
Pluggable Abstract Domains for Analyzing Embedded Software

Nathan Cooprider John Regehr
School of Computing, University of Utah

{coop,regehr}@cs.utah.edu

Abstract
Many abstract value domains such as intervals, bitwise, constants,
and value-sets have been developed to support dataflow analy-
sis. Different domains offer alternative tradeoffs between analy-
sis speed and precision. Furthermore, some domains are a better
match for certain kinds of code than others. This paper presents
the design and implementation of cXprop, an analysis and trans-
formation tool for C that implements “conditional X propagation,”
a generalization of the well-known conditional constant propaga-
tion algorithm where X is an abstract value domain supplied by the
user. cXprop is interprocedural, context-insensitive, and achieves
reasonable precision on pointer-rich codes. We have applied cX-
prop to sensor network programs running on TinyOS, in order to
reduce code size through interprocedural dead code elimination,
and to find limited-bitwidth global variables. Our analysis of global
variables is supported by a novel concurrency model for interrupt-
driven software. cXprop reduces TinyOS application code size by
an average of 9.2% and predicts an average data size reduction of
8.2% through RAM compression.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; C.3 [Special-purpose and Application-based
Systems]: Real-time and Embedded Systems

General Terms Performance, Languages

Keywords Abstract interpretation, TinyOS, embedded software

1. Introduction
Conditional constant propagation (CCP) [29] is a well-known pro-
gram analysis that exploits the synergy between constant propaga-
tion and dead code elimination. The synergy exists because propa-
gating constants may result in the discovery of additional dead code
and eliminating dead code may reveal additional constants. Condi-
tional constant propagation is widely used because it is efficient
and precise: in a single pass it finds at least as many constants and
pieces of dead code as would be found by iteratively alternating
between constant propagation and dead code elimination until no
further benefits were attained by either analysis.

This paper describes cXprop: our tool that implements condi-
tional X propagation. Conditional X propagation is a generalization
of CCP that permits user-defined value-propagation analyses to be
substituted for the constant propagation analysis. So far, in addi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’06 June 14–16, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-362-X/06/0006. . . $5.00.

tion to constant propagation, we have implemented parity, inter-
vals, bitwise (abstract values are vectors of three-valued bits), and
bounded-size sets of arbitrary values. Our implementation is based
on CIL [21] and handles all of C. cXprop is interprocedural and
performs whole-program analysis even when the input consists of
multiple compilation units. Because cXprop keeps track of points-
to sets, it achieves reasonable precision on pointer-rich codes. Im-
plementing a new static analysis in cXprop is straightforward: the
user simply writes a collection of OCaml functions conforming to
an abstract domain interface that we developed.

cXprop can operate in three modes. In the first mode the anal-
ysis transforms code in the expected way: dead code is eliminated
and constant variables are replaced with literal constants. In the sec-
ond mode, assert statements are added that dynamically validate
the soundness of our analysis: execution is aborted if “dead” code
is executed or if any variable contains a value outside of its ana-
lyzed abstract value. In the third mode, code is transformed in such
a way that its execution gathers dynamic dataflow information.

Because cXprop targets embedded software, it must return
sound results when analyzing concurrent programs. To this end
cXprop supports three models of concurrency. The first avoids
modeling global variables: this is sound but imprecise. The other
two concurrency models increase analysis precision by exploiting
characteristics of interrupt-driven embedded software.

We have used cXprop to analyze embedded and desktop ap-
plications. When applied to TinyOS applications, cXprop reduces
code size by an average of 9.2% and finds that 8.2% of the space
allocated to global variables is unnecessary.

The contributions of this paper are:

• cXprop, a C dataflow analysis supporting pluggable abstract
domains,

• two novel concurrency models for analyzing global variables in
the presence of interrupts and nesC’s atomic sections,

• a quantitative comparison of four abstract domains, and
• an evaluation of cXprop as a tool for reducing code size for

sensor network applications running on TinyOS.

This paper is organized as follows. Section 2 presents back-
ground material. Section 3 describes the design decisions and as-
sumptions behind cXprop. Section 4 describes the cXprop imple-
mentation. Section 5 discusses the abstract domains that we have
developed for cXprop. In Section 6 we evaluate the analysis and
apply it to TinyOS applications. Section 7 compares our work with
prior research and Section 8 presents our future work.

2. Background
cXprop is an abstract interpreter [5] that builds on conditional
constant propagation and CIL. It targets TinyOS applications, but
can handle all of C.

0−1 1−2 2.

⊥

⊥

⊥

⊥

Unreachable

Reachable

Figure 1. Conditional constant propagation is an analysis combin-
ing the constant propagation lattice (left) with the unreachable code
elimination lattice (right)

1 int tricky () {
2 int x = 1;
3 int count = 0;
4 do {
5 int b = x;
6 if (b != 1)
7 x = 2;
8 count += x;
9 } while (count < 10);

10 return x;
11 }

Figure 2. CCP finds line 7 to be dead and x to be constant, but
iterating CP and DCE does not find either

2.1 Conditional constant propagation
CCP provides constant propagation (CP) and dead code elimina-
tion (DCE) in a single integrated analysis pass. Figure 1 shows the
two lattices that CCP is based on and Figure 2 shows a program
fragment that can be successfully analyzed by CCP but not by it-
eratively applying constant propagation and dead code elimination.
The crux of the problem is that both CP and DCE initially make
optimistic assumptions that, respectively, each variable is constant
and each branch is dead. However, the optimistic assumption is lost
when the analyses are run iteratively—an integrated analysis is re-
quired. CCP is widely used. For example, it is implemented in re-
cent versions of gcc.

2.2 CIL
CIL is a parser, typechecker, and intermediate representation for
C that greatly simplifies the implementation of analyses and trans-
formations. One of CIL’s most useful features is that, in addition
to supporting ANSI C, it supports most of the quirks and features
of the GNU and Microsoft C dialects. CIL also has the ability to
merge a collection of .c files together, simplifying whole-program
analysis.

2.3 TinyOS
TinyOS is a component-based operating system for sensor network
nodes. Components are written in nesC [11], a C dialect that is
translated into C by the nesC compiler. This output may be pro-
cessed by cXprop before being passed to the C compiler.

Programming an application in TinyOS entails connecting com-
ponents together through narrow interfaces. While this is a conve-
nient programming model, black-box reuse often leads applications
to include dead code and data. Although the nesC compiler elimi-
nates dead functions and gcc performs intraprocedural dead code
elimination, there is still significant room for improvement based
on interprocedural analysis.

TinyOS is based on a restrictive concurrency model that is
exploited by cXprop. Most code runs in tasks that are scheduled
non-preemptively. Interrupts may preempt tasks (and each other),

but not during atomic sections. Atomic sections are implemented
by disabling interrupts. The nesC compiler emits a warning when
any global variable that can be touched by an interrupt handler is
accessed outside of an atomic section.

3. Design of cXprop
cXprop performs a context-insensitive forward dataflow analysis
parameterized by a user-supplied abstract domain. It may then
perform one of a number of source-to-source transformations. The
three transformations currently supported are conditional constant
propagation, assertion-based dynamic validation of the soundness
of the static analysis, and dynamic dataflow analysis.

cXprop is designed to analyze C while making it easy for devel-
opers to plug in new value propagation domains. cXprop is more
aggressive than traditional compiler-based analyses since it propa-
gates values through global variables and structs.

3.1 Pluggable domains
Abstract interpretation [5] provides a general framework for build-
ing and reasoning about dataflow analyses. In particular, analyses
can be shown to be sound and to terminate for abstract domains that
have the following properties:

• The domain’s abstraction and concretization functions are
monotonic and form a Galois insertion.

• The domain’s transfer functions are monotonic and soundly
approximate their corresponding concrete operations.

• The domain has no infinite descending chains.

Although analyses require domains with no infinite descending
chains, this property can be relaxed by employing a widening
function. A widening function jumps to the end of a chain after
it has been traversed some pre-determined amount.

Most of an abstract interpreter, such as fixpoint computation
and the control flow graph construction logic, is independent of the
domain. cXprop makes use of abstract interpretation theory in the
sense that domains meeting the above restrictions can be plugged
in and used to analyze C code. The domains and cXprop’s domain
interface are described in Section 5.

When describing abstract domains, we adopt the convention
commonly used in the compiler literature [8, 29]. That is, we put
the abstract value with the empty concretization set at top (>) of
the lattice and the value with the universal concretization set at the
bottom (⊥).

3.2 Dataflow representation
cXprop uses a dense dataflow representation. Conceptually, every
variable’s abstract value is stored at every program point. The dense
representation allows for several optimizations to reduce time and
space usage. First, we only maintain > states at program point gran-
ularity instead of for each variable at each program point. This al-
lows our domain implementations to have an implicit top, which
simplifies the development of transfer functions. If a program state
is > then every variable should be > at that program state. Simi-
larly, if a program state is not > then none of the variables can be
>. This optimization permits us to also store ⊥ implicitly in the
machine state: any variable appearing in a non-> program point
but not explicitly represented is ⊥.

Although these optimizations help, we expect that greater per-
formance gains will be achieved by moving to an SSA-based [7]
representation. This will be straightforward as it affects only our
core dataflow engine, leaving most of the analyzer (in particular,
the user-supplied abstract domains) unchanged.

interrupt_2interrupt_1

atomic
section

atomic
section

section

atomic
section

atomic

main

Figure 3. To analyze interrupt-driven software, cXprop adds im-
plicit flow edges to each interrupt handler, and back, at the end of
every nesC atomic section

3.3 Concurrency
Concurrent execution introduces many implicit control flow edges
into a program, making precise dataflow analysis more difficult.
cXprop makes two basic assumptions. First, concurrent flows
(threads or interrupts) must not access variables on each others’
stacks. Second, all entry points (other than main()) must be pro-
vided to cXprop on the command line.

cXprop classifies all global data as either shared or unshared.
Unshared data, which can be shown to be accessed by just one
concurrent flow, can be modeled in the standard, sequential manner.
Shared data, which may be accessed by more than one concurrent
flow, is more complicated. Data accessed by multiple TinyOS tasks
is not shared because tasks do not execute concurrently. Rather,
data is considered shared when it is accessed by multiple interrupt
handlers, or by at least one interrupt handler and at least one task.

cXprop supports three concurrency models. First, cXprop can
simply avoid modeling any shared data: it is treated as unknown
at all program points. Second, cXprop can track the status of the
processor’s interrupt mask in order to compute the program points
at which interrupts can fire. Regions of the program that run without
interference from interrupts are effectively sequential and within
them the standard sequential dataflow analysis can be applied.
cXprop’s implementation of this concurrency model is tailored to
two underlying hardware platforms: the AVR-based Mica2 motes
from Crossbow [6] and the MSP430-based TelosB motes from
Moteiv [20]. It could easily be generalized to handle code for
additional platforms.

The third concurrency model supported by cXprop is perhaps
the most interesting and useful. It is based on the following obser-
vations:

• Code executing within a TinyOS atomic section always runs to
completion.

• Code executing outside of TinyOS atomic sections is guaran-
teed not to touch any shared data except (1) variables marked
with the nesC norace attribute and (2) variables for which the
nesC compiler reports a possible race condition [11].

We exploit the TinyOS/nesC concurrency model in order to
obtain more accurate dataflow results. First, global shared variables
that are declared norace or for which nesC reports a race cannot
be modeled outside of atomic sections; cXprop forces them to ⊥
upon exit from an atomic section. Second, cXprop creates control
flow edges from the end of every atomic section to the beginning

of every interrupt handler, and from the end of every interrupt
handler back. Figure 3 illustrates this. This forces the analysis to
consider all possible interleavings of atomic sections and interrupts.
Although this concurrency model is specific to nesC/TinyOS, it
could be generalized to work for generic embedded software if we
implemented our own race condition detector.

3.4 Soundness and completeness
Precise and sound dataflow analysis of C is nearly impossible.
To see this, consider that any store into an array where the index
is indeterminate could overwrite any memory cell in the current
address space. After each such store a sound analyzer must drop
all dataflow facts. In fact, since indirect stores can overwrite saved
return addresses on the call stack, it is impossible to even build a
sound control flow graph for most C programs. cXprop deals with
C’s soundness problems in the standard way: by making additional
assumptions about program behavior.

Memory model The C language does not make any guarantees
about the relative locations of unrelated variables in memory. cX-
prop, along with all other C analysis tools that we know of, will
return invalid results for programs that access out-of-bounds mem-
ory. Since we are targeting heap-free embedded systems, cXprop
does not attempt to model the heap.

External calls Functions that are not defined inside the scope of
the analysis, such as library functions, must be treated pessimisti-
cally. For example, cXprop forces all variables on the stack that
have had their addresses taken to ⊥ on analyzing an external call.
To increase precision, we permit the user to specify a list of func-
tions that overwrite only their arguments.

External functions may call back into application code. For this
reason, any time a function pointer is passed to an external function,
any function that pointer could point to is considered called at that
point as well. Because these potential function pointer calls actually
would occur in an external function, they are called with the same
state an external function returns: all variables with address taken
are ⊥.

Floating point The embedded applications that we target primar-
ily use integers, and hence we do not model floating point opera-
tions. In fact, no current TinyOS platform has a hardware floating-
point unit. However, given a collection of abstract transfer func-
tions supporting floating point values, we could easily add support
for these to our abstract domain interface.

Inline assembly We handle gcc’s inline assembly extension. For
example, consider the following code:

asm("eor %1,%2": "=r" (t0): "r" (t1), "r" (t2));

Colons delimit the fields “code,” “outputs,” “inputs,” and “clob-
bers” (clobbers is optional and is absent in this example). The only
field that concerns cXprop is “outputs”—a list of C variables to
which the compiler should arrange for the results of the assembly
code to be written. cXprop handles this by forcing these variables
to ⊥. In this example t0 would be killed.

Order of evaluation The C standard permits compiler writers
to choose the order of evaluation of arguments to function calls.
Similarly, subexpressions of a larger expression can be evaluated
in any order. A sound analysis of side-effecting subexpressions or
function arguments would take into account all possible orders of
evaluation. Because this is both pessimistic and computationally
expensive, we instead take the approach of emulating gcc’s order
of evaluation. Of course, well-behaved C programs do not depend
on a particular order of evaluation.

cXprop Core

Concurrency Analyzer

Symbolic ExecutorCallgraph

Alias Analyzer

ptranal CIL extension

CIL core

Dynamic Transformer

Dynamic Abstract Domain

Static Abstract Domain

CIL

User

cXprop

Figure 4. cXprop, its internal structure, and its relationship with
CIL and abstract domains

Order of evaluation of function arguments is only a problem
when the original program order must be preserved. Since cXprop
is a source-to-source transformer, CIL chooses an order of evalua-
tion by introducing temporary variables. The resulting code will be
correctly compiled by any C compiler because it no longer gives the
compiler the freedom to choose an order of evaluation. The order
of evaluation of subexpressions is more difficult to control since it
would require the introduction of a very large number of temporary
variables. Neither CIL nor cXprop does this.

4. Implementation
cXprop is an abstract interpreter. Figure 4 describes the structure
of cXprop and its relationship with CIL and with a given abstract
domain. Lines in the diagram represent well-defined functional
interfaces; modules can be easily replaced. The cXprop core:

• preprocesses CIL data structures (for example to assign a
unique identifier to each program variable),

• performs a topological sort of the program points,
• performs the fixed-point computation,
• transforms the analyzed program, and
• pretty-prints the transformed program and some statistics.

The cXprop core uses information from five other modules. An
alias module uses CIL’s pointer analysis extension to compute func-
tion pointer destinations. cXprop’s callgraph module computes a
whole-program callgraph, including edges corresponding to func-
tion pointers, and gathers other function-level information. Our
three concurrency models operate in the concurrency analyzer and
interact with the cXprop core through a narrow interface. This in-
terface will allow us to investigate more complex and precise anal-
yses as they are developed. The dynamic transformer uses domain
information from an abstract domain specification to model vari-
ables dynamically. The final module that the core uses is a symbolic
executor. It manages abstract values in the program state and per-
forms operations on them. To do this it calls out to the user-supplied
abstract domain using our abstract domain interface. The symbolic
executor also keeps track of points-to sets.

4.1 Program transformations
cXprop can perform three different program transformations. The
first replaces constants and eliminates dead code. In the second,
assert statements are added that abort execution if “dead” code
is executed or if a variable contains a value outside of its analyzed
abstract value. For example, if a variable z has been shown to have
the interval value [2..15] at a program point, cXprop would insert
the following code:

assert (z >= 2 && z <= 15);

Our experience has been that developing correct abstract do-
mains is difficult without this kind of aggressive safety checking.

In the final transformation the original program is changed to
gather dynamic dataflow information. When this program runs,
every concrete value stored to a variable is lifted into the current
abstract domain and merged with a stored abstract value for that
variable and program point. Let xd be the dynamically computed
abstract value for variable x at a program point, xs be the statically
computed abstract value at that point, and xi be the uncomputable
“ideal” abstract value that is the largest abstract value that soundly
approximates the value of the variable over all possible executions.
As long as cXprop is correct, we are guaranteed that the following
lattice inequalities hold:

xd w xi w xs

We exploited these relations to validate cXprop.

4.2 Validation
We frequently stress-tested cXprop using a random program gen-
erator [27]. Our tool successfully analyzes and transforms the
vast majority of these randomly generated programs. cXprop does
change the behavior of some randomly generated programs, but
only those that rely on undefined behavior, for example by falling
out of a function that is supposed to return a value or by relying on
a particular order of evaluation of subexpressions.

Debugging cXprop was greatly simplified by Delta [30], an
implementation of the Delta debugging algorithm [31]. This tool
mechanically reduces the size of a program while preserving a
user-defined “interestingness” criterion. We defined a program to
be interesting when it compiles correctly and also causes cXprop
operating in assert mode to reach an assertion failure.

5. Abstract Domains
At compile time, cXprop is configured with an abstract domain.
This section describes the interface for pluggable domains and the
five domains that we have implemented.

5.1 The abstract domain interface
Domains are written in OCaml [2] and can be written with little or
no knowledge of CIL. In addition to 32 transfer functions corre-
sponding to low-level C operations such as casts, comparisons, and
arithmetic operators, the interface has 11 utility functions for lift-
ing a concrete value into the abstract domain, for concretizing an
abstract value, for computing the meet of two abstract values, etc.
Included with the 32 transfer functions are six backwards functions
that can increase analysis precision by restricting abstract values in
code that is executed conditionally.

Our experience is that implementing domains through this in-
terface is difficult only when the domain itself it difficult to think
about. One of the authors implemented a collection of transfer func-
tions for the parity domain in under an hour, at which point the new
domain could be used to analyze programs such as those in the
SPEC2000 suite.

let mult d1 d2 tp =
match d1, d2 with

Constant(z), _
| _, Constant(z)

when (isZero z) -> Constant (zero)
| Constant(z), other
| other, Constant(z)

when (isInteger z = Some Int64.one) -> other
| Bottom, _
| _ , Bottom -> Bottom
| Constant(e1), Constant(e2) ->

conc_to_abs (BinOp(Mult,e1,e2,tp))

Figure 9. Transfer function for integer multiplication for the con-
stant propagation domain

The design of our domain interface, however, restricts the kinds
of domains that can be plugged in: domains must “look like”
constant propagation. For example, all ALU operations are visible
to the abstract domain, but definitions and uses of variables are
not. Also, we do not support relational abstract domains such as
octagons [19].

5.2 Constants
The lattice for constant propagation is shown on the left side of
Figure 1. The transfer functions for this domain were straightfor-
ward to implement since many of them could exploit CIL’s existing
constant-folding routines. Each transfer function in this domain has
three basic parts:

• optionally implement a few special cases to increase precision,
• handle ⊥ values in the inputs, and
• call out to CIL’s constant folder if both inputs are constant.

The transfer function for multiply in Figure 9 is typical.

5.3 Value-set
In the value-set domain, an abstract value is a set of arbitrary
concrete values up to some user-defined maximum size. A value-set
lattice is shown in Figure 5.

Given CIL’s constant folder, a brute-force implementation of
value-set is not too difficult. We constructed a higher-order function
apply binop that takes as input two abstract values (each repre-
sented by an OCaml set) and a function for applying the concrete
operation (e.g., addition) to a pair of concrete values. apply binop
performs a two-dimensional fold on the input sets, using the con-
crete operation as the folding function. The results of the concrete
operations are unioned together into a set. If the result set’s car-
dinality is larger than the maximum, ⊥ is returned, otherwise the
set is returned. The quadratic nature of this implementation implies
that large value-sets will result in very slow analysis. In practice we
have observed reasonable analysis speed with value-set sizes up to
about 32.

5.4 Parity
The parity domain is easy to understand and not powerful enough
to be useful other than as an example. The parity lattice is shown in
Figure 6. One of the authors implemented the transfer functions for
this domain in under an hour. Figure 10 gives the addition transfer
function.

5.5 Bitwise
In the bitwise domain, shown in Figure 7, abstract values are vec-
tors of three-valued bits: each bit is zero, one, or unknown. In con-
trast with the constant propagation and value-set domains, bitwise

let plusa (d1:t) (d2:t) tp =
match d1, d2 with

Bottom, _
| _ , Bottom -> Bottom
| Even, Even
| Odd, Odd -> Even
| Even, Odd
| Odd, Even -> Odd

Figure 10. Addition in the parity domain

transfer functions cannot be easily implemented in terms of CIL’s
constant folder. Our previous experience with the bitwise domain
had convinced us that hand-written transfer functions are a mistake:
they are tedious and error-prone to implement unless precision is
punted on. Consequently the bitwise transfer functions used by cX-
prop were automatically derived using a tool chain that we recently
developed [23]. These transfer functions are correct by construction
and for most operations they are maximally precise within the con-
straints of the domain. Given these functions, just a few remaining
operations such as casts and a join operator had to be implemented
by hand.

5.6 Interval
The interval domain, shown in Figure 8, is a commonly used value
propagation domain. Our interval transfer functions are automat-
ically derived by the same tool that produces the bitwise transfer
functions. They are also maximally precise, and, unlike many in-
terval implementations, they are correct in the presence of integer
overflow. We currently support only unsigned intervals. This do-
main can be used to soundly analyze signed integers, but it cannot
precisely analyze variables that may be both negative and positive.
Since the interval lattice has height exponential in the bitwidth of
the datatype, the fixpoint computation can take a long time. To ac-
celerate termination, we widen intervals above a user-defined width
to bottom.

6. Evaluation
We use the following 20 benchmarks to evaluate cXprop.

Miscellaneous applications:

• rc4 — cryptography
• dhrystone — a standard timing benchmark
• yacr2 — yet another channel router

SPEC 2000 [14] applications:

• gzip — compression
• mcf — combinatorial optimization
• bzip2 — compression

MiBench applications [13]:

• basicmath — mathematical calculations
• patricia — a Patricia trie
• FFT — Fast Fourier Transform

TinyOS 1.x applications:

• blink — 1Hz timer on red LED
• cnttoledsandrfm — 4Hz timer on LEDs and network
• hfs — high frequency sampling
• rfmtoleds — network data to LEDs
• surge — multi-hop ad hoc routing

{1,2}{0,3} {1,3} {2,3}{0,2}{0,1}

{0} {1} {2} {3}

{0,1,3}{0,1,2} {0,2,3} {1,2,3}

{ }

{0,1,2,3} ⊥

⊥

Figure 5. An example lattice for the value-set
domain. The concrete domain in this example is
limited to the integers from zero to three

⊥

⊥

Even Odd

Figure 6.
The parity
lattice

⊥1⊥1⊥0

⊥⊥

0 ⊥

⊥⊥

0100 10 11

Figure 7. The two-bit bitwise
lattice

[0,1] [1,2] [2,3]

[0,2] [1,3]

[0,3]

[0,0] [1,1] [2,2] [3,3]

⊥

⊥

[]

Figure 8. The two-bit unsigned
interval lattice

• taskapp — Tiny Application Sensor Kit [1]
• acoustic — acoustic localization [15]
• agilla — mobile agent middleware [10]
• ecc — elliptic curve cryptography [17]

TinyOS 2.x [16] alpha-quality applications:

• null — empty skeleton application
• basestation — bridge between serial and radio

We used a maximum set size of 16 for the value-set domain
and a maximum interval size of 50 for the interval domain. These
limitations are arbitrary and may be increased or decreased to
match performance criteria for an analysis. We also limited the
constant and value-set domains to gather only statistics for integral
types in order to compare with our implementation of the interval
and bitwise domains. The existing transfer functions we used for
the interval and bitwise domains did not handle anything other than
integral types. This is not a fundamental limitation of the domains,
but merely a consequence of our implementation. Implementing
transfer functions in these domains is tedious and error-prone, so
using an existing correct implementation was reasonable.

In the rest of this section, graphs present the benchmarks in
order of increasing average analysis runtime for all five domains.
We omit results for the parity domain as it never returns useful
results.

6.1 A domain-independent precision metric
Pluggable domains make it tricky to measure cXprop’s analysis
precision in a generic way. We developed a metric inspired by infor-
mation theory: the fraction of information known about a program.
This metric supports apples-to-apples comparisons of analysis pre-
cision across multiple abstract domains.

Each program variable has a fixed number of possible values,
defined by its underlying bitwidth. For example, on the x86 archi-
tecture an int is 32 bits and can represent 232 different values.
A value propagation analysis, such as cXprop, attempts to restrict
the number of possible values for each variable. For example, if an
interval-domain analysis determines that 2 ≤ y ≤ 9 and y is an
int, then it knows y has eight possible values and 232 − 8 impos-
sible values. The number of possible values for an abstract value is
simply the cardinality of its concretization set.

The unit of measurement for information known is the infor-
mation bit. We define the information known about a variable as
follows:

of information bits def
= log

2
j − log

2
k

where
j = total # of representable values
k = # of possible values

In the example above, 32 − 3 = 29 information bits are known
about y. If an analysis can show that a variable is constant, it has
only one possible value, and therefore all of its bits are known. If an
analysis can only conclude that a variable is ⊥, then the number of
possible values is the same as the number of natively representable
values, and consequently zero bits of information are known.

The distinction between information bits and physical bits is
important. First, information bits can take non-integer values. Sec-
ond, information bits need not correspond directly to physical bits.
For example, seven bits of information are known about an eight-
bit integer if, in all executions, it can only hold the values 0xaa or
0xbb.

The definition above makes it possible to compute the amount
of information known about a variable at a program point. Next
we extend this metric to cover entire programs. The metric that
we have chosen is inspired by SSA [7]; it examines every static
assignment to a variable. We define the total information known
about a program to be the sum of the information known about each
variable after an assignment, divided by the sum of the information
representable by each variable that is assigned. We illustrate total
information known using the following code:

1: int foo (int x) {
2: x++;
3: if (x) {
4: x=0;
5: } else {
6: x=1;
7: }
8: return x;
9: }

Function foo contains three assignments, at lines two, four and
six. Suppose that x is ⊥ coming into the function. The assignment
at line two also gives ⊥, contributing zero bits of information. The
assignments at lines four and six are constant, contributing 32 bits
of information each. The total information known for this function
is then 64/96 information bits, or 67%.

6.2 Precision evaluation
Figure 11 compares the total information known for various bench-
marks when analyzed using different abstract domains. Several in-
teresting features stand out in the graph. First, none of the domains
is uniformly better than the others. For hfs and taskapp the bit-
wise domain obtains the most information, while for blink and
acoustic the value-set domain leads to more information. Sec-

Constant Domain
Value Set Domain
Bitwise Domain
Interval Domain
Combined Domain

 0%

 20%

 40%

 60%

 80%

 100%

av
er

ag
e

ta
sk

ap
p

ag
ill

a

ac
ou

st
ic

su
rg

e

hf
s

ec
c

ba
se

st
at

io
n

cn
tto

le
ds

an
dr

fm

gz
ip

rf
m

to
le

ds

bz
ip

2

ya
cr

2

m
cf

bl
in

k

FF
T

dh
ry

st
on

e

nu
ll

ba
si

cm
at

h

pa
tr

ic
iarc
4

In
fo

rm
at

io
n

kn
ow

n

Figure 11. Different abstract domains compute different information about the test programs

ond, the domains do not perform uniformly across all programs.
Although the “average” bar shows that the interval domain collects
less information for the test suite as a whole, on two of the twenty
benchmarks it is the best domain. It is important to have pluggable
domains so that the domain most suited for a particular application
may be used.

One question that we had was: When different domains per-
form comparably, are they “learning” the same information about
a program? To answer this question we implemented a “combined
domain” that is always at least as precise as any of the bitwise, in-
terval, and value set domains. The combined domain basically in-
tersects the concretization sets of each of the three abstract values
that cXprop computes for a variable at a program point. When a bar
for the combined domain in Figure 11 is higher than the other bars,
it means that the three domains are learning different facts about
the program.

Of course, even an ideal dataflow analyzer cannot know 100%
of the information for a typical program. Since the upper bound
on analysis precision is not computable, we performed a dynamic
dataflow analysis by instrumenting our benchmark programs. The
true upper bound of analysis precision must then be somewhere be-
tween the static and dynamic measurements. This data is presented
in Figure 12. The information known dynamically is typically a
combination of multiple runs of the benchmarks with different in-
puts.

There are several reasons for the gap between the static and
the dynamic information. The biggest source of information loss
is cXprop’s context insensitivity. We are currently investigating
various potential solutions to this problem. The next largest source
of imprecision is the inherent limitations of our abstract domains
and imprecision in hand-written transfer functions. Our imprecise
modeling of arrays also causes some precision loss.

We do not have dynamic program information for TinyOS ap-
plications because the overhead of the dynamic dataflow instru-
mentation is prohibitive on the resource-constrained sensor net-
work nodes. We do have some preliminary results—only for global
variables—for TinyOS applications that we generated by extending
the Avrora [26] cycle-accurate simulator. We do not present results
from these, but we have used them to test that cXprop is sound
when used to analyze TinyOS applications.

6.3 Analysis time
Some cXprop analysis times are presented in Figure 13. The choice
of abstract domain influences analysis time in two ways. The value-
set, bitwise, and interval lattices are all much taller than the con-
stant or parity domains. It therefore takes longer for values to de-

benchmark (loc) constant value-set bitwise interval
blink (1852) 0.29 0.78 0.75 0.82
rfmtoleds (7785) 6.88 46.9 54.9 95.2
surge (10653) 18.1 138 172 299
acoustic (13804) 32.5 193 253 360
agilla (34414) 786 2990 2770 5570

Figure 13. Time in seconds for analysis to complete for some
benchmarks

scend the lattice to their fixpoints. The more complicated domains
also have more complicated transfer functions, which are slower.

Because of these dependencies, the time it takes cXprop to run
varies from almost nothing for null to over an hour and a half
for taskapp. Both taskapp and agilla have significantly longer
analysis times than the rest of our benchmarks. cXprop’s perfor-
mance is limited by our choice of a dense dataflow representation,
by the fact that we model global variables (which necessitates push-
ing around very large machine states for some programs), by our
concurrency model for TinyOS (which adds many implicit flow
edges), and by our decision to model struct fields. Also, our im-
plementation is a research prototype; its performance has not yet
been tuned.

6.4 Reducing code size of TinyOS applications
Figure 14 presents the results of using cXprop’s value-set domain
and atomicity-aware concurrency model to eliminate dead code in
some TinyOS applications. The average code size reduction for the
value-set domain is 9.2%. We believe these results are good, given
the following factors. First, nesC already eliminates dead func-
tions and gcc already performs intraprocedural dead-code elimina-
tion. gcc’s pass is particularly effective since TinyOS applications
are aggressively inlined, eliminating around 90% of static function
calls in many applications. The benefit from cXprop comes from
residual opportunities for interprocedural analysis. Second, minor
code transformations implemented by CIL, such as the introduction
of temporary variables, handicap our efforts by increasing the size
of the generated code by several percent. We have implemented a
number of peephole optimizations in CIL to undo these transforma-
tions when CIL pretty-prints a C file. These partially offset CIL’s
code size penalty.

6.5 Finding limited-bitwidth data in TinyOS applications
Some experiments that we performed using a simulator for TinyOS
nodes [26] indicated that on average, only 1–2 bits of each byte
allocated by a TinyOS program are actually used. For example,

Static Constant Domain
Dynamic Constant Domain
Static Value Set Domain
Dynamic Value Set Domain
Static Bitwise Domain
Dynamic Bitwise Domain
Static Interval Domain
Dynamic Interval Domain

 0%

 20%

 40%

 60%

 80%

 100%

averagegzipbzip2yacr2mcfFFTdhrystonebasicmathpatriciarc4

In
fo

rm
at

io
n

kn
ow

n

Figure 12. Comparison of static and dynamic information known

Constant Domain
Value Set Domain
Bitwise Domain
Interval Domain

 50%

 60%

 70%

 80%

 90%

 100%

 110%

averagetaskappagillaacousticsurgehfseccbasestationcnttoledsandrfmrfmtoledsblinknull

C
od

e
si

ze
 a

s
a

pe
rc

en
ta

ge
 o

f o
ri

gi
na

l n
es

C
 c

od
e

si
ze

Figure 14. Code size of TinyOS applications after using cXprop to perform interprocedural dead code elimination

many bytes are used to store flag variables, state variables, or
limited-range counters. We wanted to see if we could statically
identify this limited-bitwidth global data. A possible use for this
information would be to perform RAM compression.

Our results are shown in Figure 15. cXprop discovers that an
average of 8.2% of bits allocated to global variables are unnec-
essary. Unfortunately, much of the poorly-used RAM in TinyOS
applications is difficult or impossible to identify statically. For ex-
ample, many applications allocate too many buffers for network
data, put data only into the first part of allocated packet buffers, or
receive limited-bitwidth data over the network. These unused bytes
can only be detected if the behavior of the entire sensor network is
considered—this is well beyond the scope of our work.

7. Related Work
A vast amount of research on dataflow analysis exists; we therefore
discuss and cite only the most related work here. Generalized
constant propagation [28] extends constant propagation to handle
intervals. Our “conditional X propagation” can be considered to be
a generalization of generalized constant propagation.

PAG [18] automatically generates a dataflow analyzer based on
inputs written in domain-specific languages describing the domain
lattice, the transfer functions, a language-describing grammar, and
a fixpoint solution method. cXprop is far less configurable, provid-
ing only pluggable abstract domains. However, as far as we know,
cXprop already supports a richer variety of value-propagation do-
mains and concurrency models than does PAG. Also, while the
PAG research evaluated a number of different fixpoint algorithms,
we have focused on comparing the behavior of different value prop-
agation domains.

An alternative and less automatic approach than PAG is to
provide a set of composable pieces in a library [8]. This library

uses well-defined interfaces to allow the user to compose transfer
functions, lattices, flow graphs, and a fixpoint solver. Dwyer and
Clarke present a more abstract and theoretical tool, whereas cXprop
pragmatically focuses on analyzing embedded software written in
C.

Our strategy for analyzing global variables in the presence of
interrupts and nesC atomic sections is novel. Previous work on
dataflow analysis for concurrent software has focused on thread-
based systems [9, 24].

Although our “information bits” evaluation metric for cXprop
is novel, we were inspired by the evaluation of the Bitwise com-
piler [25], which compares static interval domain results with dy-
namically gathered dataflow information. Methods also exist for
measuring the precision of transfer functions [22], but this did not
seem to be amenable to the cross-domain comparisons that we
wanted to make.

8. Future Work
Improving analysis speed Our current version of cXprop uses a
dense representation for variable assignment. Moving to SSA or
FSSA should significantly reduce the time it takes for the anal-
ysis to reach a fixpoint. This is consistent with Wegman et al.’s
results [29] and FSSA research [3]. Also, cXprop is currently un-
tuned; we expect that significant speedups could be obtained with
a little hard work and a profiler. Finally, our most precise concur-
rency model simulates the firing of all interrupts at the end of every
atomic section. By using the results of an alias analysis to compute
the set of interrupts that could possibly interfere with the global
variables manipulated by a given atomic section, we expect to be
able to avoid modeling the firing of some interrupts.

Improving precision The combined abstract domain that we
described in Section 6.2 collected results from various domains

Constant Domain
Value Set Domain
Bitwise Domain
Interval Domain

 50%

 55%

 60%

 65%

 70%

 75%

 80%

 85%

 90%

 95%

 100%

averagetaskappagillaacousticsurgehfseccbasestationcnttoledsandrfmrfmtoledsblinknull

Po
te

nt
ia

l d
at

a
si

ze
 a

s
a

pe
rc

en
ta

ge
 o

f o
ri

gi
na

l d
at

a
si

ze

Figure 15. Percentage of bits allocated to global variables that cXprop cannot show to be unnecessary

only after analysis in each domain had reached a fixpoint. On the
other hand, domain products such as the reduced product [4] and
Granger’s product [12]. exploit synergies between multiple do-
mains during the course of the analysis, potentially increasing pre-
cision.

cXprop currently models arrays in a rudimentary way. Further-
more, there is room for improvement in our treatment of variables
killed when a function is called. Finally, we expect that further
improvements to our concurrency models will be able to increase
analysis precision.

Improving expressiveness While our abstract domain interface
supports a wide variety of domains, it currently does not support
backwards analyses or relational domains such as octagons [19].
We plan to generalize our interface to support these.

Finding more nails to hit cXprop is a general-purpose value
propagation engine that has more applications to improving embed-
ded software than we have yet explored. For example, we believe
that dataflow analysis can be used to infer causality and sequenc-
ing relationships between interrupt handlers. This information will
support reducing the size of the state space that program-checking
tools need to explore when verifying safety and liveness properties
of interrupt-driven embedded applications.

9. Conclusions
cXprop is a tool for performing analysis and transformation of C
programs that provides a standard, convenient interface for plug-
ging in user-defined abstract value propagation domains. Pluggable
domains are useful for two reasons. First, they permit a suitable
domain to be used to analyze a particular program. Second, they
facilitate experimentation with new abstract domains without the
significant overhead of creating an analyzer for C. We have im-
plemented and evaluated five abstract domains: parity, constants,
intervals, bitwise, and value-sets.

We applied cXprop to TinyOS applications for the Mica2 plat-
form. To improve analysis precision, we created a novel concur-
rency model that exploits nesC’s atomic sections and race detec-
tion in order to efficiently analyze the values of global variables in
the presence of interrupts. Our tool reduces application code size
by 9.2% on average. It is also capable of finding limited-bitwidth
global variables that make poor use of RAM.

cXprop is open-source software and may be downloaded from
http://www.cs.utah.edu/~coop/research/cxprop/.

Acknowledgments
We thank the CIL developers for their help. We also thank Eric
Eide, Alastair Reid, and Ben Titzer for their helpful comments on
drafts of this paper. This work is supported by National Science
Foundation CAREER Award CNS-0448047.

References
[1] Phil Buonadonna, Joseph Hellerstein, Wei Hong, David Gay, and

Samuel Madden. TASK: Sensor network in a box. In Proc. of the
European Workshop on Wireless Sensor Networks, Istanbul, Turkey,
2005.

[2] Caml language Web site. http://caml.inria.fr/.

[3] Jong-Deok Choi, R. Cytron, and J. Ferrante. On the efficient
engineering of ambitious program analysis. IEEE Trans. Softw.
Eng., 20(2):105–114, 1994.

[4] Michael Codish, Anne Mulkers, Maurice Bruynooghe, Maria Garcia
de la Banda, and Manuel Hermenegildo. Improving abstract
interpretations by combining domains. ACM Transactions on
Programming Languages and Systems, 17(1):28–44, 1995.

[5] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proc. of the 4th Symp. on Principles of
Programming Languages (POPL), pages 238–252, Los Angeles, CA,
January 1977.

[6] Crossbow Technology, Inc. http://xbow.com.

[7] Ron Cytron, Jeanne Ferrante, Barry Rosen, Mark Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, October 1991.

[8] Matthew B. Dwyer and Lori A. Clarke. A flexible architecture
for building data flow analyzers. In Proc. of the 18th Intl. Conf.
on Software Engineering (ICSE), pages 554–564, Berlin, Germany,
March 1996.

[9] Matthew B. Dwyer, Lori A. Clarke, Jamieson M. Cobleigh, and Gleb
Naumovich. Flow analysis for verifying properties of concurrent
software systems. In ACM Transactions on Software Engineering
and Methodology (TOSEM), pages 359–430, October 2004.

[10] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Mobile
agent middleware for sensor networks: An application case study.
In Proc. of the 4th Intl. Conf. on Information Processing in Sensor
Networks (IPSN 05), pages 382–387, Los Angeles, CA, April 2005.

[11] David Gay, Phil Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesC language: A holistic approach to
networked embedded systems. In Proc. of the Conf. on Programming
Language Design and Implementation (PLDI), pages 1–11, San
Diego, CA, June 2003.

[12] Philippe Granger. Improving the results of static analyses of programs
by locally decreasing iterations. In Proc. of the Conf. on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS),
pages 68–79, New Delhi, India, December 1992.

[13] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M.
Austin, Trevor Mudge, and Richard B. Brown. MiBench: A free,
commercially representative embedded benchmark suite. In Proc. of
Workshop on Workload Characterization, pages 3–14, Austin, TX,
December 2001. http://www.eecs.umich.edu/mibench.

[14] John L. Henning. SPEC CPU2000: Measuring CPU performance in
the new millennium. IEEE Computer, 33(7), July 2000.

[15] Ákos Lédeczi, András Nádas, Péter Völgyesi, György Balogh,
Branislav Kusy, János Sallai, Gábor Pap, Sebestyén Dóra, Károly
Molnár, Miklós Maróti, and Gyula Simon. Countersniper system for
urban warfare. ACM Trans. Sen. Netw., 1(2):153–177, November
2005.

[16] Philip Levis, David Gay, Vlado Handziski, Jan-Hinrich Hauer, Ben
Greenstein, Martin Turon, Jonathan Hui, Kevin Klues, Cory Sharp,
Robert Szewczyk, Joe Polastre, Philip Buonadonna, Lama Nachman,
Gilman Tolle, David Culler, and Adam Wolisz. T2: A Second
Generation OS For Embedded Sensor Networks. Technical Report
TKN-05-007, Telecommunication Network Group, Technische
Universität Berlin, November 2005.

[17] David Malan, Matt Welsh, and Michael Smith. A Public-Key
Infrastructure for Key Distribution in TinyOS Based on Elliptic
Curve Cryptography. In Proc. of the Intl. Conf. on Sensor and Ad hoc
Communications and Networks (SECON), Santa Clara, CA, October
2004.

[18] Florian Martin. PAG—An efficient program analyzer generator.
International Journal on Software Tools for Technology Transfer,
2(1):46–67, 1998.

[19] Antoine Miné. The Octagon abstract domain. In Proc. of the 8th
Working Conf. on Reverse Engineering (WCRE), Stuttgart, Germany,
October 2001.

[20] Moteiv Corporation. http://www.moteiv.com.

[21] George C. Necula, Scott McPeak, S. P. Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation
of C programs. In Proc. of the Intl. Conf. on Compiler Construction
(CC), pages 213–228, Grenoble, France, April 2002.

[22] Alessandra Di Pierro and Herbert Wiklicky. Measuring the precision
of abstract interpretations. In Proc. of the Intl. Workshop on Logic
Based Program Synthesis and Transformation (LOPSTR), pages 147–
164, London, UK, July 2001. Springer-Verlag.

[23] John Regehr and Usit Duongsaa. Deriving abstract transfer functions
for analyzing embedded software. In Proc. of the 2005 Conf. on
Languages, Compilers, and Tools for Embedded Systems (LCTES),
Ottawa, Canada, June 2006.

[24] Martin C. Rinard. Analysis of multithreaded programs. In Proc. of
the 8th Static Analysis Symposium, Paris, France, July 2001.

[25] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bitwidth
analysis with application to silicon compilation. In Proc. of the Conf.
on Programming Language Design and Implementation (PLDI),
pages 108–120, Vancouver, Canada, June 2000.

[26] Ben L. Titzer, Daniel Lee, and Jens Palsberg. Avrora: Scalable sensor
network simulation with precise timing. In Proc. of the 4th Intl. Conf.
on Information Processing in Sensor Networks (IPSN), Los Angeles,
CA, April 2005.

[27] Bryan Turner. RandomProgramGenerator, 2005. http://www.
fractalscape.org/RandomProgramGenerator.

[28] Clark Verbrugge, Phong Co, and Laurie Hendren. Generalized
constant propagation a study in C. In Proc. of the Intl. Conf. on
Compiler Construction (CC), Linkoping, Sweden, April 1996.

[29] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with
conditional branches. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(2):181–210, April 1991.

[30] Daniel S. Wilkerson. Delta, 2003. http://delta.tigris.org/.

[31] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software Engineering,
28(2):183–200, February 2002.

