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ABSTRACT

Over the previous decade, deep neural networks (DNNs) have become so powerful

and versatile that they are applied across a variety of domains ranging from autonomous

driving, web search, to drug discovery. With such broad usage it is imperative to develop

hardware and software techniques to make DNNs energy efficient, and thus sustainable.

Recent studies have shown that CO2 emissions from training modern deep neural net-

works is non-trivial. This demands an emphasis on energy efficiency not only for infer-

ence, but also for training.

We explore two contrasting ideas both aimed towards reducing energy for training.

First, we conduct an exhaustive design space exploration of different partitioning and

pipelining strategies used to distribute DNN training. With insights gained from the

design space exploration, we propose Cafine - a criticality-aware fine-grained pipelining

technique. Cafine first profiles and groups DNN layers, and then classifies layer-groups

based on their criticality to throughput. It then applies temporal pipelining to critical layer-

groups and spatial pipelining to non-critical layer-groups to reduce energy consumption.

Though Cafine makes training more efficient, the improvement is only incremental. In

order to achieve significant strides, training needs something transformational and has to

be approached from a different angle.

We hypothesize that using spiking neural networks (SNNs) can improve training ef-

ficiency. SNNs are built with spiking neurons as opposed to digital neurons used in

conventional artificial neural networks (ANNs). SNNs support STDP (Spike Time De-

pendent Plasticity), an online unsupervised training technique. SNNs also encode data as

1-bit spikes and process inputs with addition operations, which makes them less complex

than ANNs. These low-energy features combined with the compatibility to online unsu-

pervised learning algorithms makes SNNs a viable choice for designing energy efficient

DNNs. Before we can reap these benefits, SNNs have two main challenges that needs

to be addressed – low efficiency accelerators and low accuracy. Existing commercial SNN



accelerators have throughput/efficiency that is 2 orders of magnitude lower than commer-

cial ANN accelerators. Moreover accuracy achieved by STDP-trained SNNs are behind

that of ANNs trained using stochastic gradient descent. Addressing these challenges is

vital so we can move towards DNNs trained in an efficient and unsupervised manner. In

this thesis, we tackle the challenge of efficient SNN acceleration. We first propose INXS,

an analog accelerator that provides orders of magnitude energy efficiency improvement

compared to the IBM TrueNorth. Analog accelerators however, continue to be a challenge

for real-world deployment. So we next investigate dataflows and architectures for a digital

SNN accelerator. To better understand the nature of SNNs and ANNs, we conduct an

elaborate study across diverse network topologies, sparsity ratio, and resolution. Based on

the observations, we propose SpinalFlow, a digital accelerator that establishes the potential

of SNNs and scenarios where SNNs can achieve better efficiency than ANNs.

iv
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CHAPTER 1

INTRODUCTION

A fundamental concept driving the success of machine learning is deep neural net-

works. With the inception of AlexNet [68], DNNs have burst into the machine learning

scene, and are the pivotal technique used in applications spanning image classification,

object detection, translation, language modelling, etc. Due to its wide-spread use, DNNs

are being deployed across a plethora of platforms, with diverse performance, power, and

area constraints. A few examples include, Nvidia NVDLA [114] used in IoT devices, Tesla

FSD [126] used in automobiles, and Google TPU [96] used in data centers.

With such wide-spread use, DNN models are trained/updated at a very high fre-

quency. For example, over a period of 18 months Facebook saw a 7× increase in jobs

submitted for distributed training in their data centers [93]. DNNs are trained offline,

typically in a data center over millions of samples. Depending on the model size and

resources available, training a DNN could take from a few hours to weeks/months. A 2019

report estimated that training an NLP (Natural Language Processing) model using neural

architecture search [144] emits more than 300× the CO2 emitted by a flight between New

York City and San Francisco [119]. Thus, improving training efficiency is more important

than ever.

Prior works have taken varied paths to improve training efficiency. This include tech-

niques like quantization [86, 130], specialized systems/architectures [12, 79, 128], compres-

sion/sparsity [11, 52, 76], hybrid partitioning [53, 54, 67, 117, 118], pipeline-parallel train-

ing [43, 48, 136], etc. In this thesis, we first explore heterogeneous partitioning/pipelining

strategies. Within a device, a DNN can be executed in two ways: 1. temporal pipelin-

ing, where layers are executed one after the other with each layer using all the avail-

able resources, and 2. spatial pipelining, where layers in a DNN share the available re-

sources and execute in a pipelined fashion. Also, there are many ways to partition lay-
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ers within and across devices. There isn’t a clear understanding of how these different

partitioning and pipelining techniques jointly affect training performance. We first con-

duct a thorough analysis of different pipelining/partitioning strategies on different DNNs,

batch sizes, and cluster sizes. Building upon the observations of the analysis, we propose

Cafine, a criticality-aware fine-grained pipelining technique. Cafine first profiles layers

of a DNN and groups them such that workload across groups is balanced to facilitate

efficient pipeline-parallel training. Next, if a layer-group is critical to training throughput,

Cafine schedules it to be executed in a temporal pipeline. If a layer-group is not critical,

it gets scheduled to be executed in a spatial pipeline. Cafine also determines the optimal

dimension(s) across which each layer has to be partitioned. Thus, by choosing the optimal

partitioning/pipelining strategy, Cafine reduces DNN training energy without compro-

mising performance/accuracy.

Though techniques to improve traditional DNN training methods are necessary, the

improvements they provide have either plateaued or have become incremental. We next

explore something that has the potential to provide dramatic advancements – SNNs. SNNs

can be trained with STDP (Spike Time Dependent Plasticity), a biologically plausible unsu-

pervised online learning process [34]. This makes SNNs a good choice especially in cases

where labelled data is hard to get and where continual learning is required. Furthermore,

SNNs with Linear Leaky Integrate and Fire neurons (LLIF) can be a cheaper alternative to

traditional neural networks. This is due to two key features: 1. representing information as

1-bit spikes, and 2. processing non-zero inputs with additions (instead of multiplications).

But currently SNNs suffer from two major obstacles: 1. less efficient and low throughput

accelerators, and 2. low accuracy in complex ML tasks. In this thesis we focus on the first

challenge – improving the performance and efficiency of SNN accelerators, by introducing

novel dataflow and architecture.

There have been several works aimed at accelerating SNNs [4, 28, 62], however, their

flexibility, performance and efficiency have been limited. There also exists a gap in under-

standing of the potential and efficiency offered by SNNs. We conduct a comprehensive

comparison of SNNs and ANNs across a variety of network architectures, dataflows and

activation sparsity. We also design both digital and analog SNN accelerators, that improve

SNN energy efficiency significantly compared to IBM TrueNorth. Finally, we quantify



3

scenarios (resolution, sparsity, network topology) where SNNs prove to be an efficient

alternative to ANNs.

1.1 Dissertation Overview
1.1.1 Dissertation Statement

We hypothesize that the training efficiency of deep neural networks can be improved by (1)

heterogeneous execution strategies to distribute training, (2) creating competitive implementations

for spiking neural networks that provide high sparsity at low resolution and a more localized energy-

efficient training algorithm . We test this hypothesis in the context of a criticality-aware pipeline-

parallel training technique, an in-situ analog SNN accelerator, and a digital SNN accelerator.

1.1.2 Criticality-Aware Pipeline-Parallel Distributed Training

Deep neural networks (DNNs) are typically trained on clusters of GPUs/TPUs for

days, while consuming significant amounts of energy. In order to distribute training across

a cluster of worker nodes, there are many choices regarding how the workload is pipelined

and partitioned. Each of these choices has a direct impact on both the performance and

energy efficiency of training. We refer to this set of choices as the execution strategy. While

prior works have introduced pipeline-parallel training, we explore a broad design space to

better understand the deployments where they are effective. In particular, we observe that

pipeline-parallel training is effective for image models at small batch sizes and small group

counts; whereas in language models, it is effective only at large batch sizes and moderate

group counts. Thus, the workload’s neuron-to-weight ratio plays a significant role in

determining if temporal or spatial pipelines are better and if model or data parallelism

is better.

Based on the insights gained from the design space exploration, we introduce Cafine,

a Criticality-aware fine-grained pipeline that achieves better energy efficiency than state-

of-the-art pipeline-parallel training techniques without loss in performance. In pipeline-

parallel training, different groups have different execution times because of the variation

in work and resources assigned to each group. The slowest group is on the critical path and

determines overall throughput. Cafine employs different execution strategies for critical

and non-critical pipeline stages, such that energy is reduced by 6% on average, and by a

maximum of 11%, compared to a state-of-the-art PipeDream baseline, while having the
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same throughput. We also note that the optimal execution strategy depends on the target

DNN workload and the power/performance requirements.

1.1.3 In-situ Analog Accelerator for Spiking Neural Networks

In recent years, multiple neuromorphic architectures have been designed to execute

cognitive applications that deal with image and speech analysis. These architectures have

followed one of two approaches. One class of architectures is based on machine learning

with artificial neural networks. A second class is focused on emulating biology with

spiking neuron models, in an attempt to eventually approach the brain’s accuracy and

energy efficiency. A prominent example of the second class is IBM’s TrueNorth processor

that can execute large spiking networks on a low-power tiled architecture, and achieve

high accuracy on a variety of tasks. However, as we show in this work, there are many

inefficiencies in the TrueNorth design. We propose a new architecture, INXS, for spiking

neural networks that improves upon the computational efficiency and energy efficiency

of the TrueNorth design by 3,129× and 10× respectively. The architecture uses memristor

crossbars to compute the effects of input spikes on several neurons in parallel. Digital units

are then used to update neuron state. We show that the parallelism offered by crossbars is

critical in achieving high throughput and energy efficiency.

1.1.4 Digital Accelerator for Spiking Neural Networks

Spiking neural networks (SNNs) are expected to be part of the future AI portfolio,

with heavy investment from industry and government, e.g., IBM TrueNorth, Intel Loihi,

Qualcomm Zeroth. While ANN architectures have taken large strides, few works have

targeted SNN hardware efficiency. Our analysis of SNN baselines shows that at modest

spike rates, SNN implementations exhibit significantly lower efficiency than accelerators

for ANNs. This is primarily because SNN dataflows must consider neuron potentials

for several ticks, introducing a new data structure and a new dimension to the reuse

pattern. We introduce a novel SNN architecture, SpinalFlow, that processes a compressed,

time-stamped, sorted sequence of input spikes. It adopts an ordering of computations

such that the outputs of a network layer are also compressed, time-stamped, and sorted.

All relevant computations for a neuron are performed in consecutive steps to eliminate

neuron potential storage overheads. Thus, with better data reuse, we advance the energy
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efficiency of SNN accelerators by an order of magnitude. Even though the temporal aspect

in SNNs prevents the exploitation of some reuse patterns that are more easily exploited

in ANNs, at 4-bit input resolution and 90% input sparsity, SpinalFlow reduces average

energy by 1.8×, compared to a 4-bit Eyeriss baseline. These improvements are seen for

a range of networks and sparsity/resolution levels; SpinalFlow consumes 5× less energy

and 5.4× less time than an 8-bit version of Eyeriss. We thus show that, depending on

the level of observed sparsity, SNN architectures can be competitive with ANN architec-

tures in terms of latency and energy for inference, thus lowering the barrier for practical

deployment in scenarios demanding real-time learning.



CHAPTER 2

UNDERSTANDING THE IMPACT OF

PIPELINED EXECUTION STRATEGIES

FOR DNN TRAINING

2.1 Introduction
Deep neural network (DNN) training is a resource-intensive task, given the large size

of models, the many hyper-parameters that are explored, the large training data-sets,

and the many epochs required for high accuracy. Recent reports [99, 108, 119, 132] have

quantified the high environmental impact of DNN training, underlining the urgency to

develop algorithmic, systems, and hardware innovations to reduce its energy footprint.

Training a large model with a large dataset typically requires a dedicated cluster of com-

pute nodes for several days [115, 121]. The compute nodes can be CPUs, GPUs, TPUs, or

other accelerators [1, 2, 29, 35, 56, 135].

In order to distribute DNN training across a cluster of nodes, there are several options

in terms of work partitions and pipelined execution, which impact performance and en-

ergy. Execution of a DNN can be pipelined in the following broad ways: 1. Temporal

Pipelining, where all nodes work on the same layer in parallel and execution of different

layers is pipelined over time, and 2. Spatial Pipelining, where the DNN is partitioned into

multiple groups and each group is assigned a different set of nodes. AccPar [118] is an

example of a temporal pipeline, and PipeDream [43] is an example of a spatial pipeline.

Once the pipelining strategy is fixed and layers are assigned a set of nodes, the next choice

is the optimal partition of layers across those nodes. Layers can be partitioned along the

batch dimension, input dimension, output dimension, etc. Two common approaches are:

Data parallelism, where each worker handles a subset of the data for all layers, and model

parallelism, where each worker handles a subset of the model while working on the entire

dataset. Works like One Weird Trick [67], HyPar [117], and AccPar [118] have explored

the effectiveness of different partitioning approaches. We refer to the combined pipelining
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and partitioning approach as the execution strategy.

While prior works have studied pipelining and partitioning strategies [25, 33, 43, 53,

59, 60, 67, 81, 117, 118, 136], they have primarily focused either only on pipelining (e.g.,

PipeDream) or partitioning (e.g., AccPar) but not both. AccPar considers different par-

titioning strategies for different layers, but the execution of layers always uses a temporal

pipeline. PipeDream breaks up the DNN into layer groups; each layer group is assigned

a different set of nodes, thus forming a spatial pipeline. Within a layer group, one layer

executes at a time and the overall work is partitioned across nodes along the batch dimen-

sion, i.e., data parallelism with a temporal pipeline. So far, pipelining and partitioning

approaches have been explored in a disjoint manner; we help fill a gap in the analysis

literature by exploring a broad design space that considers both, as well as the impact of

batch size, group size, cluster size, and workload on throughput and energy.

Through this exploration, we make two observations that deviate from current assump-

tions about partitioned/pipelined training. First, for convolutional networks, pipeline-

parallel training (spatial pipeline) yields better performance only at small/moderate batch

sizes. As batch size increases, the overhead of inter-group communication dominates,

which results in fully temporal pipelines emerging as the optimal execution strategy. Sec-

ond, for fully connected networks used by language models, partitioning layers along the

model dimension achieves better performance than data parallelism (batch partitioning)

only for small/moderate batches. With a large batch size, inter-layer communication

of activations/errors is more than gradient aggregation. As a result, pipeline-parallel

execution with data parallelism and a moderate number of groups emerges as the optimal

strategy for large batches. Large batches not only boost throughput, but studies have

shown that the batch size can be safely increased even up to 32K without any loss in

accuracy [39, 138–140].

Our initial design space exploration of the PipeDream approach only uses a tempo-

ral pipeline within a layer group, but with partitions along varying dimensions (batch,

channel, kernel). Note that monolithic architectures like the TPU only support temporal

pipelines. However, with the advent of tiled architectures [41, 113, 128], resources can be

allocated to layers at a finer granularity [38]. This opens up the possibility of implementing

a spatial pipeline within a layer group. We consider a chip-level fine-grained spatial
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pipeline such that a layer can start processing once a slice of activations is produced by the

previous layer. By not waiting for the previous layer to produce the entire activation tensor,

buffering requirements are brought down, which reduces the total memory accesses and

the associated interconnect overheads. We observe that such fine-grained spatial pipelines

can reduce energy while incurring a small performance penalty. We then exploit this

performance-energy trade-off in a PipeDream setting by observing that layer groups in

PipeDream have different execution times. The slowest layer group is on the critical path

and determines overall throughput, while other groups are non-critical. We introduce

Cafine, a Criticality-aware fine-grained pipeline, that exploits this latency slack, and reduces

energy by invoking a spatial pipeline for non-critical layer groups and a temporal pipeline

for the critical layer group. Moreover, we observe that the optimal execution strategy

varies not only based on the target DNN, batch size, etc., but also based on the priority

metric – throughput, energy efficiency, EDP, and memory capacity.

In summary, this chapter makes the following contributions:

1. We carry out a comprehensive design space exploration of different combinations of

partitioning and pipelining strategies for vision and language models to reveal their

performance and energy characteristics.

2. We observe that conventional partitioning and pipelining strategies do not extend to

larger batches. For large batches, ResNet-50 achieves 7.4× higher throughput with

a temporal pipeline than with pipeline-parallel training. Bert-base at a large batch

size performs 1.9× better with data parallelism than with model parallelism, again,

contrasting from conventional wisdom.

3. Finally, we propose Cafine, which selectively applies fine-grain spatial pipelining to

non-critical groups while adopting a cluster-level spatial pipeline. Cafine reduces en-

ergy by 6% on average and by a maximum of 11%, compared to PipeDream without

any loss in performance.

2.2 Background
2.2.1 Primer on Neural Network Training

Neural network training is a highly iterative process requiring tens of epochs and

millions of labeled inputs in each epoch [68, 71, 121]. Additionally, with techniques like
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AutoML and Neural Architecture Search (NAS) that automate the design of machine learn-

ing models, training cost is further increased [100, 143, 144].

In order to bring down training time, DNNs are typically distributed across a cluster of

worker nodes. The execution strategy and the worker’s underlying architecture are two of

the most important factors in deciding the performance and efficiency of training. Many

works have tried to improve both, which we will briefly discuss next.

2.2.2 Distributed Training

2.2.2.1 Data and Model Parallel Training

In data parallelism, each worker performs the forward and backward passes for a sub-

set of inputs in a batch, which requires the entire model to be replicated in every worker.

After the backward pass, weight gradients are calculated by every worker, which then gets

aggregated before performing a parameter update. The next iteration of training begins

after the updated weights are broadcast to all the workers. The need to replicate weights

and update them after every batch are major drawbacks of data parallelism. As large

models cannot be distributed with data parallelism due to memory constraints, model

parallelism assigns a subset of layers to each worker for all inputs in the batch. However,

studies have shown that model parallelism can lead to idling among nodes [43].

2.2.2.2 Pipeline Parallel Training

Pipeline-parallel training overcomes the drawbacks of both data and model paral-

lelism. In pipeline-parallelism, the DNN is partitioned into multiple stages or groups, with

each group comprising of multiple consecutive layers. A group is then assigned to one or

more workers depending on its compute/memory requirements. The computations for a

set of inputs execute on the first set of workers; their outputs are then fed to the worker

handling the next group, and so on, thus establishing a spatial pipeline. While we focus

on the PipeDream [43] implementation, other variants also exist that vary in their weight

updates, granularity of pipelining, and input parallelism [33, 43, 48, 66, 136].

2.2.3 Hardware for Training

Several projects have introduced hardware targeted at DNN training. Such chips can be

broadly classified into monolithic and tiled architectures. TPU versions 1-4 [56, 96], Tesla
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Dojo [2], etc. fall under the monolithic category, and architectures like ScaleDeep [128],

SIMBA [113], Cerebras [10], GraphCore [41], and Intel NNP [135] are examples of tiled

architectures. A monolithic architecture has one or two large systolic arrays and one or

two large central buffers (similar to the Google TPUs) that can only work on a subset of one

DNN layer at a time. Monolithic architectures can only execute a temporal pipeline. A tiled

architecture has multiple independent tiles on a single chip, each with vector/systolic units

and private buffers. This work primarily focuses on tiled architectures because they offer

flexibility when mapping tasks to the underlying hardware, and the layers can be executed

both in a temporal pipeline with all tiles working on a single layer before advancing to the

next layer, or in a spatial pipeline, with adjacent tiles executing consecutive layers of the

DNN.

2.3 Exploring Different Execution Strategies
PipeDream achieves significant speedup over data and model parallelism. However,

the research literature has explored a limited design space:

1. The layers in each group were only partitioned across worker nodes along the batch

dimension, i.e., data parallel training. A thorough study of how different partition-

ing strategies (batch, input, output, etc.) impact pipeline-parallel training was not

performed.

2. Since PipeDream was proposed, the Transformer architecture [127] has been intro-

duced, whose encoder/decoder blocks form the basis for several state-of-the-art NLP

models [23, 26, 80, 102]. The impact of pipeline-parallel training on such NLP models

is not well established.

3. The performance of pipeline-parallel training has been evaluated; the impact on

energy has not been analyzed.

4. PipeDream only considers a single batch size; we extend the analysis to consider the

larger batch sizes that have been shown to be effective in many cases [39, 138–140].

This work attempts to fill some of the gaps in this exploration. We expand the design

space, ranging from temporal pipelines (e.g., AccPar) to pipeline-parallel training (e.g.,
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PipeDream). Specifically, we explore different layer grouping scenarios, layer partitioning

strategies, batch sizes, and cluster sizes for various DNNs.

2.3.1 Methodology

2.3.1.1 System Setup

We assume a baseline generic tiled architecture that is fine-tuned for training by bor-

rowing ideas from different state-of-the-art designs. As weight stationary dataflow is

widely adopted [56, 113, 114], we consider an NVDLA [114] inspired tile as our building

block processing element, shown in Figure 2.1b. Since training requires significantly more

on-chip memory than inference, we also consider a buffer tile, consisting of a large global

buffer (like an L2 scratchpad) and vector units (Figure 2.1c). Such structures are also

present in other architectures, including SIMBA [113] and SCALEDEEP [128]. As shown

in Figure 2.1a, a single chip or node consists of alternating columns of PE tiles and buffer

tiles. In total, each chip consists of 9 columns and 8 rows of buffer tiles and 8 columns and

8 rows of PE tiles, arranged in a 17×8 2D-grid. Four such chips constitute a node, and

nodes are connected with PCIe interconnects. Each node is connected to 32 GB of HBM

memory.

2.3.1.2 Execution Strategy

For a given DNN and a given cluster, different choices about pipelining, mapping, and

partitioning can be made. We define these choices collectively as execution strategy.

1© Cluster-level pipelining: A DNN can be distributed either in a cluster-level tem-

poral pipeline (e.g., AccPar) or in a spatial pipeline (e.g., PipeDream). Figure 2.2(b)

and 2.2(c) show cluster-level spatial and temporal pipelining of the example DNN

shown in Figure 2.2(a).

2© Mapping: Mapping applies only in the case of a cluster-level spatial pipeline. It

refers to the physical allocation of chips to layer groups such that inter-group com-

munication is minimized. Figure 2.2(b) shows how the four groups are mapped

across 16 chips.

3© Chip-level pipelining: Once chips are allocated to groups, layers in each group

can be executed within each chip in a temporal or a spatial pipeline. This is valid
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only for tiled architectures, which is our baseline for the design space exploration.

Chip-level spatial and temporal pipelining of layers 5 and 6 in group-3 are shown in

Figure 2.2(d) and 2.2(e), respectively.

4© Inter-chip partitioning: When a group is assigned to multiple chips, each layer in

the group can be partitioned along different dimensions (B,H,W,C,K in Figure 2.2)

to be parallelized across the chips. Figure 2.2(f) illustrates partitioning layer-5 across

4 chips along the batch dimension, assuming it is executed in a cluster-level spatial

pipeline.

5© Inter-tile partitioning: Once a portion of a layer is assigned to a chip, it has to be

further partitioned across the tiles within a chip. Like inter-chip partitioning, inter-

tile partitioning can also be performed along the four dimensions: B, H, W, C, K.

Inter-tile partitioning applies only for tiled architectures. Figure 2.2(g) shows inter-

tile partitioning of layer-5 along both channel/input and kernel/output dimensions,

assuming layer-5 is executed in a chip-level temporal pipeline.

In this study, we focus on how cluster-level pipelining 1© and inter-chip partitioning 4©

strategies behave for varying batch sizes. For each design point, we pick the optimal map-

ping 2© and inter-tile partitioning 5© strategies. Impact of chip-level pipelining strategies

3© is discussed in Section 3.3.

2.3.1.3 Analytical Model

We developed an analytical simulator that models accesses to on-chip buffers, external

memory (HBM), and data transferred on inter-tile and inter-chip links.

Performance Model. These models are then used to estimate the performance and energy

consumption of different design points. Figure 2.3 shows an overview of our computation

and communication cost model for estimating training throughput. Due to space limita-

tions, we keep the explanation brief and expand only on a few inter-layer communication

cost models.

Energy Model. The PE-tiles and buffer-tiles were modeled in Verilog and synthesized

using Synopsis Design Compiler at 28 nm FDSOI technology node. To account for the area

and placement overhead of on-chip buffers, we consider them as black boxes during the
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backend flow, based on the dimensions provided by CACTI [89]. Using the dimensions of

PE and buffer tiles, we estimate the length of inter-tile interconnects. Inter-tile communica-

tion overhead is calculated by multiplying the energy per unit wire length obtained from

CACTI [89] and the calculated inter-tile wire length. Table 2.1 summarizes the architectural

specifications of our baseline architecture.

Our energy model estimates the number of accesses to all buffers, HBM, and the data

transferred on across all interconnects. This is combined with the per-access energy num-

bers summarized in Table 2.1 to estimate system energy.

For our experiments, we consider six workloads from vision and NLP domains – ResNet-

34 and ResNet-50 [45], Bert-base and Bert-large [26], VGG-D [115], GPT-2 X-large [102]. We

consider the common mixed-precision training technique, where activations/errors/weights

are 16-bits, accumulation is at 32-bits, and the parameter updates are carried out by a 32-bit

master copy of weights [86].

2.3.2 Design Space Exploration

2.3.2.1 Convolutional Networks

Recall that execution strategy is the combination of the cluster-level pipeline (involving

one or more groups), the chip-level pipeline, and the partitioning strategy within a group.

We first examine these strategies for convolution-heavy networks like ResNet-50.

Figure 2.4 shows throughput for different group and cluster sizes at batch sizes of

128 and 8192, while considering both data and model parallelism. For now, we are only

considering the impact of the cluster-level pipeline (by varying the number of groups)

and the partition strategy (data vs. model parallelism). In data parallelism, a layer is

partitioned such that each worker node operates on a portion of the mini-batch. Whereas

in model parallelism, a layer can be partitioned along the input (channel) dimension or

output (kernel) dimension. Though input and output partitioning have different commu-

nication overheads for forward and backward passes, the overall communication costs

are similar. Therfore, for the remainder of the chapter, data and model parallelism refers

to partitioning layers along the batch and input dimension respectively. As observed

by prior works, data parallelism incurs inter-node communication of gradients whereas

model parallelism requires communication of activations/errors. As convolutional layers
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have significantly more activations/errors than gradients, data parallelism performs better

than model parallelism for all design points.

• Impact of grouping: Increasing the number of groups results in better performance

up to a point, as shown in Figure 2.4(a). Increasing groups reduces the spread of

layers which decreases inter-layer and intra-layer communication, and providing

higher throughput. Beyond a certain point though, it is difficult to create groups with

uniformly equal work, resulting in resource under-utilization and lower through-

put. Throughput is therefore optimal for a group count that varies between 2 to

8. This is the case only for data parallelism as it is computation-bound, while the

communication-bound model parallelism keeps improving by using more groups.

For design points where the number of groups is equal to the number of chips (16C-

16G, 32C-32G, etc.), no inter-chip partitioning is required due to which data and

model parallelism behave similarly, yielding similar throughput.

• Impact of batch size: The results in Figure 2.4(a) align with those of prior works.

At the larger batch size shown in Figure 2.4(b), we see significant deviation. A

larger batch size increases the sizes of activation/error tensors. Data parallelism in-

curs communication of activations/errors only at group boundaries, i.e., inter-group

communication. For large batches, inter-group communication becomes a significant

bottleneck, adversely impacting performance. Hence, for large batches, data paral-

lelism achieves the best performance with a group size of 1, i.e., a PipeDream pipeline

is ineffective and the execution reverts to a fully temporal pipeline. Figure 2.5 shows

how the performance varies with batch size for a fully temporal pipeline (1 group)

and pipeline-parallel training (16 groups). We observe that a PipeDream spatial

pipeline is not effective beyond a batch size of 512.

• Impact on energy efficiency: Energy to train ResNet-50 with different configura-

tions at a batch size of 8192 is shown in Figure 2.6. Model parallelism consumes

significantly more energy than data parallelism due to the higher intra-layer and

inter-layer communication. Increasing groups benefits model parallelism highly as

it reduces inter-worker communication energy. The benefits of increasing groups is

trivial for data parallelism as gradient communication accounts to a small fraction of
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overall energy, and reducing that doesn’t translate to significant energy savings. We

observe a similar pattern for smaller batch sizes as well.

Observation-1: For convolutional networks, pipeline-parallel training performs best at small

batch sizes and usually prefers small-moderate number of groups. Fully temporal pipelines (number

of groups = 1) performs best when the batch size is large.

2.3.2.2 Fully Connected Networks

Next, we analyze how batching, grouping, and partitioning affects training throughput

of the other major class of DNNs - fully connected networks. Figure 2.7 shows training

throughput for Bert-base.

• Impact of Batch Size: Unlike the analysis for ResNet-50, we observe that behavior

for Bert-base is very different for batch sizes of 128 and 8192. As discussed ear-

lier, and as observed by prior works, model parallelism requires communication

of activations across workers whereas data parallelism has to aggregate gradients

across workers. We observe that at batch size of 128, shown in Figure 2.7(a), model

parallelism performs better than data parallelism at all design points. At a batch size

of 128, as Bert-base has more weights than activations, model parallelism performs

less communication and therefore achieves better throughput. Figure 2.8 quantifies

model and activation sizes of Bert-base at different batch sizes. Data parallelism

incurs only gradient communication, whose size is independent of batch size, and

model parallelism can incur both intra-layer and inter-layer communication, which

is directly proportional to batch size. For batch sizes beyond 1024, activations/errors

become dominant, returning the advantage back to data parallelism (as seen in Fig-

ure 2.7(b). We see a similar trend for energy as well in Figure 2.9. At small batch sizes,

the execution is bottlenecked by memory accesses. This motivates moving to larger

batch sizes until the execution is compute-bound. We see an order of magnitude

improvement in throughput in Figure 2.7 as we move from a batch size of 128 to

8192. Thus, for high throughput, Bert-base must be executed with a large batch size

which makes its trend lines similar to that for ResNet-50 (as we’ll further discuss).

Figure 2.10 shows the throughput for data and model parallel training of Bert-base
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at different batch sizes. Model parallelism performs better at small/moderate batch

sizes and data parallelism performs better at large batch sizes, eventually plateauing

at high compute utilization. The cross-over point occurs for Bert-base at a batch size

of 512. This crossover point varies for different DNNs, dictated by the batch size and

the DNN’s neuron-to-weight ratio.

• Impact of Grouping: Both data and model parallelism are limited by data movement

at smaller batch sizes – data parallelism due to gradient aggregation and model

parallelism due to inter-layer communication. Therefore, increasing the number of

groups reduces inter-worker communication for both data and model parallelism

as layers get mapped to fewer workers, thus increasing throughput and reducing

energy.

For larger batches, data parallelism training becomes compute-bound. More groups

is helpful at reducing communication at first, but then with a large number of groups,

load imbalance is more noticeable. As shown in Figure 2.7(b), optimal throughput is

observed when the group count is 4 to 16, a trend similar to that for ResNet-50.

Observation-2: For fully connected networks, a large batch size is required to alleviate the memory

and communication bottleneck; at large batch size, the trend lines are similar to that for convolu-

tional networks, with a medium group count achieving optimal throughput. If the algorithm or

memory capacity demands a small batch size, model parallelism may end up out-performing data

parallelism depending on the DNN’s neuron-to-weight ratio.

2.4 Cafine
In our exploration, PipeDream’s pipeline-parallel approach with 4-16 layer groups is

often the best. This section performs a deeper dive on this configuration, further expand-

ing the design space, to uncover additional energy savings.

2.4.1 Chip-Level Execution Strategies

At the cluster-level, we retain PipeDream’s spatial pipeline, splitting the DNN into

layer groups and assigning a set of nodes to each layer group. Within a layer group,

PipeDream and our analysis so far has assumed a temporal pipeline.
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When the chip has a tiled architecture like SIMBA or SCALEDEEP (instead of a mono-

lithic design as in the Google TPU), there is an opportunity to execute layers in a spatial

pipeline within a chip to potentially reduce data movement. To comprehensively evaluate

the design space, we consider multiple implementations for such a spatial pipeline.

A typical spatial pipeline example is shown in Figure 2.2(e). We consider a naive

spatial pipeline (NSP) implementation where a layer has to finish before its outputs can

be consumed by the next layer. While simple to implement, it can lead to more memory

accesses if a layer’s output activations/errors exceed the on-chip buffer sizes. We also

consider a fine-grained spatial pipeline (FG-Pipe), where the next layer is initiated as

soon as the previous layer has generated a large enough set of activations/errors [7, 111].

This increases reuse within buffers during the forward and backward passes, but still

requires forward-pass activations to be written to memory so they can be reused during

the backward-pass. FG-Pipe reduces the energy consumption by reducing memory and

interconnect overheads. It doesn’t provide any performance benefits, and suffers from

load imbalance like NSP.

2.4.2 Cafine: Criticality-Aware Fine-Grained Pipeline

We now evaluate different chip-level approaches for the layers within a PipeDream

group. The subsequent figures assume 64 chips, 8 groups, and batch size of 512; they

contrast PipeDream (temporal pipeline within each chip) and FG-Pipe. Figure 2.11 shows

the latency for each group with the temporal and spatial pipelines for ResNet-50. The FG-

Pipe latency for each group is always higher than the latency in the baseline PipeDream’s

chip level temporal pipeline. Note that the overall throughput of PipeDream’s cluster-level

spatial pipeline is ultimately determined by the latency of the slowest group, in this case,

group 6. The FG-Pipe design is 5% slower than PipeDream in Group-6, thus yielding 5%

lower throughput.

Meanwhile, Figure 2.12 shows the energy consumed by each group with these two

pipelines and we see the opposite effect - FG-Pipe consumes less energy than PipeDream

for each group because it promotes higher reuse in on-chip buffers.

This basic performance-energy trade-off can be exploited by PipeDream’s cluster-level

spatial pipeline. We propose Cafine, which treats critical and non-critical groups differ-



18

ently. The critical group (group 6 in this case) is executed with a temporal pipeline so that

the pipeline’s throughput is the same as the baseline PipeDream. The non-critical groups

are executed with FG-Pipe - while each group experiences a higher latency, that latency is

lower than the latency of critical group 6. But each of these non-critical groups dissipates

lower energy than the baseline PipeDream. The red circles drawn in Figures 2.11 and

2.12 show the design points chosen by Cafine for each group, yielding the best of both

approaches.

2.4.3 Results

Next, we evaluate Cafine on a variety of vision and NLP models and compare it against

different baselines: a Fully Temporal Pipeline (FTP) resembling AccPar, PipeDream, Naive

Spatial Pipeline (NSP), and Fine-Grained Spatial Pipeline (FG-Pipe). For every DNN,

Cafine and the baselines are evaluated at their optimal partitioning, mapping, and group-

ing strategies. The system considered is a medium-scale cluster with 64 chips. Through-

out this section, CNNs are evaluated at a batch size of 512, beyond which the optimal

pipelining strategy is FTP and not pipeline-parallelism, as discussed in Section 2.3.2.1.

NLP models on the other hand are evaluated at a batch size of 8192. As mentioned in

Section 2.3.2.2, pipeline-parallel training is better than FTP at all batch sizes for FC models,

and large batch training provides better throughput.

2.4.3.1 Convolutional Networks

Figure 2.13 plots both throughput and energy for the various design points for ResNet-

50; note that the axes don’t start at zero to more clearly show the trade-offs in these

metrics. PipeDream has the highest performance while a fully temporal pipeline has the

least energy. FG-Pipe is 5-6% lower than PipeDream in terms of energy and throughput.

Cafine bridges that gap, matching the throughput of PipeDream and consuming 4% less

energy than PipeDream. The fully temporal pipeline has 2% lower throughput and 12%

lower energy than Cafine. The energy differences between FG-Pipe, PipeDream, and

Cafine are primarily because of buffer overflow/reuse and memory/interconnect accesses

as discussed earlier. The fully temporal pipeline incurs just gradient communication,

whereas Cafine requires inter-group communication of activations/errors. As the volume

of gradients is considerably less compared to activations/errors in ResNet-50, FTP con-
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sumes the lowest energy. But as gradient aggregation in FTP cannot be overlapped, it has

poor throughput compared to Cafine.

2.4.3.2 Fully Connected Networks

Next, in Figure 2.14, we consider throughput and energy for Bert-base, where we

adopt data parallelism. Unlike ResNet, where the fully temporal pipeline has the least

energy, here it has the highest energy. This is because of the high data movement costs

for gradients (which is significantly larger in Bert-base than ResNet-50) as each layer is

spread across the entire cluster. Thus, interconnects account for 76% of total energy for

FTP. This also results in slowdown for FTP. Meanwhile, both Cafine and FG-Pipe consume

11% less energy than PipeDream, while matching its throughput. The performance-energy

trade-off is less stark in Bert-base because of its structured nature, which leads to better

load balance among layers within a group.

2.4.3.3 Discussion for All Workloads

Figure 2.15 shows the throughput and energy, relative to PipeDream, for each workload

and execution strategy. For FC models, Cafine has zero performance loss and consumes

an average of 8% less energy compared to PipeDream. For CNNs, Cafine consumes 4%

less energy on average than PipeDream with no loss in performance. The fully temporal

pipeline consumes 6.5% less energy than Cafine for CNNs, but it is also 12.5% slower. On

average over different CNN and FC workloads, Cafine achieves the best performance – on-

par with PipeDream – while consuming the least energy (6% less energy than PipeDream

on average). Compared to NSP and FG-Pipe, Cafine consumes 7% and 1% less energy

while being 12% faster.

So far, we have seen different strategies being optimal for different workloads under

different scenarios. No single execution strategy is optimal for all cases. In Table 2.2 we

list the best execution strategy for each DNN class (CNN or FC) at different batch sizes,

depending on the priority metric (performance, energy, or EDP). We envision a future tool

that can integrate our analytical performance/energy model, our design space exploration,

the DNN characteristics, and the hardware configuration to estimate the optimal execution

strategy. The analysis in this chapter is a first step towards such a tool.
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2.4.3.4 Discussion on Memory Requirements

We close our analysis with a look at another important metric in DNN training - the

off-chip memory requirement. While Cafine and pipeline-parallel training provide higher

performance than fully temporal pipelines, they incur a memory overhead. PipeDream

requires as many weight copies as there are groups to ensure high accuracy. Figure 2.16

shows the memory requirement for activations and weights, and the performance of Cafine,

relative to a fully temporal pipeline. While Cafine has a similar memory requirement as

PipeDream, it has a steep memory requirement cost compared to FTP, somewhat propor-

tional to its speedup (and energy efficiency).

2.5 Related Work
Many works explore optimal dataflow, tiling, and partitioning for DNN training at

both intra-chip and inter-chip levels.

Intra-Chip Techniques. TimeLoop [97] and Maestro [70] provide a systematic approach

towards designing accelerators and dataflows as loop nest representations. They entail an

optimizer-guided cost model to evaluate the energy and performance of different design

points. Interstellar [137] extends Halide [103], a domain-specific language and compiler, to

represent different architectures and dataflows as Halide schedules. They aim to find the

optimal loop ordering, blocking, and parallelization for a workload. Instead of performing

an exhaustive search, GAMMA [60] uses a genetic algorithm to find efficient mapping

strategies. ConficiuX [59] uses a hybrid reinforcement learning and genetic algorithm to

find optimal resource allocations per layer. Much of the above work is focused on DNN

inference and limited to a single chip.

Inter-Device Techniques. OWT [67] proposes data parallelism for convolutional and model

parallelism for fully-connected layers. HyPar [117] uses an analytical approach to decide

the optimal layer partition. AccPar [118] extends HyPar with an exhaustive search of layer-

wise tensor partitions. AccPar also applies to heterogeneous systems, and DNNs with

multi-path topologies. OptCNN [53] extends the partition space to include height/width

of feature-maps and uses dynamic programming. FlexFlow [54] improves upon OptCNN

by considering all types of networks and partitions, and by using a Markov Chain Monte

Carlo algorithm.
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Table 2.1. Chip specifications.

Component Spec Energy (pJ/bit) Area(mm2)

Input buff 16KB 0.028 0.12
Weight buff 64KB 0.048 2.88
Psum buff 4KB 0.026 0.19

Vector MAC 8-MACs 4.4 pJ 0.33
Global buff 512KB 0.12 2.4

Inter-tile 82GB/s 0.47 -
Inter-chip 64GB/s 2.87 -

HBM 128GB/s 4 -

Table 2.2. Optimal execution strategies for CNN and FC workloads based on batch
size and priority metric – performance, energy efficiency, EDP. DP/MP are data/model
parallelism.

Workload CNN FC
Batch size Small/Med Large Small/Med Large

Perf Cafine+DP FTP+DP Cafine+MP Cafine+DP
Energy FTP+DP FTP+DP Cafine+MP Cafine+DP

EDP Cafine+DP FTP+DP Cafine+MP Cafine+DP
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#chips assigned to a group = N
#groups = G

Data to be transferred = D, Interconnect with link width = Lwidth
num_chunks = D/Lwidth

TBROADCAST = hopsmax + num_chunks - 1
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Figure 2.3. Brief overview of the performance model used in the analytical simulator.
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number of chips, batch size, and partitioning strategy. xC refers to a design with x chips
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Figure 2.6. Energy efficiency of ResNet-50 for different configurations.
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Figure 2.7. Exploring the design space of Bert-base training by varying number of groups,
number of chips, batch size, and partitioning strategy. xC refers to a design with x chips
and xG refers to a config where Bert-base is partitioned into x groups.
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Figure 2.9. Efficiency of training Bert-base for different configurations.
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CHAPTER 3

INXS: BRIDGING THE THROUGHPUT AND

ENERGY GAP FOR SPIKING NEURAL

NETWORKS

3.1 Introduction
The stagnation of Moore’s Law scaling has shifted industry and academia’s focus away

from general-purpose systems and towards specialized systems. Neuromorphic architec-

tures are an important class of specialized systems because:

1. They are efficient at a variety of machine learning tasks that are growing in promi-

nence – image analysis in self driving cars, information discovery from massive

datasets, etc.

2. They target the grand challenge of emulating brain mechanics in hopes of matching

the brain’s cognitive power and energy efficiency.

These two separate needs – machine learning efficiency and brain emulation – have

also led to a bifurcation in neuromorphic architectures.

A number of architectures, DaDianNao [16], ISAAC [111], EIE [112], Cnvlutin [5],

and Eyeriss [15] to name a few, are based on the artificial neurons (perceptrons) that

have formed the basis for decades of research in machine learning. We refer to these

architectures as artificial neural network accelerators, or ANN accelerators.

The second class of architectures, TrueNorth [4], SpiNNaker [62], and Neurogrid [8] to

name a few, are based on biologically plausible models of spiking neurons. We refer to

these architectures as spiking neural network accelerators, or SNN accelerators.

The goal of this chapter is not to compare ANN vs. SNN accelerators. To date, only

one study, by Du et al. [28], has performed a head-to-head comparison of ANN and SNN

accelerators. While that study is an excellent start to an important debate, it draws lim-
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ited conclusions for small-scale chips executing small-scale networks. For example, they

conclude that SNNs achieve significantly lower accuracy than ANNs on MNIST, but con-

current work [31, 32] developed better training algorithms for SNNs and achieved 99.42%

accuracy on MNIST. Du et al. investigate chips with no more than 110 artificial neurons

and 300 spiking neurons. We mention these examples to highlight that the comparison

between ANNs and SNNs is far from being resolved, and will likely play out over the

coming decade.

In the meantime, advances are required for both ANNs and SNNs. At the moment,

much of the architecture research has focused on ANNs. As a result, ANNs are ahead of

SNNs on a variety of metrics (see Table 3.1). This chapter attempts to bridge that gap by

designing better SNN architectures that can keep up with the high throughput and energy

efficiency being achieved on state-of-the-art ANNs.

The most high-profile and most efficient SNN architecture to date is IBM’s TrueNorth.

It is a 5.4 billion transistor chip that can model 1 million neurons and 256 million synapses

while consuming less than 100 mW. TrueNorth achieves high tile-level parallelism, and

makes a number of design choices that impose constraints on the application, while reduc-

ing power and storage requirements. However, we see in Table 3.1 that TrueNorth lags

behind state-of-the-art ANN accelerators on all metrics, notably throughput and energy.

Therefore, drawing inspiration from recent ANN architectures, we undertake an overhaul

of the TrueNorth design.

We describe an SNN accelerator that leverages memristor crossbars to aggregate the

effects of input spikes in the analog domain. By effectively using in-situ computing, mem-

ristor crossbars have been shown to achieve high parallelism and storage density in the

ISAAC [111] and PRIME [18] ANN accelerators. We describe the many changes required to

adapt a crossbar-based architecture for an SNN. In particular, the management of neuron

potentials represents the biggest challenge, and the sparse spike rate represents the biggest

opportunity. The former requires additional storage overheads, and the latter enables low

overheads for analog-to-digital conversion (ADC). We carry out a design space exploration

to identify the best provisioning of resources for this mixed-signal architecture.
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3.2 Background
Artificial neurons were developed more than 70 years ago [83]. Artificial neurons re-

ceive synchronous real-valued inputs, perform a dot-product of these inputs with weights,

apply an activation function (often ReLU), and pass real-valued outputs to the next layer

of artificial neurons. In addition to many decades of progress, the past decade has seen

significant advances with artificial neurons, primarily because of our ability to train deep

networks with a combination of new techniques.

3.2.1 Spiking Neurons

While scientists have delved into the mechanics of the biological neuron for decades

[46], it has only recently received attention from the architecture community. A number of

high-profile projects [4, 8, 62] have attempted to implement biologically plausible neuron

models in hardware. Many of these hardware projects implement neuron models that are

highly simplified, but that can emulate many biologically observed neuron behaviors, e.g.,

the Izhikevich neurons [94].

The most popular of these simple neuron models is the Linear Leaky Integrate and Fire

model (LLIF), shown in Figure 3.1. An LLIF neuron is stateful – in addition to synaptic

weights, it retains the value of its (membrane) potential. This potential reflects inputs that

have been received in the recent past. Inputs are received in the form of binary spikes.

When a spike is received on an input, the synaptic weight for that input is added to the

potential (see Figure 3.1). In every cycle, a leak is also subtracted from the potential. When

the neuron’s potential eventually reaches a specified threshold, the neuron produces an

output spike of its own. After the spike, the neuron potential is reset.

Spiking neurons have the potential to be hardware-efficient because inputs and outputs

are binary spikes, i.e., a communication link between neurons requires a single bit. Further,

the spiking neuron model does not require a multiplier – because the input is binary, the

synaptic weight is simply added to the potential. Spikes can therefore lead to efficient

communication and computation.

Because a neuron is designed to respond after observing spikes over time, the input

is provided over an input interval, say 500 cycles. Figure 3.2 shows how each pixel of an

input image is converted into a spike train that extends across an input interval. These
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spike trains are fed as inputs to the first layer of neurons. Prior work has primarily used

rate codes that convert an input pixel value into a certain number of spikes. For example, a

red pixel value may be converted into 50 evenly spaced spikes in 500 cycles, while a blue

pixel value may be converted into 125 evenly spaced spikes in the input interval. The same

encoding is typically used throughout the network, i.e., information is carried in terms of

spike intensity. The code also includes an element of stochasticity, e.g., a rate code typically

uses a Poisson distribution to inject spikes [3].

Spiking neurons are typically trained with a biologically plausible process called STDP

(Spike Timing Dependent Plasticity [34]). This is an unsupervised training method where

each neuron adjusts its weights based on a local process. Recent studies have been un-

able to achieve high accuracies with STDP-based training [28, 110]. Therefore, more re-

cent works have resorted to supervised backpropagation-based training for spiking net-

works [31, 32].

3.2.2 SNN Accelerators

IBM’s TrueNorth processor [85] is the most prominent example of a digital architecture

for large SNNs. We will use TrueNorth as the SNN baseline in this work because it achieves

best-in-class throughput and energy efficiency.

TrueNorth is composed of many tiles, where each tile implements 256 neurons, each

with 256 inputs. The tiles communicate through an on-chip and potentially an off-chip

network. The tiles use a mix of asynchronous and synchronous circuits to boost energy

efficiency. In every 1ms “tick”, a tile processes all received input spikes; any resulting

output spikes are sent through the network to neurons in the next layer so they can be

processed in a subsequent tick. TrueNorth implements an LLIF neuron model with a

number of configurable parameters, including some that allow stochastic behavior. Within

a tick, the tile sequentially walks through every neuron in that tile and every input spike

to perform several updates to each neuron potential. For each neuron, it reads a 410-

bit SRAM row that contains all parameters for that neuron, including a 256-bit vector

indicating which tile inputs connect to that neuron. This bit vector is reconciled with

the list of input spikes in that tick to identify spiking connections for that neuron. The

synaptic weight for each of these connections is then sent to a synchronous neuron unit
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that performs the necessary arithmetic operations. This unit adds the synaptic weights to

the neuron’s potential. Finally, the leak is subtracted and the potential is compared against

the threshold. In case of an output spike, the neuron potential is reset. The final neuron

potential is then written back to the SRAM bank. The 12.8 KB SRAM bank occupies nearly

half the tile area and one-third the tile power. A tile processes a single synapse at a time.

The tick is long enough (1ms) to process all possible input spikes and neurons sequentially.

To further reduce storage requirements and energy, TrueNorth imposes several con-

straints on the neural network. It only uses 4 quantized 9-bit weights per neuron. It also

forces an input spike to share the same weight type with all neurons in that tile. A neuron’s

output can only be seen by the 256 neurons in one tile. A neuron can only receive at most

256 inputs.

SpiNNaker [62] is another prominent SNN architecture that uses many low-power

general-purpose ARM cores to perform several parallel neuron updates. It is well known

that custom ASICs will out-perform general-purpose cores by at least two orders of mag-

nitude [42], so we will not explore SpiNNaker-style architectures in this chapter.

A few projects have attempted to implement neurons and synapses with analog de-

vices, typically using capacitors or memristors to emulate neuronal behavior [4, 77, 78,

124]. These projects have focused more on device innovations to reproduce neuron be-

havior, and have not focused on architectural innovations to boost throughput. For exam-

ple, Liu et al. [78] implement a single 32×64 memristive crossbar to execute feedforward

and Hopfield networks. The crossbar performs the synaptic operations, and an analog

integrate-and-fire circuit models the neuron. But, maintaining the neuron potential in an

analog circuit can incur a very high area overhead, especially in large-scale convolutional

networks where the number of neurons far exceeds the number of (shared) synapses.

However, we do believe that analog circuits have a lot to offer [55] and we will use the

analog domain in a limited manner to accelerate the neuron update.

3.2.3 ANN Accelerators

Our proposed architecture is inspired by the best practices in state-of-the-art ANN

accelerators. We first discuss the analog approach, followed by the digital approach.

Two architectures introduced in the past year, ISAAC [111] and PRIME [18], have lever-
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aged memristor crossbars to perform dot product operations in the analog domain and

accelerate deep convolutional neural networks. We will focus on ISAAC here because it

out-performs PRIME in terms of throughput, accuracy, and ability to handle signed values.

We note that a few other works have also analyzed the circuits required in crossbar-based

accelerators [22, 122, 134].

A memristor crossbar uses Kirchoff’s Law to produce a sum of products, as shown

in Figure 3.3. Inputs are provided as a vector of voltages; the memristor conductances

in the crossbar represent synaptic weights of neurons; the emerging bitline currents are

neuron outputs (before the activation function) because they represent the dot products

of input voltages and synaptic weights. This is an example of in-situ computing because

the crossbars are not only used to store weights, but also perform computations on them.

ISAAC uses a number of crossbars in a tiled architecture to process all layers of a deep

network in parallel. It distributes computations across time and space to manage the

high costs of analog-to-digital conversion (ADC). Even with such techniques, the ADCs

account for a large fraction of chip power and area. To support sufficient precision, ISAAC

employs 8-bit ADCs to capture the largest possible dot-product emerging from a crossbar

bitline. The dot products, after analog to digital conversion, are aggregated with digital

ALUs. eDRAM banks are used to store neuron outputs until they are consumed by the

next layer. By setting up a pipeline from layer to layer, a relatively small set of outputs

has to be buffered, which can be accommodated in a 64 KB eDRAM unit per tile. Since

a dense crossbar is used to store the weights and perform computation, ISAAC is able to

dramatically reduce data movement, and increase computation/storage density.

We next describe recent digital ANN architectures. The DianNao [13] and DaDian-

Nao [16] accelerators were among the first to target deep convolutional networks. Dian-

Nao designs the digital circuits for a basic NFU (Neural Functional Unit) that can process

16 inputs to 16 neurons in parallel. DaDianNao is a tiled architecture where each tile

has an NFU and eDRAM banks that feed synaptic weights to that NFU. DaDianNao uses

many tiles on many chips to parallelize the processing of a single network layer. Once

that layer is processed, all the tiles then move on to processing the next layer in parallel.

Thus, the keys to DaDianNao’s efficiency are: (i) localized data movement (from local

eDRAM bank to nearby NFU), and (ii) time-multiplexed execution of several neurons
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and several network layers on a small set of SIMD execution units (the NFUs). Other

recent works have proposed innovations to digital ANN accelerators that primarily exploit

sparsity [5, 106, 112]. Since digital ANN accelerators are nearly an order of magnitude

slower than ISAAC [111], we will not consider them further in this chapter.

3.3 The INXS Architecture
3.3.1 Overview

[120]As described in the previous section, the best SNN accelerator to date, TrueNorth,

suffers from a few weaknesses:

1. There is no intra-tile parallelism while performing neuron updates.

2. Each input spike to a neuron is handled sequentially.

3. To reduce the storage and energy overheads, significant approximations have to be

made for the synaptic weight values.

4. A neuron can only have at most 256 inputs and its output can be seen by at most 256

other neurons connected to one axon.

We design a mixed-signal architecture, INXS1, that addresses all of the above problems,

and can efficiently handle state-of-the-art deep networks. A large number of memristor

crossbars are used to process the many incoming spikes in a tick, and compute the resulting

potential increments in parallel. The potential increments are immediately converted to

digital signals. The neuron potentials are retrieved from SRAM buffers with wide reads,

added to the increments, thresholded, and written back to SRAM. The resulting spikes are

routed to the next layers so they can be processed in the next tick. Many crossbars work in

unison on different layers of the neural network to set up an efficient pipeline.

The key contributions of this design are:

1. It offers very high pipelined parallelism with many crossbars, not only working on

many SNN layers in parallel (as in TrueNorth), but also working on many neuron up-

date values and many input spikes in parallel (unlike TrueNorth). In most cases, the

1INXS, pronounced “in excess” is short for IN-situ Xbar Spiking
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pipeline operates as an odd-even pipeline, working on analog crossbar operations in

odd ticks, and digital neuron updates in even ticks.

2. While some prior works [78] have implemented a crossbar in tandem with analog

neurons, we observe here that in a convolutional network, a set of shared weights

are used to compute several neurons. The use of analog neurons would require a

single crossbar bitline to be multiplexed across many analog circuits, resulting in

significant overheads. Therefore, we immediately convert the analog crossbar output

into a digital signal and perform the even phase in the digital domain.

3. We lay out several design details and carefully consider the overheads of each mod-

ule. We follow with a design space exploration to identify how best to provision the

resources per tile.

4. The resulting architecture differs from the state-of-the-art ANN accelerator, ISAAC,

in the following ways: (i) ISAAC requires a 22-stage pipeline while INXS only re-

quires a 2-stage pipeline to process a single neuron in one layer, (ii) INXS uses a

low-resolution ADC because of observed sparsity, thus achieving higher throughput

per area, and (iii) it allocates more area for central storage and neuron update.

5. The resulting architecture differs from the state-of-the-art SNN accelerator, TrueNorth,

in the following ways: (i) INXS does not constrain neuron input/outputs and weights

in any way, (ii) it offers orders of magnitude higher parallelism and throughput, and

(iii) it achieves lower energy per operation by boosting throughput and lowering the

contribution of leakage.

3.3.2 Implementation Details

3.3.2.1 Overall Chip Organization

INXS is designed to be modular and hierarchical. Figure 3.4 shows that a chip is

composed of several tiles connected with a mesh network. The many layers of an SNN are

scattered across these tiles. Figure 3.4 also zooms into one of these tiles. A tile has central

SRAM buffers, Neuron Units, Synaptic Units, and a router. The Synaptic Units, Neuron

Units, and the router in a tile are connected by a unidirectional ring network. The ring

network has North, South, East, West, and Hub stations – the Hub is used to switch to
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the inter-tile mesh network. Figure 3.5 shows the details of a Synaptic and Neuron Unit

in a tile. Each Synaptic Unit is composed of multiple memristor crossbars and ADCs. The

Neuron Unit has the adders and thresholding logic to implement the neuron model. Next,

we’ll walk through the operations required to execute a single convolutional layer.

3.3.2.2 The Odd Phase

In every odd tick, all the crossbars on the chip receive inputs from their input buffers.

A tick is assumed to be at least 100 ns [111] to allow sufficient time to perform a crossbar

read and capture all the bitline outputs in sample and hold circuits. This phase exploits

very high parallelism in the analog domain to estimate the effect of every incoming spike

on the potential of several neurons.

We’ll assume that a crossbar has R rows and C columns of w-bit cells. We’ll assume

that weights and neuron potentials are stored with p-bit fixed-point precision. Depending

on the values of p and w, a single synaptic weight may be spread across multiple cells in

a row. If a neuron has more than R inputs, its calculation will be spread across multiple

crossbars, and potentially multiple Synaptic units.

3.3.2.3 The Even Phase

The even phase is itself composed of several small “cycles”. In the first cycle, the

ADC processes the first bitline output. The results of multiple bitlines (after ADC) have

to be aggregated with shift-and-add circuits in the Synaptic Unit because they represent

contributions from different bits of the synaptic weights. If a neuron has more than R

inputs and is spread across multiple crossbars, those partial results have to be aggregated

as well. Once the partial result within a Synaptic Unit has been aggregated, this potential

increment is placed on the output bus. The potential increment is routed to that neuron’s

home, possibly navigating 0 or more hops on the ring network and 0 or more hops on the

mesh network. Once the partial sums are generated, the routing logic in each synaptic unit

routes them to their respective neuron home through the ring bus if it resides in the same

tile, or through the mesh network if the neuron home is in another tile. The partial sums

are stored in the output buffer, which acts as input to the Neuron Unit.

Once the increment reaches the neuron home, it is added to the neuron’s potential and

leak in the Neuron Unit. To enable this addition, the neuron potential has to be read from
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the central SRAM buffer in the previous cycle. Once the new neuron potential is calculated,

it is thresholded, and the final neuron potential is written back to the SRAM buffer. The

generated spike is then sent over the ring and mesh networks to a destination input buffer,

where it will be accessed in the next Odd Phase.

All of these operations are performed deterministically and controlled by finite state

machines in Synaptic and Neuron Units. The control signals for the finite state machines

would be generated at compile time and loaded into the chip along with the weights for

each network layer. We assume that the leak and threshold are the same for all neurons

in a layer [9, 27]. We provision the network, SRAM buffer, and adders with sufficient

bandwidth so they can handle the worst-case network layers in our evaluated workloads

without introducing any structural hazards and contention. If such a chip had to evaluate

an even larger network (say, more neurons or more inputs per neuron), it can do so, but

would require multiple ticks to process the Even Phase.

Figure 3.6 shows the many pipeline stages that must be navigated for one neuron

computation. At compile time, we would estimate the number of cycles required for one

neuron increment, starting from the ADC, all the way until the resulting spike is placed

in the next layer’s input buffer. This number S will vary across layers and workloads

depending on the required number of network hops. As each ADC sequentially walks

through the C bitlines in its corresponding crossbar, new values begin navigating this

S-stage pipeline. Therefore, the Even Phase will complete after C + S cycles. The length of

a tick is therefore variable across workloads, and is a function of the worst-case network

layer in each workload.

Because consecutive network layers will typically map to adjacent tile quadrants or

tiles, most communication in the network tends to be nearest-neighbor communication.

3.3.2.4 An Example Design Point

We carry out a design space exploration, where we vary a number of INXS parameters:

• Number of memristor xbars in a Synaptic Unit

• Number of Synaptic Units in a tile

• Number of Neuron Units in a tile
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• Central buffer size

For each of these design parameters, we sweep through our example workloads and pro-

vision the bandwidths of each module so they can handle the worst-case layers. We

then estimate the throughput, area, and power for each design point for our workloads.

In Section 4.5, we show the design points that optimize throughput/area and through-

put/power.

To make our architecture more concrete, we walk through the parameters selected for

the optimal throughput/area design point, while assuming 16-bit fixed-point computa-

tions. This design uses 64 crossbars in a Synaptic Unit, and 8 Synaptic Units in each tile.

The crossbar has 256 rows and 128 columns, and stores 2 bits per cell. The bus within a

Synaptic Unit, the ring network, and the mesh network all have a width of 128 bits. Each of

the 8 SRAM central buffers in a tile has a capacity of 128 KB, a row width of 128 bytes, and

a read latency of 0.57 ns. The Neuron Unit contains 8 3-input adders and 8 comparators to

perform the neuron activation.

3.3.2.5 Balancing the Pipeline

In one Odd/Even Phase, a convolutional kernel in a layer is applied to one set of inputs

to produce one output neuron. This process has to be repeated over several Odd/Even

Phases until the kernel has been applied to an entire set of input feature maps. Some

layers have less work to do than others. Those layers can either idle in some cycles or we

can replicate the weights and boost the throughputs of the work-intensive layers so every

crossbar is busy in every cycle. Such replication leads to a balanced pipeline, similar to the

one employed in ISAAC.

In our workload evaluations, we also observe that the spike rate is relatively sparse

and that the maximum observed output from a bitline is significantly smaller than the

worst-case output. While a 256x128 memristor xbar would need a 10-bit ADC to capture

its worst-case output, we observe enough sparsity in our applications that an 8-bit ADC is

actually sufficient. This significantly boosts the throughput/area and throughput/power

metrics, while having zero impact on accuracy. We envision that a developer would have

to run simulations to confirm that the ADC precision is rarely exceeded at run-time; if it is,

such overflows can be avoided by mapping fewer inputs to every crossbar column.
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3.3.2.6 Neuron Model

Note that we are implementing a simple LLIF neuron model. We are not modeling the

many modes and stochastic features implemented by TrueNorth. The adder/thresholding

unit can be augmented to handle these additional modes and we leave these as future

work. It is worth noting that the adder/thresholding unit occupies 0.6% of tile area, so

even if its size is increased by 10×, its overhead would be small. For this study, we assume

that all pooling layers use average pooling, because average pooling is more amenable to

crossbar acceleration than max pooling.

3.3.2.7 Routing Table

The outputs produced by bitlines of a crossbar are routed to the same neuron unit,

and eventually to the same set of destination crossbars in the next layer. Each crossbar

therefore has a single register that is used to route the result to its neuron home. The

neuron home has a routing table that has one entry for each neuron. That entry keeps track

of all the crossbars in the next layer that must receive the spike resulting from that neuron.

We calculate the number of entries by analyzing the state-of-the-art neural networks like

MSRA and VGG-NET. Based on our analysis, we fix the number of crossbars that each

neuron output can connect to as 512 (128K neurons, 512× better than TrueNorth). We size

these structures so they can handle the largest deep network to date; the resulting size of

the routing table is 25.5 KB.

3.4 Methodology
We use the following metrics to evaluate the various design points:

• Computational Efficiency(CE): Peak number of 16-bit operations performed per sec-

ond per mm2.

• Energy Efficiency (EE): Peak number of 16-bit operations performed per second per

Watt.

• Storage Efficiency (SE): Mega bytes of storage per mm2. This includes synaptic stor-

age in crossbars and neuron potential storage in SRAM central buffer.

• Energy consumed for entire state-of-the-art deep networks (VGG-NET and MSRA).
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For our power and area analyses at 32nm technology, we use CACTI [90] for SRAM

buffers, ORION 2.0 [58] for router and interconnect evaluation, the models of Shafiee et

al. [111] for CMOS-compatible TaOx memristor crossbars, and recent adder/comparator

models [84, 123]. We use [69] for ADC evaluation.

We use a manual process (emulating a future compiler) to map the different network

layers of our workloads to crossbars/tiles while not exceeding any of the available re-

sources, and while replicating layers to maintain a balanced pipeline. As described in

Section 3.3.2, we estimate the length of a tick (107 ns) based on the worst-case C + S value

for our workloads. The length of each cycle is 0.78 ns and is determined by the latency to

process one ADC sample. The overall performance is determined with an analytical model

that considers the sizes of each network layer. For our evaluvation we calculate the C + S

value for each layer. The delay of one access to the central buffer dictates the frequency

in configurations with really large central buffer. Note that cycle-accurate simulations are

not required because the workloads do not encounter any conditional structural hazards.

Hunsberger et al. [51] show that convolutional neural networks can be mapped to

SNNs while achieving very similar accuracy. In a similar vein, we use two state-of-the-art

deep convolutional networks for image classification, VGG-NET [115] and MSRA [44], to

evaluate INXS. Since we need to find a design point that performs well on both fully con-

nected SNNs and convolutional SNNs, we pick VGG-NET (it has the most neurons/layer

in Conv1) and MSRA (it has the most number of inputs/neuron in FC1).

ISAAC uses a 128×128 crossbar and an 8-bit ADC so bits are never dropped. The use

of a modest crossbar size keeps noise in check and allows use of a low-resolution ADC.

Given the inherent sparsity of spikes in an SNN, we allow use of a 256×128 crossbar while

still using an 8-bit ADC. We also explore the use of a 6-bit ADC that assumes sufficient

sparsity in spikes. Note that applications with high spike rates would be forced to use a

subset of crossbar rows so the ADC precision is rarely exceeded. As a sensitivity study, we

also explore use of a 6-bit ADC in tandem with 1-bit memristor cells that is guaranteed to

not drop bits – while this design has a lower overhead for ADCs, it uses more crossbars

to represent synaptic weights. Our results show that this design point does not match a

design with an 8-bit ADC in tandem with 2-bit memristor cells, so we will not discuss it

further.
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3.5 Results
3.5.1 INXS Design Space Exploration

For all our results, we evaluate metrics across a number of design points. The X-axis

in most figures describes these design points as a × b × c × d, where a × b describes the

number of crossbars in a Synaptic Unit, c represents the number of Synaptic Units per tile,

and d represents the capacity of central buffer in a tile (in KB). Note that in a convolutional

layer, a single crossbar can produce results for several neurons across several ticks. The

size of the central buffer puts a cap on the number of neurons that can be produced locally

by the corresponding synaptic units.

We first evaluate peak computational efficiency, shown in Figure 3.7, for the INXS

design as we vary our design parameters. Similarly, Figures 3.8 and 3.9 quantify the EE and

SE metrics respectively. The main observation from these figures is that all these metrics

improve when the central buffer size is reduced. This is because peak metrics are primarily

impacted by the number of crossbars, which offer high storage and computation. Note

that SE is a sum of neuron and synaptic density. Providing a large SRAM buffer increases

neuron density (and is helpful to convolutional layers), but decreases synaptic density (not

helpful to fully connected layers). Clearly, the latter effect is more dominant in this analysis

of peak performance, so we see a drop in SE when CB size is increased. Figure 3.10 further

breaks the SE metric into neuron and synaptic density.

While peak CE, EE, and SE are useful metrics and favor crossbar computation over

neuron potential storage, deep networks with large convolutional layers benefit more

from neuron potential storage. Therefore, ultimately, we need to evaluate INXS designs

on state-of-the-art deep networks, e.g., VGG and MSRA. Figures 3.11 and 3.12 show the

energy for different design points for these two workloads. These real workloads exhibit

the best metrics when using larger central buffer sizes. Based on this analysis, we pick an

ideal design point that does reasonably well for both workloads: 8x8x8x128. For this ideal

design point, Figures 3.13 and 3.14 show a breakdown of the area and energy required by

the different layers of the deep networks. Table 3.2 summarizes the area and power of each

component in an INXS tile.

Contrary to what we saw earlier for peak CE, EE, and SE metrics, the configurations

with large central buffer perform well on MSRA and VGG-NET. The reason for this is
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the overhead of inter-tile and intra-tile interconnect energy. Configurations with small

central buffers engage in more intra- and inter-tile communication which increases energy

significantly. This is especially true for convolutional layers. Fully-connected classifier

layers, on the other hand, benefit more from crossbars than from large buffers. But in

these large workloads, the convolutional layers dominate (see per layer breakdown in

Figures 3.13 and 3.14).

3.5.2 Comparison to TrueNorth

Next, we compare INXS metrics to those of TrueNorth. Table 3.3 summarizes the key

metrics. Because of the high parallelism in INXS, it achieves three orders of magnitude

higher performance/area than TrueNorth. Because of the high ADC overhead, INXS has

only a 10× improvement over TrueNorth in terms of EE. Using memristor xbars gives us

significant density for synaptic storage compared to the SRAM storage used in TrueNorth.

This also helps us eliminate the need for quantization of synaptic weights. INXS has a

much larger advantage in terms of neuron density – it balances resources appropriately by

recognizing that convolutional layers need large central buffers and low synaptic storage.

The routing table employed in each neuron unit removes the severe constraints imposed

by TrueNorth on the number of inputs/outputs to a neuron. As explained earlier, we

achieve a more flexible architecture with the maximum number of inputs a neuron can

receive being 512× higher than that TrueNorth.
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Table 3.1. Comparison of accuracy, throughput, and energy efficiency for state-of-the-art
ANNs and SNNs. The digital SNN numbers correspond to TrueNorth [4]. The energy
number for the Analog SNN accelerator is for a small-scale 32-neuron implementation [78].

Type
Accuracy (%) TOPs/s pJ/op

MNIST CIFAR-
10

AlexNet Digital Analog Digital Analog

ANN 99.7 [19] 96.5 [40] 89 [68] 9 [5, 16] 45 [111] 3.2 [5,
16]

1.5 [111]

SNN 99.4 [31] 89.3 [32] 82.5 [50] 0.058 [4] 0.07 [78] 41 [4] 0.35 [78]

Table 3.2. INXS area and power breakdown (for one 8x8x8x128 tile configuration). SU:
Synaptic Unit, NU: Neuron Unit.

Component Description Area (µm2) Power (mW)
Memristor xbar 512 8K 307.2

ADC 512 136K 1024
Shift and Add 512 30.7K 25.6

Router 128b Flit, 5-
ports

253K 107

Input Buffer 4KB 489K 102.4
Output Buffer 2.5KB 36.6K 7.2
Central Buffer 128KB 1,738K 304
Interconnects 128b output

bus, 128b ring
bus

61K 135.7

Functional Units 8 adders and
comparators

15K 4

Routing table 12.75KB 21K 12.1
Tile 64 xbars/SU, 8

SU, 8 NU
2.8 mm2 2030 mW
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Table 3.3. INXS comparison with TrueNorth. ND-Neuron density, SD-Synaptic density

Metric TrueNorth INXS Improvement
EE (GOPS/s/W) 400 4.1K 10.4x
CE (GOPS/mm2) 0.703 2.2K 3129x

SE (MB)/mm2 0.138 2.06 15x
ND (Neurons/mm2) 2.73K 866K 363.5x
SD (Synapses/mm2) 0.65M 1.497M 2.2x
Neuron connectivity 256 128K 512x

In 1 In 2

Out

In 1

In 2

Out

Time

Neuron Potential

Output spike

Leak
Weight 1 increment

Weight 2 increment
Reset potential

Threshold

Figure 3.1. A basic 2-input LLIF spiking neuron. The figure shows how the neuron
potential is incremented when input spikes are received, how a leak is subtracted when
there are no input spikes, and how an output spike is produced when the potential crosses
the threshold.

…
…

Input Interval

Spike trains for each pixel

White pixel

White pixel

Red pixel

Input Image

Figure 3.2. Example of an input image being converted into a number of input spike trains
that are fed to a spiking neural network.
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Figure 3.3. In-situ computation using memristor xbar. (a) An example 4x4 memristor xbar
connected to peripheral circuits. (b) The conductance of the memristor corresponds to the
synaptic weight and the voltage corresponds to the spike input. The current at the end of
the bitline is the dot-product of input spikes and synaptic weights.
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Figure 3.6. INXS pipeline. IB - Input Buffer, CB - Central Buffer, OB - Output Buffer

Figure 3.7. Computational efficiency of INXS for various configurations.
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Figure 3.8. Energy efficiency of INXS for various configurations.

Figure 3.9. Storage efficiency of INXS for various configurations.

Figure 3.10. M-synapses/mm2 and K-Neurons/mm2 for various INXS configurations.
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Figure 3.11. Energy (for 1 image) estimates of different INXS configurations for VGG-NET.

Figure 3.12. Energy (for 1 image) estimates of different INXS configurations for MSRA.

Figure 3.13. Energy estimate of INXS (8x8x8x128) for different layers of VGG-NET.
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Figure 3.14. Energy estimate of INXS (8x8x8x128) for different layers of MSRA.



CHAPTER 4

SPINALFLOW: AN ARCHITECTURE AND

DATAFLOW TAILORED FOR SPIKING

NEURAL NETWORKS

4.1 Introduction
Inspired by Neuroscience, researchers have explored the potential of Spiking Neural

Networks (SNNs) to achieve high prediction accuracies for various image and speech

applications [4, 8, 30, 32, 116]. A spiking neuron is stateful; it maintains a potential based

on previously seen inputs; as binary input spikes are received, the potential is moved up or

down; a binary output spike is produced when the potential reaches a threshold. Spiking

neurons mimic the operations in biological neurons, in hopes that emulating the brain will

provide very high prediction accuracy at very low energy [116]. However, silicon imple-

mentations of SNNs have generally lagged behind state-of-the-art silicon implementations

of ANNs. In spite of this, SNN advancements are important because of their potential

benefits in specific applications. For example, a Google project shows a small-scale SNN

with sparse temporal codes achieving higher accuracy than a similar-sized ANN using

higher precision [20]. In the short term, SNNs are expected to be effective and useful in

the following scenarios: (i) when a large/labeled training set is not available, (ii) when the

inputs are expected to deviate from the training set, (iii) when continual learning [17, 92]

is necessary, and (iv) to establish initial neural network weights before engaging resource-

intensive training approaches [72]. In the long term, researchers need to build on the work

of Comsa et al. [20] and develop new training techniques to further exploit the information

content in relative spike times so that SNNs can be competitive with the best ANNs under

all circumstances. The future potential of SNNs is also echoed by the many commercial

projects on SNN hardware – IBM TrueNorth [4], Qualcomm Zeroth [101], Intel Loihi [24].

As Smith lays out in his FCRC’19 keynote [116], much work remains in developing
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SNN training methods and architectures. In theory, SNNs naturally exhibit high sparsity,

i.e., they can pack the information content of an 8-bit ANN into the relative timing in a

sparse spike train within a modest time window. This work attempts to realize the low

energy potential of SNNs while overcoming the temporal dimension.

Unfortunately, modern SNN architectures achieve lower throughputs and higher en-

ergy per neuron, compared to ANN accelerators [4, 24, 28, 61]. This is primarily because

of the temporal aspect in SNNs – inputs are received and processed across multiple ticks.

Not only does this require more time, it also puts constraints on architecture dataflows and

the data reuse that can be exploited. Further, the dataflow must also manage reuse for a

large data structure unique to SNNs: neuron potential.

We therefore create a baseline SNN architecture, Spiking-Eyeriss, that is modeled after

a canonical ANN accelerator Eyeriss. We observe that processing SNNs (both rate-coded,

and temporal-coded) in the traditional way imposes significant data movement for neu-

ron potentials in every tick. This problem is exacerbated by the Eyeriss row-stationary

dataflow, in which partial-sums (or neuron potentials) are not fully accumulated before

being offloaded to its global buffer. To address this problem, we introduce a new accelera-

tor, SpinalFlow, that processes spikes in a compressed, and chronologically sorted manner

in a single time-step (like ANNs). Using row-stationary dataflow for this approach would

lead to non-trivial sorting overheads; this is addressed by adapting the dataflow to use

an output-stationary model. The proposed dataflow does require repeated accesses of

weights from a large buffer. This large buffer reduces the compute density of SpinalFlow,

relative to the ANN baseline, for some workloads. This drawback is alleviated when

dealing with low resolution inputs and sparse spike trains, which is an inherent prop-

erty of temporally coded SNNs. The architecture is thus designed to naturally exploit

the expected high sparsity in SNN spike trains [88, 109]. Relative to the baseline ANN,

SpinalFlow has simpler processing elements, but an additional hardware merge-sort unit

and a large buffer to exploit weight reuse.

The main contributions of this chapter are:

• An analysis of the inefficiencies in a baseline SNN design.

• A representation for spike inputs and outputs that is compressed, time-stamped, and



53

sorted.

• An SNN architecture and dataflow that is tailored for this input/output representa-

tion and that increases reuse of neuron potential, input spikes, and weights.

• A 1.8× average energy improvement at 4-b resolution and 90% sparsity over a 4-bit

version of Eyeriss, a 5× average energy improvement at 4-b resolution and 5.4×

average latency improvement at a sparsity of 90% over 8-bit Eyeriss, a 1.16× average

energy improvement at a sparsity of 90% over an SCNN [98] baseline, and an order

of magnitude energy improvement over the baseline SNN architecture.

• The chapter thus shows that SNN architectures can complete the computations re-

quired for inference in similar time and energy as an ANN architecture. This can

significantly impact platforms, e.g., those requiring real-time learning, where SNNs

have the potential to achieve higher accuracies than ANNs.

4.2 Background
4.2.1 Spiking Neurons

A number of projects [4, 8, 62] have attempted to implement biologically plausible neu-

ron models in hardware. Many of these hardware projects implement neuron models that

are highly simplified, but that can emulate many biologically observed neuron behaviors,

e.g., the Izhikevich neurons [94]. The most popular of these simple neuron models is the

Integrate and Fire model (IF), shown in Figure 4.1. An IF neuron is stateful – it retains

the value of its (membrane) potential. This neuron potential reflects inputs that have been

received in the recent past. Inputs are received in the form of binary spikes. When a spike

is received on an input, the synaptic weight for that input is added to the potential (see

Figure 4.1). In every tick, a leak is also subtracted from the potential. When the neuron’s

potential eventually reaches a specified threshold, the neuron produces an output spike of

its own. After the spike, the neuron potential is reset.

Spiking neurons have the potential to be hardware-efficient because inputs and outputs

are binary spikes. The spiking neuron model does not require a multiplier – because the

input is binary, the synaptic weight is simply added to the potential. Spikes therefore can
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lead to efficient communication and computation. This is a key feature of SNNs, but as we

show later, modern SNNs have failed to exploit this advantage.

Because a neuron is designed to respond after observing spikes over time, an input

(say, an image) is provided over an input interval, e.g., 16 ticks1. Figure 4.2 shows how each

pixel of an input image is converted into a spike train that extends across an input interval.

These spike trains are fed as inputs to the first layer of neurons. Prior work has primarily

used rate codes, where for example, a red pixel value may be converted into 8 spikes in 16

ticks, while a blue pixel value may be converted into 12 spikes in the input interval. A

temporal code converts an input pixel value into a single spike at a specific time, e.g., a red

pixel value results in a single spike in the 8th tick, while a blue pixel value results in a

single spike in the 12th tick. The code also includes stochasticity, e.g., a rate code may use

a Poisson distribution to inject spikes [3].

We refer to rate-coded and temporally-coded SNNs as r-SNN and t-SNN respectively.

Since biological neurons work at low resolution and because t-SNNs work better at low

resolution, t-SNNs use short input intervals [63, 88, 116]. t-SNNs also exhibit high levels of

sparsity, i.e., under 10% of all neurons produce a spike in an input interval [63, 109].

Spiking neurons are typically trained with a biologically plausible process called STDP

(Spike Timing Dependent Plasticity [34]). This is an unsupervised training method where

each neuron adjusts its weights based on a local process to estimate a spike’s relevance [28,

110]. To increase accuracy, some recent works have also resorted to supervised backpropagation-

based training for SNNs [31, 32]. The recent work of Comsa et al. [20] also employs this

approach to train a t-SNN to achieve the same accuracy as an ANN.

This is a key point. A t-SNN with its inherent lower resolution, higher sparsity, and ability to

find correlations in inputs can match the accuracy of an ANN with higher-resolution operands. But

the efficiency advantages of t-SNNs will not be evident until we improve its dataflow and operand

reuse.

1A tick is the minimum unit of time in an SNN. In one tick, a neuron evaluates its inputs, updates its
potential, compares against its threshold, and produces a spike if necessary.
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4.2.2 SNN Accelerators

A variety of digital and analog SNN accelerators have been described in the liter-

ature [4, 24, 37, 62, 77, 78, 91, 124]. IBM’s TrueNorth processor [4] is the most prominent

example of a digital architecture for SNNs. TrueNorth is composed of many tiles, where

each tile implements 256 neurons, each with 256 inputs. In every 1ms tick, a tile processes

all received input spikes and sends any resulting output spikes to neurons in the next layer.

Within a tick, the tile sequentially walks through every neuron in that tile and every input

spike to perform several updates to each neuron potential. TrueNorth achieves relatively

poor throughput and latency because of its 1 ms tick. It also does not have any parallelism

within a tile. To enable an apples-to-apples comparison with state-of-the-art ANNs, we

design new baseline SNN architectures that borrow some of the ANN accelerator best

practices. This baseline is described in Section 4.3.1 and offers orders of magnitude better

throughput and latency than TrueNorth.

4.2.3 ANN Accelerators

It is worth noting that in contrast to spiking neurons, artificial neurons rely on dot-

product calculations, they do not retain state across consecutive inputs, and they are typi-

cally trained with supervised back-propagation based stochastic gradient descent. A num-

ber of ANN accelerator designs have been proposed in recent years [14, 18, 64, 111, 112]. In

this work, we use Eyeriss [15] as a baseline because it captures many key innovations, it

has been implemented in silicon, and it has many publicly available details/tools. Eyeriss

uses a hierarchy of global buffers and scratchpads/registers scattered across a grid of

processing elements (PEs). It uses a row-stationary dataflow for its PEs. Each PE processes

a row of computation for some kernels and some input feature maps, thus exploiting reuse.

The partial sums, feature maps, and kernels then move to an adjacent PE to continue the

computations with high reuse. Such dataflows are a key feature in most state-of-the-art

ANN accelerators, e.g., the Google TPU [56]. Many ANN accelerators also leverage spar-

sity in weights and/or activations [98, 112, 141]. To save energy, a multiplier/adder in

Eyeriss skips its operation if either operand is zero. Architectures like SCNN [98] can also

exploit ANN sparsity to reduce execution time.
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4.3 Understanding Sources of SNN Inefficiency
4.3.1 Defining the ANN and SNN Baselines

4.3.1.1 ANN Baseline

To identify sources of SNN inefficiency, we use the Eyeriss architecture [15] as an

ANN baseline. Eyeriss has the basic optimizations (dataflow, reuse, ineffectuals) that

are widely adopted in both academic and commercial accelerators [56]. Much of our

analysis focuses on an 8-bit version of Eyeriss, while the SNN models employ a 16-tick

input interval and temporal codes with high sparsity. While the SNN design has higher

sparsity and lower resolution, those advantages are inherent in the SNN design, i.e., we

are not artificially introducing an accuracy/efficiency trade-off. To further understand the

relative merits, we also compare SNNs (with varying resolutions) to an ANN that engages

the accuracy/efficiency trade-off and operates at low resolution. Note that a 4-bit Eyeriss

has the same input resolution as a 16-tick SNN.

Eyeriss has a grid of processing elements (PEs) that are fed with inputs/weights and

partial sums from a global buffer. Each PE has a MAC unit and a scratchpad that stores

a row of an input feature map (ifmap), a row of a filter, and partial sums (psums) for the

output feature map (ofmap). Figure 4.3a shows the components in a single PE at 8-bit

resolution. A PE can elide a computation to save energy if either input is zero. Within the

2D grid of PEs, ifmaps are shared diagonally, filters are shared horizontally, and psums are

accumulated vertically. This is referred to as Row-Stationary dataflow [15].

4.3.1.2 SNN Baseline

Our SNN baseline, Spiking-Eyeriss, closely follows the Eyeriss architecture. The result-

ing PE, shown in Figure 4.3b and summarized in Table 4.1, does not have a multiplier unit.

Ifmap scratchpads only have a width of 1 bit. Weights and partial sums have the same

width as the ANN baseline. After comparing the potential to the threshold, a 1-bit neuron

output is produced; this 1-bit neuron output and the 8-bit neuron potential must both be

saved in the global buffer or in off-chip DRAM. The 8-bit neuron potentials have to be

retained for the entire input interval.

The PE grid in the SNN is more efficient than in the ANN (no multipliers, ifmap scratch-

pads are only 1-bit wide). Even though the inputs to a layer have shrunk in size, the overall
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memory requirements in the SNN are higher because every neuron’s potential must be

retained. The architecture is agnostic to the type of data encoding used (rate or temporal).

As described shortly, this SNN baseline offers significantly higher throughput/area and

throughput/power than the state-of-the-art SNN architecture, TrueNorth [4].

In our analysis, we employ Tick Batching, where the PEs work on all ticks of the input

interval for a layer before moving on to the next layer. In tick batching, the reuse distance

for membrane potential is short and with appropriate tiling, the membrane potentials

can be primarily accessed out of the global buffer. Meanwhile, the output spike train

from a layer is likely too large to fit in the global buffer and may have to be saved in

off-chip DRAM. We have analyzed other forms of batching, e.g., processing all layers

before examining the next tick, and concluded that tick batching leads to overall lower

data movement.

4.3.2 Evaluation Parameters

To evaluate Eyeriss and Spiking-Eyeriss, we developed an energy/performance model

that captures the latencies, energy, and throughput for different networks. The model

takes in the layer specifications as input, and outputs the number of accesses to different

registers, scratchpads, buffers, and off-chip memory. Based on these statistics, and the

average energy per operation, we calculate the energy per layer. The model uses analytical

equations to capture the dataflow of Eyeriss (and Spiking-Eyeriss) based on layer dimen-

sions and how they map to the PE array. This mapping and resource contention ultimately

dictate PE utilization and performance. Note that our analysis models the zero-gating

technique of Eyeriss where filter scratchpad and ALUs are gated when a zero-valued input

activation is encountered. Table 4.2 summarizes the evaluated networks and the input

image sizes. We consider a range of synthetic single-layer networks to understand how

the architectures impact each type of network topology. We also consider three full-fledged

networks [47, 63] (ResNet, MobileNet, and STDP-Net) that incorporate a number of varied

layers. Previous research [36, 49] has shown that the visual cortex is organized as a cascade

of simple and complex cells structured similar to a CNN.

We implement and synthesize the processing elements of both Eyeriss and Spiking-

Eyeriss using 28 nm FDSOI technology node. First, we modeled the behavior of the PEs in
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verilog and synthesized it using Synopsys Design Compiler. We then used Innovus for the

backend flow in order to get accurate post layout metrics (area, delay and power) by taking

the parasitics into account. To model the global buffer, we use CACTI [90] and scale the

output from 32 nm to 28 nm technology. To reduce the number of variables in our study, we

do not attempt memory compression, but simply assume a low-energy HBM-like memory

interface at 4 pJ/bit [95]. Based on the above methodology, we calculate an average energy

per operation for all components. This is combined with the number of operations for

each component to generate the overall energy consumption for each layer. Table 4.1 has

details on each accelerator component. The primary metrics, while keeping area roughly

the same, are: energy per inference, and latency per inference.

4.3.3 Analysis of Spiking Eyeriss

We first try to estimate the efficiency gap between our baseline SNN and ANN. We

consider the impact of rate coding (r-SNN), temporal coding (t-SNN), sparsity, and resolu-

tion on SNN energy. Figures 4.4 and 4.5 show the energy consumed by r-SNN and t-SNN

respectively on Spiking-Eyeriss. All data points are normalized against an ANN operating

at resolution of 8 bits and its typical activation sparsity of 60%, i.e., 60% of activations are

zero.

At high resolution and low sparsity, Spiking-Eyeriss consumes an order of magnitude

more energy than Eyeriss. This is because of the need to repeatedly update neuron poten-

tial and fetch a weight multiple times across the input interval.

For sparse inputs, Spiking-Eyeriss and Eyeriss can avoid filter reads and partial-sum

updates. Because t-SNNs encode non-zero inputs with a single spike, they consume less

energy than r-SNNs. The difference is 1.63×, 1.03×, 1.08×, and 1.004× at 8bSp60, 8bSp98,

2bSp60, and 2bSp98 respectively, i.e., as one might expect, the gap shrinks when spike

activity is low. More noteworthy is the “crossover point”, when the SNN energy falls

below that of the baseline Eyeriss. For r-SNN and t-SNN, this happens at 3bSp90 and

3bSp60 respectively. This quantifies the sparsity and resolution required for an SNN to

overcome its inherent disadvantage of managing neuron potentials across many ticks and

spikes.
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4.3.4 Summary

The Spiking Eyeriss baseline has a peak throughput/area of 70 GOps/s/mm2, which

is 519× higher than that of TrueNorth. Truenorth is a design optimized for high levels of

spike sparsity, and therefore low leakage and low energy per neuron, so its peak through-

put/watt is comparable to that of Spiking Eyeriss with temporal codes and 90% sparsity.

In spite of this throughput advancement relative to TrueNorth, there is a wide gap between

the ANN and SNN baselines. The performance gap (16×) is because of the need to process all

(16) ticks in the input interval. In terms of energy, we see that temporal coding is clearly

superior. While a large fraction of prior SNN work has focused on rate coding, we note

here that algorithmic advances in temporal coding are required so that its inherent energy

efficiency can be leveraged. For the rest of the study, we will focus on the t-SNN with tick

batching. However, this SNN baseline with 90% sparsity and 16-tick intervals consumes 2×

more energy per inference than the ANN because of its repeated accesses to neuron potential and

filter weights. We next devise techniques to shrink this gap.

4.4 Proposed SNN Architecture: SpinalFlow
Our analysis has shown that the key drawback in our baseline SNN is the need to

iteratively process (say) 16 ticks for every input interval, which in turn takes more time

and requires many accesses to the memory hierarchy to update neuron potential and read

filter weights. While the row-stationary dataflow of Eyeriss is highly efficient for ANNs,

we must devise a new dataflow that caters to the temporal aspects and new reuse patterns

exhibited by SNNs. We refer to this new architecture as SpinalFlow.

4.4.1 Terminology

Before we start, Figure 4.6 is a quick summary of the terms we’ll use in our description.

We first discuss the operations in a CONV layer. Figure 4.6 shows a layer with C ifmaps

each of dimension H×W. Each of the K R×S×C kernels is convolved with the entire ifmap

to produce K ofmaps. When the first kernel is applied to the first receptive field, i.e., the

first R×S×C grid in the ifmap, the first neuron in the first ofmap is produced (the darker

region in the 1st ofmap). Likewise, when K kernels are applied to this same grid of inputs,

the 1st neuron in all the ofmaps are generated as shown by the dark region in Figure 4.6.
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We refer to these K neurons as a spine. In our discussions, we assume the value of K to

be 128. The computation is ordered such that we produce the first spine of the ofmaps,

followed by a shift of the input receptive field to produce the second spine, and so on.

4.4.2 Hardware Organization

We use an array of 128 PEs. Each PE has an accumulator (register and adder) and a

comparator. Each PE is responsible for producing a neuron in an ofmap spine. Figure 4.7

shows the first step, where the PEs are responsible for the first spine of the ofmaps; PE-1

produces the first neuron for ofmap-1, PE-2 produces the first neuron for ofmap-2, and so

on. Similar to our baselines, these PEs are fed by a global buffer that stores kernel weights.

The PEs use a form of output stationary dataflow, i.e., PE-1 is dedicated to work on the

first neuron for ofmap-1 till all its inputs are processed. Over the next many cycles, the PEs

will receive all the spikes in their input receptive field for their input interval. The Input

Buffer provides these input spikes. The example in Figure 4.7 shows that the input spikes

are chronologically sorted: < 1, 17 >,< 2, 1926 >,< 3, 75 >,< 3, 460 > . . ., i.e., input 17

has a spike in tick-1, input 1926 has a spike in tick-2, input 75 has a spike in tick-3. Note

that in our example, the receptive field has a size of 2K, and every neuron in that receptive

field can only spike at most once in its input interval (temporal code), so the input buffer

can have up to 2K entries. 128 PEs also require that the global buffer feed 128 different

weight values, therefore demanding a wider bus than in the baseline. We later factor this

in our evaluation.

• Step 1: Cycle 1. Step 1 produces the first spine in the ofmaps; producing this first

spine can take up to 2K cycles. In the first cycle (shown in Figure 4.7), we examine the

first entry in the input buffer. It represents a spike in input 17 in tick 1. Each of the

PEs’ neuron potential must be incremented by their corresponding kernel weight.

We therefore read a row of 128 weights from the global buffer, corresponding to the

17th entry of all 128 kernels. Each PE receives one of these 128 weights and the

weight is added to the neuron potential. The neuron potential is compared to its

threshold. In our example, PE-110 has exceeded its threshold in tick-1, so it produces

a spike < 1, 110 > that is placed in its output buffer. After producing its spike, PE-110

idles for the rest of the input interval because a neuron can only produce one spike
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in its input interval.

• Step 1: Cycle 2. In the next cycle, the next spike in the input buffer is processed

(shown in Figure 4.8). This happens to be input 1926 spiking in tick 2. The row of

128 weights corresponding to input 1926 are read from the global buffer and fed to

the PEs. Another set of neuron potential increments is performed at the PEs. PE-73

produces a spike and idles. The output buffer is appended with this new spike at

tick-2: < 2, 73 >. We see that the spikes in the output buffer are naturally sorted, i.e.,

the first spine of the ofmaps is represented as a list of chronologically sorted spikes.

• End of Step 1. The process repeats for up to 2K cycles until all spikes in the input

buffer have been processed. Since some of the neurons in the previous layer may not

have spiked in their input interval, the actual processing time can be variable and

much less than the worst-case 2K cycles. In our evaluation, we assume the worst

case, and leave the exploitation of activation sparsity for future work. The output

buffer now contains up to 128 chronologically sorted output spikes, corresponding

to a spine of the ofmaps. In practice, each spine will have less than 128 entries (since

several neurons may never spike in an input interval). This spine is then written

into the global buffer (see Figure 4.9) and will be used later as input to the next

convolutional layer.

• Starting Step 2. We are now ready to move to step 2, where the PEs are responsible

for computing the 2nd spine of their ofmaps. The PEs reset their neuron potentials

to zero. Before we start step 2, we must shift the receptive field and create a new

input buffer with sorted spikes within the new receptive field. Note that the previous

layer produced sorted spines of its ofmaps, which now serve as sorted ifmap spines

for the current layer. To create the sorted receptive field, we must first read 16 of

these ifmap spines from the global buffer into 16 ifmap spine buffers. As shown in

Figure 4.9, these 16 pre-sorted 128-entry spines can be merge-sorted to produce the

sorted 2K entries that represent the input receptive field. The 16 ifmap spine buffers

and the merge-sort unit have replaced the conceptual sorted input buffer that we

showed in earlier figures. The merge-sort unit is simply a tree of comparators that,

in every cycle, picks the smallest entry among the heads of each ifmap spine buffer.

Depending on the spine that produced that entry, an offset is added so the correct
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row of weights is accessed. To initiate every step, 16 cycles are required to populate

the ifmap spine buffers. This is a small overhead for convolutions since the step

requires hundreds of cycles of computations.

4.4.3 Summary

With this spine-oriented output-stationary dataflow, the proposed SpinalFlow archi-

tecture no longer suffers from the drawbacks in our baselines. Because we are using

temporal codes and because we sequentially walk through time-stamped spikes, we need

exactly as many computations as the ANN baseline, i.e., we are no longer penalized by

the multi-tick input interval. Creating the compact sorted list of time-stamped spikes is

trivial because of how spikes are produced by the previous layer. The architecture can

yield speedups with activation sparsity with zero change, while for a similar performance

effect, an ANN requires more invasive changes [5, 98]. By using an output stationary

dataflow, a neuron is mapped to its PE for the entire input interval. The PE initializes

its neuron potential accumulator to zero, increments it as spikes are received, produces

a spike when the threshold is crossed, and discards the neuron potential before moving

on to the next neuron. We are thus eliminating separate storage and data movement for

neuron potential. Note that our dataflow focuses on maximizing neuron potential reuse

and parallelism across a spine because of the need to sequentially process each tick; Eyeriss

on the other hand optimizes a combination of reuse of inputs, kernels, partial sums.

4.4.4 Hardware Details

We observed that provisioning SpinalFlow with as many resources as Eyeriss led to a

sub-optimal design. We therefore provide as many resources as required for the common

case observed in our dataflow.

We use 128 PEs in our design because the number of feature maps per layer in large

convolutional networks is often a multiple of 128. The overall architecture of SpinalFlow

is shown in Figure 4.10a, and the details of one PE are shown in Figure 4.10b. The pseudo-

code for our dataflow is shown in Figure 4.10c. Each PE in our design is much sim-

pler than the PE in Eyeriss. Since we are no longer processing an entire row at a time

(the row-stationary dataflow of Eyeriss), the PE does not require large scratchpads. Such

scratchpads occupy half the core area in Eyeriss, so this is a significant saving.
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The SpinalFlow global buffer from earlier figures is split into a Filter Buffer and Input

Buffer. While Eyeriss retains most of its weights in scratchpads, SpinalFlow retains its

weights in a Filter Buffer. This buffer has to store all the weights in a receptive field for

several filters because any of those weights may be required in a step. To accommodate

some of the large convolutions in our workloads, we employ a 576 KB Filter Buffer or-

ganized into 32 banks, with a row width of 128 bytes (providing 128 1-byte weights at a

time). In order to feed weights to 128 PEs in a cycle, the Filter Buffer needs an output bus

width of 1024 bits. Depending on the type of layer being executed, bank assignment for

weights and feature maps can be configured.

The inputs are received from a 9 KB Input Buffer, which stores the neuron ids and

spike times for multiple spines. The spines for the input receptive field are fed to a Min

Finder circuit (a tree of comparators) that identifies the next chronological spike and uses

that neuron id to read a row of weights from the Filter Buffer. The PE array output is

marshalled into an output queue that is eventually written to off-chip memory.

To evaluate the power and area of the processing elements and Min Finder, we adopt

the same synthesis and SPICE methodology described in Section 4.3.2. To model the Input

and Filter SRAM buffers, we use CACTI [90]. Area and power estimates are summarized

in Table 4.3. We do not add the other exotic SNN features that can be found in TrueNorth

(leak, stochasticity, various operation modes). We leave this for future work and note that

the PEs account for a small fraction of chip area. Note that SpinalFlow seamlessly handles

sparsity, which is an important feature in SNNs, i.e., a neuron that doesn’t spike does not

consume any resource bandwidth.

4.4.5 Other Networks

For small networks, where an input spike is seen by fewer than 128 neurons in the next

layer, the PEs will be under-utilized. This is the uncommon case in our workloads. For

larger networks, the computation has to be decomposed to work on 128 output feature

maps at a time. The filter buffer has been sized large enough to accommodate all weights

for 128 filters in our large convolutional layers. Once the filter buffer is loaded, it is reused

several times to completely process the corresponding output feature maps.

The demands of a fully-connected network are different. Typically, the input receptive
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field is large. The spikes in this receptive field have to be chronologically sorted before-

hand, with potentially multiple hierarchical passes over the MinFinder circuit (which can

only handle 16 128-entry spines at a time). The sorted list is then reused for a large set of

output neurons. At a time, the PEs can process 128 output neurons. The entire input

spike train for these 128 output neurons is processed before we move to the next 128

output neurons. Similar to most accelerators like Eyeriss and TPU, a fully-connected layer

exhibits no weight reuse and is typically limited by the memory bandwidth required to

fetch weights. Based on the input spike, a set of weights is fetched from memory, fed to

the PEs, and then discarded. The only way to improve weight reuse and PE utilization is

with batching, e.g., process 100 images at a time. In an SNN, such image batching is only

effective if all the weights for the layer can be retained on the chip at a time (since each

image in the batch has to fetch weights corresponding to its next input spike). We evaluate

this in the next section.

4.5 Results
4.5.1 SpinalFlow versus Eyeriss

4.5.1.1 Energy Comparison

Figure 4.11 shows the energy per inference of SpinalFlow for synthetic conv layers

normalized to Eyeriss. The early analysis assumes 8-b resolution and 60% activation

sparsity for Eyeriss; we later also consider lower-resolution versions of Eyeriss. Along

the X-axis, we vary SNN sparsity and resolution for SNN activations and weights. Even

at 8b resolution and 60% sparsity, for most synthetic workloads, SpinalFlow consumes

less energy than Eyeriss. This is mainly because of the way SpinalFlow handles spar-

sity. Figure 4.12 shows the energy breakdown of different components in Eyeriss and

SpinalFlow. The filter buffer and scratchpads are the dominant energy contributors in

SpinalFlow and Eyeriss respectively. In SpinalFlow, no access is made to the filter buffer

(which contributes 88% of total energy) whenever a zero-valued activation is encountered.

Due to this, energy of SpinalFlow scales well with sparsity. Eyeriss on the other hand has

to access its GLB and ifmap-spad (together contribute 44% of total energy), irrespective of

activation sparsity. Therefore, the gap between SpinalFlow and Eyeriss grows as sparsity

increases. Figure 4.11 also shows that SpinalFlow is sub-optimal when handling DWC
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layers. This is because ofmaps in DWC do not share inputs, so the 128-wide PEs and

buffer fetches are severely under-utilized.

Figure 4.13 shows the energy/inference of SpinalFlow relative to Eyeriss for our three

full workloads. MobileNet is a combination of 13 DWC and 13 PWC layers. Even though

SpinalFlow is inefficient at processing DWC layers at high resolution, it is overall more

energy-efficient than Eyeriss for MobileNet because the DWC layers account for only 3%

of execution time. The energy savings are generally higher for the other two workloads.

Unlike Spiking-Eyeriss, SpinalFlow is more energy-efficient than Eyeriss at nearly all eval-

uated sparsity/resolution points. At 4-bit resolution and 90% sparsity, on average for the

three full workloads, SpinalFlow consumes 5× less energy than the Eyeriss baseline.

Note that SNNs naturally exhibit high sparsity [109]. Prior work [63] shows that t-

SNNs trained with STDP can achieve significantly higher sparsity at lower input reso-

lutions than ANNs. While ANNs are unlikely to exhibit higher levels of sparsity than

that already shown in prior work and assumed in our ANN baseline, ANNs can certainly

operate at lower resolution with lower accuracy We next evaluate how SpinalFlow energy

compares against Eyeriss at lower resolutions.

4.5.1.2 Effect of Low Resolution

Figure 4.14 plots the energy per inference of our synthetic workloads on SpinalFlow

– unlike earlier graphs that normalize against an 8-bit Eyeriss baseline, the data here is

normalized against an Eyeriss baseline with the same resolution as SpinalFlow. The ANN

sparsity is 60% throughout. In general, the SpinalFlow improvement is a little lower at

lower resolutions – note how the left to right trend is slightly increasing in Figure 4.14,

whereas it was clearly decreasing in Figure 4.11. This is primarily because the flip-flops

in the baseline Eyeriss PE scale down better than the SRAM filter buffer in SpinalFlow.

This pattern is also oberved with full workloads shown in Figure 4.15. At 4-bit resolution

and 90% sparsity, on average, SpinalFlow consumes 1.8× less energy than a 4-bit Eyeriss

baseline.

4.5.1.3 Latency Comparison

Latency/inference of SpinalFlow normalized to Eyeriss (8-b resolution and 60% ac-

tivation sparsity) is shown in Figure 4.16. We model two versions of Eyeriss, one with
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1K global buffer wires (similar to SpinalFlow) and another with 72 (similar to original

Eyeriss). Note that in SpinalFlow, latency changes only with the degree of sparsity, and

not with resolution. While DWC is an exception because of its low utilization, the other

workloads in SpinalFlow are competitive with Eyeriss at 0% sparsity because they have

comparable compute and utilization. At high sparsity levels, SpinalFlow is orders of

magnitude faster than Eyeriss because the execution time is a function of the spike train

size; at 90% sparsity, the speedup is 5.4× on average for our three full workloads. When

dealing with sparse inputs, our baseline Eyeriss already saves energy by gating the ALU,

but it does not save time by jumping to the next computation. Accelerators like SCNN [98]

are able to save time when dealing with sparse inputs. SCNN adds index generation logic

and a crossbar network to achieve this and offers a 2.7× performance improvement for

the typical sparsity observed in ANNs. Thus, even with a better baseline like SCNN,

SpinalFlow offers a significant speedup [63, 109].

4.5.2 SpinalFlow versus Spiking-Eyeriss

Figure 4.17 shows the energy per inference of SpinalFlow normalized to that of Spiking-

Eyeriss at corresponding resolution and degree of sparsity. As both architectures are exe-

cuting t-SNNs, the computation overhead will be similar for all design points. Recall that

unlike SpinalFlow, Spiking-Eyeriss processes spikes tick-by-tick, and incurs significant

off-chip and GLB overhead. 70% of the on-chip energy and 64% of the total energy of

t-SNNs at 8b resolution is due to GLB accesses and off-chip accesses respectively. This

results in Spiking-Eyeriss consuming an average of 35× more energy than SpinalFlow at

8b resolution. Once input resolution is decreased, the overhead of off-chip and GLB ac-

cesses reduce significantly and hence the improvement of SpinalFlow over Spiking-Eyeriss

reduces as well. For similar reasons, the relative efficiency of SpinalFlow improves at

higher degrees of sparsity. Figure 4.18 shows a similar trend on our three workloads. At

4-bit resolution and 90% sparsity, all three workloads on SpinalFlow consume roughly

5× lower energy than Spiking-Eyeriss. Spiking-Eyeriss processes inputs tick-by-tick, and

hence is 2resolution times slower than Eyeriss. It is therefore multiple orders of magnitude

slower than SpinalFlow.
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4.5.3 Fully-Connected Layers

For fully-connected networks with a batch size of 1, the execution is entirely dominated

by the bottleneck in fetching weights from DRAM, which accounts for 90% of the total

system energy in both SpinalFlow and Eyeriss. If we assume that 200 inputs are batched,

then SpinalFlow is an order of magnitude more efficient than baseline Eyeriss. This is

because baseline Eyeriss has a relatively small on-chip storage capacity, requiring multiple

DRAM accesses for either activations or weights (depending on the chosen dataflow).

However, if we were to augment Eyeriss with substantial on-chip buffer capacity (similar

to that of SpinalFlow) and a dataflow to maximize weight reuse, the energy bottleneck

again shifts to the other microarchitectural components in Eyeriss and SpinalFlow.

We observe similar trends as for convolutional layers. Figure 4.19 shows the energy of

SpinalFlow with respect to Eyeriss for executing workloads FC-A and FC-B at a batch size

of 200. At 0% sparsity, SpinalFlow consumes 20% more energy than Eyeriss, whereas at a

higher sparsity level of 90% and at 4b resolution, SpinalFlow consumes 0.3× of the energy

consumed by Eyeriss.

4.5.4 Scalability Study

Next, we analyze the scalability of SpinalFlow as the number of PEs and, correspond-

ingly, the size of the weight buffer are varied. Figure 4.20 shows the change in energy per

inference as the PEs (and the weight buffer) are increased from 32 (144 KB) to 512 (2.25 MB)

for ResNet. Increasing the compute and storage resources increases the efficiency, but with

diminishing returns beyond 128 PEs. This is because few layers use more than 256 feature

maps, and weight buffer energy increases significantly. Similar results were observed for

other workloads as well.

Figure 4.21 shows the throughput-per-area for our three workloads and SpinalFlow

area as the PE count (and buffer size) are varied. Because of the large weight buffer in

SpinalFlow, it does not fare as well as Eyeriss in throughput-per-area in many cases. This

effect can be alleviated by using fewer PEs and smaller buffers.

4.5.5 SpinalFlow versus SCNN

As a sensitivity analysis, we also compare SpinalFlow to SCNN [98], an ANN acceler-

ator that exploits sparsity. We model SCNN at 8-bit resolution and with 8 PEs (128 MAC
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units) for an iso-ALU comparison. We make favorable assumptions for SCNN – we do

not model the computation and storage overheads of meta-data (indices), and the crossbar

that connects MACs with the accumulator buffer. We model the accumulator buffer with 2

banks instead of 32 due to limitations with Cacti. For ResNet, SpinalFlow at 60% activation

sparsity consumes 1.02× less energy than SCNN, whereas at 90% activation sparsity, it

consumes 1.16× less energy than SCNN. While we assume a similar buffer organization

as in the original SCNN work, we expect that a sweep of different buffer hierarchies may

reveal more energy-efficient SCNN design points.

4.6 Re-Visiting the SNN versus ANN Debate
There remains a healthy debate within the community about the merits of SNNs and

ANNs. These issues have been discussed in keynotes at ASPLOS 2014 (Gehlhaar [37]),

HPCA 2015 (Modha [87]), ISCA 2015 (Temam [125]), ASPLOS 2016 (Williams [131]), and

FCRC 2019 (Smith [116]). In this section, we summarize the current state of this debate,

given our findings. In particular, our analysis is among the first to demarcate when an

SNN is a better or worse choice than an ANN.

4.6.1 Comparing SNN versus ANN Efficiency

A couple of papers have analyzed SNN vs. ANN efficiency. A MICRO 2015 paper by

Du et al. [28] attempted a head-to-head comparison of ANN and SNN hardware. They

compare a two-layer ANN (100 neurons in the first layer and 10 neurons in the second

layer) against a one-layer SNN (300 neurons) on the MNIST workload for digit recognition.

The architecture models assume some dedicated hardware per neuron, an approach that

does not scale up to large networks. For this limited comparison, the authors conclude that

ANNs and SNNs have similar per-neuron area and power overheads. A more recent paper

by Khacef et al. [61] improves upon this prior work with more efficient and more accurate

neuron models, but draws similar conclusions for a limited set of networks and dataflows.

Our analysis of larger/diverse networks and architectures shows that data reuse is a key

factor; with baseline dataflows, we show (contrary to prior work) that SNNs are an order

of magnitude worse than ANNs in most key metrics. The execution time is 2resolution higher

and energy is 35× higher at high resolution and 2× higher at low resolution. With our new
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dataflow, for smaller input intervals, where t-SNNs are expected to perform best [116],

SNNs consume 5× lower energy. SNN and ANN energy efficiency are almost on par

even for large input intervals. When networks exhibit high sparsity, also expected for

t-SNNs [109, 116], SNN execution time and energy improve significantly. The comparison

is more nuanced if ANNs are also allowed to lower resolution; this is an approach that is

known to significantly lower accuracy [21, 57, 104, 142]. With this approach, as shown in

Figures 4.14 and 4.15, ANNs and SNNs are comparable in terms of energy; the nature of

the network and the degree of sparsity determines the winning architecture.

4.6.2 Discussion of Prediction Accuracy

The improved dataflow in this chapter only improves efficiency (time and energy),

and we quantify the relationship between efficiency and sparsity/resolution. The new

dataflow has no impact on accuracy. But since accuracy is a primary consideration in the

SNN vs. ANN debate, for completeness, we articulate the conditions under which SNNs

or ANNs may be superior.

First, consider a use-case where labeled datasets are available for supervised training

on GPU/TPU clusters. This is the scenario where ANNs with back-propagation based

SGD represent the state-of-the-art. A number of studies have shown that r-SNNs can

borrow such weights and achieve similar accuracies as ANNs [28, 31, 32, 61, 107]. This is

primarily because an r-SNN neuron can emulate the behavior of an ANN. On the other

hand, t-SNN training has received less attention and t-SNNs generally have lower accu-

racies. We summarize some of these key results in Table 4.4. Given that t-SNNs are more

efficient in terms of time and energy on SpinalFlow, t-SNN training is an area that demands

future investment, a point also made by Smith [116]. The work of Comsa et al. [20] shows

an example t-SNN operating at low resolution and high sparsity that matches the accuracy

of an ANN. With further advances along these lines, t-SNNs may be able to achieve higher

accuracies and lower energy than high- and low-res ANNs. Note that low resolution has

typically been a significant handicap for ANNs in terms of accuracy, but this is not the

case for SNNs [63]. For a more complete summary of the trade-off space, we also show the

impact of low-resolution ANNs on accuracy in Table 4.4, e.g., note that a 4-bit ANN can

reduce accuracy by 2.9% (for AlexNet on ImageNet [142]).
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A second use case is one where continual learning is required. The ability of STDP

to efficiently perform online training allows SNNs to react faster when new inputs are

encountered, e.g., new landscapes during disaster recovery or new accents during speech

processing. Note that in such use cases, curated, pre-processed, and labeled datasets are

often not available. The training may also have to be performed at low energy on an edge

device, e.g., a rover handling disaster recovery. The area of continual learning [17] is an

emerging one with a limited amount of literature. ANNs trained with SGD suffer from

the concept of catastrophic forgetting [82, 105] when they are sequentially trained on two

datasets, i.e., SGD’s global error minimization tends to perturb all network parameters

to react to the new dataset [6, 65, 75]. On the other hand, STDP does not require labeled

datasets and its localized training can naturally earmark a subset of neurons for the new

dataset, while not perturbing the rest of the model [6]. For such use cases, SNN/STDP is a

clear winner and can exploit the new dataflows to significantly reduce execution time and

energy.

Our results also serve as a useful guideline for researchers developing SNNs for various

use cases. Our analysis quantifies the scenarios (resolution, sparsity, network topology)

under which SNNs can surpass the energy efficiency of ANNs. We highlight the need to

develop accurate training models for t-SNNs because it results in higher sparsity levels

and lower energy per inference.
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Table 4.1. Parameters for our ANN (based largely on Eyeriss) and baseline SNN.

Components Eyeriss Spiking-Eyeriss
PE Array 12 ×14 12 ×14

ALU per PE 8-b FxP MAC 8-b FxP Add & Cmp
Filter scratchpad 224× 8-b 224× 8-b
psum scratchpad 24×8-b 24×8-b
ifmap scratchpad 12×8-b 12×1-b
Global Memory 54 KB 54 KB
Core frequency 200 MHz 200 MHz

Off-chip memory HBM2 HBM2

Table 4.2. Workloads, degree of sparsity, and resolution. SC - Standard Conv, DWC
- Depth-Wise separable Conv, PWC - Point-Wise separable Conv. The SNN network
from [63] will be referred to as STDP-Net for the rest of the chapter.

ResNet 33 convolutional layers, 1 FC layer
MobileNet 13 PWC and 13 DWC layers
STDP-Net 2 conv layered network from [63]
SC-A 3x3x64x64, 1 layer, Synthetic
SC-B 3x3x512x512, 1 layer, Synthetic
DWC-A 3x3x1x64, 1 layer, Synthetic
DWC-B 3x3x1x512, 1 layer, Synthetic
PWC-A 1x1x64x64, 1 layer, Synthetic
PWC-B 1x1x512x512, 1 layer, Synthetic
FC-A 4096x4096, 1 layer, Synthetic
FC-B 1024x1024, 1 layer, Synthetic
Sparsity 60%, 90%, 98%
Resolution 8b, 6b, 4b, 3b, 2b
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Table 4.3. Architecture specifications of SpinalFlow and Eyeriss-1K. FB- Filter Buffer, GLB
- Global Buffer, B/W - Bandwidth, A - Area in mm2, P - Power in mW

Components Eyeriss-1K 8b(4b) SpinalFlow 8b(4b)
PEs 168 128

ALU/PE 8b (4b) MAC 8b(4b) Add, Cmp
Filt scratchpad 224× 8b (4b) 1× 8b (4b)

psum/Vmem spad 24×8b (4b) 1×8b (4b)
ifmap scratchpad 12×8b (4b) 1×8b (4b) (shared)

Global Buffer 54 (27) KB 585 (292.5) KB
GLB bus-width 448(224)-psum, 1024(512)-filt,

448(224)-filt,112(56)-ifmap 8(4)-spike
Core frequency 200 MHz 200 MHz

DRAM B/W 30 GB/sec 30 GB/sec
PEs A/P 0.353(0.1412)/515.5 0.024(0.012)/51.5

Min find A/P - 0.002(0.00092)/1
Inp Buff A/P - 0.069(0.0088)/4.3
GLB/FB A/P 0.715(0.21)/48.7 1.99(0.78)/105.6

Total A/P 1.068(0.35)/564.2 2.09(0.801)/162.4
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Table 4.4. Accuracy comparison with supervised training on labeled datasets.

Workload ANN Accuracy SNN Accuracy
MNIST 99.8% [129] r-SNN(SGD): 99.59% [73]

1-bit res: 99.04% [21] r-SNN(STDP+SGD): 99.28% [72]
t-SNN (SGD): 97.96% [20]
t-SNN (STDP): 98.4% [63]

CIFAR10 92.38% [107] r-SNN: 90.53% [133]
1-bit res: 88.6% [21]

AlexNet on 55.9% [51, 142] r-SNN: 51.8% [51]
ImageNet 1-bit res: 44.2% [104]

2-bit res: 49.8% [142]
4-bit res: 53.0% [142]

VGG on 70.52% [109] r-SNN: 69.96% [109]
ImageNet
ResNet on 70.69% [109] r-SNN: 65.47% [109]
ImageNet

In 1 In 2

Out

In 1

In 2

Out

Time

Neuron Potential

Output spike

Leak
Weight 1 increment

Weight 2 increment
Reset potential

Threshold

Figure 4.1. A basic 2-input LLIF spiking neuron. The figure shows how the neuron
potential is incremented when input spikes are received, how a leak is subtracted when
there are no input spikes, and how an output spike is produced when the potential crosses
the threshold.
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…
…

Input Interval

Spike trains for each pixel

White pixel

White pixel

Red pixel

Input Image

Figure 4.2. Example of an input image converted into a number of input spike trains that
are fed to a rate-coded SNN (r-SNN).

Figure 4.3. Architectures Evaluated. (a) PE in Eyeriss [14]. (b) PE in Spiking-Eyeriss.
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Figure 4.4. Energy consumed per inference by r-SNN on Spiking-Eyeriss normalized to
Eyeriss. Sp60, Sp90, and Sp98 refers to 60%, 90%, and 98% sparsity respectively.

Figure 4.5. Energy consumed per inference by t-SNN on Spiking-Eyeriss normalized to
Eyeriss.
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Figure 4.6. A spine in a CONV layer.

PE 110

PE 128

PE 1

PE 2

…
…

Send weights to 

increment neuron 

potentials

Working on 1st neuron of 1st ofmap

Working on 1st neuron of 2nd ofmap

Working on 1st neuron of 128th ofmap

110th ofmap produces 

a spike in tick-1

<1,110>             output queue

1st spine of ofmaps

Working on 1

Working on 1

<1,17>, <2,1926>, <3,75>, <3,460>, …

Fetch 17th row of kernel weights

Chronologically sorted spikes in this 

input interval in this receptive field

Input buffer

Global buffer

Figure 4.7. Example: Step1, Cycle 1.
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PE 73

PE 128

PE 1

PE 2

…
…

Send weights to 

increment neuron 

potentials

Working on 1st neuron of 1st ofmap

Working on 1st neuron of 2nd ofmap

Working on 1st neuron of 128th ofmap

73rd ofmap produces a 

spike in tick-2

<1,110>, <2,73>         output queue

1st spine of ofmaps

Working on 1

Working on 1

<2,1926>, <3,75>, <3,460>, …  

Fetch 1926th row of kernel weights

Chronologically sorted spikes in this 

input interval in this receptive field

Input buffer

Global buffer

Figure 4.8. Example: Step1, Cycle 2. Step 1 continues until all receptive field entries (up to
2K) have been processed.

<1,110>, <2,73> … <254, 26>        output queue

1st spine of ofmaps

Merge sort with a

tree of comparators

Global buffer

ifmap spine 

buffers

Spine 1

Spine 16

… …

Next chronological spike in

the input receptive field

1. Record the first spine of the ofmaps

2. Get ready to process the second spine of the ofmaps

Figure 4.9. Example: End of Step 1 and set-up before Step 2.
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Figure 4.10. SpinalFlow. (a) Chip. (b) PE details. (c) Dataflow pseudocode.

Figure 4.11. Energy/inference of SpinalFlow normalized to an 8-bit Eyeriss with 60%
sparsity. Sp60, Sp90, and Sp98 refers to 60%, 90% and 98% sparsity for the SNN.

Figure 4.12. Energy/inference of ResNet at 8b resolution and 60% sparsity. (a) On Eyeriss,
(b) On SpinalFlow. ifmap, filt and psum refers to corresponding scratch-pads in Eyeriss
PE.
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Figure 4.13. Energy per inference for SpinalFlow for full workloads, normalized to 8bSp60
Eyeriss.

Figure 4.14. Energy/inference of SpinalFlow, normalized to an Eyeriss baseline with the
same resolution as SpinalFlow. Note that sparsity of Eyeriss is fixed at 60%.
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Figure 4.15. Energy/inference of SpinalFlow for full workloads, normalized to an Eyeriss
baseline with the same resolution as SpinalFlow.

Figure 4.16. Latency per inference of SpinalFlow with respect to Eyeriss (a) with 72 GLB
links and (b) with 1024 GLB links.
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Figure 4.17. SpinalFlow energy per inference normalized to Spiking-Eyeriss for synthetic
conv workloads.
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Figure 4.18. SpinalFlow energy per inference normalized to Spiking-Eyeriss for full net-
work workloads

Figure 4.19. Energy per Inference of the synthetic fully connected workloads for
SpinalFlow normalized to Eyeriss.
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Figure 4.20. Energy per inference for ResNet on SpinalFlow, normalized to Eyeriss, as a
function of the number of PEs in SpinalFlow.

Figure 4.21. Compute density (GOPS/mm2) of SpinalFlow normalized to Eyeriss and its
area as the number of PEs is varied.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The need for efficient deep neural network training solutions will increase as the ap-

plications of machine learning grow. As the tasks become more complex, the model size

increases, which increases the overhead of training. Furthermore, labeled datasets may not

be available for all complex tasks. In this dissertation, we explore two different avenues

to tackle these problems. First, we explore well established concepts like partitioning

and pipelining strategies in distributed training. Second, we investigate and quantify the

potential and possibility of using spiking neural networks to reduce training energy. In

the next three sections, I conclude this dissertation with a high-level overview and key

insights from each of the three projects.

5.1 Criticality-Aware Pipeline-Parallel Training
In this work, we conduct an in-depth analysis of the energy and performance of var-

ious execution strategies for DNN training. Specifically, we explore the design space of

pipelining and partitioning strategies, and their interaction with batch size, group count,

chip count, and workload. Contrary to existing knowledge, we observe that convolutional

networks achieve optimal performance without grouping at large batch size, and fully

connected networks achieve optimal performance with grouping and data parallelism at

large batch size.

We also investigate the impact of spatial and temporal pipelining within a chip once the

cluster-level execution strategy is defined. Naively adopting a chip-level spatial pipeline

leads to slowdown and inefficiency. To overcome this we propose Cafine, a Criticality-

Aware Fine-grained Pipeline. On average, Cafine achieves throughput similar to PipeDream,

while consuming 4% less energy for CNN workloads and 8% less energy for FC work-

loads. We conclude that there is a rich space of optimal execution strategies that must be

considered for each workload and deployment.
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5.2 Re-RAM Based Analog In-situ SNN Accelerator
In INXS, we show that the use of a memristor crossbar can significantly accelerate the

computations required by SNNs. The resulting architecture not only removes the con-

straints posed by the state-of-the-art TrueNorth architecture, it also surpasses TrueNorth

on all metrics by one to three orders of magnitude. The INXS architecture takes a signifi-

cant step in bridging the current large gap between ANN and SNN accelerators.

5.3 Digital SNN Accelerator and Dataflow
Our final work first shows that the baseline SNN architecture, Spiking Eyeriss, is severely

penalized by repeated accesses to neuron potential and filter weights as ticks are sequen-

tially processed in the input interval. The Spiking-Eyeriss design consumes 2× more

energy than baseline Eyeriss, even at high sparsity and low resolution. It is also 2resolution

times slower than Eyeriss. We then devised a new architecture and dataflow that increases

data reuse and is tailored for the high sparsity that is expected in future SNNs.

The resulting SpinalFlow design improves energy efficiency by 5× over Eyeriss and by

1.8× over a 4-bit version of Eyeriss. It consumes less energy than Eyeriss at most evaluated

sparsity/resolution points. The new designs are effective for a range of convolutional

layers, and even more effective for memory-constrained fully-connected layers. In terms

of performance, SpinalFlow is faster than Eyeriss by 5.4×, when assuming a sparsity level

of 90%. Because SpinalFlow’s weight accesses are less regular, it needs a larger buffer for

weights, and yields lower throughput/mm2 than Eyeriss for some workloads. The new

architecture also greatly improves the energy,latency, and throughput for accelerators, like

TrueNorth, that will be used to simulate brain models [4, 74].We thus show that for large

neural networks, reuse management and sparsity exploitation are key in determining SNN

vs. ANNrelative efficiency.

Our results also serve as a useful guideline for researchers developing SNNs for var-

ious use cases. Our analysis quantifies the scenarios (resolution, sparsity, network topol-

ogy)under which SNNs can surpass the energy efficiency of ANNs.We highlight the need

to develop accurate training models for t-SNNs because it results in higher sparsity levels

and lower energy per inference.



86

5.4 Support for STDP-Based Training in INXS and SpinalFlow
Both the SNN accelerators proposed, INXS and SpinalFlow, are inference accelerators.

They do not innately support STDP-based training. With STDP being a localized online

training technique, support STDP in SpinalFlow (and INXS) can be achieved with the

introduction of minimal hardware units.

5.4.1 STDP-Based Training

The two key computations involved in STDP-based training are calculation of ∆t and

updating the weights based on ∆t. ∆t can be calculated by computing the difference

between the timing of a neuron’s spike and that of it’s input spike. Let wij be the synaptic

weight between neuron i in layer l and neuron j in layer l − 1. ∆t between neuron i and j

is given by the following equation:

∆t = tj − ti

where tj is spike time of neuron j, and ti is the spike time of neuron i.

Updating weight wij after ∆t is calculated is given by the equation:

wt+1
ij =

wt
ij + µe∆t, if ∆t ≥ 0

wt
ij − µe∆t, if ∆t ≤ 0

5.4.2 Hardware Support for STDP in SpinalFlow

Next, we discuss the additions required to SpinalFlow in order to support STDP-based

training. As mentioned earlier, the key computations required to perform STDP are cal-

culation of ∆t and performing weight update. In order to calculate ∆t, the time stamps of

input spikes to a neuron needs to compared with the time stamp of its spike. The output

spike generated is already stored in a buffer in a sorted fashion (as discussed in section 4.4).

As the comparison can only be performed after output spikes are generated, the input

spikes also need to be stored till then. We introduce a new structure to SpinalFlow, the

input spike buffer, to handle this. The input spike buffer stores the sorted input spikes

which are the output of min finder. Once an output spine is generated, the comparison

can be performed. In order to do this, we introduce functional units within PEs such

that forward pass can proceed in parallel. Thus, we estimate that, the minimal additions



87

required to SpinalFlow in order to handle STDP are 1. input spike buffer and 2. subtractor.

Table 5.1 lists the are of different hardware components in SpinalFlow without and with

STDP support. The two new components increase area of SpinalFlow by 4%. Note that

this is the minimal hardware changes required to support STDP. We leave designing STDP

optimized accelerator as future work.

5.5 Concluding Remarks
The key to unlocking the full potential of SNNs involves addressing the challenges

of both designing efficient architectures and effective training methods. In this disserta-

tion we focused on the first challenge, and introduced novel dataflow/architecture that

push the state-of-the-art for SNN acceleration and also make SNNs competitive to ANNs.

With SpinalFlow we showed that efficient spike representation, sparsity handling, and

reuse management are necessary to achieve high performance at low energy for SNNs.

Compared to ANNs, SNNs achieve better energy efficiency at high sparsity and low res-

olution (potential of SNNs). Motivated by several in-situ analog ANN accelerators, we

design INXS, an analog in-situ accelerator for SNNs. The highly parallel and low cost

computations enabled by memristor crossbars result in an architecture that provides or-

ders of magnitude better performance and efficiency than commercial products like IBM

TrueNorth. In spite of this promise, the lack of commercial success of in-situ analog

arithmetic products, and the need for complex structures to efficiently handle sparsity

makes INXS a less attractive alternative to SpinalFlow for SNN acceleration. Tangentially,

we also investigated distributed training strategies that could reduce training energy. Our

design space exploration uncovered scenarios in distributed training where the optimal

parallelizing strategy diverges from existing assumptions. We also introduced Cafine,

which improves training efficiency by intelligently deciding between spatial and temporal

pipelining.

5.6 Future Work
The next crucial step towards realizing unsupervised efficient training of SNNs is to

devise powerful and robust training techniques. The training technique needs to be on-

line, unsupervised and also localized (like STDP) in order to facilitate both real-time and
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efficient learning. Both SpinalFlow and INXS need to be equipped with structures to

facilitate STDP based training. This requires support for buffering neuron spike-times

and for performing parameter updates. As opposed to back-propagation based training,

parameter updates in STDP are localized to a layer. This might also necessitate new

parallelization strategies as existing ones are optimized for SGD based training methods.

With ASICs specialized for DNNs becoming common in modern mobile devices, and

the potential of efficient (and online) training enabled by SNNs, on-device learning can

become a reality (especially while the device is plugged-in). In such a setting, heteroge-

neous (CPUs, GPUs, ASICs, etc.) distributed training techniques and dynamic resource

management are imperative to fully and efficiently utilize the available resources.
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Table 5.1. Area (in mm2) of SpinalFlow without and with support for STDP-based training.

Components SpinalFlow SpinalFlow with STDP support
PE 0.024 0.031

Min find 0.002 0.002
Inp Buffer 0.069 0.069

Inp Spike Buffer - 0.069
Filter buffer 1.99 1.99

Total area 2.09 2.16
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