Week 12: Lecture A

Software Reverse Engineering

Tuesday, November 12, 2024

Announcements

Project 3 grades are now available on Canvas

Statistics:
= Average score: 97%
= lLastyear's avg: 90%

Fantastic job!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 2

Announcements

Project 3 grades are now available on Canvas

Think we made an error? Request a regrade!
= Valid regrade requests:
= You have verified your solution is correct
(i.e., we made an error in grading)

Project 3 Regrade Requests (see Piazza pinned link):
Submit by 11:59 PM on Monday 11/18 via Google Form

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

Announcements

Project 4: NetSec released
= Deadline: Thursday, December 5th by 11:59PM

4)
Project 4: Network Security

Deadline: Thursday, December 5 by 11:59PM.

Before you start, review the course syllabus for the Lateness, Collaboration, and Ethical Use policies.

You may optionally work alone, or in teams of at most two and submit one project per team. If you have
difficulties forming a team, post on Piazza’s Search for Teammates forum. Note that the final exam will cover
project material, so you and your partner should collaborate on each part.

The code and other answers your group submits must be entirely your own work, and you are bound by the
University’s Student Code. You may consult with other students about the conceptualization of the project and the
meaning of the questions, but you may not look at any part of someone else’s solution or collaborate with anyone
outside your group. You may consult published references, provided that you appropriately cite them (e.g., in your
code comments). Don't risk your grade and degree by cheating!

Complete your work in the CS 4440 VM —we will use this same environment for grading. You may not use any
external dependencies. Use only default Python 3 libraries and/or modules we provide you.

\. v

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 4

Project 4 Progress

Working on Part 1.0: Password Cracking

0%
Working on Part 1.1: Port Scanning

0%
Working on Part 1.2: Anomalous Activity

0%
Finished Part 1, working on Part 2!

0%
None of the above

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Announcements

o
AL

I'll be out of town rest of week
= No office hours on Thursday

Guest lecturer this Thursday

= Dr. Guanhong Tao: attacking LLMs
= Jailbreaking and backdoor attacks

No PollEverywhere... but show up!
= Final exam is still comprehensive &

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

https://tao.aisec.world/

Announcements

See Discord for
meeting info!

utahsec.cs.utah.edu

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 8

Last time on CS 4440...

Security in Practice:
Tor—The Onion Router

Anonymity Primitive: Onion Routing

Each message is 7?? Router A Key

Router B Key
Router C Key

Message

Router C
Source Destination

>

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 10

Anonymity Primitive: Onion Routing

Each message is repeatedly encrypted
= Analogy: multiple layers of an onion

Router A Key

Router B Key

Router C Key
Sent through multiple network nodes
= These nodes are called onion routers
= Each node removes an encryption layer to
uncover the message routing instructions
= Process repeats when sent to next router

Message

Anonymity: prevents ??? Source R%”J_f{m%m»n

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 1

Anonymity Primitive: Onion Routing

Each message is repeatedly encrypted
= Analogy: multiple layers of an onion

Router A Key

Router B Key
Router C Key
Sent through multiple network nodes
= These nodes are called onion routers
= Each node removes an encryption layer to
uncover the message routing instructions
= Process repeats when sent to next router

Message

Anonymity: prevents any intermediary |source N Bestination

. (] [] »
nodes from knowing message origin,

destination, and contents

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 12

Onion Routing Visualized

Sending data to a website

A

Client Entry Middle Exit Website

Receiving data from a website

Client Entry Middle Exit Website

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 13

Tor: The Onion Router

Tor: a distributed overlay network
= Anonymizes TCP-based applications
= Secure shell
= Web browsing
= Instant messaging

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 14

Tor: The Onion Router

Tor: a distributed overlay network ‘ .
= Anonymizes TCP-based applications
= Secure shell Entry Exit

= Web browsing

. I n Sta nt m essagi n g . ’f/“_ﬁk’w‘k\ ‘ . A

i 27?2
Clients choose 2?2 Client Middle Website

ff ‘ .

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 15

Tor: The Onion Router

Tor: a distributed overlay network
= Anonymizes TCP-based applications
= Secure shell
= Web browsing
= Instant messaging

Clients choose the circuit paths
= Messages unwrapped at each onion

router using a symmetric key
Onion routers only know 2?? . .

Middle

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 16

Tor: The Onion Router

Tor: a distributed overlay network
= Anonymizes TCP-based applications
= Secure shell Entry
= Web browsing

= Instant messaging .
Clients choose the circuit paths

Client

. Middle
= Messages unwrapped at each onion

router using a symmetric key ‘ .
Onion routers only know their
successor or predecessor nodes
= They don’t know of any other nodes

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 17

How Tor Works

Entry guard yumm Encrypted by Tor

z§ mmm Not encrypted by Tol

Tor Y 4

Network § ' —o—o

[| Destination
Middle relay Exit relay

R
T

Tor Client

¥
&

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 18

Attacking Tor

Possible attacks against Tor?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 19

Attacking Tor

Possible attacks against Tor?

Leak DNS requests when they aren’t transmitted via Tor

Perform volume/timing analysis to characterize behavior

Add malicious nodes to intercept unencrypted exit traffic

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 20

Attacking Tor

Possible attacks against Tor?

Leak DNS requests when they aren’t transmitted via Tor
= Defense: ?7?

Perform volume/timing analysis to characterize behavior
= Defense: 77?

Add malicious nodes to intercept unencrypted exit traffic
= Defense: ?7?

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 21

Attacking Tor

Possible attacks against Tor?

Leak DNS requests when they aren’t transmitted via Tor
= Defense: enforce all DNS requests through Tor encryption

Perform volume/timing analysis to characterize behavior
= Defense: inject noisy data to throw off analysis heuristics

Add malicious nodes to intercept unencrypted exit traffic
= Defense: never use unencrypted protocols—use HTTPS

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

22

Who uses Tor?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 23

Who uses Tor?

Normal People
= Privacy-conscious folks

Intelligence Agencies
= Secret agents in the field

Law Enforcement
= Online “undercover” operations

Journalists and Bloggers
= Citizen journalists inspiring social change

Activists and Whistleblowers
= Raising their voice and avoiding persecution

White-hat and Black-hat Hackers

= And everyone in between!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

24

Who uses Tor?

The anonymous
Internet

Daily Tor users
per 100,000
Internet users
Il > 200

Il 100 - 200
I 50 - 100
I 25 - 50

VUT_FJI

PYF

Daily Tor users
NCL

10,000
2,500
1,000

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 25

What services get hidden?

%

THIS HIDDEN SITE HAS BEEN SEIZED

by the Federal Bureau of Investigation,
in conjunction with the IRS Criminal Investigation Division,
ICE Homeland Security Investigations, and the Drug Enforcement Administration,
in accordance with a seizure warrant obtained by the
United States Attorney’s Office for the Southern District of New York
and issued pursuantto 18 U.S.C. § 983(j) by the
United States District Court for the Southern District of New York

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 26

Positive Tor Use Cases

Privacy is a
human right

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 28

Recap: Project 4 Overview

Focuses on network packet analysis

= Leveraging data contained within packets to
achieve network defenses and attacks

Scenario: helping a fictional university

secure its enterprise campus network

= Detect and characterizing likely attacks
= Demonstrate how info can be intercepted

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 29

Recap: Project 4 Overview

We provide a series of network packet traces (pcaps)
= Your job: write scripts to analyze them!

d4 c3 b2 al 02 00 04

Part 1: detecting network attacks o 60 00 30 00 oo 00 o

00 00 04 00 01 00 00

24 byte PCAP Header
Link-Layer Type = Ethernet (0x00000001)

00 45 d4 Se 18 8e Oc 00 16 byte Packet Header

= Password cracking, port scanning, SYN floods AR RIS | Timestamp = 1 June 2020

00 le ec 26 d2 ac 26 eziFPacket length = 66 bytes (0x00000042)

06 49 6b 31 08 00 45 02

00 34 30 8c 40 00 72 06 66 bytes of Packet Data

81 7f 2e 69 63 a3 c@ a8 Destination MAC = 00:1e:ec:26:d2:ac
Source MAC = 26:02:06:49:6b:31

Part 2: stealing sensitive information o4 83 CF 32 00 50 30 25 | Souce ac < 9502054

ee 7b 00 00 00 00 80 c2
Destination IP = 192.168.4.2

= Unencrypted credentials, browsing history 55 78 o1 63 03 0 61 o1
. . d e 2c
= Extra credit: stealing transfered files Y < 1o by PacketHeader oss)

LRGN 1e ec 26 d2 ac

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 30

Recap: Project 4 Overview

We provide a series of network packet traces ()
Your job: write scripts to analyze them!

d4 c3 b2 al 02 00 04 09 } 24 byte PCAP Header

Pa rt 1: d ete Cti ng 00 00 00 00 00 00 00 00 Link-Layer Type = Ethernet (0x00000001)

00 00 04 00 01 00 00 00
. . 00 45 d4 Se 18 8e Oc 09 16 byte Packet Header

Password cracking, port scanning, SYN floods BRI RS, Timestamp - 1 dune 2020

00 le ec 26 d2 ac 26 02 Packet length = 66 bytes (0x00000042)

96 49 6b 31 08 00 45 02

00 34 30 8c 40 00 72 06 66 bytes of Packet Data
° 81 7f 2e 69 63 a3 cO a8 Destination MAC = 00:1e:ec:26:d2:ac
Part 2: Stea“ ng 04 02 cf 3a 00 50 8d a5 Source MAC = 26:02:06:49:6b:31
. . R ee 7b 00 00 00 00 80 c2 SoumeIP::4610599163
Unencrypted credentials, browsing history df e e b) IR SEETER A
o . YNYR00 45 d4 Se 2c 77 16 bvte Packet Head
Extra credit: stealing transfered files TR _ pocot roth ~ o4 bes (0400000036)

LRGN 1e ec 26 d2 ac

You will use Python 3’s Scapy library
= A huge and powerful packet analysis API...
= But we'll really only use a few parts of it

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 31

Recap: Scapy Fundamentals

#!/usr/bin/python3
import logging

Python API for programmatic

: logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
packet capture and analysis R
= Think of it as “Wireshark in API form” import re
def parsePacket(packet):
We pro\“de Skeleton Code template if not packet.haslayer("TCP"): return
#
= Sets-up the packet parsing workflow # TODO: finish implementing parsePacket() !
#
return
if _ _name__ == "__main__":
for packet in rdpcap(sys.argv[1]):
parsePacket (packet)
e Stefan Nagy 32

Recap: Scapy Fundamentals

. #!/usr/bin/python3
Python API for programmatic import logging
paCket Captu re and analySiS iﬁgzlzgégsfzig{gz;;:i:aiy.runtlme").setLevel(logglng.ERROR)
= Think of it as “Wireshark in API form” import re
def parsePacket(packet): 1
We provide Skeleton Code template if not packet.haslayer("TCP"): return
#
= Sets-up the packet parsing workflow # TODO: finish implementing parsePacket()!
= Your job: finish implementing the fetum
function parsePacket()
if _ _name__ == "__main__":
for packet in rdpcap(sys.argv[1]):
parsePacket (packet)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 33

Recap: Scapy Fundamentals

#!/usr/bin/python3
import logging

Python API for programmatic

paCket Captu re and analySiS iﬁgzizgégsfzig{gz;;:i:aiy.runtime").setLevel(logging.ERROR)
= Think of it as “Wireshark in API form” import re
def parsePacket(packet): 1
We provide Skeleton Code template if not packet.haslayer("TCP"): return
#
= Sets-up the packet parsing workflow # TODO: finish implementing parsePacket()!
= Your job: finish implementing the fetum
function parsePacket()
if _ _name__ == "__main__":
. o for packet in rdpcap(sys.argv[1]):
You may also add additional code parsePacket (packet)

= E.g, global variables or data structures
= E.g, printing functionality in main()

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 34

Recap: Scapy Fundamentals

Only a few things you'll need... (o R B
= Get a packet’s TCP flags: B

Scapy API reference

scapy.ansmachine

k " T C P n f 1 scapy.as_resolvers Scapy: create, send, sniff, dissect and manipulate network packets.
p a C e t . a g S scapy.asnifields

scapy.asnipacket Usable either from an interactive console or as a Python library. https:/scapy.net
scapy.automaton
.. R Subpackages
'sd
.b: {
= Get a packet’s destination port

scapy.config scapy.contrib package
scapy.consts * scapy.layers package

“TCP"].dport

packet] .dpor Submodules

scapy.error

« scapy.ansmachine

scapy fields scapy.as_resolvers
y scapy.interfaces o scapy.asnifields
= Get a packet’s source IP address
ecapy.packet « scapy.automaton
tor

[p a C k e t [" I P "] . S r' c] \) o scapy.base_classes)

® Get a packet’s TCP payload:

[bytes(packet["TCP"].payload) .decode('utf-8', 'replace’)]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 35

Recap: Suggested Workflow

M “Ethemet 4 £ m) X

Before you start writin g a Scapy script, e o) T AR S i R N Vi G

AR 2@ IDRB QoS Qe e

inspect the trace manually via Wireshark e - ———

. . , | 428 3.994768 192.168.1.106 lsynergy 68
442 4.402758 192.168.1.106 168.1. synergy 68
= Super helpful for viewing a packet’s contents S ahae a2
. — : 464 5.290740 192.168.1.106 192.168.1.213 synergy 68
n U th t b t t p y pt pp h 486 5.826760 192.168.1.106 192.168.1.213 synergy 68
se IS T0 DOOtsira our scri Sa roach: 494 5.978736 192.168.1.106 192.168.1.213 synergy 68
512 6.186737 192.168.1.106 192.168.1.213 synergy 68
519 6.314737 192.168.1.106 192.168.1.213 synergy 68
532 6.426754 192.168.1.106 192.168.1.213 synergy 68 v
< >

Frame 428: 68 bytes on wire (544 bits), 68 bytes captured (544 bits) on interface \L
Ethernet II, Src: ASUSTekC_14:f6:e8 (38:d5:47:14:f6:e8), Dst: Apple 9d:dc:83 (a@:78:
Internet Protocol Version 4, Src: 192.168.1.106, Dst: 192.168.1.213
Transmission Control Protocol, Src Port: 248808, Dst Port: 49727, Seq: 1091, Ack: 72¢
Vv Synergy Protocol
Packet Length: 1@
Packet Type: Key Released (DKUP)
Vv Key Released
Key Id: 116
Key Modifier Mask: 8192
Key Button: 20

< >

G
j

2000 a@ 78 17 9d dc 83 ELNCCINRVANCIRI-MT: 038 00 45 00 x
2010 @0 36 10 da 42 @@ 30 06 @0 00 c@ ad @1 6a c@ ad 6@

@1 d5 60 e@ c2 3f 8d dc d4 58 89 67 72 ca 5@ 18 See? X-gr-P
94 @1 84 b3 20 22 20 20 00 @a 44 4b 55 50 @@ 74 . DKUP -t
20 00 @0 14

@ 4 Packet Type (...ype), 4bytes| Packets: 1156 - Displayed: 44 (3.8%) " Dropped: 0 (0.0%) || profile: Default

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 36

Recap: Suggested Workflow

No. Time Source Destination

o _ o . 2 A .0.
. . ° 4 0.008429 10.0.0.2 10.128.0.2
Inspect the trace manually via Wiresharlk s .
. . 7 0.016830 10.0.0.2 10.128.0.2
= Super helpful for viewing a packet’s contents gofemd 1Dt oo
. . ’ 10 0.025243 10.0.0.2 10.128.0.2
= Use this to bootstrap your script’s approach! 110.026672 10.128.0.2 10.0.0.2
12 0.028038 10.128.0.2 10.0.0.2
13 0.030523 10.128.0.2 10.0.0.2

4
. » Frame 2: 58 bytes on wire (464 bits), 58 bytes captured (464 b
» Ethernet II, Src: 42:01:0a:f0:00:01 (42:01:0a:f0:00:01), Dst:
For eaCh target; answer the fOllOWIng: » Internet Protocol Version 4, Src: 10.128.0.2, Dst: 10.0.0.2
v Transmission Control Protocol, Src Port: 80, Dst Port: 3222, S

= What packet fields matter? SOUEE g En

Destination Port: 3222

[st index: 1]
= How to extract relevant data? [TcP Segnent Len: o]
. Sequence number: © (relative sequence number)
= How to store and process this data? Sl e T b

0110 = Header Length: 24 bytes (6)
»|Flags: ©x012 (SYN, ACK

Window size value: 29200
[Calculated window size: 29200]
Checksum: 0x4268 [unverified]
[Checksum Status: Unverified]
Urgent pointer: ©
» Options: (4 bytes), Maximum segment size
» [Timestamps]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 37

Recap: Suggested Workflow

No. Time Source Destination

. e . 1 0.000000 10.0.0.2 10.128.0.2

Befo re you Start ertlng a Scrl pt’ 0.005514 10.128.2 1000
. . 4 0.008429 10.0.0.2 10.128.0.2

Inspect the trace manually via coleier daismes 10.0.0.2
N N , 7 0.016830 10.0.0.2 10.128.0.2

Super helpful for viewing a packet’s contents e Lot
. . ’ 10 0.025243 10.0.0.2 10.128.0.2

Use this to bootstrap your script's approach! 11 0.026672 10.128.0.2 10.0.0.2

12 0.028038 10.128.0.2 10.0.0.2

13 0.030523 10.128.0.2 10.0.0.2

4

. » Frame 2: 58 bytes on wire (464 bits), 58 bytes captured (464 b
» Ethernet II, Src: 42:01:0a:f0:00:01 (42:01:0a:f0:00:01), Dst:

For eaCh ta rget] answer the fO“-OWI ng: » Internet Protocol Version 4, Src: 10.128.0.2, Dst: 10.0.0.2

v Transmission Control Protocol, Src Port: 80, Dst Port: 3222, S

What matte r? Source Port: 80

Destination Port: 3222

[Stream index: 1]
How to relevant data? [TcP Segment Len: 6]
. Sequence number: © (relative sequence number)
? [Next sequence number: © (relative sequence number)]
HOW to thls data' Acknowledgment number: 1 (relative ack number)

Window size valﬁe: 29200

Finalize your high-level game plan first! Ghbcis DYaene iR

[Checksum Status: Unverified]

= Then start developing your solution scripts! y el R e e s

» [Timestamps]

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 38

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 39

This time on CS 4440...

Binary Reverse Engineering
Instruction Recovery
Control Flow Analysis

Structure Recovery
RE Challenges

How Software is Built

clang hello.c -0 hello

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 4

How Software is Built

clang hello.c -0 hello

. Executable
Compiler

Source File

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 42

How Software is Built

Preprocessor =————yp Compiler ——p Linker]
Source Code / N\ Binary

Executable
substitutes #include generates combines binary
directives with content binary machine code and
standard library of included files machine code connects function calls
header file ’
iostream |--- hello.cpp > »| hello.o g hello.exe
#include <iostream> .
. cout = cout = .. bﬁmarY
object file
int main() { int main() {
std::cout <« std::cout <«
"Hello World\n"; "Hello World\n";
} }
SCHOOL OF COMPUTING Stefan Nagy 43

UNIVERSITY OF UTAH

How Software is Built

Source Code

standard library

header file
iostream |--- hello.cpp
- #include <iostream>
. cout = .
int main() {
std::cout <«
"Hello World\n";
}
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy Lt

How Software is Built

Preprocessor

substitutes #include
directives with content
of included files

\ 4

.. cout = ..

int main() {
std::cout <«
"Hello World\n";

}

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 45

How Software is Built

Compiler

generates
binary
machine code

—>| hello.o

binary
object file

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 46

How Software is Built

Linker
N\ Binary
Executable

combines binary
machine code and
connects function calls

oo

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 47

How Software is Built

Binary
Executable

f \
2o)
1

!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 48

Examples of Closed-source Software?

Nobody has responded yet.

Hang tight! Responses are coming in.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Closed-source Software

It's everywhere!
W ﬂ Office <A NVIDIA
$2Dropbox @ @4 Outlook
== Windows 0S macOS 3 ||'s: ! IC;.
Tl P NETGEAR

PlayStation.

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 50

Closed-source Software

L

Legacy software whose source code is lost

/

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

51

Auditing Open- versus Closed-source Code

Open Source:

Publicly-available source codebase
Achieves security by transparency

Semantic richness facilitates
high-performance, effective vetting

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 52

Auditing Open- versus Closed-source Code

Closed Source:

Distributed as a precompiled binary
Opaque to everyone but its developer

) = (|0}
el " |i{aog

Upwards of 10x slower security vetting
Forced to rely on crude techniques

53

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy

Auditing Open- versus Closed-source Code

€4[= 1] Office €A NVIDIA
33 Dropbox €% B4 Outlook

2@ Windows ©s macOS 'é',';é'(;'

oracie b NETGEAR

Solaris PlayStation

Global market size over $240 billion
85% contains critical vulnerabilities
89% of the most exploited software

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 54

Reverse Engineering (RE)

What is RE?

SCHOOL OF COMPUTING
UUUUUUUUUUUUUUUU

“A process or method through which one
attempts to understand through deductive
reasoning how a previously made device,
process, system, or piece of software
accomplishes a task with very little (if any)
insight into exactly how it does so”

Stefan Nagy 55

Why do we care about RE?

Discovering bugs

Retrofitting fixes

Malware analysis

Right to repair!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 56

RE Tasks

Disassembly

= 777

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 57

RE Tasks

o (s ~N
00000003 4F dec edi
Dlsassembly 00000004 6AlE push byte +0xle
= Machine code to human 00000006 B7B5 mov bh, 0xb5
00000008 0C12 or al,0x12
readable assembly 0000000A 6A04 push byte +0x4
0000000C EAAO8EAS57B2BB1l jmp dword 0xbl2b:0x7ba58eal
o e 00000013 B114 mov cl,0x14
_ J
Decompilation
= 77
SCHOOL OF COMPUTING Stefan Nagy 58

UNIVERSITY OF UTAH

RE Tasks

[(s ~N
00000003 4F dec edi
Dlsassembly 00000004 6AlE push byte +0xle
= Machine code to human 00000006 B7B5 mov bh, 0xb5
dabl bl 00000008 0C12 oF al;0x12
readable assembly 0000000A 6A04 push byte +0x4
0000000C EAAO8EAS57B2BB1l jmp dword 0xbl2b:0x7ba58eal
. . 00000013 B114 mov cl,0x14
D l \ :
ecompilation
H (1. . . ™
= Machine code to human 2 |int matn(veld)
4
readable source code 5 char local st [641;
; modified = 0;
9 gets(local_54);
e_ o 10 if (modified ==.0)”{
Rewrltl ng 3 puts("Try again?");
m by v d 51 el;jti("you have changed the \'modified\' variable");
}ES) return 0;
17 |}
0 J
SCHOOL OF COMPUTING Stefan Nagy 59

UNIVERSITY OF UTAH

RE Tasks

° e - N
00000003 4F dec edi
Dlsassembly 00000004 6AlE push byte +0xle
= Machine code to human 00000006 B7B5 mov bh, 0xb5
dabl bl 00000008 0C12 or al,0x12
readable assembly 0000000A 6A04 push byte +0x4
0000000C EAAQOBEA57B2BB1 jmp dword O0xbl2b:0x7ba58eal
o . (00000013 B114 mov cl,0x14)
Decompilation
H (5 - . N
= Machine code to human 2 int nain(void) (" Before After N
readable source code 5 | e local 54 [64]; ; Original Function ; Original Function
6| int modified; OriginalFunc: OriginalFunc:
; ditied = 0 first few jmp InterceptorFunc
5 get;klora{ 5:1); instructions OriginalFunc+N:
s 10 | if (modified == 0) {
Rewrltl ng S puts("Try again?"); . '
13| else ¢ H ;rampolll_neF ;_Z_'rampo:{neF
H H uts("you have change e \'modified\' variable"); rampoline-unc: rampolinerunc:
u Add mOf'e fU nCtlonallty E } ot BT R R NOGHTIRG i jmp OpriginaIFunc
16 return 0;
1 17 |} instructions
and rebuild executable i JAS o 4
SCHOOL OF COMPUTING Stefan Nagy 60

UNIVERSITY OF UTAH

Experience with RE?

Disassembly (e.g., objdump)

0%
Decompilation (e.g., Ghidra, IDA)

0%
Something else!

0%
None of the above (totally fine!)

0%

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Three Pillars of RE

Instruction Recovery

= Decode bytes to instructions
= Disambiguate code from data

Control Flow Recovery

= Intra-procedural execution flow
= |Inter-procedural execution flow

Program Structure Recovery

= |dentify program basic blocks
= Higher-level constructs (e.g., loops)

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 62

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 63

Pillars of RE:
Instruction Recovery

Stefan Nagy

What are they? MAXPS
MAXSD
MAXSS
MFENCE
MINPD
MINPS
MINSD
MINSS
MONITOR
MoV
MOV (1)
MOV (2)
MOVAPD
MOVAPS
MOVBE
MOVD
MOVDDUP

MOVDIRI
MOVDQ2Q

MOVDIR64B

Maximum of Packed Single-Precision Floating-Point Values
Return Maximum Scalar Double-Precision Floating-Point Value
Return Maximum Scalar Single-Precision Floating-Point Value
Memory Fence

Minimum of Packed Double-Precision Floating-Point Values
Minimum of Packed Single-Precision Floating-Point Values
Return Minimum Scalar Double-Precision Floating-Point Value
Return Minimum Scalar Single-Precision Floating-Point Value
Set Up Monitor Address

Move

Move to/from Control Registers

Move to/from Debug Registers

Move Aligned Packed Double-Precision Floating-Point Values
Move Aligned Packed Single-Precision Floating-Point Values
Move Data After Swapping Bytes

Move Doubleword/Move Quadword

Replicate Double FP Values

Move 64 Bytes as Direct Store

Move Doubleword as Direct Store

Move Quadword from XMM to MMX Technology Register

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy

65

Recap: The CPU

: . . Instruction
State modified by assembly instructions Fetcher
= ADD, SUB, XOR, CMP, CALL, JMP, RET ‘
= And many more! [Instruction |
""" . Decoder

Memory
Interface

Assembly instruction syntaxes
= AT&T = Source Destination
= Intel = Destination Source
= Example: MOV SRC, DST versus MOV DST, SRC

= This lecture: AT&T syntax

PP ———

PP A

Registers memory

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 66

What are they?
= Operations that modify CPU state

Source = ???

X86 asm = ???

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

MAXPS
MAXSD
MAXSS
MFENCE
MINPD
MINPS
MINSD
MINSS
MONITOR
MoV
MOV (1)
MOV (2)
MOVAPD
MOVAPS
MOVBE
MOVD
MOVDDUP

MOVDIRI
MOVDQ2Q

MOVDIR64B

Maximum of Packed Single-Precision Floating-Point Values
Return Maximum Scalar Double-Precision Floating-Point Value
Return Maximum Scalar Single-Precision Floating-Point Value
Memory Fence

Minimum of Packed Double-Precision Floating-Point Values
Minimum of Packed Single-Precision Floating-Point Values
Return Minimum Scalar Double-Precision Floating-Point Value
Return Minimum Scalar Single-Precision Floating-Point Value
Set Up Monitor Address

Move

Move to/from Control Registers

Move to/from Debug Registers

Move Aligned Packed Double-Precision Floating-Point Values
Move Aligned Packed Single-Precision Floating-Point Values
Move Data After Swapping Bytes

Move Doubleword/Move Quadword

Replicate Double FP Values

Move 64 Bytes as Direct Store

Move Doubleword as Direct Store

Move Quadword from XMM to MMX Technology Register

Stefan Nagy

67

Wh at a re th ey? MAXPS Maximum of Packed Single-Precision Floating-Point Values
. . MAXSD Return Maximum Scalar Double-Precision Floating-Point Value
= O p e ratl ons th at mo d Ify CPU State MAXSS Return Maximum Scalar Single-Precision Floating-Point Value
MFENCE Memory Fence
MINPD Minimum of Packed Double-Precision Floating-Point Values
source = h i gh - level | nstru Ct| ons MINPS Minimum of Packed Single-Precision Floating-Point Values
MINSD Return Minimum Scalar Double-Precision Floating-Point Value
u H uman-rea d a b le MINSS Return Minimum Scalar Single-Precision Floating-Point Value
MONITOR Set Up Monitor Address
MOV Move
— M M MOV (1) Move to/from Control Registers
x86 asm = low-level instructions v o e
™ S omew h at h uman-rea d a b le MOVAPD Move Aligned Packed Double-Precision Floating-Point Values
MOVAPS Move Aligned Packed Single-Precision Floating-Point Values
MOVBE Move Data After Swapping Bytes
MOVD Move Doubleword/Move Quadword
. . MOVDDUP Replicate Double FP Values
Key to | n fe r r | n g W h at MOVDIR64B Move 64 Bytes as Direct Store
. . MOVDIRI Move Doubleword as Direct Store
t h e p rO g ra m | S d O | n g MOVDQ2Q Move Quadword from XMM to MMX Technology Register

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 68

Recovering Instructions

Goal: translate bytes into logical instructions

= Called instruction decoding
= Analogous to what CPU does

= General output: disassembly Machine code bytes Assembly language statements
foo:
B8 22 11 00 FF movl $SOxFF001122, %eax
Instruction stream 01 CA addl %ecx, %edx
31 F6 xorl %esi, %esi
B8 22 11 00 FF 01 CA 31 F6 53 8B 5C 24 53 pushl %ebx
04 8D 34 48 39 C3 72 EB C3 8B 5C 24 04 movl 4(%esp), %ebx
8D 34 48 leal (%eax,%ecx,2), %esi
. 39 C3 cmpl %eax, %ebx
Read bytes from input executable oo EE inae foo
C3 retl
Group bytes Decode instructions

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 69

Instruction Recovery Techniques

Linear Sweep f .. . h
= Start decoding at binary entry Intmtmn: compilers lay code
= Attempt to decode all bytes sequentially for compactness
= Stop at end of .TEXT section \ /

Challenge: data within code

\ /

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 70

Instruction Recovery Techniques

Recursive Descent
= Follow all control-flow transfers
= jmp 0x100 - start decoding
instructions at address 9x100
= Stop when you’'ve covered all
possible control-flow paths

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

-~

.

Intuition: following the logical
flow of execution reveals a lot

~

s

Vs

\

Challenge: indirect branches

~

/

71

Instruction Recovery Techniques

Most modern RE adopts a combined
approach in addition to heuristics

SCHOOL OF COMPUTING

UUUUUUUUUUUUUUUU Stefan Nagy 72

CISC Architectures

Opcode

| Prefix }7 Opcode —{

}— Legacy Prefix

Variable-length instructions

= Eg,x86-32, x86-64 Byteoffset | 0 | 2 | 2 | 3 [4 [5| 6 | 7
oot wm B
Almost any byte sequence e | o
can be a valid instruction! o
x86_32 | Displacement .
optional
10 11 12 13 14 15 16 17
Being just one byte off can B
totally mess up decoding! required mmedare |

18 19 20 | 21 22 | 23 24 | 25

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 73

CISC Architectures

Example of byte offsets and possible decodings:

OxXOF Ox88 Ox52 OxOF O0x84 OXxEC

js oxffffffffec840f58

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 74

CISC Architectures

Example of byte offsets and possible decodings:

OxOF Ox88 Ox52 OxOF O0x84 OxEC

mov BYTE PTR [rdx+0xf],dl
test ah, ch

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 75

CISC Architectures

Example of byte offsets and possible decodings:

OxXOF Ox88 Ox52 OxO0F 0x84 OxEC

add eax,0x40080f20
in al,dx

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 76

Instruction Decoder Bugs

Results from Trail of Bits’ Mishegos fuzzer

567f2f39cb2a58654

./src/worker/bfd/bfd.so ./src/worker/capstone/capstone.so ./src/worker/xed/xed.so ./src/worker/zydis/zydis.so

26f267664d0f3817314aecdfod

56636f26{0f3a6f959066b1fd8c52

7f03ef0460f1104fe
52e26520ffda71fd5bc9e3090235f

6f2f3f00f3a6315cd
[Fo5T330055900954 732b08R05 7275
[P5T33695590095a732b08805727509]

33e9559dd95a732b08805727509f3

[5e05590495a732b088057275091595]
765676547bedb69

[550950752b06805 72 750375950740)

Pioszonisolasse |
4666566950f3a13fof6

6467470f3875ae022ded4al517e90b4
f3f32666cd0f38b0c9alef83f720
ef066f0480f3a2904b7

7470f3875ae022dedal517e90bdch

664970f7a50db978a650a8288beel
f226£236458a49fb848d28

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

Code vs. Data

Some compilers tightly interweave data (e.g., bytes, values) within code
= Imprecision can create trickle-down errors in instruction recovery!
= Example from OpenSSL (one of the most popular HTTPS libraries):

popfq // original popfq // disassembled
.byte 0xf3,0xc3 repz retq

.Size AES_cbc_encrypt nop

.align 64 nop

.LAES_Te (bad)

.long 0xa56363c6 movslq -0x5b(%rbx),%esp

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 78

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 79

Pillars of RE:
Control Flow Recovery

Stefan Nagy

Control Flow

What is it?

= 777

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 81

Control Flow

What is it? — [|

. print (x)
u How execution flows x > 5 [Basic Block 1]
. . l:int a = 1;
from one application / \ SIS T
component to others \
print('x is big'") print('x is small') [Basic Block 2]
1:++b
Why do we care?
[Basic Block 3]
n ???
eeo o 1:int ¢ = 3;
2:int d = 4;
[Basic Block 4]
T: while (a < 5)
[Basic Block 5] [Basic Block 6]
RN § B R
[EXIT]
SCHOOL OF COMPUTING Stefan Nagy 82

UNIVERSITY OF UTAH

What is it?
= How execution flows
from one application
component to others

Why do we care?
= Want to understand
the entire program!

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Control Flow

[ENTRY]

|Basic Block 1]

l:int a = 1;
2:int b = 2;
T:if (b == 2)

print('x is big"')

print('x is small')

[Basic Block 2]

1: ++b

[Basic Block 3]

1:int ¢ = 3;
2:int d = 4;

[Basic Block 4]

T:while (a < 5)

Stefan Nagy

N,

[Basic Block 5] [Basic Block 6]
3 l:int e = 5;
l:++a 2int f = 6

[EXIT]

83

Recovering Control Flow

Direct Edges [} . .
= Jump/callafunction | JmMp Ox4001AB3 Target is pre-set statically

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 84

Recovering Control Flow

Direct Edges [\i | .
= Jump/callafunction | JMP Ox400TAB3 Target is pre-set statically
Indirect Edges D — \.

= Function pointers

* Transfertoaregister | call %eax; where? | [Target found at runtime }
= Switch-case tables '

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 85

Recovering Control Flow

Direct Edges [} . .
= Jump/call afunction | JMP Ox4001AB3 ! Target is pre-set statically
Indirect Edges T \ \
= Transfertoaregister | c311 %eax: where? ! [Target found at runtime
= Function pointers ' i)
= Switch-case tables
(T \ A
“Pseudo” Edges . ret; goeswhere? | [Necessary to recover all paths
= Post-call returns | " J

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 86

Recovering Control Flow

Direct Edges

= Jump/call a function

Indirect Edges
= Transfer to a register
= Function pointers
= Switch-case tables

“Pseudo” Edges

= Post-call returns

Tail Calls

= Call at function’s end

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

/

\I e

AN

Necessary to recover all paths

~

/

jmp &foo; call?

\ 4

AN

Expressed as jumps, not calls

~

/

Stefan Nagy

87

Symbol Stripping

Debugging symbols: maps instructions in the compiled binary program to
their corresponding variable, function, or line in the source code.

int addition(int numl1, int num2){
return numl+num2;
}

int main(){
int varl, var2;
printf("Enter number 1: ");
scanf("%d",&var1);
printf("Enter number 2: ");
scanf("%d",&var2);
int res = addition(var1, var2);
printf ("Output: %d", res);
return 0;

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 88

Debugging symbols: maps instructions in the compiled binary program to

Symbol Stripping

their corresponding variable, function, or line in the source code.
= Makes RE easy if you have symbols...

int addition(int numl1, int num2){
return numl+num2;
}

int main(){
int varl, var2;
printf("Enter number 1: ");
scanf("%d",&var1);
printf("Enter number 2: ");
scanf("%d",&var2);
int res = addition(var1, var2);
printf ("Output: %d", res);
return 0;

$ objdump --syms example | grep .text

0000000000001090
000000000000 10CcH
0000000000001100
0000000000001140
0000000000001150
0000000000001060
0000000000001170

1F
1F
1F
1F
gF
gF
gF

.text
.text
.text
. text
.text
.text
.text

0000000000000000
0000000000000000
0000000000000000
0000000600000000
0000000000000018
0000000000000026
0000000000000085

deregister_tm_clones
register_tm_clones
__do_global_dtors_aux
frame_dummy

addition

_start

main

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy

89

Symbol Stripping

Debugging symbols: maps instructions in the compiled binary program to

their corresponding variable, function, or line in the source code.
= Makes RE easy if you have symbols... but often stripped from the binary!

int addition(int numl1, int num2){

return numl+num2;
; $ objdump --syms example

int main(){

int var1, var2; example: file format elf64-x86-64
printf("Enter number 1: ");

scanf("%d",&var1); SYMBOL TABLE:

printf("Enter number 2: "); no symbols

scanf("%d",&var2);

int res = addition(var1, var2);
printf ("Output: %d", res);
return 0;

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 90

Obfuscation

Obfuscation: techniques designed to make third-party analysis difficult

= 777

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 91

Obfuscation

Obfuscation: techniques designed to make third-party analysis difficult
= Developers want to keep their intellectual property secret to just themselves!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 92

Obfuscation

Obfuscation: techniques designed to make third-party analysis difficult

= Developers want to keep their intellectual property secret to just themselves!
= Example: opaque predicates - introduces “fake” control-flow that is confusing!

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 93

Obfuscation

Obfuscation: techniques designed to make third-party analysis difficult

= Developers want to keep their intellectual property secret to just themselves!
= Example: control-flow flattening > removes any recognizable flow ordering

-

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 94

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 95

Pillars of RE:
Structure Recovery

Stefan Nagy

Program Structure

Why do we care?

= 777

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 97

Program Structure

Why do we care?
= Know how the code’s
parts work together

(dec edi

push byte +0xle

mov bh, 0xb5

or al;0x12

push byte +0x4

jmp dword 0xbl2b:0x7bab58eal

| mov cl,0x14)

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 98

Program Structure

Why do we care?
= Know how the code’s
parts work together

(dec edi

push byte +0xle

mov bh, 0xb5

or al;0x12

push byte +0x4

jmp dword 0xbl2b:0x7bab58eal
mov cl,0x14

Examples:
= Basic Blocks
= Loop Types
= Recursion
= Jump Tables
= Functions

/

' .

[entering] [entering]

/

dooj

= Pt
e><|tllng] [exmng/ atc]

Stefan Nagy 99

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Structure Recovery

Largely heuristic-based
= Construct-specific rules

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 100

Structure Recovery

Largely heuristic-based

= Construct-specific rules - N
Basic Blocks: /
= Start: & g :=f£
= Target of a jmp n: = € =g
= Targetofacall e > 0O° \&
= Targetofaret
= End /No Yes\
= Endsina jmp \

= Endsinacall
= Endsinaret

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 101

Structure Recovery

Largely heuristic-based

= Construct-specific rules push ebp
mov ebp, esp switeh(chodce) |
FunCtionS: sub esp, N ;izzit add(first, second);
= Start: Caserisélt sub(first, second);
= Target ofacall Prologue break;
= Target of a tail call e
= Aknown prologue I—— b e Sen
= A dispatch table entry P, p result = divide(first, second);
. End: pop ebp break;
" locationofaret EeE C-level Switch Table
= Location of a tail call
= A known epilogue Epilogue

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Stefan Nagy 102

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 103

RE Tasks: Decompilation

Decompilation

Goal: 2??

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 105

Decompilation

Goal: obtain semantically-equivalent source code from a compiled binary
Instruction Control Data Flow Structure Structure C Code
Recovery Analy5|s analysis Recovery Analysis Generation

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Stefan Nagy 106

Decompilation

Goal: obtain semantically-equivalent source code from a compiled binary
= In practice: really difficult with little guarantee of success (compilable or correct code)

Instruction Control Data Flow Structure Structure C Code
Recovery analysis Recovery Analysis Generation
Analy5|s

Will it re-compile? _ /
Will it run correctly? TEmmsT
Is it human readable?

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 107

Try it yourself!

112d: push %ebp

112e: mov %esp, %ebp // mov src,dst
1131: mov %edi, $SOx14(%ebp)
1134: mov $0x0, SOx4(%ebp)
113b: cmp $0x1, S0x14(%ebp)
113f: jne 1148

1141: add 0x1337, $8x4(%ebp)
1148: mov $0x0, %eax

114d: pop %ebp

114e: ret

114f: nop

https://rev.fish/files/bar2022_keynote.pdf

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 108

Try it yourself!

112d:
112e:
1131:
1134 :
113b:
113f:
1141 :
1148:
114d:
114e:
114f:

push %ebp

mov
mov
mov
cmp
jne
add
mov
pop
ret
nop

%esp, %ebp
%edi, $0x14(%ebp)
$0x0, $0x4 (%ebp)
$0x1, $0x14 (%ebp)
1148
0x1337, $S0x4 (%ebp)
SOx0, %eax

%ebp

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Variables:
ebp-0x4:
// mov src,dst ebp-0x14:
foo = 0; // 1134
if (bar == 1) { // 113b
// 1141
foo = foo + 0x1337;
}
return @; // 1148

https://rev.fish/files/bar2022_keynote.pdf

Stefan Nagy

foo
bar

109

Popular Decompilers

Many decompilers available today (both commercial and open-source)
= Can lift binaries to different languages (e.g., C/C++, LLVM IR, custom IRs, etc.)

D

angr IDA Pro Binary Ninja Ghidra

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 110

Different Decompilers = Different Out

Example: HelloWorld (ARM version) on DogBolt.org

angr BinaryNinja Ghidra Hex-Rays
9.2.38 3.3.3996 (e34a955e) 10.2.2 (9813cde2) 8.2.0.221215
1 int _initQ 1 int32_t _init(int32_t argl, int32_t arg2) 1 #include "out.h" 1~ /* This file was generated by the Hex-Rays decompile
2~ 2~ { 2 2 Copyright (c) 2007-2021 Hex-Rays <info@hex-rays. c:
3 unsigned int v@; // [bp-0x8] 3 return call_weak_fn(argl, arg2); 3 3
4 unsigned int v1; // [bp-0x4] 4 4 4 Detected compiler: GNU C++
5 unsigned int v2; // 1lr 5 5 int _init(EVP_PKEY_CTX *ctx) SH */
6 unsigned int v3; // r3 6 1int32_t sub_10308() 6 6
7 7v { 7 7 #include <defs.h>
8 vl = v2; 8 /* jump -> @ */ 8 int ivarl; 8
9 VO = v3; 9 9 9 #include <stdarg.h>
10 return call_weak_fn(Q); 10 10 iVarl = call_weak_fnQ); 10
119 1 11~ void __libc_start_main(11 return iVarl; 11
12 12 int32_t (* main)(int32_t argc, char** argv, char| 12 12 /e e
13 int _start(unsigned int a@) 13 char** ubp_av, void (* init)Q), void (* fini)Q, 13 13 // Function declarations
14~ { 14 void* stack_end) __noreturn 14 14
15 unsigned int v@; // [bp-0x8] 15~ { 15 15 int init_procQ;
16 unsigned int vl; // [bp-0x4] 16 /* tailcall */ 16 void __libc_start_main(void) 16 void sub_10308();
17 unsigned int v2; // [bp+0x@] 17 return __libc_start_main(main, argc, ubp_av, ini 17 17 // int __fastcall _libc_start_main(int (__fastcall *
18 18 } 18 18 // int getchar(void);
19 v2 = stack_base + 4; 19 19 _libc_start_mainQ); 19 // int puts(const char *s);
20 vl = a0; 20 int32_t getchar() 20 return; 20 // int _gmon_start__(void); weak
vl Vo = 0; 21~ { 21 21 // void abort(void);
22 __libc_start_main(); /* do not return */ 22 /* tailcall */ 22 22 void __noreturn start(void (*al)(void), int a2, int «
23 } 23 return getchar(); 23 23 int call_weak_fnQ);
24 24 24 24 char *deregister_tm_clones();
25 int sub_10390() 25 25 // WARNING: Unknown calling convention -- yet parame 25 __int64 register_tm_clones();
26~ { 26 int32_t puts(char const* str) 26 26 char *_do_global_dtors_aux();
27 abort(); /* do not return */ 27+ { 27 int getchar(void) 27 int __cdecl main(int argc, const char **argv, const .
28 } 28 /* tailcall */ 28 28 void term_proc();
29 29 return puts(str); 29 29
30 int call_weak_fn() 30 } 30 int ivarl; Bl / /== e e e e e e s e e e e
31w { 31 31 31 // Data declarations
32 return; 32 int32_t __gmon_start__Q) 32 iVarl = getcharQ); 32
33 __gmon_start__Q); 33~ { 33 return ivarl; 33 char _bss_start; // weak
34 return; 34 /* tailcall */ 34 34 // extern _UNKNOWN __gmon_start__; weak
358 1 35 return __gmon_start__Q); 35 35
36 36 36 36
37 int dereaister_tm_clones() 37 37 S0 //-===- L O
SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Stefan Nagy

111

Challenges to Binary Decompilation

e m‘ “.' ‘...,-.. ':- ‘.';.Li‘s""‘-.} " ("’-"_.’ p IS,
. < A ‘Qo.-) N o ({ wre
SERE Vo SRR | NE A NS L .
iy ' . A"‘ Y. - .‘.") ‘ 2 ' 5 ‘ - '.’t : . - s ? o.
o A N B BN e s el
—Source Code ;=i ¢ =700
.- 5 py g LRy
. - ® . .

mgom—Optlmlzaf’ons A e

—— = —— — == = Binary Formats -

e / Obfuscatl'\ons "”’f»g —

=N “FA e v ¥
-,_vg —

e @ el ST =
= == T = "l \: (a«:_/\ltlnt “>— L R

: |1Hv'

Accurate Decompllatlon SN e .

Stefan Nagy

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Supplemental Content: Domain-specific RE

Dr. Zhigiang Lin’s
keynote at BAR'23

Application: Egg Hunt in Tesla Infotainment

Tesla Back to the Future
Easter Egg

December 1, 2020

LOtS Of COO'. bugs ! : el ey
- TeSla InfOtaI n ment » Do they raise security concerns?

km) of range. Then simply touch the ba.
I ” .)))
u SU per Ap pS ocaio » How to systematically identify them?

Tesla: Mario Kart's Rainbow » Coverage-based fuzzing (emulation
u An d m 0 re! Road / SNL Easter Egg requirej) e (

» Input validation analysis on Qt binaries

Check it out!

v @ & @ O

BAR 2023 Keynote #1 - Unlocking the Potential of Domain Aware Binary Analysis in the Era of loT

a NP?S ?yrr:posmm @ 1| P /> Share 4 Download & clip [save
G) 87K subscribers

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH Stefan Nagy 124

Next time on CS 4440...

Attacking Large Language Models (guest lecture)

