !'= realPW[i]) { PASSEFGH == PASSWORD
return false = Trueon |terat!ons 1.—4
} = False on fifth iteration
}
return true More code executed
} for a correct symbol!
N Y
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Password Checking

[ How can this side channel be exploited? }

SCHOOL OF COMPUTING
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Password Checking

[ How can this side channel be exploited? }

=

Attacker: ABCDEF

SCHOOL OF COMPUTING
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Password Checking

[ How can this side channel be exploited? }

Attacker: ABCDEF

Server: False
Server took 1ms to respond
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Password Checking

[ How can this side channel be exploited? }

Attacker: ABCDEF

Server:
Server took to respond
T
Attacker: CBCDEF

Server: False
Server took 2ms to respond

SCHOOL OF COMPUTING
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Password Checking

[ How can this side channel be exploited? }

Attacker: CRCDEF

Server: False
Server took 2ms to respond

SCHOOL OF COMPUTING
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Password Checking

“CHT".

Getting
warmer!

[ How can this side channel be exploited? }

Attacker:
Server:
Server took to respond
T
Attacker: CHIDEF

Server: False
Server took 4ms to respond

SCHOOL OF COMPUTING
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Password Checking

[ How can this side channel be exploited? }

Attacker: CHIEFS

Server: True
Server took 7ms to respond
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Password Checking

[ How can this side channel be exploited? }

=

Attacker:

Server: True
Server took 7ms to respond ~

Through timing analysis, attacker can infer the
correctness of individual password symbols!
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Password Checking

Solution:

= 7?7
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Password Checking

Solution:
= Constant-time implementation (e.g., using bitwise AND-ing)
4 )
bool checkPW(char *testPW, char *realPW, int len) { A - AND Q
B —
bool result = 1; // integer equiv of “true”
for (int i = 0; i < len; i++) { S e
0 o) 0
result &= ca[i] == cb[i]; 0 1 0
w
return result ~\\ | Guess: PASSEFGH . ) 0
} .. Bit: 11116000 11171
} | Result:  False
N . y
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Password Checking

Solution:
= Constant-time implementation (e.g., using bitwise AND-ing)
4 )
bool checkPW(char *testPW, char *realPW, int len) {
bool result = 1; // integer equiv of “true”
for (int i = 0; i < len; i++) {
result &= ca[i] == cb[i];
v
return result 5\\\ | Guess: PASSEFGH
b >~ <! Bit: 111106000
} | Result:  False
N . y

SCHOOL OF COMPUTING
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Password Login Attempts:

ABCDEFGH PASSWORD
= False on last iteration

PASSEFGH PASSWORD
= False on last iteration

PASSWORD PASSWORD
= True on last iteration

True and False run
for identical time!
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Password Checking

Implications:

= 7?7
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Password Checking

Implications:

= Never use timing-unsafe string compares when handling sensitive data!

FreeBSD Manual Pages

I timingsafe_bcmp | [ man ] I apropos |

[3 - Subroutines v [FreeBSD 13.1-RELEASE and Ports | [All Architectures v| [ html v|

home | help

FreeBSD Manual Pages

\ consttime_memequal ] { man ] { apropos ]

[All'Sections v|[NetBSD 7.0 | [All Architectures v| [ html v|

home | help

TIMINGSAFE_BCMP(3) FreeBSD Library Functions Manual TIMINGSAFE_BCMP(3)
NAME
timingsafe_bcmp, timingsafe memcmp -- timing-safe byte sequence compar-

isons

SYNOPSIS
#include <string.h>
int
timingsafe_bcmp(const void *bl, const void #*b2, size_t len);
int
timingsafe_memcmp(const void *bl, const void *b2, size t len);

CONSTTIME_MEMEQUAL(3) BSD Library Functions Manual CONSTTIME MEMEQUAL(3)

NAME
consttime_memequal -- compare byte strings for equality without timing
leaks

LIBRARY
Standard C Library (libc, -1lc)

SYNOPSIS
#include <string.h>
int
consttime_memequal (void *bl, void #*b2, size_t len);

SCHOOL OF COMPUTING
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Power Side Channels
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Recap: RSA Encryption

Summary: Public key exchange
m ??7?
Public key Public key Private key
Message Ciphertext Message
Sender > Decrypt Addressee
Public key Private key
SCHOOL OF COMPUTING Stefan Nagy 77
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Recap: RSA Encryption

Summary: % B Public key exchange %
= Encrypt with public key

Public key Public key Private key

= Decrypt with private key

H = Message Ciphertext Message
] Public key ( yN) Sender —> Addressee
= Private key = (d,N)

To encrypt: ?

Public key Private key
= E(x) =x"modN

To decrypt:
= D(x) =xmodN

SCHOOL OF COMPUTING
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Recap: RSA Encryption

To encrypt:
= E(x) =x"modN

’——~

To decrypt: '

= D(x) =xmodN

~_ 5 | Modular exponentiation must

-\
I
i
i
: be implemented efficiently

-
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Modular Exponentiation

Decryption: D(x) = C P"VKe&Y mod N

e D\
X =C

for (int i = 0; i < len; i++){ e ™\

x = (x-x) mod(N) Does this decryption code

if (privKey[i] == 1){ reveal a security flaw?
= (x-C) mod(N
| } X (x-C) mod(N) L y
return X
. /
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Does this decryption code reveal a security flaw?

No—still would have to brute-force the PrivKey!

0%
Yes—more/fewer operations on different key bits!
0%
None of the above
0%
(" )
x =C

for (int i = @; i < len; i++){
X = (x-x) mod(N)
if (privKey[i] == 1){
X = (x-C) mod(N)
}
}

return Xx
\ J

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Modular Exponentiation

Decryption: D(x) = C VK&V mod N

4 )

x = C Bit-specific Operations:
privKey[i] == privKey[i] ==
for (int i = 0; i < len; i++){ 1. Findsquareofx 1. Find square of x

2. Take modulo N 2. Take modulo N
X = (x-x) mod(N)

if (privKey[i] == 1){
X = (x-C) mod(N)
}
}

return Xx
. /
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Modular Exponentiation

Decryption: D(x) = C P"VKe&Y mod N

>
x =C
for (int i = 0; i < len; i++){
X = (x-x) mod(N)
if (privKey[i] == 1){
X = (x-C) mod(N)
}
}
return x
/

SCHOOL OF COMPUTING
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privKey[i] ==
1.
2.

Stefan Nagy

Bit-specific Operations:

privKey[i] ==
Find square of x
2. Take modulo N
3.  Multiply by C

4, Take modulo N

Find square of x 1.
Take modulo N

Timing and power will differ
between key bits 0 versus 1!
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RSA Power Analysis

[ How can this side channel be exploited? }

- \\

A
4 )
o /
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RSA Power Analysis

[ Attacker can retrieve a user's private key! J
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Realistic Power Analysis

------- > Key = 1110111011..
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Cache-based Side Channels




CPU Caches

RAM is expensive to load from Storage Read Time = Capacity Managed By
= Disk is even more expensive! ,

Hard Disk 10ms 1TB Software/0S

Fastest retrieval: ??? Flash Drive 10-100us 100 GB Software/0S

RAM 200 cycles 10 GB Software/0S

https://computationstructures.org/lectures/caches/caches.html
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CPU Caches

RAM is expensive to load from
= Disk is even more expensive!

Fastest retrieval: the CPU cache

= Small storage built-in to CPU
= Common hierarchy: L1, L2, L3, L4

Key purpose: accelerate retrieval
of commonly-accessed data

Storage Read Time = Capacity Managed By
Hard Disk 10ms 1TB Software/0S
Flash Drive 10-100us 100 GB Software/0S

RAM 200 cycles 10 GB Software/0S

L3 Cache 40 cycles 10 MB Hardware

L2 Cache 10 cycles 256 KB Hardware

L1 Cache 2-4 cycles 32 KB Hardware

https://computationstructures.org/lectures/caches/caches.html
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Program Execution

What do you expect to happen here?
= index < arraySize int read(int index){
= ??? int result = -1;
result = array[index];
return result;
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Program Execution

What do you expect to happen here?

index < len(array)

int read(int index){

Within-bounds read... success
index > len(array)

int result = -1;

result = array[index];

return result;

SCHOOL OF COMPUTING
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Program Execution

What do you expect to happen here?

= index < len(array) int read(int index){

=  Within-bounds read... success int result = -15
= index > len(array) result = array[index];
= Out-of-bounds read... prevent return result;
}

-
g

Optimization: Speculative Execution
= Perform the OOB read anyways
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Program Execution

What do you expect to happen here? | |
= index < len(array) int read(int index){
=  Within-bounds read... success int result = -1;
= index > len(array) result = array[index];
= Out-of-bounds read... prevent } return result;
Optimization: Speculative Execution \

= Perform the OOB read anyways

= Cache whatever data is accessed Save time by having data

u Check if it's allowed... after the fact pre_cached a nd ready to gol
= Roll-back the cache to correct state

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy
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Program Execution

Implication: data we shouldn’t have access
to (e.g, from another program) is cached

Cache lookup is faster... can we exploit a
timing side channel to recover this data?
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Attacking Speculative Execution

Suppose speculative execution caches a secret result of 4440

// index > len(array)

int read(int index){
int result = -1;
result = array[index];
return result;

SCHOOL OF COMPUTING
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Attacking Speculative Execution

Suppose speculative execution caches a secret result of 4440

( )

// index > len(array)

int read(int index){
int result = -1;
result = array[index]; =
return result;

r

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

7

-

1. Cache [ ]

2. Bounds check

3. Cleararray[index]

Due to roll-back, we
can’t retrieve result!
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Attacking Speculative Execution

Suppose speculative execution caches a secret result of 4440

// index > len(array) P 4 1. Cachearray[index]
int read(int index){ 7
ot peeils = o /I 2. Cache hugeArray|[result]
result = array[index]; - - 3. Bounds check index, result
int dummy = hugeArray[result];
return result: 4. Clear array[index]
N ) J 5. hugeArray[result] stays...
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Attacking Speculative Execution

[ How can attacker figure out result is 4440? }

z aah0
for (int i=@; i<...; i++){ B l----" Pesulft
I
int x = hugeArray[il]; @ Iy
o Ly
} o y
: "
\/7 . - i
index

Since 4440 was cached, hugeArray[4440]
has the fastest access time of all array indices!
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Hardware Security

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 101




SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

The foundation
of our computers

Hardware

Applications

Operating System

Hypervisor

Firmware

Hardware

Stefan Nagy
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Hardware

Applications
\
( N\
Operating System (&)<

| p g oy 229
The foundation - \ Weaknesses weaken
of our computers Hypervisor oo the entire system

S > i < s
N /
\ Firmware x@; 7
N L v 7
\ e ™\ /
\ Untrusted Hardware ’
\_ J

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 103



Hardware

-

FORESHADOW
Weaknesses weaken
the entire system

The foundation
of our computers

N\

/ cf;
B [ Untrusted Hardware J ¥ @
SPECTRE
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Creating Hardware

Design Time

ENTITY test
:D—* porta:in;
end ENTITY,

-~ - -~

Text HDL
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Creating Hardware

Design Time

ENTITY test
porta:in;
end ENTITY,

Similar to software design
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Creating Hardware

Design Time Fabrication Time/Supply Chain

ENTITY test frs”
port:in o %
end ENTITY; o[ o

L 1/

T -~ ~
GDSII Wafer/ Die  Chip / PCB

Similar to software design
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Creating Hardware

Design Time Fabrication Time/Supply Chain

ENTITY test
porta:in;
end ENTITY,

L 1/

4

— o - - ~ - -~
Netlist GDSII Wafer/ Die  Chip / PCB \'
‘ -
o
Similar to software design Required to build a physical device
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Creating Hardware

Design Time Fabrication Time/Supply Chain

ENTITY test o amm”
rt:'; 8] \
st e | R | R
— o W » L e ~
Netlist GDSII Wafer/ Die  Chip / PCB \'
‘ -
o
Similar to software design Required to build a physical device
Verification Testing
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Hardware Bugs

Cannot be patched
following Fabrication

Design Time
|
: Fabrication
I - ]
ENTITY test I )
) > porta: in ) f
7>] end ENTITY : /] W &
\ :
Text HDL Netlist GDSII Wafer/ Die  Chip / PCB
Similar to software design Required to build a physical device
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Hardware Bugs

Cannot be patched

Design Time following Fabrication

Fabrication

|
|
1
| = — o
ENTITY test T L/ ek 5
7:7 > port&: in : \] W ,\s & .
\ :
Text HDL Netlist GDSII Wafer/ Die  Chip / PCB
Similar to software design Required to build a physical device
e Stefan Nagy m



Hardware Bugs

FORESHADOW 0%

SPECTRE

SCHOOL OF COMPUTING Stefan Nagy 12
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Hardware Threats
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Hardware Trojans

Trojan Horse:

= 777
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Hardware Trojans

Trojan Horse: e
. : : Sl Circuit
= Attack pre-inserted into chip o Output
= Will be exploited at run time CI:”CLf(' t e T I o 2 >
= Remotely triggered by attacker VIR
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Hardware Trojans

Trojan Horse: e
. . . Hardware Trojan Circuit
= Attack pre-inserted into chip . Okt
: . . Circuit s P
=  Will be exploited at run time | ; rrigger | [ vigaer [ payioes [HE2I0%G >
= Remotely triggered by attacker VIR

Ideal characteristics:
=  Small
= Stealthy
= Controllable
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Hardware Trojans

Trojan Horse:
= Attack pre-inserted into chip
=  Will be exploited at run time
= Remotely triggered by attacker

Ideal characteristics:

=  Small
=  Stealthy
= Controllable

Engineering a trigger

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

e N
Division sets
div-by-zero flag
\_ Y,
e N

Addition resets
div-by-zero flag

\. J

(~ 1~ void attack_signed_c() { N\
2 volatile int a, b, c = 0;
3
4~ while(1) {
5 int c1 = c;
6 int bl = b;
7
8 int i1 = ((b1 / c1) + 1);
9 int i2 = ((i1 / c1) + 1);
10 int i3 = ((i2 / c1) + 1);
11 int i4 = ((i3 / c1) + 1);
12 int i5 = ((i4 / c1) + 1);
13 int i6 = ((i5 / c1) + 1);
14 int i7 = ((i6 / c1) + 1);
15 int i8 = ((i7 / c1) + 1);
16 int i9 = ((i8 / c1) + 1);
17
18 a=((1i9 / c1) + 1);
19 }
N J

Stefan Nagy

Software state will
affect analog state!
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Hardware Trojans

~

(sraeli sky-hack switched off Syrian radars
countrywide

Backdoors penetrated without violence

A Lewis Page Thu 22 Nov 2007  13:57 UTC

More rumours are starting to leak out regarding the mysterious Israeli air raid against Syria in
September. It is now suggested that "computer to computer” techniques and "air-to-ground network
penetration” took place.

The latest revelations are made by well-connected Aviation Week journalists. Electronic-warfare
correspondent David Fulghum says that US intelligence and military personnel "provided advice" to
Qe Israelis regarding methods of breaking into the Syrian air-defence network. /
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Recycled and Counterfeit Hardware

Guin et al.: Counterfeit Integrated Circuits: A Rising Threat in the Global Semiconductor Supply Chain

1600 -

1400

1200 -

1000 +

800

Russia is resorting to 600

putting computer chips pey

from dishwashers and "

refrigerators in tanks . l
0+ —— T T T T T T

dU? 'I-:O Us sanctlons, 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
official says

S
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Recycled and Counterfeit Hardware

Counterfeit and recycled chips have a shorter lifespan
= Absolutely dangerous for security-critical use cases

Failure rate
Shorter time to fallure

Infant ' — Wear-out

rtality;

stage

>

Brand new Counterfeit Wear-out Usage time
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Recycled and Counterfeit Hardware

Counterfeit and recycled chips have a shorter lifespan
= Absolutely dangerous for security-critical use cases

Strong 0 Weakly Biased Strong 1
0.5 A i \i’

0.4 1

Proportion
IS
w

o
[N)

0.1 A

0.0 - f f y
0.0 0.2 0.4 0.6 0.8 1.0

Cell Bias
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Secure Hardware

Can we ever know for sure that a chip is secure?
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Next time on CS 4440...

Election Security




