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ABSTRACT

The demand for main memory capacity has been increasing for many years and will

continue to do so. In the past, Dynamic Random Access Memory (DRAM) process scaling

has enabled this increase in memory capacity. Along with continued DRAM scaling, the

emergence of new technologies like 3D-stacking, buffered Dual Inline Memory Modules

(DIMMs), and crosspoint nonvolatile memory promise to continue this trend in the years

ahead. However, these technologies will bring with them their own gamut of problems. In

this dissertation, I look at the problems facing these technologies from a current delivery

perspective. 3D-stacking increases memory capacity available per package, but the increased

current requirement means that more pins on the package have to be now dedicated to

provide Vdd/Vss, hence increasing cost. At the system level, using buffered DIMMs to

increase the number of DRAM ranks increases the peak current requirements of the system

if all the DRAM chips in the system are Refreshed simultaneously. Crosspoint memories

promise to greatly increase bit densities but have long read latencies because of sneak

currents in the cross-bar. In this dissertation, I provide architectural solutions to each

of these problems. We observe that smart data placement by the architecture and the

Operating System (OS) is a vital ingredient in all of these solutions. We thereby mitigate

major bottlenecks in these technologies, hence enabling higher memory densities.
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CHAPTER 1

INTRODUCTION

1.1 Emerging Trends

Over the past decade, devices used for personal computing have gone through a size

and functionality revolution. Handheld devices have replaced the laptop as the primary

computing device. In addition to being a device for media consumption, these devices have

also turned out to be sources of media creation. The rise of social media coupled with the

ability to create and share information has created a need to store and process extremely

large amounts of data. Concurrently, there has also been a revolution in devices that

gather user information (Global Positioning Services, location services, temperature data,

data from electronic sales, customer profiling, health data, etc.). This explosion of data has

led to the spread of warehouse-scale computers that are needed to store and process this

data. While desktop computers and mobile devices are limited to having a few gigabytes

of memory, servers with terabytes of memory capacity are becoming commonplace.

Traditionally, disks have been the preferred medium to store large databases. In recent

years there has been a growing trend to move larger portions of data from disks to memory.

This trend has been motivated by two factors. First, there has been more than a 30×

decrease in Dynamic Random Access Memory (DRAM) prices over the last decade [4].

Second, there has been an emergence of new workloads such as data analytics, cloud-based

services, web services like search and social networks, etc., which process large amounts of

data. These workloads have necessitated the use of a medium that, in addition to storage

capacity, can also provide large data bandwidth.

The RAMCloud [5] project argues that for bandwidth limited database workloads,

moving from disk-based storage to RAM-based storage can lead to a 10-1000× increase

in performance. Additionally, moving from a device that uses sequential access to a device

that uses random access can also lead to reduced software complexity and optimization

effort. The 1000× difference in access latencies also renders a caching solution useless, as

even a 1% miss rate would lead to a 10× drop in performance. Several projects such as
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RAMCloud [5], Pregel [6], SAS in-memory analytics [7], SAP HANA in-memory computing

and in-memory database platform [8], and BerkeleyDB [9] have shown the efficacy of this

approach. Together, these factors have led to the emergence of in-memory databases.

1.1.1 Architecting High Capacity Memory Systems

Increase in DRAM capacity has largely been driven by process scaling. Increase in

DRAM density has also been accompanied by an increase in the pin bandwidth of these

DRAM devices. However, with every generation of higher bandwidth DRAM, the number

of Dual Inline Memory Modules (DIMMs) that can be plugged into a channel has decreased.

Increasing the number of drops on the DRAM channel increases noise on the channel, hence

at higher frequencies, fewer DIMMs will be supported. While the original Dual Data Rate

(DDR) standard allowed up to 4 DIMMs per channel, the DDR3 standard only supports 1

DIMM per channel at the highest data rates [10].

Recent work has suggested that even though DRAM scaling will continue in the near

future, it will be at a slower pace and will be at great cost [11]. Going forward, we

believe that the following three solutions will be used to increase memory capacity. First,

to increase the density of DRAM per package, 3-Dimensional (3D) die stacking will be

used. 3D die stacking comes in many forms. Commercial products that package multiple

DRAM dies in the same package have been around for a few years. 2.5D packaging

using an interposer die has recently been adopted in high end iGraphics Processing Units

(GPU). Architectures that use a large number of Through Silicon Vias (TSV) to increase

performance in addition to increasing bit density will soon be commercially available.

Second, to overcome the problem of decreasing DIMM count per channel, the DRAM

command and data bus are going to be buffered. Buffering the bus reduces the number

of drops on the bus, and hence reduces noise on the channel. Approaches such as Fully

Buffered DIMM (FB-DIMM) [12], Registered DIMM (R-DIMM) [13], Load Reduced DIMM

(LR-DIMM) [14], as well as Buffer-on-Board [10] approaches such as the Intel Scalable

Memory Buffer [15] are already commercially available. Third, nonvolatile technologies

such as Phase Change Memory (PCM) and Memristor-based memory have better scaling

characteristics. Memristor memory further promises to increase density by using Crosspoint

structures that do not use an access transistor and hence have higher bit densities.

1.1.2 Peak Current Problems in Emerging Technologies

Increasing bit densities have an impact on the amount of current that is consumed in

the system. Increasing the amount of DRAM present inside a package using 3D-stacking
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also increases the amount of current that is consumed inside the package. To supply this

additional current, a larger number of Through Silicon Vias (TSVs) and C4 bumps now

needs to be dedicated to providing power and ground. A higher count of TSVs and pins

increase chip area as well as packaging complexity, both of which increase cost.

DRAM refresh happens to be the most current intensive action performed by the DRAM

chip. As the number of ranks present in the system increases, the peak current that needs

to be supplied to refresh all the ranks in the system also increases. Even though this spike

in power only lasts as long as the refresh cycle time of DRAM, the power supplies in the

system need to be able to supply this increased current, thus increasing the total cost of

the system.

Nonvolatile memories like PCM and Memristor memory store data in the form of

resistance. These resistive technologies do not face many of the challenges that DRAM

faces at smaller geometries. Unlike PCM, the resistance of a Memristor cell is nonlinear. It

depends on the programmed state of the cell as well as the voltage applied to it. Because of

this nonlinearity, Memristor-based memories can be built in the form of a cross point array,

obviating the need for an access transistor. However, in the absence of an access transistor,

the cross point array gives rise to sneak currents. These sneak currents increase read

complexity and have a detrimental impact on the reliability of Memristor-based memory.

1.2 Dissertation Overview

From these trends, we see the need for higher memory capacities being driven by

increased data generation as well as the pervasive use of applications that require higher

data bandwidth. While traditional process scaling has been driving increasing chip densities

in the past, the technologies that will enable higher densities in the future are not without

their challenges. In this dissertation, we focus on the problems stemming from the increased

current demands, and provide architectural solutions to these problems. In Chapter 3, we

develop a static IR-drop model for 3D-stacked DRAM, where I stands for current, and

R stands for resistance of the power deliver network. We show how carefully scheduled

activities in DRAM banks can keep IR-drop under control. This allows acceptable perfor-

mance even with an under-provisioned power delivery network. In Chapter 4, we analyze

the performance loss due to staggered refresh. Staggering refresh of the ranks in the system

decreases the peak power consumed by the DRAM system. However, doing so increases

the performance loss due to refresh. We analyze the reasons for the performance loss, and

provide data placement solutions that reduce the performance loss to refresh. In Chapter 5,



4

we analyze the impact of sneak currents on read latency and read reliability. We propose a

technique that reduces the read latency and a data mapping scheme that increases reliability.

1.2.1 Thesis Statement

The memory capacity requirements of servers are increasing at a very fast rate. New

technologies (e.g., 3D-stacking, buffered DIMMs, and Memristors) will be leveraged to boost

memory capacity, but these technologies suffer from many new problems. In particular,

management of current and voltage is voltage is crucial for the efficient deployment of

new technologies. We hypothesize that architecture/OS policies for data placement can

help manage currents in memory, thus significantly impacting performance, reliability, and

power-efficiency.

1.2.2 Addressing Peak Current Problems in 3D DRAM

3D-stacking of DRAM brings with it the promise of increased bit density per package

as well as the ability to integrate different process technologies into the same package. Die

stacking can take many forms. DRAM packages that stack independent dies in a waterfall

model [16] have been around for many years. High Bandwidth Memory [17] that uses a

silicon interposer to increase the number of pins coming out of DRAM has recently been

adopted in high end graphics processors. In this work, we focus on a 3D-stack that resembles

the Hybrid Memory Cube [18].

One of the roadblocks to the adoption of a new technology is cost. This work tries to

reduce the number of TSVs and C4 bumps that are used in a 3D-stacked DRAM device,

thus leading to lower die area and a simpler package. Reducing the number of Vdd/Vss

TSVs and bumps impacts the performance by lowering the number of commands that can be

executed in parallel. By constructing a detailed Spice model of the power delivery network,

we are able to discern the exact amount of parallelism that different parts of the die stack

can afford. By creating different constraints for different regions, we are no longer limited

to the worst case constraints of the entire stack. Further, we propose a data placement

scheme that leverages the heterogeneity in the activity allowed in different regions. We are

thus able to achieve performance that is very close to the performance of an unconstrained

die stack, while greatly reducing the number of TSVs and bumps that are dedicated to the

power delivery network.
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1.2.3 Addressing Peak Current Problems in Multiranked DRAM

A DDR3 memory controller must issue a refresh command every 7.8µs to every rank. As

the capacity of a DRAM device increases, so does the number of rows present in every bank

of DRAM, leading to an increase in the time it takes to refresh the DRAM device. DRAM

refresh also happens to be the most current intensive operation performed by DRAM. To

avoid a spike in current consumption, memory controllers stagger the refresh commands

to different ranks in the memory system. This work analyzes the performance impact of

staggering refresh. We propose an OS-based data placement scheme that tries to limit the

number of ranks occupied by a single thread. The result is that we are able to outperform

staggered refresh, while avoiding the peak power penalties of staggered refresh. Further, we

make an observation that the effect of write queue drains in nonvolatile memories manifest

in ways that are very similar to DRAM refresh. Hence, the same data placement scheme

that was proposed to address DRAM refresh is also applicable to the problem of long latency

writes in nonvolatile memories.

1.2.4 Addressing Sneak Current Problems in Crosspoint Memories

As the area of the DRAM cell is decreased, the capacitance of the DRAM cell needs

to stay the same [11]. To keep the capacitance constant, the aspect ratio of the DRAM

cell needs to keep increasing with every generation. Eventually, this leads to manufacturing

difficulties. Because of their dependence on material properties rather than the need to

store charge, nonvolatile resistive memories are more amenable to smaller geometries than

capacitive memories like DRAM [19]. Additionally, because of the inherent nonlinearity of

the resistance of Memristor cells, Memristor-based memories can be built using crosspoint

structures. Crosspoint structures do not use an access transistor, which means that a

Memristor cell only occupies an area of 4F 2. However, lack of the access transistor gives

rise to sneak currents. The current that is read out of the bitline is the current through the

selected cell, as well as the sneak current that is leaking through other cells in the bitline.

This not only increases read complexity, but also increases read latency. Read becomes a

two-step process. The first step reads only the sneak currents, and the second step reads the

actual current. The difference in the currents indicates the value stored in the cell. Sneak

currents also affect the voltage at the selected cell, which in turn affects read margins. Cells

that are furthest from the drivers are affected more than the cells that are closer to the

drivers. This work proposes a read technique where the sneak current measurement is reused

across subsequent reads from the same column of the array, thus reducing read latency. We

also propose a data mapping scheme that prevents certain cache lines from having all their
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bits mapped to the least reliable parts of the array, thus improving reliability.

The three subsequent chapters share the same end goal: to support high capacity

memory systems. They address different problems, all rooted in the system’s inability to

manage high currents in the memory system. They provide solutions that share a common

thread – smart placement of application data in memory regions.



CHAPTER 2

BACKGROUND

In this chapter, we briefly look at the organization of a DRAM system. In Chapter 2.1,

we describe the logical organization of DDR3-based DRAM systems. In Section 2.2, we

describe the various steps involved in accessing data that is stored in DRAM.

2.1 DRAM Organization

Data stored in DRAM are accessed at the granularity of a cacheline. DDR3-based

memory systems use a cacheline width of 64 Bytes (512 bits). The DRAM system is

organized in terms of channels, ranks, and banks.

A DDR3 channel is the set of wires that connect the processor to the DRAM chips. The

channel is made up of a data bus and a command/address bus. The data bus is 64 bits

wide, and the command/address bus is 17 bits wide. If Error Correcting Codes are used,

the data bus is 72 bits wide.

DRAM chips are soldered onto boards called Dual Inline Memory Modules (DIMMs)

that are connected to the DRAM channel. Depending on the frequency of the DRAM

channel, multiple DIMMs may be connected to each DRAM channel.

Each DIMM is made up of ranks. DRAM chips that work in lock step to provide 1

cacheline worth of data make up a rank. The number of chips in a rank is determined by

the number of data pins on the DRAM chips. An xN chip has N data pins on it. For

example, a rank made of x8 chips consists of 8 chips if the rank is connected to a 64 bit

wide channel. Each chip in the rank produces 64 bits out of the 512 bits that make up

a cacheline. Data are transferred to the processor in a burst of 4 clock cycles. Data are

transferred on both the rising and falling edges of the clock, hence the name Double Data

Rate (DDR) memory.

A chip is further divided into banks. Each bank in a DRAM chip is an independent

entity that is able to produce 64 bits of data. Logically, the bank is the smallest unit in the
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DRAM chip. However, physically a DRAM bank is made of arrays. DDR3 chips are made

up of 8 banks, DDR4 chips are made up of 16.

2.2 Accessing Data in DRAM

2.2.1 Basic DRAM structure

Data in DRAMs are stored in capacitors in the form of charge. The cell capacitor is

accessed through an access transistor. The gate terminal of the capacitor is connected to

the wordline, and the source/drain terminals are connected to the cell capacitor and the

bitline. The bitline is called so because this is the wire through which the bit stored in

the capacitor is accessed. These 1-Transistor-1-Capacitor (1T1C) structures are arranged

in 2-Dimensional (2D) grids called arrays. All the cells in a row share a common wordline

that is connected to the gate of the access transistor of each cell. All the cells in a column

share a bitline that is connected to the drain/source of the access transistor.

2.2.2 Activate

To read the data stored in this array, the wordline, which is connected to the gate

terminal of the access transistor, is turned ON. Activating the wordline connects the cell

capacitor to the bitline. The charge that is stored in the cell is now shared with the bitline.

Because DRAM is primarily optimized for the cost-per-bit metric, the DRAM cell needs to

be as small as possible. Hence, the capacitance of the DRAM cell is an order of magnitude

(12x [20]) smaller than the capacitance of the wordline. The change in voltage of a capacitor

is proportional to the charge that is injected. Because of the relatively small capacitance

of the DRAM cell when compared to the bitline, the change in bitline voltage is relatively

small.

2.2.3 Sense Amplifiers

To sense this small perturbation in the bitline, circuits called sense amps are used. Sense

amps are two input, two output differential amplifiers. If the voltage at both inputs is the

same, then the outputs are the same as the inputs. However, if there is a small difference

in the inputs, the sense amps push the output voltages apart. These are positive feedback

circuits, where the outputs are connected back to the inputs. So driving the outputs apart

also drives the inputs apart. The voltages at the sense amp terminals continue diverging

until they reach the full rail voltage.
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2.2.4 Precharge

Before a DRAM cell is sensed, the voltage at the bitlines needs to be equalized. The

voltages are raised to Vcc/2, where Vcc is the full rail voltage. To sense data, the sense

amps need to see a change in the voltage on one of the bitlines. In order to achieve this,

the bitline is connected to a voltage of Vcc/2 and then disconnected and left hanging.

The capacitance that is associated with the bitline maintains the bitline voltage at Vcc/2.

Additionally, precharging also reduces the time the sense amp will take to raise the voltage

to Vcc. Before a precharge is issued, the wordline is de-activated, thereby closing the row

and disconnecting all DRAM cells from bitlines. Because the bitlines are directly connected

to the sense amps, precharging the bitlines also destroys the contents in the sense amp.

2.2.5 Charge Pumps

If the capacitors in the DRAM cell are charged to a voltage of Vcc, the voltage applied

to the gate of the access transistor is also Vcc, then the voltage reaching the bitline will be

at the most (V cc − V t) (where Vt is the threshold voltage of the access transistor). This

would further decrease change in voltage of the bitline due to the DRAM cell, making it

harder for the sense amp to interpret the value stored in the DRAM cell. To over come this,

the wordline driving the access transistors is driven to a voltage higher than Vcc. Charge

Pumps are used to increase the wordline voltage over the full rail voltage.

2.2.6 Destructive Read

When a DRAM row is activated, all the cells in that row are now connected to their

bitlines. The voltage in these cells is now equal to the bitline voltage. The voltage on the

bitline is slightly above or below Vcc/2, depending on the value stored. Once the bitlines

are perturbed, the sense amps start to amplify this by driving the bitline voltages. Only

when the bitline voltage reaches a sufficiently high value can the value be read out of the

row. The DRAM cells have to wait for the sense amps to drive the bitlines to full rail

voltages before their values are restored. Only once the values are restored can the row be

closed and the bitlines precharged.

2.2.7 Reads and Writes

So far we have seen how to get data out of the arrays and into the sense amps. In

order to read a cache line out of the sense amps, the column address is provided and the

Column Access Strobe (CAS) signal is asserted. The data that are currently residing in the

relatively weak bitline sense amps are then routed to the much more powerful Input-Output
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(IO) sense amps through the column decoder. The time taken by the data to reach the DQ

pins after the CAS signal is asserted is called the CAS latency. However, since the data are

internally pipelined, the next column of the same row can be read after tCCD cycles.

To write a line into DRAM, the data at the DQ pins of the DRAM chips are driven by

the IO sense amps to the bitline sense amps. Because the IO sense amps are much more

powerful, they are able to overdrive and change the value of the bitline sense amps. The

time it takes for the data to reach the the DRAM arrays after the burst of data has been

sent is called tWR, which is the write latency.



CHAPTER 3

ADDRESSING PEAK CURRENT

PROBLEMS IN 3D DRAM

Capacity, bandwidth, and power remain critical bottlenecks in memory systems. Die

stacking using Through Silicon Vias (TSV) promises to address these bottlenecks in one form

or another. Stacking DRAM dies in the same package increases the bit density per package.

Stacking DRAM dies over a logic layer can greatly increase the functionality of the stack.

Recent products like the Hybrid Memory Cube [21, 18] and High Bandwidth Memory [17]

leverage the increased bandwidth afforded by 3-Dimensional (3D) stacking. Recent works

have explored several applications for 3D-stacking such as Near Data Computing [22],

building accelerators for specific applications [23, 24], and increasing memory capacities

by interconnecting these stacks [25, 26, 27].

One of the main impediments to the adoption of any new technology is cost. In this

chapter, we attempt to lower the cost of die stacking by reducing the pins and TSVs

that are dedicated to the power delivery network of the die stack. Reducing the pins and

TSVs increases the resistance of the Power Delivery Network (PDN) and hence decreases

the number of reads and writes that can be serviced in parallel inside the 3D-stack. In

Section 3.5, we propose a data placement scheme that is able to tolerate the decreased

activity, while limiting the performance loss.

3.1 IR Drop in 3D DRAM

DRAM supply voltages have been dropping every generation in order to improve power

efficiency in DRAM. However, as supply voltage decreases, circuits become increasingly

more sensitive to power supply noise. A 100 mV supply noise on a 1 V system is a much

greater threat to correctness than on a 2.5 V system. Traditionally, Power Delivery Networks

in DRAMs have not received much attention, but with the move towards high performance

and low-voltage DRAM, managing power supply noise becomes increasingly critical for

correctness and performance [28].
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Of the hundreds of pins on a chip, more than half are used to supply power and ground.

These power pins are scattered across the chip so that the supply current need not travel very

far on the chip. Some of the supplied voltage is dropped across the PDN; by Ohm’s Law,

this is a function of the supplied current I and the effective resistance of the PDN R. This

is commonly referred to as “IR-drop”. If the IR-drop is very high, a lower supply voltage

is delivered to the chip’s circuits, possibly leading to incorrect operation. For example, in

commercial DDR3 DRAM chips [29](page 111), if the supply voltage is rated at 1.5 V, the

minimum allowed voltage at the circuits is specified to be 1.425 V, i.e., up to 75 mV can

be dropped across the PDN.

The IR-drop becomes unacceptable if the DRAM chip is either drawing too much power,

or if the PDN’s resistance is too high. The latter is kept in check by using many pins for

power delivery and ensuring that current travels relatively short distances. The former

is kept in check by imposing limits on the maximum activity on the chip. For example,

DRAM chips allow a maximum of 4 row activations within the timing window tFAW.

Other examples also exist, such as the timing window tRRD [30](page 429), which imposes

a minimum gap between consecutive DRAM activates1.

Technology and market forces are raising the values of I and R. First, the onset of 3D-

stacking will increase the current draw I per package. Micron has announced the imminent

release of its 3D-stacked memory+logic device, the Hybrid Memory Cube (HMC). There will

likely be other similar products, including some that only stack multiple DRAM dies [31].

Second, 3D-stacks introduce a vertical resistive component (e.g., through silicon vias or

TSVs) within the PDN, thus increasing R. Third, DRAM memory devices are highly cost

sensitive. The packaging cost of the device is a linear function of the number of pins. This

is nicely illustrated by Dong et al. [32]. They show that for a 3D-stacked device, increasing

the pin count from 600 to 900 leads to approximately a 1.5X increase in packaging cost. To

reduce cost, there is pressure to reduce pin count. Similarly, to improve data bandwidth,

there is pressure to allocate more pins for data signals. Both will reduce the pins available

for power delivery, thus potentially increasing R.

With such future 3D-stacked memory devices in mind, we carry out a detailed circuit-

level static IR-drop analysis. We then show that without additional current limiting

constraints, the level of activity (current draw) can lead to IR-drop violations. The activity

on the device must be throttled to avoid these IR-drop violations. We make the key

1Some of these constraints are influenced not just by the PDN, but also by the charge pumps. We expand
on this in Section 3.4.
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observation that IR drop not only depends on the number of banks that are servicing

requests, but also on the location of these banks and the DRAM commands being executed.

We characterize how IR-drop varies with activity distribution across banks on the 3D

device. Thus, architectural policies can play a role in dictating the maximum IR-drop,

and hence the performance and the packaging cost of a device. These observations lead us

to introduce a number of IR-drop-aware rules within the memory controller. However, this

basic design yields performance that is 4.7× lower than a memory device with an unrealistic

over-provisioned PDN that never has IR-drop violations.

We show that most of this steep performance loss can be recovered with smarter ar-

chitectural policies implemented in the memory scheduler and in the OS page manager.

The memory scheduler is designed to better handle frequent starvation scenarios. We also

introduce a dynamic page migration scheme that identifies critical pages and places them

in the regions with the highest immunity to IR-drop. With these policies in place, the new

design has performance that is only 1.2× lower than the unrealistic ideal PDN.

A few caveats are worth noting: (i) There are potentially many ways to tackle the IR-

drop problem (more pins, more TSVs, fatter wires/TSVs, new materials, voltage regulators,

higher supply voltage, in-package decaps, etc.) and the magnitude of the problem in future

technologies is yet unclear. The goal of this chapter is to explore an architectural approach

to the problem. If successful, this approach may obviate the need for more expensive

approaches, or it may be one of many solutions that are deployed to handle voltage problems.

(ii) There are many possible sources of voltage noise and this work only focuses on analyzing

static IR-drop. Note that other voltage noise sources may eat into the votage margins,

resulting in even lower tolerance for static IR-drop. A holistic architectural solution that

can cope with several voltage noise sources is left as future work. This chapter therefore

represents an initial solution to a complex problem.

3.2 Background

3.2.1 2D DDR3 Memory Systems

A modern-day memory system is implemented with DIMMs that contain commodity

2D DRAM chips that comply with the DDR3 or DDR2 standard. The processor socket

typically has up to 4 memory controllers that are used to drive 4 DDR3 memory channels.

These channels are wide (64 or 72 bits for data) and run at frequencies that are roughly

half that of the processor frequency. The channel is essentially a bus that connects to

multiple DIMMs. If more DIMMs are placed on the channel, the increased noise forces
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the channel to operate at a lower frequency. This leads to a capacity-bandwidth trade-off.

Some recent high-capacity systems have tried to provide high capacity and high bandwidth

by introducing buffer chips on the board [10]. In such systems, the processor memory

controllers drive narrow high-speed buses that each connect to a single buffer chip. This

buffer chip then uses wide and slow DDR3 channels to connect to multiple DIMMs [33].

The buffer-on-board solution does incur a steep power penalty.

Each DDR3 DRAM chip typically organizes its data arrays into 8 banks. Each bank can

be concurrently processing a different memory transaction. To access data in a bank, the

memory controller first issues a row activate (ACT) command that brings data in a row of

cells to the row buffer. Individual cache lines in the row are read and written with column

read (COL-RD) and column write (COL-WR) commands. Before accessing a different row,

the bitlines are equalized with a precharge (PRE) command.

Even though the banks can all be busy at the same time, because of limitations on current

draw, the memory controller is restricted to issuing no more than 4 row activations within

a time period defined by the tFAW timing constraint. Further, the tRRD timing parameter

enforces a gap between activations to different banks. This current draw limitation is in

turn defined by the charge pumps provisioned on the chip and the power delivery network

that feeds these charge pumps.

3.2.2 3D-Stacked Memory

3D-stacking is being widely employed within prototype memory devices [18, 34, 35].

Of these devices, we use Micron’s Hybrid Memory Cube (HMC) as an evaluation platform

because it will soon be commercially available and several design details are already available

in the public domain [18, 36, 37]. The ideas and analyses in this chapter will apply to almost

any 3D-stacked memory device. In fact, these ideas are a better fit for cost-constrained

3D-stacked DRAM devices that do not include a logic layer. Most of our analysis is therefore

focused on the IR-drop caused by the current drawn by the DRAM stack.

The HMC stacks 4 or 8 DRAM chips on a logic layer, thus providing high capacity in a

package. It replaces several on-board interconnects with power-efficient through-silicon vias

(TSVs). It provides high internal bandwidth with many TSVs and high external bandwidth

by implementing high-speed signaling circuits on the logic layer.

The HMC architecture implements 32 banks on each DRAM die. An HMC with 8

DRAM dies has 256 independent banks. These 256 banks are organized into 16 vaults. A

vault is a vertical pillar of data that contains 2 banks from each of the 8 dies. The banks

in a vault share a single set of TSVs for data transfer. An entire cache line can be accessed
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from a single bank in a single HMC, similar to single subarray access [38] for low energy

and limited overfetch.

The first-generation HMC uses 1866 total TSVs at 60µm pitch and 256 signal pins [37].

The external links are driven by high-frequency SerDes circuits on the logic chip. The HMC

is a high-power, high-bandwidth, and high-cost design point. 3D-stacked DRAM packages

that exclude a logic layer and high-speed SerDes links will likely be constructed with much

fewer TSVs and external pins for power and ground.

Like most memory products, there will be a push to lower cost by reducing TSVs and

pin counts, while still supporting high activity levels within 3D-stacked DRAM. The power

delivery network for the package will dictate various timing constraints (similar to tFAW

and tRRD) that will throttle the peak current drawn by the package.

3.2.3 Power Delivery Networks

The aggregate current drawn by a 3D-stacked memory device is expected to be much

higher than that of a 2D DRAM chip [37, 36]. High peak currents can have many adverse

effects, such as static IR-drop, dynamic IR-drop, power supply noise, and higher tempera-

tures. Of these, we focus on static IR-drop in this chapter.

Power is delivered through pins on the package and C4 bumps on the device. A number

of TSVs are used to carry power/ground signals from the C4 bumps to each chip on the

stack. The metal layers for the chip implement a horizontal grid of power/ground wires that

carry these signals to each circuit block. Figure 3.1 shows an example PDN, illustrating the

entire path from bump to destination circuit. A portion of the supply voltage is dropped

across the PDN – this IR-drop is a function of the effective resistance of the PDN R and

the current I that it carries. If the C4 bumps and TSVs allocated for power and ground are

few and far between, the lengths of the on-die resistive wires is longer, increasing the value

of R. This increases the voltage drop across the PDN. Based on the length of these on-chip

power delivery wires, and based on the maximum voltage drop that can be tolerated, a

maximum current draw specification is computed. The memory controller is then provided

various timing parameters that prevent the current draw from exceeding this maximum.

Zhang et al. [39] show that IR-drop in processors will increase three-fold as we move

from 45 nm to 16 nm technology. This trend is driven by various factors: (i) non-increase

in the number of C4 bumps, (ii) slightly lower supply voltages in future generations, (iii)

narrower wires with higher resistances, and (iv) higher current densities.

A 3D PDN is inherently more resistive than a 2D PDN because of the presence of power

and ground TSVs. A 3D package also draws higher aggregate currents than a 2D package.
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Figure 3.1: Illustrative cross-section of a portion of the power delivery network. VDD
and VSS are supplied through C4 bumps and fed to the circuit block with vias/TSVs and
horizontal power/ground grids on metal layers.

Khan et al. [40] report that when moving from 2D to 3D ICs, the IR-drop is greater than

the Ldi/dt voltage droop. Thus, there are many indications that the IR-drop problem will

be significant in future 3D devices.

Some prior work [41, 31] has attempted to design a better TSV network to reduce

IR-drop. However, these typically introduce more TSVs, which impacts cost [42], while

not eliminating the IR-drop problem. Voltage regulators [43] can also help alleviate the

IR-drop problem, but may not be viable the DRAM space because of their negative impact

on density and cost.

Assuming that the IR-drop can be tolerated, there is a strong motivation to reduce

the number of pins, C4 bumps, and TSVs allocated for power/ground. There is a linear

relationship between packaging cost and pin/C4 count [32, 44, 30]. Dong et al. [32] shows

that for a 3D-stacked device, increasing the pin count from 600 to 900 leads to approximately

a 1.5X increase in packaging cost. Packaging costs have already started exceeding silicon IC
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fabrication costs [44]. Routing many C4 bumps through the Redistribution Layer (RDL)

inside the package incurs additional cost. Increased package routing density can lead to

decreased packaging yield and lead to increased packaging cost [45]. This steers the cost-

sensitive DRAM industry towards lower pin/C4 counts. Similarly, a high TSV count also

negatively impacts area, routing, yield, and cost.

IR-drop analysis in the PDN can be broken down into static and dynamic components.

In static IR-drop analysis, static current loads are assumed to be driven by the PDN. The

PDN is reduced to a resistive network and the voltage drop across this resistive network

is calculated based on a given current source. Dynamic IR-drop analysis takes circuit

switching as well as the capacitive and inductive nature of the PDN and the package into

account. When dynamic current consumption is simulated, PDN noise such as ground and

power bounce can be analyzed. In 2D DRAM chips, dynamic IR-drop is alleviated with

decoupling capacitors (Decaps) [30]. While a 3D package can provision more Decaps than

a 2D package, it is not clear how dynamic IR-drop will scale in future technologies.

3.3 Methodology

We first explain in detail our methodology to simulate IR-drop within an HMC-style

3D-stack. This methodology takes into account the impact of TSVs, C4 bumps, and bank

activities on voltage drops within the PDN. We use the layout of Samsung’s 4-stacked 3D

design as a starting point [31]. That package includes 4 2 Gb chips. We extrapolate it

to an 8 Gb design by quadrupling the number of banks. The 2 Gb chip has 8 banks; the

HMC design has 32 independent banks in each die. So our layout replicates each bank

4 times. We also consider a shrink factor of 0.8 in the linear dimension (0.64 for area)

because of moving from a 50 nm technology to a 40 nm technology. The estimated chip

area is 13.52×16.72mm2, which is about 2.3 times larger than the 2 Gb DDR3 chip at

50 nm. The final layout (Frugal) is shown in Figure 3.2. Unlike a 2D DRAM floor plan,

which only has 1 row of banks on either side of the C4 bumps, the 32 bank floor plan will

have 2 rows of banks on each side of the C4 bumps. The 32 banks are organized as 4 rows

of 8 banks each; the banks in each row are referred to as A0 − A7, B0 − B7, C0 − C7,

and D0 −D7. Most low-cost commodity DRAM chips assume C4 bumps along the center

stripe. Kang et al. [31] show that C4 bumps and TSVs along the center can lead to a

severe IR-drop problem. They overcome this problem by introducing rows of bumps/TSVs

at the top and bottom of the chip (see the strips at the top and bottom of the expensive

layout in Figure 3.3). This is a relatively costly method to combat the problem because
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Figure 3.2: Frugal DRAM die layout with 1 row of TSVs and bumps.
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Figure 3.3: Expensive DRAM die layout with 3 rows of TSVs and bumps. 2 possible
layouts for DRAM dies. Both layouts have 4 rows of 8 banks each.
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it requires more bumps/TSVs that impact area, yield, and packaging cost. We therefore

restrict ourselves to the Frugal layout in this study and attempt to address the IR-drop

problem with architectural solutions.

The power grid specifications used in our model are adopted from Wu et al. [46]. Due

to the back to back arrangement of banks, we assume 2X wider wires for power and ground

signals to reduce their resistances. We increase the wire width from 2 µm to 4 µm, while

keeping the pitch of the supply wires fixed at 12 µm. The assumption is that the pitch

of the supply wires is wide enough for signal wires and that routing tools may be able to

accommodate the wider wires with a minimal impact on area.

In our evaluations, we model 536 C4 bumps and 536 TSVs for power and ground. The C4

bumps have a pitch of 120 µm. The TSVs in our design are placed with a pitch of 40 µm [47].

We also assume an additional 256 signal C4 bumps and 992 signal TSVs. Similar to the

floorplan used by Kang et al. [31], the layout assumes that the top of the center stripe

accommodates peripheral circuits, while the bottom of the center stripe accommodates

TSVs and bumps. Because of this, the banks in the bottom half of the chip are closer to

the power source and exhibit a lower IR-drop. As we show later, this has a small impact

on the level of activity allowed in each bank.

We also confirmed that our TSV count is large enough to provide the necessary current

in the DRAM stacks. Using a migration density threshold of 7400 A/cm2 [48], and assuming

50% derate, 5 W requirement in the DRAM stacks, and 25 µm microbump diameter for

TSVs, we would need a minimum of 229 power and 229 ground TSVs. If we make more

pessimistic assumptions regarding the current-carrying capability of lead-free solder or the

size of the bumps, it is possible to hit the current wall before a possible IR-drop violation,

i.e., for acceptable operation, we would provision enough TSVs that static IR-drop would

not be a problem.

This work doesn’t focus on IR-drop within the logic die as a logic process has other

orthogonal approaches to combat IR-drop (more metal layers for example). The logic die

also doesn’t suffer from IR-drop across TSVs. Also, a logic chip will typically be absent in

a cost-constrained memory device. We model the power of the logic die based on values

provided for the Micron HMC [37] and assume that the power is uniformly distributed

across the logic chip. We note that the assumptions for the logic chip have a small impact

on the IR-drop within the DRAM chips. This is because the DRAM die and the logic die

only share the resistance of a small segment of C4 bumps, so a high current draw in the

logic chip only exposes the DRAM chip to a negligible amount of IR-drop.
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We use Synopsys HSPICE Version C-2009.09-SP1 64-BIT to model voltage drops. We

model a 3D mesh of wire resistances, similar to models used in prior work [49]. The mesh

includes 3 metal layers each for 9 different dies. Capacitances are not required because this

is a static-IR model. We therefore only provide resistance values per wire and current draw

values based on the activity in a bank. The netlist was created using a Perl script. The

grid of resistance which forms the PDN is connected to the VDD and VSS bumps on one

side and is connected to circuit elements on the other side. Circuit elements connected to

the PDN are modeled as current sources which draw a fixed amount of current. The values

of resistances of metal wires, TSVs, and bumps are adopted from measured values in prior

work [46, 47, 50]. These values are 0.031, 0.196, and 0.224 Ω/� (read as Ohms per square,

which is the unit of sheet resistance) for the 3 metal layers, and 0.25 Ω for C4+TSV.

External power (VDD) is supplied at 1.5 V, the same as the DDR3 specification. We

could have also used the HMC’s 1.2 V specification, but other parameters, such as current

draw and resistances are not known. Hence, we restrict ourselves to the DDR3 model where

more parameters are known. The specification requires that the voltage at the circuits

(VDD-VSS, effective drain-to-source voltage) not drop below 1.425 V, i.e., we can tolerate

a maximum IR-drop of 75 mV. Values for current consumed within the DRAM chip are

from Micron’s data sheets [1]. Note that regardless of the assumed supply voltage, DRAM

arrays will have small margins for IR-drop. This is because DRAM arrays are designed to

operate at as high a supply voltage as possible. If DRAM arrays were designed to operate

at lower supply voltages, they would suffer from higher leakage currents and high Refresh

overheads (another emerging bottleneck in future DRAM cells).

Every DRAM operation will introduce a voltage drop in the PDN. According to Micron

data sheets, the highest current is drawn by the COL-RD command, followed by COL-WR,

and ACT/PRE. This is discussed in more detail in Section 3.4. We simulate the IR-drop

caused by column read, column write, activate, and precharge. Using the results from these

simulations, we create constraints for each of these commands. These constraints ensure

that at no time does the IR-drop go above 75 mV. These constraints are similar in spirit to

today’s DDR3 specification that disallows more than 4 ACTs within a tFAW time window.

Because modern 2D devices do not allow other commands to be issued during a Refresh

cycle, we do not model IR-drop caused by Refresh. Future 3D devices may allow activ-

ities in some banks while other banks are Refreshing. Such a model would require more

sophisticated IR-drop analyses and memory controllers.

We validate our Power Delivery Network model by making sure that the IR-drop does
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not exceed the 75 mV constraints when a 2D 8Gb, 8-bank chip, is executing 4 activates and

a column read. The 4 activate limit is imposed by tFAW, and at any time a 2D DRAM chip

can only execute a single column read (unlike the 3D dies used in our design). Therefore,

this combination gives the highest activity that can be seen on a 2D DRAM chip. We locate

the activates and the column read in banks that are most susceptible to IR-drop to model

the worst case.

3.4 Quantifying and Managing IR-drop

We start by performing an analysis on a 3D memory stack under specific sequences of

bank operations. We observe the IR-drop in each case, focusing in particular on worst-case

access patterns that cause IR-drop to exceed the 75 mV limit or best-case access patterns

that yield acceptable IR-drop. We then draw upon these observations to develop a broad

set of guidelines that can be used to influence the behavior of the memory controller. We

also show how the memory controller and operating system would exploit these guidelines

to improve performance. The methodology for constructing the PDN is validated by first

creating the PDN for an 8-bank, 8Gb 2D DRAM die. We see that in the 2D case, the PDN

easily accommodates 4 activates in parallel, as well as a column read.

Multiple factors make IR-drop worse in the 32-bank 8-die case. The TSVs introduce a

new source of IR-drop. The lateral wiring on each die also sees a higher current. This is

because there are 4 rows of banks and multiple banks (e.g., A0 and B0) receive their power

from the same set of lateral wires. In the 8-bank 2D case, every bank has its dedicated set

of wires within the power grid. To alleviate this problem in the 32-bank 8-die design, the

power and ground wires have to be made 2x wider.

3.4.1 Voltage Map

We first illustrate the basic IR-drop phenomenon with a voltage map across all 8 DRAM

dies (die layers 2-9). Figure 3.4 and Figure 3.5 show the IR-drop in the top and bottom

DRAM dies. In this experiment, we assume that activates are happening in all the 256

banks on the 3D-stack. This is an unrealistic scenario and the IR-drop is unusually high

because of the high current draw. The figure is only meant to illustrate the banks that

experience lower voltages than others, and are therefore more prone to IR-drop violations.

The red regions are areas that receive less than the minimum required 1.425 V, making

them unreliable.

We observe that as we move up the various layers in the stack, IR-drop becomes worse

since we traverse the TSVs all the way up. Note that even though TSVs are low resistance,
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Figure 3.4: Basic IR-drop phenomenon on the bottom die when all Banks are activating
(Best viewed in color). The vertical structures with high IR-drop are the Row Decoders.

Figure 3.5: Basic IR-drop phenomenon on the top die when all Banks are activating (Best
viewed in color). The vertical structures with high IR-drop are the Row Decoders.
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they are relatively small in number, and are responsible for carrying significant amounts of

current to the upper dies, resulting in a larger IR-drop. So, in general, bottom dies are more

favorable than top dies. Similarly, as we move laterally away from the row of power pins in

the center of each die, IR-drop becomes progressively worse. Because the bump/TSV row

is in the bottom half of the center stripe, the bottom 2 rows of banks (C and D) are slightly

closer to the power source than the top 2 rows of banks (A and B), and hence experience

lower IR-drop.

3.4.2 IR-drop Regions

It is clear from these heat maps that there are distinct regions in the chip with widely

varying susceptibilities to IR-drop. In the interest of simplicity, we divide the stack into

8 IR-drop regions, as shown in Figure 3.6, to separate out the vulnerable regions. For

example, the region A-Top refers to 32 banks in the A row in the top 4 dies, and the region

C-Bottom refers to 32 banks in the C row in the bottom 4 dies. A-Top has the worst

IR-drop characteristics, while C-Bottom has the best. This motivates the design of page

placement policies that can exploit this inherent difference between banks. For example,

the most accessed pages can be placed in banks capable of higher activity levels.

Figure 3.6: The 8 IR-drop regions in the stack
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3.4.3 Best- and Worst-Case Operations

Next, we examine the impact on IR-drop if the 3D-stack is asked to service N simulta-

neous operations; an operation can be any of read, write, activate, or precharge. For the

purposes of this study, we assume that command bandwidth is not a constraint – this is a

reasonable assumption to make given that an HMC part will likely have multiple channels

communicating to the processor and a request buffer. These N operations can be distributed

among the 256 DRAM banks in
(
256
N

)
ways, ruling out the possibility of an exhaustive study.

Later, in the results section, we develop some guidelines for the combinations of operations

that tend to behave well or poorly.

The high-level insight from that analysis is as follows.

• For any operation, moving to higher die layers or moving away from the center TSV

strip causes higher IR-drop, because of the longer distances that the current needs to

travel.

• Banks at the edge of the die experience higher IR-drops, especially banks A0, D0, A7,

D7. This is because those banks are not supplied from all sides.

• Since the row decoders of the 2 banks in a vault lie right next to each other, activating

both banks causes large IR-drops. Row decoders are placed adjacent to each other so

that some control circuits, DC generators, and decoupling caps can be shared.

• Simultaneous operations in banks that share PDN wires (A0 and B0 for example)

yield higher IR-drops.

• Lastly, having operations in the same bank in adjacent dies increases the current

density in the shared power TSVs.

All the patterns mentioned here lead to increased current density in either the wires or

the TSVs, leading to possible IR-drop violations.

Based on this insight, we are able to estimate the best-case and worst-case scenarios when

activating banks. For example, if asked to do 8 activates in the B-top region, minimum

IR-drop is experienced by placing 4 activates in the B0 vault (one in each of the 4 top dies)

and 4 activates in the B2 vault (one in each of the 4 top dies). The maximum IR-drop is

experienced when placing 4 activates in the top die at banks B0, B1, B2, and B3, and 4

more activates in the same banks directly below. In all of our allocations, we ensure that

a single die is never asked to perform more than 4 simultaneous activates because, similar

to the tFAW constraint, the charge pumps on a single die are only provisioned to handle at

most 4 simultaneous activates.
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3.4.4 Column Read/Column Write Commands

In 2D DRAM chips, violations are either caused when the charge pumps are depleted

or when IR-drop is high. In 2D DRAM chips, the charge pump violations typically happen

before IR-drop violations. Hence, a larger focus is placed on activates. Activates consume

more charge and dissipate higher average power than column read/write. Activates occur

for the duration of tRAS, which is much longer than the duration for a column read/write

(tDATA TRANS). This is why timing constraints (tFAW, tRRD) in 2D DRAM chips refer

to the rate at which activates can be performed.

For the reasons mentioned earlier, IR-drop is much more severe in 3D-stacks and IR-drop

violations are encountered before charge pump depletions. IR-drop is influenced more by

peak power than average power. Column read/write instantaneous current (IDD4R/IDD4W)

is 3x the instantaneous current for activates (IDD0). As a result, the focus must shift from

activates to column read/write.

The following is a brief explanation for why column read/write has higher peak power

than an activate. The data sensing during an activate is done by the Bit Line Sense Amps

(BLSA, referred to as Local and Global sense amps in [51]). During a column read, the

data have to be moved from the BLSAs, which are adjacent to the arrays, to the IO-Sense

Amps (IOSA), which are in the center stripe. Also, the data transfer needs to happen at

the speed of the channel (vault) clock, which is in the range of Gigahertz. These factors

make IDD4R very high.

While it is possible to come up with rules for every possible combination of read, write,

activate, and precharge, such a list for the 256 banks in the die stack would make the

controller intractably complex. In order to simplify the rules for the memory controller, we

define the impact of each operation in terms of the impact of a column read. For example,

we define that 2 activates correspond to one column read. This means that the worst

IR-drop caused by 2 activates cannot be greater than the least IR-drop caused by a column

read. Even though IDD4W is less than IDD4R, we find that 2 banks cannot perform writes

in parallel, without exceeding the IR-drop caused by a column read. So one column write

is deemed equivalent to one column read. Finally, 6 precharges are equivalent to a single

column read.

3.4.5 IR-drop Specific Timing Constraints

To keep the memory controller simple, it must only encode the worst-case guideline.

For example, in a given region, in the best case, IR-drop may not be violated with 8 reads.

But in the worst case, IR-drop may be violated with just 5 reads. To reduce complexity,
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we may want to enforce the rule that the region can safely accept only 5 reads. To accept

any more reads, the memory controller would have to maintain a very large table of safe

read combinations. Hence, for each region, we do a number of Spice simulations to find the

worst-case read combinations and the minimum number of reads that lead to an IR-drop

violation. Using the PDN described in Section 3.3, we simulate the voltage in each region

when that region performs the worst-case pattern of N reads. When 1 region is receiving

reads, we assume that the other regions are idle. The data show that regions A-Top and

D-Top can only safely handle a single read at a time. With a worst-case pattern, just 2

reads can lead to a voltage under 1.425 V. Thus, regardless of what else is happening on the

3D-stack, the memory controller must enforce that these regions never service more than 1

read at a time. This rule is especially restrictive because these 4 regions are the furthest

from the power sources at the center stripe. B-Top and C-Top can service up to 2 reads at

any time. For each of the other 4 regions, we can safely service as many as 4 reads even

with the worst-case patterns, without violating IR-drop. Note that 4 is the upper-bound for

a region because there are only 4 vaults available per region. In other words, the 4 regions

A-Bot, B-Bot, C-Bot, and D-Bot, are relatively unconstrained by IR-drop because of their

proximity to the power source.

The previous discussion assumed that all reads were being serviced by a single region

and all other regions were idle. Next, we must estimate the maximum allowed activity in

each region while other regions are also servicing requests. To simplify the rules for the

memory controller, we first consider groups of 2 regions at a time. We find that A-Bottom

and B-Bottom can handle 8 requests at a time; A-Top and B-Top can only handle 1 read;

C-Bottom and D-Bottom can handle 8 combined requests; C-Top and D-Top can handle 1

combined request. Therefore, data placement in banks has a significant impact on request

parallelism.

The process is then continued. We notice that the constraints for the bottom regions are

markedly different from the constraints for the top regions. We group 4 regions together and

find their worst-case allocation. We find that A-Top, B-Top, C-Top, and D-Top can together

handle no more than 1 request, while A-Bottom, B-Bottom, C-Bottom, and D-Bottom can

together handle 16 requests, 1 in each vault. When all 8 regions are grouped together,

we find that no more than 8 simultaneous reads can be supported in the worst-case. The

multiregion constraints assume that the rules before them have been satisfied.

Thus, a series of rules (20 rules in this case) are generated for the memory controller and

a request is issued only if none of the 20 conditions are violated. These rules are summarized
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in Table 3.1. If we consider and allow best-case scenarios, the number of rules would be

much larger.

Based on the rules explained above, if a request to A-Top and B-Top were to be

scheduled, the following rules would need to be satisfied: (i) schedule no more than 1

request to A-Top, (ii) schedule no more than 2 requests to B-Top, (iii) schedule no more

than 1 request to A-Top and B-Top if there is a request to A-Top. In short, if A-Top is

servicing a request, B-Top cannot handle a request; but if A-Top is idle, B-Top can service

2 requests. So in this case, the read request to B-Top would have to wait until the read in

A-Top is completed.

While the rules are expressed in terms of reads, each read can be substituted with 6

Table 3.1: Maximum column reads allowed in each region

Parallel
Constraint Description Constraint Col. Rd

Type for units
Region(s) allowed

A TOP 1
B TOP 2

Single C TOP 2
Region Reads taking place D TOP 1

Constraints only in that One region A BOT 4
B BOT 4
C BOT 4
D BOT 4

At least one in A TOP A TOP, B TOP 1
Two No reads in A TOP A TOP, B TOP 2

Region At least one read in A BOT A BOT, B BOT 8
Constraints No reads in A BOT A BOT, B BOT 8

(Reads happening At least one read in D TOP C TOP, D TOP 1
only in these ) No reads in D BOT C TOP, D TOP 2
two regions) At least one read in D TOP C BOT, D BOT 8

No reads in D BOT C BOT, D BOT 8

Four Region No reads in A TOP, B TOP,
Constraints Bottom Regions C TOP, D TOP 1

(Reads happening in ) No reads in A BOT, B BOT,
only these four regions) Top Regions C BOT, D BOT 16

At least one read
Die-Stack wide in Top Regions All Regions 8

Constraint Reads only in
Bottom Regions All Regions 16
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precharges, or 2 activates, or 1 write.

Note that a conventional simple memory controller is unaware of IR-drop and regions.

Such a memory controller would disallow 2 parallel reads because in the worst case, both

reads may be destined for A-Top, thus causing an IR-drop violation. Such a naive baseline

will have very poor performance and is not considered further in this study. Our baseline

model adopts the novel constraints we introduce in Table 3.1. In the next section, we

introduce additional mechanisms to improve the memory device’s throughput.

3.4.6 Future DRAM Generations

A DDR3 DRAM chip cannot activate more than 4 banks in a chip within a time period

specified by tFAW. The reason for this is that the Wordlines on the chip need to be driven by

a voltage greater than the supply voltage of the chip. By over-driving the Access Transistors

on the word lines, the sense-amps are able to see the true voltage that is present on cell

capacitors. This increased voltage (VPP ) is provided by charge pumps which are present

on the chip. Performing successive activates depletes these charge pumps, following which

they need time to recover. Doing no more than 4 activates within a window of tFAW ns

ensures that the output of the charge pumps stays within the required voltage.

Future generations of DRAM like DDR4 have VPP (2.5 V) [52] supplied externally,

hence replacing internal charge pumps [53]. By doing this, an 8Gb DDR4 device is able

to lower its tFAW to as low as 20 ns [54], with the eventual goal of eliminating the tFAW

constraint [55] altogether.

As described in Section 3.4.3, IR-drop worsens when the activity on the chip increases.

The DRAM design described in this chapter tries to stay faithful to today’s DDR3 design

as much as possible. We conservatively assume that just like DDR3 DRAM, the dies on the

3D-stack will also be subjected to the tFAW constraint. If the tFAW constraint is indeed

reduced or eliminated in the future, the IR-drop problem reported in this chapter becomes

even greater because of the increased activity.

3.5 Overcoming the Constraints Imposed by IR-drop

In the previous section, we showed that IR-drop imposes new and severe constraints on

device activity. A naive memory controller would not allow more than 1 read or 2 activates

at a time on the device. We therefore introduced a smarter memory controller that is

IR-drop-aware and obeys the 20 rules we introduce in Table 3.1 to support higher activity

levels on the memory device. However, even this smarter memory controller is restrictive
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and falls well short of the performance of an unconstrained memory device. This section

introduces additional optimizations to bridge this gap.

3.5.1 Handling Throughput Oscillations

According to the rules in Table 3.1, some regions can support higher levels of activity

than others. As a result, some pathological situations can arise that lead to starvation and

lower throughput. Consider the following example that is based on the rules defined in

Table 3.1.

If there exists a read in the top regions, the bottom regions can support at most 7 reads.

However, if there are no reads in the top regions, the bottom regions can support 16 reads.

If the bottom regions are currently handling (say) 10 reads, the scheduler can safely issue

reads to the bottom region, but not to the top region. As a result, the requests to the

top region can get starved. Eventually, every thread will be waiting on a pending memory

request to the top region. At this time, the requests to the top region will be slowly drained

(at the rate of 1 or 2 reads at a time). During this drain, there are no other pending requests

to the bottom regions, so they remain idle. This leads to long stall times for every thread

and memory bandwidth underutilization.

Instead, it is more effective to be in a steady state where the top regions are dealing

with 1 request, while the bottom regions are dealing with 8 requests. While the threads

waiting for the top region are stalled briefly, other threads continue to make progress in

the meantime. This yields a higher aggregate throughput than the default design that

frequently oscillates between high and low throughput phases.

To prevent such oscillations, we prioritize any request that is older than P times the

average read latency. This pushes the scheduler to a steady state where the top regions are

constantly draining 1 or 2 requests while the bottom regions are draining up to 8 requests.

We empirically determined that performance is optimized when P has a value 1.2.

3.5.2 Smart Page Placement

Some regions can drain requests at a faster rate than others and therefore yield much

lower queuing delays and memory access latencies. To optimize throughput, most memory

requests should be steered towards these regions that are more immune to IR-drop viola-

tions. This can be achieved with OS policies that carefully select the regions where pages

are placed.

To estimate the potential for improvement, we first implement a profile-based oracular

scheme. Our benchmarks are profiled for 2 million DRAM accesses. The pages are sorted
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according to access count and split into 8 sections. Starting with the most accessed section,

they are mapped to A Bot,B Bot,C Bot, D Bot, C Top, B Top, D Top, A Top, in that

order. The benchmarks are simulated again with these page-to-region assignments.

In a realistic implementation, page activities must be tracked at the memory controller

or on the logic die of the 3D-stack. Page activities from the recent past must dictate

page migrations and page placements in the future. We assume that the base layer of the

3D-stack keeps track of all pages touched in the last epoch (a predefined time interval). For

these touched pages, we track the average queuing delay for the blocks in that page. Pages

with the highest queuing delays are moved from the top regions to the bottom regions.

Note that access count in the last epoch is not an effective metric. If an application’s

critical pages are placed in the top region, the core will be starved and it will register few

page accesses in any epoch. This is why we use queuing delay to identify pages that are

introducing the most stall cycles. Any page that has an average queuing delay greater than

Hot Page Migration Threshold(HMT) × Average queuing Delay is migrated to the Bottom

regions.

The metric for demotion of cool pages to the Top regions is the number of page accesses in

the last epoch. Any page that has less than Cold Page Migration Threshold(CMT) number

of page accesses in the last epoch is migrated to the Top regions.

Pages which are not candidates for migration to Top or Bottom regions are not moved.

At the end of every epoch, the DRAM stack is unresponsive to the Central Processing Unit

(CPU) for Migration Penalty number of cycles, similar to a Refresh cycle. All migrations

happen during this window. The Hot-Page and Cold-Page migration thresholds are dynam-

ically modified such that all the migrations can happen within Migration Penalty number

of cycles.

HMT is initialized to 1.2 and CMT is initialized to 0, such that during the initial

epoch, there are many page migrations. If the number of migrations is more than can

be accommodated in the penalty window, then HMT is incremented by 0.05 and CMT is

decremented by 1. A negative value for CMT means that no pages are demoted. However,

if the number of migrations are less than can be handled in the penalty window, then HMT

is decremented by 0.05 and CMT is incremented by 1.

We assume an epoch length of 15 M cycles. After every epoch, the DRAM system incurs

a Migration-Penalty of 10K cycles (an overhead of less than 0.1%). If a shorter epoch is

used, then a large portion of the pages in the Bottom area go untouched, potentially yielding

unwanted migrations to Top regions. We observe that after an initial warm up period, the
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number of migrations per epoch stabilizes and is easily accommodated in the migration

penalty window. We assume that a single page migration takes 4184 CPU cycles, and that

8 read/write can be happening in parallel. This migration penalty is based on the number

of cache lines in a page and the DRAM timing parameters tRCD and tCAS (tRCD + tCAS

+ tDATA TRANS × Num lines). This migration is efficient because it only engages the

high-bandwidth TSVs and does not engage off-chip links. In terms of array access overhead,

page migration increases the average number of memory accesses by 0.6%

3.6 Architecture Simulation Methodology

We conduct performance studies using a modified version of the USIMM simulation

infrastructure [56]. While the version of USIMM used in the Memory Scheduling Champi-

onship used memory traces as inputs, we plug the USIMM framework into Simics so that

the memory requests are generated by a cycle-accurate out-of-order processor model. We

also modify the USIMM framework so that the communication protocol represents that of

an HMC, instead of DDR3. The memory controller on the processor receives requests from

the last level cache and issues them to the 3D-stacked HMC device in First Come First

Serve (FCFS) fashion. We also assume an First Ready First Come First Serve (FR-FCFS)

scheduling policy on the HMC, along with closed page management, where a DRAM row is

kept open till there are no more requests to that row in the read queue. The HMC scheduler

obeys various DDR3-style timing constraints, summarized in Table 3.2. The TSVs in a vault

are shared by all the banks in the vault; only 1 bank in a vault can perform a read or a write

in any cycle. reads and writes to different vaults can take place in parallel. The scheduler

must not issue more than 4 activates to a die at a time. It also obeys the rules formulated

by the IR-drop analysis in Section 3.4. We use multiprogrammed workloads constructed

out of SPEC2k6 benchmarks. We run 8 instances of each benchmark on a processor with 8

out-of-order cores. All relevant simulation parameters are summarized in Table 3.2.

3.7 Results

As an upper bound, we present performance results when the DRAM stack is constructed

with an Ideal PDN. With the Ideal PDN, tFAW, and tRRD are the only constraints that

limit activity in the die stack. No IR-drop-based read constraints are imposed on the system

with Ideal PDN.

Figure 3.7 shows the impact of starvation and throughput oscillations on the instructions

per cycle (IPC). Starvation becomes severe when different regions of the 3D-stack have

different permissible maximum activity. The bar labeled RealPDN shows the performance of
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Table 3.2: Simulator and DRAM parameters [1].

Processor

ISA UltraSPARC III ISA

CMP size and Core Freq. 8-core, 3.2 GHz

Re-Order-Buffer 64 entry

Processor Pipeline Width 4

Cache Hierarchy

L1 I-cache 32KB/2-way, private, 1-cycle

L1 D-cache 32KB/2-way, private, 1-cycle

L2 Cache 8MB/64B/8-way, shared,
Coherence Protocol 10-cycle, Snooping MESI

DRAM Parameters

2 16-bit uplinks, 1 16-bit downlink @ 6.4 Gbps
DRAM configuration 32 banks/DRAM die, 8 DRAM dies/3D-stack

Total DRAM Capacity 8 GB in 1 3D DRAM

DRAM Timing tRC = 48.75 ns, tRCD = 13.75 ns, tRAS = 35 ns
Parameters tFAW = 50 ns, tWTR = 7.5 ns, tRP = 13.75 ns
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the system where the DRAM stack has a realistic PDN. RealPDN Starv Ctrl and IdealPDN

Starv Ctrl show the performance of the Real PDN and Ideal PDN with the starvation control

mechanism described in Section 3.5.1. Compared to the IdealPDN Starv Ctrl scheme (the

unrealistic upper bound), the RealPDN scheme is 4.6x worse. By adding starvation control,

we see that in the Real PDN case, the performance improves by 213%, while with the ideal

PDN, the performance improves by 10.2%. By identifying and prioritizing requests to

pages that are suffering starvation, the scheduler is able to prevent the suffering thread

(and eventually all other threads) from stalling altogether.

Figure 3.8 shows the increase in the average read queue latency of a request when there

is no starvation control. There is an 8.6× increase in average read queue Latency of the

Real PDN, when starvation is not addressed. With an Ideal PDN, the average read queue

Latency increases by 51.1%.

Figure 3.9 shows the performance improvement with Profiled Page Placement (PPP)

and with Epoch-based Page Placement (EPP). RealPDN StarvCtrl PPP represents the

system with a Real PDN, with starvation control, and with PPP. RealPDN StarvCtrl EPP

represents the system with a real PDN, with starvation control, and with EPP. On average,

PPP can improve performance by 24%, while the EPP scheme improves performance

by 20%, relative to the Real PDN with starvation control. The Ideal PDN design with
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starvation control can yield a performance improvement of 47%, so there is still room for

improvement. It must be noted that even a single read being performed in the Top regions

can reduce the instantaneous memory bandwidth by 50%. Therefore, to completely recover

all the performance lost to IR-drop, almost all reads and writes need to be serviced by the

Bottom regions. We do not attempt this as this would halve memory capacity and would

worsen overall performance by impacting page fault rates. However, if the system is not

utilizing its full memory capacity, it argues for moving all free pages to the Top layers.

The PPP scheme decreases the read queue delay by 55%, while EPP decreases the average

queuing delay by 38% (shown in Figure 3.10).

The PPP scheme is not a true upper bound as it captures activity over the entire

simulation to classify hot and cold pages. The EPP scheme can occasionally out-perform

the PPP scheme by taking advantage of temporal locality. For example, if all pages are

accessed equally over the entire simulation, PPP has little to offer. However, the EPP

scheme will try to move the pages most recently active into the bottom regions; this is

advantageous if those pages continue to remain hot for a few more epochs. Of course, EPP

incurs other penalties – the cost of migration, and inaccuracies in predicting the hot pages

in the next epoch.
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Figure 3.10: Effect of Page Placement on read-queue

3.8 Related Work

3.8.1 Voltage Aware Processor Architectures

A recent workshop paper by Zhang et al. [39] is the first to articulate the importance of

IR-drop from an architectural perspective. The paper focuses on IR-drop within a processor,

develops a tool called VoltSpot, and argues that if more pins are dedicated for the PDN,

fewer pins are made available for data I/O, thus impacting the architecture. A number of

prior papers have examined voltage noise from activity fluctuations (Ldi/dt) and developed

architectural solutions to smooth out activity [57, 58, 59, 60, 61, 62]. Our work differs from

these prior voltage-aware architecture papers because of our focus on DRAM chips and the

very different architectural techniques that it leads to.

3.8.2 Current Aware Memory Architectures

Phase Change Memory, which requires large write currents, also requires current-aware

scheduling at the memory controller. Hay et al. [63] address the high current needs of

PCM banks by evaluating the current needed by each write. They use the concept of

Power Tokens to keep track of the PCM power usage. Another recent paper targets the

same problem while performing fine-grain power allocations and introducing global charge

pumps on the DIMM [64]. The above schemes relate to variation in write activities in PCM,

whereas our work focuses on variations in IR-drop-based on DRAM bank activity. These

works therefore target different problems and develop different solutions. A key contribution

here is our demonstration that it is not only enough to just track current consumption – it
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is also important to track where current is being consumed. Depending on which banks are

currently active, it may or may not be possible to consume more current. Kim et al. [65]

address the tFAW constraint in DRAM stacked over the processor by dynamically allocating

activates to every memory channel connected to a particular DRAM die.

3.8.3 Page Placement

Many prior works have influenced page placement in the memory hierarchy to handle

NUCA latencies [66, 67], NUMA latencies [68, 69, 70], conflict misses in caches [71], DRAM

power modes [72], DRAM/PCM hybrids [73, 74], etc. Our work borrows the key ideas

in these techniques and shows that they can be highly effective to address the emerging

IR-drop problem.

3.8.4 Circuit Efforts to Reduce IR-drop.

Wu et al. [46] study the impact of a stacked processor-DRAM device on power delivery

and propose using Decaps on the DRAM layer to reduce dynamic IR-drop. Kang et al. [31]

suggest the addition of TSVs to provide more power/ground lines. While they foresee only

a modest area overhead of 0.5%, the package routing and extra package pins required to

accomplish this will increase cost. Healy et al. [41] compare the power supply noise caused

by different power TSV topologies. Their results suggest the use of a topology where the

Power/Ground TSVs are spread evenly rather than clustered over the Power/Ground C4

bumps. Jung et al. [42] illustrate that higher TSV counts can increase routing congestion

because power/ground TSVs can be larger than standard cells, thus exacerbating IR-drop

issues. They propose power consumption aware TSV placement.

3.9 Conclusions

In this work, we highlight an emerging important problem. We show that while 2D

DRAM chips are rarely exposed to IR-drop violations, 3D-stacked memory devices can

be highly prone to such violations. For acceptable performance, the memory controller

must encode a number of rules to handle the nonuniform vulnerability of each bank to

IR-drop. We show that even such a smart memory controller falls short of the performance

of an unconstrained memory device by 4.6×. A large fraction of this gap is bridged by

introducing a smarter scheduler and a page migration mechanism. The starvation-aware

scheduler brings the gap to 1.47×. By further adding page migration, the gap is brought

to 1.2×. We thus show that effective architectural policies can yield high performance at

low pin/TSV counts.
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Several future technology parameters are currently unknown and it is not clear how

commercial designs will cope with IR-drop constraints. Our work shows that architectural

policies can represent an important approach, possibly mitigating the need for some costly

approaches.

Our work can be extended in many different ways. For example, our IR-drop analysis

can be extended to handle Refresh, and more sophisticated schedulers can be designed to

bridge the 1.2× performance gap. While more scheduling rules can improve performance,

they also increase power, area, and design complexity. The definition of an optimal memory

controller remains an open problem.



CHAPTER 4

ADDRESSING PEAK CURRENT

PROBLEMS IN MULTIRANKED

DRAM

The charge stored in DRAM cells leaks over time and needs to be refreshed periodically.

There are two reasons why DRAM refresh will be a critical bottleneck in high capacity

memory systems. First, as the size of the DRAM chip grows, so does the time spent in

refreshing all the cells. Second, DRAM refresh is a very current intensive process. If all

the ranks in a system were to refresh at the same time, the current consumed for that

duration would be much higher than the current consumed during normal operation. Since

the power and cooling systems are designed to accommodate peak power ratings, higher

peak power consumption directly leads to higher cost. To avoid this, server manufacturers

do not refresh all ranks simultaneously. Instead, they stagger refreshes, thus leading to

lower peak current/power consumption. While staggering avoids the peak power problem,

it increases the performance impact of refresh.

As refresh latencies increase, the performance loss due to staggered refresh will also

increase. This chapter analyzes the reasons for the performance loss from staggered refresh

and proposes solutions for the same. Our analysis also shows that write drains in high

capacity memory systems built with Nonvolatile Memories (NVM) have similar character-

istics to DRAM refresh; both result in certain ranks being unavailable for some time. In

Section 4.7.4, we show that the solutions proposed in this chapter for DRAM refresh are

also applicable to reducing the performance overheads associated with long latency NVM

writes. The chapter therefore makes a contribution that will be useful to two segments that

will drive the high capacity memory market share in the coming decade.

4.1 DRAM Refresh

DRAM technology is expected to scale for another generation or two [75] and will be

used widely in most systems for at least another decade. In addition, DRAM vendors will
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likely rely on 3D-stacking (with or without TSVs) to boost per-package DRAM capacities

for a few more generations. Many studies have shown that as DRAM capacities in a package

grow, the package has to spend larger amounts of time performing refresh [76, 77, 2]. The

refresh rate has to double if the operating temperature exceeds 85◦ C, a common scenario

in many servers [78, 79, 80]. At future technology nodes, the DRAM cell aspect ratio

introduces a trade-off between hard error rates and data retention times [11]. DRAM cells

may therefore offer lower retention times (and higher refresh rates) to keep hard error rates

in check. For these reasons, refresh is viewed as an important challenge for future high

capacity DRAMs.

In anticipation of this possible bottleneck, JEDEC is already taking steps to reduce

the impact of the refresh process. The upcoming DDR4 standard includes a new fine

granularity refresh (FGR) operation that can help reduce queuing delays for read requests

from the CPU [52, 2]. However, we show later that the practical benefit from FGR is very

small.

In addition to the steps taken by JEDEC, there has been a flurry of research papers

attempting to alleviate refresh overheads. The approaches to this problem include the

following: scheduling refresh during predicted idle times [76], avoiding refresh of recently

read/written rows [81], reducing the number of rows refreshed based on retention char-

acteristics of DRAM cells [82], providing error correction capabilities for leaky DRAM

cells [83], pausing the refresh process to service processor read requests [77], and overlapping

a lightweight refresh process with regular processor requests [84, 85]. Some recent solutions

also involve the OS and application: ESKIMO [86] reduces refresh energy by not refreshing

parts of the memory system that have been freed, RAPID [87] preferentially allocates

areas of memory that have longer retention times, FLIKKER lowers the refresh rate for

application pages that can tolerate lower fidelity [88].

Our analysis of state of the art refresh techniques shows that there remains significant

room for improvement. Modern systems implement a staggered refresh process where each

memory rank is refreshed at a different time. Because refresh is a current-intensive process,

this helps reduce the system’s peak power requirement [2] and hence, system cost. This

means that at most times, a portion of the memory system is unavailable to service processor

requests. Modern memory controllers and Operating Sytems also scatter an application’s

pages across the entire memory system to boost memory system parallelism. This implies

that if some memory rank is refreshing, all threads in the system could stall because they

may all eventually need data that reside in that rank. In the example illustration in
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Figure 4.1: Stalls with baseline and rank assignment policies.

Figure 4.1, a refresh to rank 1 stalls threads T1, T2, and T3 in the baseline. The combination

of staggered refresh and page scattering results in a 25.1% increase in execution time over

an idealized system with no refresh penalty (assuming 2 channels, 2 ranks per channel and

32 Gb chips at high temperature). State of the art hardware-intensive refresh techniques

are able to yield an execution time reduction of at most 4.1%, relative to this baseline.

We also examine the write bottleneck in future NVMs. Multiple nonvolatile cell technolo-

gies (e.g., PCM and Memristors) are expected to soon be mainstream. Both technologies

suffer from long write latencies of several hundred nanoseconds [89, 90, 91, 92]. Typically,

memory controllers defer writes and perform writes in bursts that can occupy the memory

channel and the corresponding banks for many hundreds of cycles. Several recent papers

have therefore attempted to optimize the write process in NVMs [90, 91, 92, 93, 94]. Similar

to refresh, write drains are performed for a rank at a time. In NVMs, the data transfers

on the channel take tens of nanoseconds, while the actual writes in the memory chips take

hundreds of nanoseconds. A burst of writes is therefore quickly sent on the channel to 1

rank, and while that rank performs writes in its banks in the background, the memory

controller switches to servicing reads from other ranks on the same channel. Similar to the
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refresh process, the regions of memory performing writes are unavailable for a long time,

potentially causing stalls in all threads.

We design a simple solution, Rank Assignment, that can be implemented entirely in the

OS page allocator and that is more effective than state of the art hardware schemes that

target service interruptions from refreshes and write drains. In the baseline described above,

a single rank’s refresh or write drain can stall every thread in the system. To prevent this,

the OS allocates pages such that pages from 1 thread are assigned to the fewest number

of ranks (ideally just 1 rank). This thread is only stalled when its rank is refreshing or

draining writes.

In Figure 4.1, a refresh to rank 1 only stalls thread T1 when using the rank assignment

page allocator. While other ranks are refreshing, this thread may even see a performance

boost because of lower contention for the shared memory channel. The proposed page

allocator therefore isolates the negative impact of refresh and write drains to a single thread

while accelerating other threads assigned to that channel.

Traditionally, the OS and memory controller have adopted policies that spread requests

from a thread across the entire memory system. We show that such policies must be

questioned in the modern era and that it is better to colocate an application’s pages in a

single rank. We further show that even an approximate mapping of pages to ranks is highly

beneficial, thus lowering the burden on the OS.

The downside of this approach is that a thread cannot exploit rank-level parallelism; this

has a very small performance penalty in the future because DDR4 provides high bank-level

parallelism (16 banks per rank) [95].

Compared to the best competing hardware approach, rank assignment yields an exe-

cution time that is 15% lower, while requiring no changes to the memory controller, DDR

standard, and memory chips.

4.2 Background

4.2.1 DRAM Basics

A modern high performance processor typically has up to 4 DDR3 memory controllers

(MC). Each MC controls 1 64-bit wide DDR3 channel and the 1-2 DIMMs connected to

that channel. A DIMM has 1-4 ranks. Each rank consists of a collection of DRAM chips

that together have an output width of 64 bits. A 64-byte cache line is fetched from a single

rank with 8 64-bit transfers (a burst of 8). A rank is composed of 8 independent banks in

DDR3 and 16 banks in DDR4. Thus, a single channel can support multiple ranks and tens

of banks, i.e., a high amount of memory system parallelism.
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A single activate command to a bank brings an entire row into a row buffer. Cache

lines are read from or written to this row with column-reads or column-writes. The bank

must be precharged before a new row can be fetched into the row buffer. The memory

controller schedules these commands to all the banks while carefully satisfying all timing

constraints. The scheduler does several things to maximize performance: looking for row

buffer hits, precharging banks early, maintaining fairness across threads, prioritizing reads,

etc. Typically, multiple banks are in various stages of a data block access at a time, but all

cache line transfers are eventually serialized on the shared channel.

4.2.2 Retention Time and Refresh Interval

The charge on a DRAM cell weakens over time. The DDR standard requires every cell

to be refreshed within a 64 ms interval, referred to as the retention time. At temperatures

higher than 85◦ C (referred to as Extended Temperature range), the retention time is halved

to 32 ms to account for the higher leakage rate. The refresh of the entire memory system

is partitioned into 8,192 smaller refresh operations. One such refresh operation has to be

issued every 7.8 µs (64 ms/8192). This 7.8 µs interval is referred to as the refresh interval,

tREFI. The DDR3 standard requires that 8 refresh operations be issued within a time

window equal to 8×tREFI, giving the memory controller some flexibility when scheduling

these refresh operations. Refresh operations are issued at rank granularity in DDR3 and

DDR4.

We next describe the internals of the refresh operation in some detail. These details are

not pertinent to the proposals in this chapter since we do not modify the DRAM chip or

refresh protocol in any way. However, we provide a detailed description here because these

details are relevant when modeling competing schemes, and it helps explain the inherent

challenges in hardware-based approaches to the refresh problem.

4.2.3 Refresh Cycle Time and Recovery time

Upon receiving a refresh command, the DRAM chips enter a refresh mode that has

been carefully designed to perform the maximum amount of cell refresh in as little time as

possible. During this time, the current carrying capabilities of the power delivery network

and the charge pumps are stretched to the limit. The operation lasts for a time referred to

as the refresh cycle time, tRFC. Towards the end of this period, the refresh process starts to

wind down and some recovery time is provisioned so that the banks can be precharged and

charge is restored to the charge pumps. Providing this recovery time at the end allows the

memory controller to resume normal operation at the end of tRFC. Without this recovery
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time, the memory controller would require a new set of timing constraints that allow it

to gradually ramp up its operations in parallel with charge pump restoration. Since such

complexity cannot be expected of every memory controller, the DDR standards include the

recovery time in the tRFC specification.

4.2.4 Performance Penalty from Refresh

On average, in every tREFI window, the rank is unavailable for a time equal to tRFC.

So for a memory-bound application on a 1-rank memory system, the expected performance

degradation from refresh is tRFC/tREFI. In reality, the performance degradation can be a

little higher because directly prior to the refresh operation, the memory controller wastes

some time precharging all the banks. Also, right after the refresh operation, since all rows

are closed, the memory controller has to issue a few activates to repopulate the row buffers.

The performance degradation can also be lower than the tRFC/tREFI ratio if the processors

can continue to execute independent instructions in their reorder buffer or if there are cache

hits while the memory system is unavailable.

4.2.5 Details of DRAM Refresh

We next describe how a few rows in all banks are refreshed during the tRFC period. As

DRAM chip capacities increase, the number of rows on the chip also increases. Since the

retention time (64 ms) and refresh interval (7.8 µs) have remained constant, the number

of rows that must be refreshed in every refresh interval has increased. In modern 4 Gb

chips, 8 rows must be refreshed in every bank in a single tRFC window. Some prior

works have assumed that a row refresh is equivalent to an activate+precharge sequence

for that row. Therefore, the refresh process was assumed to be equivalent to 8 sequential

activate+precharge commands per bank, with multiple banks performing these operations

in parallel. However, DRAM chip specifications reveal that the above model over-simplifies

the refresh process. First, 8 sequential activate+precharge sequences will require time =

8×tRC. For the 4 Gb DRAM chip [1], this equates to 390 ns. But tRFC is only 260 ns,

i.e., there is no time to issue 8 sequential activate+precharge sequences and allow recovery

time at the end. Also, parallel activates in 8 banks would draw far more current than is

allowed by the tFAW constraint. Second, the DRAM specifications provide the average

current drawn during an activate/precharge (IDD0), and refresh (IDD5). If refresh was

performed with 64 activate+precharge sequences (64 = 8 banks × 8 rows per bank), we

would require much more current than that afforded by IDD5. Hence, the refresh process

uses a method that has higher efficiency in terms of time and current than a sequence of
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activate and precharge commands.

This method is based on the high number of subarrays being provisioned in every bank.

For example, a bank may have 16 subarrays, of which only 4 are accessed during a regular

activate operation. This observation also formed the basis for the recent subarray-level

parallelism (SALP) idea of Kim et al. [51]. During a refresh operation, the same row in all

16 subarrays undergo an activation and precharge. In this example, 4 rows worth of data

are being refreshed in parallel within a single bank. Also, the current requirement for this

is not 4x the current for a regular activate; by sharing many of the circuits within the bank,

the current does not increase linearly with the extent of subarray-level parallelism. Thus,

a single bank uses the maximum allowed current draw to perform parallel refresh in a row

in every subarray; each bank is handled sequentially (refreshes in two banks may overlap

slightly based on current profiles), and there is a recovery time at the end.

4.2.6 DRAM Scaling

Refresh overheads are expected to increase dramatically in the future as DRAM chip

capacities increase. Table 4.1 shows this scaling trend [2]. The number of cells that must be

refreshed in every tRFC increases linearly with capacity. Therefore, we also see a roughly

linear increase in tRFC (the exact values would depend on the technology node, the current

limits, and the subarrays that are refreshed in parallel). In future 32 Gb chips, the tRFC

is as high as 640 ns, giving a tRFC/tREFI ratio of 8.2%. At high temperatures, this

ratio doubles to 16.4%. tREFI will also reduce if DRAM cell capacitances reduce in the

future [11]. In a 3D-stacked package, the number of cells increases without a corresponding

increase in pin count and power delivery [96] – this too results in a high tRFC.

Table 4.1: Refresh latencies for high DRAM chip capacities [2].

Chip tRFC tRFC1x tRFC2x tRFC4x
Capacity (Gb) (ns) (ns) (ns) (ns)

8 350 350 240 160

16 480 480 350 240

32 640 640 480 350

tREFI 7800 7800 3900 1950
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4.2.7 Fine Granularity Refresh in DDR4

In response to these high tRFC refresh times, the DDR4 standard introduces fine

granularity refresh (FGR) operations [3]. FGR-1x is the same as the refresh process in

DDR3. FGR-2x partitions each DDR3 refresh operation into 2 smaller operations. In

essence, the tREFI is halved (refresh operations must be issued twice as often), and the

tRFC also reduces (since each refresh operation does half the work). FGR-4x partitions

each DDR3 refresh operation into 4 smaller operations. The tRFC and tREFI for these

modes are also summarized in Table 4.1.

These modes were introduced to reduce wait times for read requests that queue up during

a refresh operation. In general, average queuing delays are reduced when a large refresh

operation is broken into multiple smaller refresh operations. While the early projections of

FGR were optimistic [52], the latest DDR4 parameters [2] reveal that FGR can introduce

high overheads. A single FGR-2x operation has to refresh half the cells refreshed in an

FGR-1x operation, thus potentially requiring half the time. But an FGR-2x operation and

an FGR-1x operation must both incur the same recovery cost at the end to handle depleted

charge pumps. The data in Table 4.1 show that for 32 Gb chips, tRFC for FGR-2x mode

is 480 ns, while tRFC for FGR-1x is 640 ns. The overheads of the recovery time are so

significant that two FGR-2x operations take 50% longer than a single FGR-1x operation.

Similarly, going to FGR-4x mode results in a tRFC of 350 ns. Therefore, four FGR-4x

refresh operations would keep the rank unavailable for 1400 ns, while a single FGR-1x

refresh operation would refresh the same number of cells, but keep the rank unavailable

for only 640 ns. The high refresh recovery overheads in FGR-2x and FGR-4x limit their

effectiveness in reducing queuing delays (see results in Section 4.7.5). Therefore, refresh

remains an important problem.

For example, let us assume that the read queue is empty when a refresh operation begins,

a new read is enqueued every 10 ns, and it takes 10 ns to process each read after the refresh

is completed. If the refresh operation takes 50 ns, the first read arrives at time 10 ns and

is processed at time 50 ns, the second read arrives at time 20 ns and is processed at time

60 ns, and so on. The total queuing delay for the five reads that arrive during refresh =

40+40+40+40+40 = 200 ns. If the refresh operation takes 100 ns, the total queuing delay

for the 10 reads that arrive during refresh = 90×10 = 900 ns. Even though the smaller

50 ns refresh operation has to be performed twice, it results in an accumulated read queuing

delay of only 400 ns, while the longer refresh operation results in a read queuing delay of

900 ns.
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4.2.8 NVM Writes

We next describe how writes are handled in memory systems. The memory controller

typically prioritizes reads, and arriving writes are buffered in a write queue. When the write

queue reaches a high water mark, the memory controller starts draining writes until the

write queue reaches a low water mark [97]. The memory controller has to introduce a bus

turnaround delay (tWTR) when switching from writes to reads in a given rank. To amortize

this overhead, a number of writes are typically serviced in a rank before switching back to

reads. Typically, memory controllers will drain 16-32 writes at a time to balance queuing

delays for subsequent reads and the bus turnaround overhead. A write queue drain can

therefore take hundreds of nanoseconds. During this write drain to a rank, other ranks on

the channel are available for reads. A short tRTR timing delay (2 cycles) is introduced when

switching between accesses to different ranks. This tRTR delay is incurred regardless of

whether the two ranks are performing reads or writes. Therefore, from a memory throughput

perspective, there is no advantage to co-ordinating the write queue drains of two ranks on

a channel. Similar to refresh, the write queue drain can be viewed as a per-rank operation.

Emerging NVM cells will likely find a place in server memory systems in the near future.

All of the emerging NVM cells suffer from long write latencies. While the tWR delay in

DRAM is 15 ns [1], the same delay in PCM is 125 ns [89], and in Memristors is expected

to range from 200-700 ns. Therefore, a write drain in these NVMs will involve sending tens

of writes to a rank on the memory channel in about a hundred cycles; the banks in the

rank perform the writes in the next many hundred cycles; meanwhile, reads can be issued

to other available banks and ranks sharing that channel. The banks performing the writes

remain unavailable for many hundred cycles.

4.3 Motivation

Having described the basics, we now focus on creating a good baseline and analyzing it.

4.3.1 Peak Power

DRAM refresh is performed at rank granularity. The memory controller can co-ordinate

and issue refresh commands to every rank at the same time (simultaneous refresh) or stagger

them so only 1 rank is refreshing at a time (staggered refresh). Commercial systems prefer

the latter [2] because it limits the peak power of the memory system (since refresh is the

most power-intensive operation performed within DRAM). Even though the average power

consumption remains the same, limiting the peak power reduces system cost. With the

Micron power calculator [98], we estimated that in a single channel with two ranks, with x4
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4Gb chips [1], a single rank performing refresh consumes 6.34 W, while a rank that utilizes

30% of the channel bandwidth consumes 3.83 W. Thus, in a system with 4 channels and 8

ranks, the difference in peak power for the staggered and simultaneous refresh mechanisms

is 17.6 W. If we chose to go with simultaneous refresh, we would have to construct a board

that is provisioned for the worst-case CPU power and the worst-case memory power (since

it is possible that the CPU is executing many CPU-bound threads, and the memory system

is refreshing at the same time). This implies a more expensive cooling system and power

supply [99] (to the board and to the DIMMs). Having a power supply that is rated higher

than the average power consumption also reduces the efficiency of the power supply, thereby

increasing the energy costs [100]. The 17.6 W gap is for a 64 GB memory system. The gap

would be much higher for large memory servers, such as the tera-byte servers that can be

purchased today [101, 102].

4.3.2 Page Mapping and Stalls from Refresh

While staggered refresh is favorable for peak power, compared to simultaneous refresh,

it also has worse performance. Consider the following example. simultaneous refresh ties up

the entire memory system for 100 units of time; meanwhile, in a 4-rank system, staggered

refresh ties up 1/4th of the memory system for 100 units, then the next 1/4th for the next

100 units, and so on. In theory, in both cases, a given memory cell is unavailable for time

tRFC in that tREFI interval, so the effective memory availability appears to be similar.

But in practice, staggered refresh introduces more stalls for the workload because of how

application pages are scattered across ranks.

In order to balance the load between ranks and boost memory system parallelism for

each thread, the OS spreads the pages from each thread over the entire available physical

memory space. Our experiments show that there is an even distribution of read requests

from a thread to different ranks with the default Linux kernel (2.6.13-1.1603sp13smp) in

our simulations. In our 4-ranked baseline, we observe that the percentage of pages of a

thread that are serviced by a rank can vary from 7-44%, but most workloads have a very

uniform distribution of accesses. In every case, every rank has pages from every thread that

is running.

In staggered refresh, when 1 of the ranks is performing refresh, a thread can continue to

make progress as long as it is only reading data from the other 3 ranks (see the illustration

in Figure 4.1). But this thread will eventually make an access to the rank being refreshed

(since its pages are scattered equally across all 4 ranks). The access is stalled for hundreds of

cycles; it becomes the oldest instruction in the thread’s reorder buffer (ROB) and prevents
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the thread from making further progress. This is also true for all other threads in the

system. By the end of the tRFC refresh operation, it is possible that all threads are stalled

and waiting on the rank being refreshed. The fact that 3 other ranks are available does not

help throughput. Therefore, staggered refresh, while desireable from a peak power and cost

perspective, is vulnerable to large slowdowns during refresh.

4.3.3 Performance with Staggered Refresh

Figure 4.2 shows a comparison of execution time with staggered and simultaneous

refresh. We show results for a tRFC of 0 ns (an idealized memory system with no refresh

penalties) and tRFC of 640 ns (representing a 32 Gb chip). We also show results for a

32 Gb chip at extended temperature (above 85◦ C), represented by “ExtT 640ns”, that has

a tRFC of 640 ns and a tREFI of 3.9 µs. On average, for a 32 Gb chip, simultaneous refresh

has an execution time that is 14.5% lower than that of staggered refresh when operating in

the extended temperature range. The idealized model has an execution time that is 21%

lower than that of staggered refresh. Some benchmarks like gemsFDTD, lbm, and mcf have

large increases in execution time because these benchmarks have the highest percentage of

refreshes that end up stalling a thread (see Figure 4.3). These benchmarks also have the

highest number of cores stalled per refresh (see Figure 4.4).
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Figure 4.2: Comparison between simultaneous, and staggered refresh.
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Figure 4.3: Percentage of refreshes that stall a given thread in our 4-rank baseline (for the
ExtT-640ns case).
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Figure 4.4: Numbers of Cores that are stalled per refresh, weighted by the fraction of
tRFC for which each core stalls (for the ExtT-640ns case).
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Figure 4.3 quantifies the percentage of refresh operations that end up stalling a given

thread in the workload. As discussed earlier, because a thread’s pages are scattered across

all ranks, every refresh operation has the potential to stall every thread. This is observed

in a workload such as GemsFDTD. Across the entire benchmark suite, on average, a thread

is stalled by half the refresh operations in the memory system.

Figure 4.4 quantifies the stalls resulting from a typical refresh operation. The Y-axis

shows the number of cores that were stalled by a single refresh operation, where every core

is weighted by the duration that it was stalled for. For example, if 3 cores were stalled,

each for half the duration of a refresh operation, the weighted core stall time would be 1.5.

While GemsFDTD experiences a weighted core stall time of over 3 (8 is the maximum), on

average, the weighted core stall time is 1.63.

The above discussion helps establish our baseline system – the staggered refresh mecha-

nism that has low peak power and that attributes 21% of its execution time to refresh-related

stalls for 32 Gb at extended temperature. Because of the staggered process, the penalty

from refresh is much higher than the tRFC/tREFI ratio (16%). In theory, for our 4-rank

system, the penalty can be as high as 4×tRFC/tREFI, but as shown by Figures 4.3 and

4.4, in practice not all threads are stalled all the time during every refresh, so the penalty

is lower. The baseline therefore provides a significant room for improvement with smarter

refresh policies. The room for improvement will of course vary based on our assumptions

for refresh. We focus most of our results on the most aggressive DDR4 specification known

to date (32 Gb chip at extended temperature).

4.3.4 Impact of NVM Writes

In Figure 4.5, we show the impact of different write scheduling policies in a system with

PCM main memory, relative to an idealized memory system with no writes. The second

bar (Wr Drain) shows the execution time when write drains are performed with Hi/Lo

water mark of 40/20 writes. The last bar (EqualPriority) shows the execution time when

reads and writes are given equal priorities and are both serviced in FCFS fashion. The

best baseline is 21% worse than the idealized memory system, showing a significant room

for improvement. On average, a write drain process keeps 8.6 banks (out of 16 banks in a

channel) busy, stalling 5.7 of 8 threads on average on every write drain. We also see minor

performance differences (<1% ) by co-ordinating the write drains in the ranks sharing a

channel.



51

M
G

ca
nn

ea
l

cl
as

si
fic

at
io

n

cl
ou

d9

G
em

sF
D

T
D

as
ta

r

bz
ip

2

lb
m

lib
qu

an
tu

m

m
cf

m
ilc

om
ne

tp
p

so
pl

ex

xa
la

nc
bm

k

A
M

0.0E+0

5.0E+7

1.0E+8

1.5E+8

2.0E+8

2.5E+8

3.0E+8

3.5E+8
PCM_NoWr PCM_EqPriority PCM_WrDrain

E
xe

c.
 T

im
e 

(c
yc

le
s)

Figure 4.5: Impact of high latency PCM writes on performance.

4.4 Proposal: Rank Assignment

4.4.1 Current Approaches to Memory Mapping

In modern systems, contiguous virtual addresses of an application are scattered across

the entire physical memory system. The hypervisor and OS map a new virtual page to

a free physical page. These mappings, while influenced by well-defined page replacement

policies, appear random for the most part. Further, memory controllers adopt address

mapping policies that can scatter a single page across the memory channels, ranks, and

banks. These policies were reasonable in the past decade – they were simple and yielded

performance improvements. In Figure 4.6, we show the normalized execution times for our

benchmarks for different address mapping policies. We assume a DDR4 DRAM system

that has a tRFC of 0, representing a system that is not constrained by refresh. We consider

the following address mapping policies. We also consider each address mapping policy with

open and close page policies and pick the better of the two.

• Noninterleaved , that places an entire physical page in 1 DRAM row to exploit row

buffer locality.

• Channel-interleaved , that exploits memory-level parallelism by scattering a page

across all the channels.

• Bank-interleaved , that places 4 consecutive cache lines in 1 bank, the next 4 in the
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Figure 4.6: Execution time with different address mapping policies (average of all bench-
marks).

next bank in the same rank, and so on, similar to the address mapping suggested by

Kaseridis et al. [103].

• Bank-XOR, which does bank interleaving, but calculates the bank ID by XOR-ing

the row and bank pointed to by the address [104] .

The results in Figure 4.6 highlight the following two points:

1. In the absence of any refresh, scattering a page (channel-interleaving) is more effective

than keeping a page in a single row (noninterleaved). The gap between the various

policies is about 25%. This is because memory intensive applications that enjoy high

row buffer hit rates also enjoy higher bandwidth utilization when cachelines from a

page are scattered between channels.

2. However, for a future DDR4 DRAM system that has a tRFC of 640 ns and that

implements staggered refresh, scattering a page between different channels or ranks

can actually be harmful to performance. The channel interleaving scheme, that was

a clear winner without refresh, now emerges as the least desireable address mapping

policy with refresh by about 8%. Scattering a page across different channels increases

the chances of a thread being stalled by a refresh operation.
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For the rest of the chapter, we use the optimal address mapping scheme from Figure 4.6:

bank-XOR address mapping with an Open Page policy.

These observations drive us to the following argument: while past systems (OS and

memory controllers) were configured to scatter data across the entire physical memory

system, such policies are worth reconsidering in future systems. Traditional guidelines for

page placement (using sophisticated address mapping and an unconstrained OS to scatter

pages) will have to be replaced by new guidelines that recognize emerging phenomena (long

refresh and write latencies, NUMA on a board, etc.).

4.4.2 Overview

Our analysis in the previous section shows that staggered refresh and write drains incur

a high performance penalty because even though only a fraction of the ranks are unavailable

at a time, every thread has the potential to stall. The rest of this section focuses on the

refresh problem, but the exact same solution also applies to the problem of long write drains

in NVMs.

Our proposal is based on the simple notion that when (say) a quarter of the memory

system has a service interruption, no more than a quarter of the threads should be stalled.

This can be enforced if each thread places its data in a subset of the ranks. Figure 4.7

shows an example mapping of threads to ranks in an 8-core system running 8 threads, with

2 channels and 2 ranks per channel. Each thread places its pages entirely in 1 rank, i.e., 2

threads would essentially share a rank. When 1 rank is being refreshed, only up to 2 threads

would be stalled. The remaining 2 threads mapped to that channel would run at higher

than usual throughput because only 2 threads are competing for that channel’s bandwidth.

Figure 4.8 shows that the mapping of threads to ranks need not be strict. A few deviations

8-core CMP

MC MC
Channel 1 Channel 2

Rank 1

Rank 2
Rank 3

Rank 4

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Thread 6

Thread 7
Thread 8

Figure 4.7: Figure showing strict rank assignment.
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Figure 4.8: Relaxed rank assignment with a few deviations.

can reduce the burden on the OS and achieve most of the benefit.

When a thread is created, the OS can assign it a preferred rank (the one with maximum

unused capacity). The OS maps all pages from that thread to free pages in the preferred

rank. This thread-to-rank affinity is maintained even if the thread is migrated to a different

core. For this technique to be effective, we require an address mapping policy that places

an entire page in a rank, e.g., the bank-XOR mapping.

There are many precedents of commercial page allocation policies that can place a

page in specific locations. For example, Solaris implements locality groups [105] and Linux

uses the libnuma library [106] for shared-memory multiprocessors, to designate a collection

of CPUs that can access a collection of memory devices within a given latency. Lin et

al. [107] modify the Linux Kernel to implement an OS-based cache partitioning scheme.

Similar page coloring approaches were also implemented in the SGI Origin to exploit NUMA

latencies [69]. We build on this prior work to make the novel observation that smart page

coloring has a significant impact on refresh and write management, more so than competing

hardware-based schemes.

4.4.3 Page Placement with Modified Clock

Ideally, we want a thread to be mapped only to its preferred ranks. However, this places

a higher burden on the OS because application requirements change over time and are not

known beforehand. If the preferred rank for a thread is over-subscribed, it may be better

to map a new page to a different rank than increase the page fault rate for the preferred

rank. Such deviations will typically happen if some thread has a much larger working set

than others and must spill into other ranks. There is no impact on correctness. Refresh

operations are more likely to stall this thread, but other threads that are localized to a
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single rank will continue to experience high throughput during most refresh operations.

To reduce the burden on the OS, we consider a modified Clock replacement policy [108]

that is simple and approximates the ideal assignment of threads to ranks. Muralidhara et

al. [109] also use a similar page mapping algorithm to map pages to channels. The baseline

Clock policy maintains a circular list of all pages, a bit for each page to indicate if it has

been touched recently (reference bit), and a global pointer to the next eviction candidate.

When a new page is requested, the pointer moves forward until an unreferenced page is

found. All pages that are encountered in this search are marked unreferenced.

In our page allocator, when a thread is spawned, the OS looks for a rank that has the least

utilization and that rank is assigned as the preferred rank for the new thread. Utilization

is defined as the average queuing delay for that rank, where queuing delay includes wait

time for the channel and wait time for page fault handling. Instead of 1 global pointer,

the page allocator maintains a pointer for each rank. When a thread assigned to rank R1

requests a free page, the pointer for R1 is advanced. The pointer only looks for unreferenced

pages belonging to R1. Unlike the baseline policy, encountered pages during this walk are

not unreferenced. Ultimately, an unreferenced page may be found – this page is used by

the thread and marked as referenced (so it is not used by trailing pointers). If the pointer

reaches the last page in the list without finding an unreferenced page, it gives up and

performs another walk, looking for a page from a second preferred rank. If that walk fails

as well, we resort to the baseline Clock algorithm to find any unreferenced page, starting

from the rank pointer that is trailing all other rank pointers. When all rank pointers reach

the end of the list, the pointers roll to the start. Before rolling over, the reference bits for

all pages are reset (with the exception of pages currently resident in the processor’s TLBs).

This reset process is common to the baseline and proposed allocators.

Consider an example with an aggressor thread T1 with a large and active working set

co-scheduled with a submissive thread T2 with a small working set. T1 is assigned to rank

R1 and T2 is assigned to rank R2. When T1 requests a page, it is preferentially allocated

pages from R1. Its pointer quickly reaches the end of the list because many pages in R1 are

marked as referenced. From that point on, subsequent pages are allocated from R2 until

R2’s pointer also reaches the end of the list. This algorithm does not lead to any additional

page faults, but steers T1 to R1 as much as possible. Once the pointers roll over, at first,

T1 evicts its own pages to make room for its pages. The baseline, on the other hand, would

evict some of T2’s pages to make room for T1’s pages. We observed that the new policy

leads to fewer page faults. This is because the aggressor thread has longer reuse distances,
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while the submissive thread has shorter reuse distances. Therefore, after the pointers have

rolled over, it is better to evict the aggressor thread’s pages than the submissive thread’s

pages.

4.4.4 Multithreaded Applications

A potential problem with the rank assignment approach is that while multiprogrammed

workloads can be controlled to only access a single rank, multithreaded workloads may not

be as easy to control. If a thread accesses a page that was created by another thread, the

thread’s accesses may no longer be localized to a single rank. The probability of this depends

strongly on how much page sharing is exhibited by the application. In our benchmark suite,

canneal had the least locality; up to 62.5% of accesses were steered to a rank different from

the thread’s assigned rank. As stated before, when such deviations happen, it only limits

the performance improvement, but does not cause correctness problems. Regardless of what

we observe on our benchmark suite, it is clear that the rank assignment approach will not

be effective for some workload classes. For example, a web server is likely to have very low

thread-to-rank affinity; when a request shows up, it is serviced by the first available core

and the data for that request may reside in any of the ranks. For such a workload, a service

interruption in a rank has the potential to stall all threads.

4.5 Other Schemes Tried: Eager Refresh

The JEDEC DDR4 [3] standard offers the memory controller the flexibility to issue

refreshes at any time within a window. As long as 8 refreshes have been issued within a

window of 8 refresh intervals (8×tREFI), the data in the DRAM are preserved.

Instead of issuing refreshes at hard tREFI boundaries, eager refresh tries to issue

refreshes to a rank as soon as the read queue of the rank is empty and the command

bus is free. Unlike Deferred until Empty (DUE) refresh [76], eager refresh does not wait

until the tREFI deadline has passed, but issues the eefresh eagerly if the rank has no

pending requests. This reduces the balance of eefreshes that are left at the end of the

8×tREFI deadline. Any eefreshes that are left over are forced at the end the 8×tREFI.

Our experiment showed that very often there were eefreshes that were not issued eagerly

and needed to be enforced. Our experiments also showed that the long latencies caused

by the successive eefreshes that were forced were extremely detrimental to performance.

Eager eefresh was tried with fine grained eefresh also. Eager eefresh yielded less than 1%

performance improvement.
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4.6 Methodology

4.6.1 Simulation

For the first part of our evaluation, we rely on detailed cycle-accurate simulations with

Simics [110]. We interface Simics with the detailed USIMM memory model [56]. Memory

requests fed to USIMM in our evaluation are generated by Simics’ cycle-accurate out-of-

order processor model. We update USIMM to model DDR4 and PCM memory systems

(bank groups, DDR4/PCM timing parameters, etc.).

4.6.2 Simulator Parameters

Salient Simics and USIMM parameters are summarized in Table 4.2. We also present a

sensitivity analysis in Section 4.7.11. While most of our experiments are run with 4MB of

Table 4.2: Simulator and DRAM [3, 1] parameters.

Processor

Core Parameters: UltraSPARC III ISA, 8-core, 3.2 GHz,
64-entry ROB, 4-wide ooo.

Cache Hierarchy

L1 I-cache 32KB/2-way, private, 1-cycle

L1 D-cache 32KB/2-way, private, 1-cycle

L2 Cache 4MB/8MB 64B,8-way, shared, 10-cycle
Coherence Protocol Snooping MESI

DRAM/PCM Parameters

DRAM Frequency 1600 Mbps

Channels, Ranks, Banks 2 Channels, 2 Ranks/Channel,
16 Banks/Rank (DRAM)

8 Banks/Rank (PCM)

Write queue water marks 10 (high) and 5 (low), for each Rank
Read Q Length 32 per channel

DRAM chips 32 Gb capacity at extended
temperature (for most experiments)

tRC = 39/55 tRCD = 11 tRRD S = 4
tRAS = 28/45 tFAW = 20 tRRD L = 5

DRAM/PCM tWR = 12/100 tRP = 11 tWTR S = 2
Timing tRTRS = 2 tCAS = 11 tWTR L = 6

Parameters tRTP = 6 tDTATA TRANS = 4
(DRAM cycles) tCCD L = 5 tCCD S 4̄

Refresh Interval tREFI = 7.8µ s tREFI ExtT = 3.9µ s

Refresh Period tRFC = 350ns (8Gb), 480ns (16Gb),
640ns (32Gb)
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L2 cache, as part of our sensitivity analysis, we also provide performance results with 8MB

of L2 cache.

We adopt the bank-XOR address mapping policy. Our memory scheduler prioritizes

row buffer hits, and uses an Open Page policy. Reads are prioritized over writes until the

write queue reaches a high water mark. The choice of memory scheduler is orthogonal to

the refresh mechanism.

4.6.3 Peak Power Model

Our proposals do not impact the total activity within the memory system. By improving

throughput, they have the potential to yield lower memory and system energy for a given

task. The choice of staggered or simultaneous refresh does influence the peak memory

power, already described in Section 4.3. We rely on the Micron power calculator for x4

4 Gb DRAM chips for those estimates [98].

4.6.4 Workloads

We use multiprogrammed workloads constructed out of SPEC2k6 benchmarks and

multithreaded workloads from PARSEC [111], NAS Parallel Benchmarks (NPB), and Cloud-

Suite [112]. For SPEC2k6, we run 8 instances of each benchmark (rate mode). CloudSuite,

PARSEC, and NPB are run with 8 threads. The SPEC workloads are fast-forwarded

for 50 billion instructions before starting simulations and the NPB/CloudSuite/PARSEC

programs are simulated at the start of their region of interest. The measurements in the

early part of our cycle-accurate simulations are discarded to account for various warm-up

effects. Measurements are reported for 2 million DRAM accesses, which corresponds to

82M-1.5B total simulated instructions for each workload. Longer simulations do not impact

our result trends much – note that our proposals do not introduce new predictors or caches

that would require longer simulations for reliable evaluation. By using DRAM access count

to terminate an experiment, we ensure that each experiment measures roughly an equal

amount of work. In the multiprogrammed workloads, each program makes roughly equal

progress in every experiment (we are running in rate mode and our policies do not prioritize

any particular thread). We have confirmed this by examining several parameters that are

roughly invariants across each experiment for a given workload (e.g., number of reads/writes,

branches, etc.). Any slippage in multithreaded workloads is compensated by wait times at

barriers. Spinning at a barrier can increase instruction count (hence, IPC is a bad metric

for multithreaded workloads), but does not increase memory accesses (the metric we use to

define roughly equal amounts of work in each experiment).
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4.6.5 Long Simulations to Evaluate Page Allocation

Our cycle-accurate simulations are short enough that we do not encounter page faults

or capacity pressures within a rank. Therefore, to test if our page mapping policy impacts

page fault rates and thread-to-rank assignment, we run a collection of workloads for much

longer durations (2.5B instructions per program) without cycle-accurate simulations. We

run Simics in functional mode and simulate our page allocation algorithm. We run this

experiment for multiprogrammed workloads that mix large and small SPEC2k6 benchmarks.

Since SPEC benchmarks are known to have small working sets and we want to stress the

rank capacity, each rank is assumed to have a maximum capacity of only 0.125 GB. The

results for these experiments are reported in Section 4.7.3.

4.7 Results

4.7.1 Impact of Rank Assignment on Refresh

We focus most of our evaluation on the 32 Gb chip at extended temperature. Results

for other systems are reported in Section 4.7.11. Section 4.3 has already established the

baseline and idealized systems. The idealized system assumes a tRFC of 0 ns, i.e., no

refresh. The baseline performs staggered refresh and assumes default page assignment,

i.e., every application scatters its pages across all ranks. We also show the performance of

simultaneous refresh in most figures.

Figure 4.9 shows the execution time for rank assignment. In these experiments, there

are 8 threads and 4 ranks. For multiprogrammed workloads, we assume that 2 threads are

perfectly mapped to a single rank. For multithreaded workloads, pages are mapped to ranks

depending on the first thread to touch the page. The results show that the rank assignment

model has an execution time that is 12% lower than the staggered refresh baseline and only

10.1% higher than the idealized model.

Similar to the analyses in Figures 4.3 and 4.4, we quantify how threads are impacted

by refresh operations. In the baseline, a refresh operation stalls about 4 threads on average

(Figure 4.3). In rank assignment, a refresh operation stalls under 2 threads. A refresh

operation results in a weighted core stall time of 1.63 in the baseline (Figure 4.4) and 1.32

in rank assignment.

We also observe that multithreaded workloads show a range of thread-to-rank affinities.

Table 4.3 shows how some of the accesses from a thread are not serviced by the preferred

rank. Applications like canneal that have little thread-to-rank affinity show lower improve-

ment with rank assignment.
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Figure 4.9: Execution time for rank assignment and the baseline for a 32 Gb chip at
extended temperature.

Table 4.3: Accesses to nonpreferred ranks.

Name Max. nonpreferred Execution time
accesses (%) decrease with RA(%)

MG 15.86 9.0
canneal 62.59 -1
cloud9 21.23 10.1

classification 8.25 17.85

The lower weighted-core-stall-time per refresh is the dominant factor in the performance

improvement of rank assignment, relative to the staggered refresh baseline.

The second factor is a possible improvement in row buffer hit rates because page coloring

can reduce interference between threads in a bank. In our experiments, we noticed a very

small change in row buffer hit rates.

The third factor is the boost in performance because some nonstalled threads experience

lower bus contention during refresh. To get a sense for the contribution of this factor, we

carried out the following experiment. We ran our simulator with 6 threads; threads T1

and T2 were mapped to rank R1, T3 and T4 were mapped to rank R2, T5 and T6 were
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mapped to rank R3, and rank R4 was left idle. Since rank R3 and R4 share a channel, we

observed that T5 and T6 experienced lower bus contention delays and yielded 4.8% higher

performance than threads T1-T4. Therefore, in our rank assignment experiments, 2 of the

8 threads see a similar performance boost during any refresh operation.

We examine the fourth and fifth factors in more detail in Section 4.7.2.

4.7.2 Write Queue Drains and Bank Contention

In this section, we assume that tRFC=0 so we can isolate the effects of write drains and

bank contention.

Figure 4.10 shows completion times for four cases that help explain the effects of

bank contention and write drains. The first bar (0ns) is our baseline model, but with

tRFC=0. The second bar (0ns NoWr) eliminates all writes from the system. The fourth bar

(0ns RA NoWr) adds rank assignment to a system with no refreshes and no writes. The gap

(2.4%) between the second and fourth bars in Figure 4.10 quantifies the improvement from

lower bank contention. When many threads share a memory controller, the performance of

a thread is influenced by the contention experienced by its oldest memory access (among

many factors). With rank assignment, the oldest memory access of a thread sees less

contention from other threads. While intrathread contention does go up, the scheduler
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Figure 4.10: Isolating improvement from reduced contention.
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already prioritizes the older memory accesses.

The third bar (0ns RA) in Figure 4.10 shows a system with no refresh and page coloring.

The gap between the first and third bars (5.9%) in Figure 4.10 quantifies the combined

benefit from lower bank contention and fewer stalls during write drains. We estimate that

the fewer stalls during write drains by itself can improve performance of DRAM systems

by 3.5%.

In summary, even though tRFC/tREFI is 16% for 32GB chips at extended temperatures,

the observed penalty is only 10%. This is because different factors play roles in augmenting

the benefits from page coloring: some overlap of computation with refresh, higher row

buffer hit rates, higher throughput for nonstalled threads, lower bank contention, and more

efficient write queue drains. The last four factors are not present in the simultaneous refresh

baseline. Hence, rank assignment is able to out-perform simultaneous refresh by 4.1%, while

having much lower memory peak power. The improvement relative to the staggered refresh

baseline is much higher (12%).

4.7.3 Page Allocation Disruptions

Due to low simulation speeds, our cycle-accurate simulations last under 226 million

processor cycles per core. In such experiments, we are able to perfectly map threads to

ranks. Such simulations are not long enough to exhibit possible disruptions from the new

page allocation algorithm. In particular, when different threads have varying working set

sizes, it is possible that some threads may spread their pages across multiple ranks, or by

forcing a large thread to steer most of its pages to 1 rank, it may incur a high page fault

rate.

To test the algorithm described in Section 4.4.3 on a heterogeneous workload, we run the

programs in functional mode with Simics and track all page accesses. We assume that each

rank has a capacity of 0.125 GB. Our workloads consist of four threads of varying working

set sizes. We simulate these for 10B total instructions (2.5B instructions/core x 4 cores).

We consider the following workloads composed of large and small working set benchmarks:

lbm-libquantum-astar-milc, and astar-milc-soplex-xalancbmk.

Our results show that 30% of all accesses made by a thread are not to its assigned rank

or the second-preferred rank. Figure 4.11 shows that the effectiveness of rank assignment

decreases as pages from a thread are spread over more ranks. The Y-axis represents the

execution time decrease and the X-axis represents percentage of pages that are mapped to

a random rank (that is not the assigned rank). Even with a 50% page mapping error, rank

assignment reduces execution time by 9.4%



63

0% 10% 20% 30% 40% 50%
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

4MB Cache 8MB Cache

% Exec. time Reduction over baseline

%
 P

a
g

e
s 

n
o

t 
m

a
p

p
e

d
 t

o
 P

re
fe

rr
e

d
 R

a
n

k

Figure 4.11: Effect of mapping pages to nonpreferred ranks.

Figure 4.11 also shows the effectiveness of the rank assignment scheme when the pro-

cessor uses a larger cache, of 8MB. The memory system is a smaller bottleneck in this case,

and the performance improvements are lower.

4.7.4 Handling the Long Latency of NVM Writes

We model a PCM-based memory system with timing parameters from Lee et al. [89].

Figure 4.12 shows the performance of rank assignment. The first bar (Baseline) shows the

execution time of the baseline system, the second bar (RA) shows the execution time of

rank assignment. We find that RA reduces the execution time by 13.3%. In order to isolate

the effects of reduced bank contention, we also show the performance of a system where no

writes are performed. The third bar (NoWrites) in Figure 4.12 shows the execution time of

the baseline system when no writes are serviced. The fourth bar (NoWrites RA) shows the

effect of RA when no writes are performed. There is a 6.6% reduction in execution time

when RA mapping is used when no writes are performed. This reduction in execution time

between NoWrites and NoWrites RA is because of reduction in bank contention. Therefore,
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Figure 4.12: Impact of rank assignment on PCM writes.

we can conclude that out of the 13.3% execution time reduction, 6.7% is because of the effect

of rank assignment on the long latency of NVM writes. Once again, some benchmarks like

GemsFDTD, lbm, and mcf show the largest reduction in execution time. This is because

in addition to reasons mentioned in Section 4.3.3, they also have high write/read ratio.

4.7.5 Comparisons to Prior Work

We now analyze competing hardware-based techniques that have been proposed in recent

years.

4.7.6 Fine Granularity Refresh

Section 4.2 describes the FGR mechanism being introduced in DDR4. A short refresh

operation lowers queuing delays for reads, but increases the overall time that memory is

unavailable (because of recovery overheads after every refresh).

Figure 4.13 shows results for a number of fine granularity refresh mechanisms. The first

two bars show the idealized no-refresh model and the baseline staggered refresh model. The

third and fourth bars represent staggered refresh with FGR-2x and FGR-4x, respectively.

We assume optimistic tRFCs with no additional overhead for these cases, i.e., the tRFCs

for the baseline, FGR-2x, and FGR-4x are 640 ns, 320 ns, and 160 ns, respectively. The

fifth and sixth bars represent staggered refresh with FGR-2x and FGR-4x, respectively, but
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Figure 4.13: FGR with and without overheads (32 Gb at ExtT).

with realistic DDR4 timing parameters [2] (Table 4.1). The results show that no-overhead

FGR by itself is effective (10.1% improvement over the staggered refresh baseline), but

this effectiveness disappears once realistic overheads are considered (24% execution time

increase over the baseline).

4.7.7 Adaptive Refresh

The above results indicate that FGR is not effective in our baseline model. However,

it may be effective in other settings. For example, FGR may be effective when performed

during memory idle times (we examine this when evaluating refresh Pausing in the next

subsection).

Recent work by Mukundan et al. [2] also shows that FGR can yield improvements, the

optimal refresh granularity varies across applications, and an Adaptive Refresh (AR) scheme

can dynamically select the optimal refresh granularity. The AR model does not help in our

baseline because FGR is never effective.

There are two important reasons for this difference. Mukundan et al. [2] assume a

processor model similar to the IBM Power7 where the command queue is shared by multiple
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ranks. This leads to command queue seizure in their baseline, where requests to a rank being

refreshed take up most of the command queue entries and throttle memory throughput. In

our simulation model, we assume per-rank command queues, so the entries waiting for a

rank being refreshed do not impact throughput in other ranks. Even when we assume a

single command queue for all ranks, we observe that command queue seizure is rare if we

assume a 32-entry read queue. For an 8-core system to fill up a 32-entry read queue, each

64-entry ROB must average more than 4 misses, i.e., a per-thread MPKI higher than 62.5,

which is relatively uncommon.

In our simulation model, we see that Preemptive Command Drain (PCD) [2] reduces

execution time by 0.9%.

4.7.8 Refresh Pausing

Refresh Pausing (RP) [77] begins a refresh operation as soon as a rank is idle, but

pauses it when the memory controller receives a request from the CPU. Refresh Pausing

partitions the refresh operation into smaller fragments and squeezes them into idle periods.

We model an optimistic version of RP that resembles the model in the original paper [77]

and a realistic version of RP that is based on the recently released DDR4 timing parameters.

The optimistic version of RP (formulated before DDR4 timing was revealed) assumes that

a 640 ns refresh operation can be paused up to 8 times, where each fragment takes 80 ns.

We assume that DDR4 FGR timing is a reasonable commercial estimate of the timing for

smaller refresh operations. Similar to DDR4’s FGR, we assume that the realistic version of

RP can be paused only at FGR intervals. Figure 4.14 shows a significant (14%) execution

time reduction with optimistic RP, but an overall increase in execution time (7.2%) when

FGR overheads are added.

4.7.9 Elastic Refresh

Elastic Refresh (ER) [76] tries to perform refresh when the memory is idle. The DDR3

standard requires that 8 refresh operations be performed within an 8×tREFI time window,

but allows the memory controller some flexibility in when to issue those refresh operations.

If ER detects that the rank has been idle for a specified time, it issues a refresh command.

Any leftover refreshes have to be issued at the end of the 8×tREFI time window. We model

the static ER scheme described in [76]. Figure 4.15 shows the potential benefit with this

scheme (4.2% over the baseline).
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Figure 4.14: Refresh Pausing with and without overheads.
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4.7.10 Summary

We have modeled multiple recent hardware-based refresh solutions: two that partition

a refresh operation into smaller fragments (FGR, RP), two that attempt to perform refresh

during memory idle times (RP and ER), and one that prevents command queue seizure

(PCD). Of these, we observed that the fine-grained schemes (FGR, RP) are not effective.

Those schemes may be more effective in a processor model that is more vulnerable to

command queue seizure. PCD yielded a 0.9% benefit while ER yielded a 4.2% benefit,

relative to the staggered baseline. Recall that the improvement with rank assignment was

12%. We therefore believe that the rank assignment scheme is simpler and more effective

than these competing schemes that require changes to the hardware (DRAM chips, memory

controller, and DDR standards). Similarly, in terms of NVM write optimizations, RA

reduced runtime by 13.1%. Prior hardware-based proposals (e.g., Staged Reads [97]) yield

lower improvements (12%).

Many of the proposals in prior work are orthogonal to the rank assignment approach.

We therefore believe that they can be combined with rank assignment to yield higher

improvements. For example, in addition to mapping threads to ranks, (i) we could engage

FGR and perform the operations elastically during memory idle times, or (ii) we could

exploit variability in DRAM (RAIDR [82]) and prioritize the use of pages with long retention

times (RAPID [87]), or (iii) we could identify noncritical pages that can tolerate errors and

lower their refresh rates (FLIKKER [88]). We leave the evaluation of such combined schemes

for future work.

4.7.11 Sensitivity Analysis

We have carried out a sensitivity analysis over a number of parameters. We experimented

with a system that had 8 cores and 4 ranks on a single channel. The execution time reduction

with rank assignment was again 12%. We also experimented with an 8-core system with two

channels and 4 ranks per channel. Rank assignment yielded an execution time reduction of

13.6%, indicative of the fact that the memory system is a smaller bottleneck in this system.

For smaller chips at temperatures under 85◦ C, where the refresh bottleneck is smaller, we

observed execution time reductions of 10.8% (32 Gb chips), 8.8% (16 Gb chips), and 7.9%

(8 Gb chips) with rank assignment.

4.8 Related Work

There have been many recent works that have addressed the problem of DRAM refresh.

Smart refresh [81] avoids refreshes to rows that were recently accessed. The book-keeping
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overheads for this approach increase with DRAM capacity. Elastic Refresh [76] tries to

predict lulls in activity and tries to schedule refreshes during the lull. Flikker [88] uses the

OS to identify areas of the physical memory that are not storing critical data, and relaxes

the refresh constraints in these areas. RAIDR [82] characterizes the retention characteristics

of rows and uses this to increase the refresh interval of these rows. Retention characteristics

of DRAM are not entirely deterministic. Also, techniques like RAIDR and Smart Refresh

increase the utilization of the Command/Address bus. Owing to increased number of banks

in DDR4, we have seen that the utilization of command and data bus is quite high. Nair et

al. [77] propose Refresh Pausing, where a refresh operation can be interrupted after a few

rows have been refreshed, in case a read is waiting.

Many techniques have been proposed to mitigate the long latency of PCM writes. Lee

et al. [89] use narrow rows to mitigate the high latency of PCM. Yue et al. [94] and Qureshi

et al. [91] make use of the asymmetric nature of PCM writes to speed up the write process.

Jiang et al. [92] limit the number of write iterations performed, and use ECC to correct

any bits that are incorrectly written. Qureshi et al. [90] pause the iterative write process in

PCM when a read request arrives, thereby avoiding stalls because of the long write latency.

All the techniques mentioned above are orthogonal to our proposal. Rank assignment

attempts to keep the memory channel busy even when certain parts of the channel are

refreshing. Unlike many of the proposals listed above, rank assignment does not incur

power or storage over heads.

Liu et al. [95] modify the Linux 2.6.32.15 kernel to implement thread to bank mapping.

They show that most workloads can achieve 90% of their max. performance with only 16

DRAM banks. Xie et al. [113] dynamically assign banks to threads based on the memory

characteristics of the thread.

Muralidhara et al. [109] map pages to DRAM channels based on the MPKI and DRAM

row buffer hit rate of the application. This helps reduce bank contention and also prioritize

performance critical DRAM accesses. The implementation of our rank assignment mapping

is partly inspired by the implementation presented in [109].

4.9 Conclusions

This chapter considers a simple technique to hide service interruptions in future DRAMs

and NVMs. Service interruptions such as refresh and write drains happen at the granularity

of ranks. We show that fine-grained refresh approaches, as supported by DDR4, are not

effective in hiding refresh penalties. Our experiments with elastic forms of refresh also

yielded small improvements. By mapping pages from a thread to few ranks, we show that



70

it is possible to stall only a fraction of threads when a rank is interrupted. The rank

assignment mechanism is effective in removing a large fraction of refresh and write drain

overheads, while requiring no changes to the hardware. The only modifications are to the

OS, which only has to perform a best-effort mapping of threads to ranks.



CHAPTER 5

ADDRESSING SNEAK CURRENT

PROBLEMS IN CROSSPOINT

MEMORIES

Memory vendors are actively researching new scalable nonvolatile memory technologies

that can augment or replace DRAM memories. Such emerging memories, e.g., Phase Change

Memory, Spin Torque Transfer - Random Access Memory (STT-RAM), and Memristors,

have the potential to provide a big boost to servers handling big-data workloads by offering

higher memory capacities and nonvolatility. In addition, they also have the potential

to dramatically simplify software overhead by enabling persistence at the main memory

level [114].

Most of the recent attempts to use NVMs as the main memory have focused on PCM [89,

90, 91, 92] and STT-RAM [115, 116, 117]. Memristors (or Resistive Random Access

Memories (ReRAM)) have only been considered very recently. In this chapter, we attempt to

build a memory system using Memristor technology. In Section 5.3, we describe the unique

crossbar architecture used by Memristors. This section also explains the phenomenon of

sneak currents. In Section 5.5, we describe our proposal that reuses these sneak currents,

hence reducing the read latency.

5.1 Introduction

Memristors have a distinct density advantage over other NVMs because a single cell

can approach an area of 4F 2 and multiple cells can be created in a vertical stack with

additional metal and oxide layers, reducing the effective bit size to < 4F 2. They also

have read latencies that can be as low as 7.2 ns [118] and have better on/off resistance

ratio than STT-RAM. Initial industrial efforts are attempting to build Memristor arrays

that use crossbar architectures [119]. Some early architectural work [120, 121] carries out

design space explorations to identify ideal Memristor array layouts, and a recent paper [122]
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proposes a few optimizations to reduce read and write latencies for specific Memristor design

styles.

This dissertation adds to this literature by defining Memristor read mechanisms that

significantly improve its performance and energy-efficiency. We start with a tutorial on

Memristor cell and array design that helps identify key challenges and a reasonable baseline

design. We then introduce new “open-column” semantics.

We observe that Memristor array reads require a noisy read of current through the

selected cell as well as a second read of background sneak currents to cancel out the noise.

The latter measurement can be reused when reading other cells in the same column of

the array. Similar to DRAM’s row buffer hit, this introduces the notion of a column hit

in Memristors. Managing the Memristor column requires policies different from those of

DRAM. We also observe that there can be a significant benefit from supporting parallel

reads from many arrays; we therefore consider a number of address mapping policies. Our

results show that performance and energy are best with a policy that places an entire subset

of a page in a single array column.

5.2 Memristor/ReRAM Technology

Memristor, also referred to as ReRAM, is a stateful memory device built by sandwiching

metal oxide material such as TiO2 or HfOx between electrodes [123, 124]. These devices

have at least 2 stable states characterized by either low resistance or high resistance, which

can be used to represent logical 1 and 0.

Resistive memories are broadly classified into either unipolar or bipolar devices based on

their switching modes. In a unipolar device, change in state happens if an external voltage

of specific magnitude and duration is applied across the device, whereas in bipolar devices,

switching of states also depends on the polarity of the external voltage [125, 126, 127, 118].

Even among bipolar devices, there are many metal oxide materials that exhibit resistance

switching. In this work, we focus on a highly scalable, HfOx-based Memristor, which has

an endurance of > 1010 and the cell can be switched at tens of nano seconds [123, 128]. By

carefully architecting the memory array, a HfOx-based Memristor can be used as a main

memory along with or as a replacement to DRAM.

5.3 Array Architecture

Memristor arrays can either be designed as a grid with 1 Transistor 1 Resistor (1T1R)

cells [129] or as a dense crossbar architecture [130]. In a conventional design, each cell has

a dedicated Metal Oxide Semiconductor Field Effect Transistor (MOSFET) transistor (a
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“1T1R” structure). Similar to DRAM, when a row gets activated, the access transistors

in the selected row provide exclusive access to the cells in that row without disturbing

other cells in the array. This isolation provides better energy efficiency and access time

compared to other array architectures. However, since resistive memories typically operate

at a significantly higher current than DRAM, they require a large sized access transistor

for each cell, making 1T1R cells less compelling for a cost conscious design. As we describe

next, crossbar architectures have the potential to provide significantly higher densities.

5.3.1 Crossbar Architecture

Most emerging resistive memory technologies change their state when a voltage equal

to the switching voltage is applied across the cell. If the potential is less than the switching

voltage, then the cell retains its state without getting disturbed. In contrast, in charge-based

technologies such as DRAM, any nonzero voltage across a cell can disturb its content. This

property of resistive memory along with the nonlinear nature of Memristor, where current

changes nonlinearly with voltage, make it possible to build a unique crossbar architecture.

In a crossbar array (Figure 5.1), a metal layer implements several wordlines and the next

metal layer implements several bitlines. At every overlap point, the bitline and wordline

are fused with metal-oxide material, forming a Memristor cell. If the voltage across a low

resistance state cell exceeds a certain threshold, that cell essentially conducts current from

the wordline to the bitline. Ideally, cells that do not have sufficient voltage across them

should be nonconducting. In practice, a sneak current flows through such cells.

1

Half Selected
Cells

Selected Cell

Sneak Current

0V

V
Mem-

ristor

Selector

Memristor Cell

Figure 5.1: Crossbar array with each cell having a Memristor storage element connected
to a stateless selector device.
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With such a design, we see that all cells are interconnected to form a dense grid without

any access transistors. By eliminating access transistors, cells in a crossbar achieve the

smallest theoretical size of 4F 2. A cell size of 4F 2 is literally the area under the cross-section

of a minimum sized wordline and bitline. In addition, Memristor cells employ different

fabrication steps from transistors; therefore, the silicon area under the array can be used

for other peripheral circuits such as decoders and drivers, maximizing the area efficiency

of an array. In a highly cost conscious memory market, the crossbar architecture is better

suited for Memristor-based main memory.

In addition to the cell dimension, a Memristor array can also be scaled vertically by

having multiple layers of cells. In a crossbar architecture, it is possible to add a layer on top

of an array by simply adding 2 metal layers with metal-oxide between them. Having 4 such

layers can reduce the effective cell size to 1F 2 [131, 132]. This is different from multilevel

cell technology that stores multiple bits per cell to improve density. This is also different

from 3D die stacking since a single silicon substrate is being layered with many metal and

cell layers. For this work, we consider only a one-layer architecture.

5.3.2 Memristor Reads/Writes

A Memristor crossbar allows reading a single cell at a time. We illustrate this in

Figure 5.2 with an example. If we are trying to read cell (i, j) in an array, a voltage V

is applied to wordline i, and zero voltage is applied to bitline j. All other wordlines and

bitlines are set to a voltage of V/2. As a result, assuming all cells apart from (i, j) are

nonconducting, a voltage of V is applied across cell (i, j), making it a fully selected cell

(the red cell in Figure 5.2). It therefore conducts and a current is received at the bitline

that corresponds to the resistance of the selected cell. The reason that all other cells are

nonconducting is that they have a voltage of V/2 or 0 applied across them. Ideally, that

voltage is low enough to keep the cell in nonconducting state. The cells that have 0 voltage

applied to them (the blue cells in Figure 5.2) are unselected cells and the cells that have

V/2 voltage applied to them (the yellow cells) are half-selected cells.

With this ability to read a single cell at a time, overfetch [38] in Memristor memories can

be eliminated. When reading a cache line, 512 separate 1-bit reads can be performed, either

in parallel or in series, either from 1 array or from 512 different arrays. Similarly, single-bit

writes can also be performed. When writing to cell (i, j), the same setup as Figure 5.2 is

used, except that a voltage VW is applied across the fully-selected cell (and voltage VW /2

is applied to all other wordlines and bitlines). To write the opposite value, VW is applied

to the selected bitline and 0 is applied to the selected wordline.
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Figure 5.2: A read operation to the top right corner cell in a 4×4 crossbar array.

5.3.3 Sneak Current in a Crossbar

Unfortunately, cells have nonideal behavior and conduct small amounts of current even

if the voltage across them is less than the threshold voltage. This results in sneak currents

through all the bitlines and wordlines. Further, this results in IR-drops (voltage drops)

along the wordlines and bitlines. Therefore, the voltage applied across every cell is not the

idealized V, V/2, or 0 volts.

Memristor cells exhibit a nonlinear relationship between their applied voltage and their

current, i.e., current decreases significantly with a small drop in voltage. This helps keep

the sneak current through half-selected and unselected cells in check. Thus, a critical

parameter in a crossbar architecture is the ratio of the amount of current flowing through

a fully-selected cell (Ifsel RESET ) to a half-selected cell (Ihsel), referred to as nonlinearity

(κ). The higher the κ, the lower the sneak current.

Many recent Memristor prototypes employ a dedicated selector or bi-polar diode in each

cell to improve κ, as shown in Figure 5.1 [125, 133, 132]. A selector is a state-less device,

which can be laid on top of the Memristor material, without requiring additional area.

In this work, we model a NbO-based selector, which has a highly nonlinear curve [134].

An ideal selector should act as a perfect switch with zero leakage current when the applied

voltage across it is less than the selector threshold voltage. However, as shown in Figure 5.3,

it is inevitable that some amount of leakage current flows through the selector, contributing
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Figure 5.3: Typical I-V curves of Memristor (left) and selector (right) elements in a cell.
The blue state in the left corresponds to logic 1 and the red corresponds to logic 0.

to the sneak current in a crossbar.

5.4 Impact of Sneak Current

Although a crossbar architecture is best suited for building dense memories, sneak

current places strict constraints on read/write margins and array specifications. Most Mem-

ristor memories, even with a dedicated selector in each cell, have only finite nonlinearity.

Hence, sneak currents flowing through them pose a number of challenges, opening up new

research possibilities for architects.

5.4.1 Crossbar Size

As discussed before, large crossbars and consequently large sneak currents can increase

noise during reads and writes. In addition, the amount of sneak current ultimately deter-

mines the energy efficiency, access time, and area of an array. For example, sneak currents

in a large array can cause a large IR-drop across half-selected cells. We have to therefore

provide a higher voltage at the driver so that even after IR-drops, the fully-selected cell sees

a sufficiently high voltage. Without this, the write may not succeed (write failure [120]).

However, a high voltage at the driver also results in high voltage at nearby half-selected

cells. This can lead to write disturbance [120]. This inherent conflict requires an array to

be moderately sized. For a given read or write bandwidth of a crossbar array, Figure 5.4

shows the increase in sneak current as the array size increases from 16x16 to 256x256

configurations. For a given array size, having the same number of rows and columns
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Figure 5.4: Sneak current for different crossbar sizes.

minimizes the half select path, and hence we only consider arrays with square aspect ratios.

A detailed description of modeling and methodology for calculating the sneak current can

be found in Section 5.6.

5.4.2 Array Bandwidth

In a conventional memory array with access transistors per cell, activating a row results

in reading out all cells in a row. Such arrays, e.g., with DRAM or PCM, have dedicated

sense-amplifiers for every bitline or groups of bitlines. An array therefore has inherently

high read bandwidth and row buffers are a natural extension to such arrays.

A Memristor crossbar, on the other hand, does not lend itself easily to high-bandwidth

access. As seen in the example in Figure 5.2, activating a single wordline and bitline in an

n×n array allows us to read a single cell value, while introducing 2n− 2 half-selected cells.

Alternatively, we could add another sense-amplifier circuit to the array and set another

bitline to 0 volts. This would allow us to read 2 bits in a row, but would grow the number
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of half-selected cells to 3n − 4. This leads to 2 important drawbacks. First, the energy

for the array read goes up dramatically because of the higher number of half-selected cells.

This requires larger drivers, which in turn impacts density and cost [120]. Alternatively,

the driver size can be kept constant, but n can be reduced – this too reduces density.

Second, the sense-and-hold circuits that constitute the sense-amplifier are large and doubling

this number per array will also negatively impact density. In fact, we expect that future

Memristor devices will likely share 1 sense-amplifier among 16-64 different arrays. Third,

as discussed previously, higher sneak currents will exacerbate the write failure and write

disturbance problems.

For these reasons, we expect that future cost-sensitive Memristor devices will likely have

very low bandwidth per array. In this work, we investigate single-bit read/write per array

although the proposed techniques can be extended to multibit accesses.

5.4.3 Read Complexity

For a given read voltage, a Memristor cell typically conducts < 5µA in its off state (“0”)

and> 15µA in its on state (“1”). While ∼ 3× on/off ratio can offer an excellent read margin,

when cells are connected in a crossbar fashion with the aforementioned biasing scheme, the

selected bitline will carry a sneak current of 134−146µA (in a 128x128 crossbar) in addition

to the cell current as shown in Figure 5.4. This variation is due to a number of factors such

as the distribution of 1s and 0s across an array, selector threshold and leakage variation,

and Memristor on/off resistance variation. As variance in sneak current is greater than

the difference between on and off currents, a simple sense-amplifier with a single reference

current cannot faithfully detect the state of the memory cell. Furthermore, since sneak

current can vary based on the data stored in the array, it is critical to architect the sensing

circuit such that we have enough noise margin to differentiate sneak current from the total

read current.

Crossbar arrays typically require a complex two-level sensing circuit in which a read

operation is split into three parts. First, similar to DRAM, bitlines are precharged before

a read operation. Second, a half-select voltage is applied to the selected row to measure

the background current in the present state of the array. In other words, a voltage of V/2

is applied to the selected row and a voltage of 0 is applied to the selected column. When

this is done, the bitline current represents the current contributions of all the half-selected

cells in that column. A special sample and hold circuit that is part of the sense amplifier

measures this background current, and stores it in a capacitor. Finally, a normal read

operation is performed that factors out the sampled background current. This approach is
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therefore trying to eliminate the noise from the problem mentioned previously. There are

two downsides to this approach: first, read latency is much larger than DRAM, which uses

a simple sense-amplifier. Second, the silicon area overhead of the variation aware circuits is

significantly higher, limiting the number of sense-amplifiers per array. As mentioned earlier,

a single sense-amplifier will likely be shared among many arrays. In comparison, DRAM

has a sense-amplifier for every bitline in the array. Hence, techniques that reduce sensing

overhead in Memristors are critical to improve read latency and memory bandwidth.

5.4.4 Variable Write Latency

A critical characteristic of a Memristor cell is that its switching time is inversely ex-

ponentially related to the voltage applied on the cell [123, 135]. The write latency of the

furthest selected cell is calculated based on the relationship between its voltage drop Vd and

switching time τ : τ × ekVd = C, where k and C are constants extracted from experimental

results [136]. For example, a HfOx-based Memristor has demonstrated that a 0.4V reduction

in RESET voltage may increase RESET latency by 10X [123].

Even though the switching time of a Memristor cell can be small if it is located near the

write driver and has almost the full write voltage, many Memristor cells in an array will

see a different voltage drop across the cell due to the IR drop introduced by Kirchoff’s Law

and the sneak currents. The current passing through the driver transistor and metal wires

causes voltage loss and thus decreases the effective switching voltage on the furthest cell

in a Memristor crossbar. Therefore, the worst-case switching time of a Memristor crossbar

depends on the array size, write current, metal resistance, and number of half selected

cells in low resistance state (since they carry more current and cause larger IR-drops). A

straightforward solution is to increase the output voltage of the write driver so that the

worst-case voltage drop can be improved. However, this approach has several drawbacks:

(1) increasing the voltage has a quadratic impact on power; (2) increase in output voltage

also increases charge pump stages and complexity, and thus the corresponding area and

energy overhead; (3) a larger V/2 increases the probability of write disturbance; (4) higher

voltage introduces reliability issues, such as time-dependent gate oxide breakdown of the

write driver and worse drain-induced barrier lowering effect. To deal with such issues,

specialized transistor design is required, increasing both cost and area overhead; (5) the

excessive voltage may over-RESET the nearest selected cells and cause stuck-at-0 faults,

resulting in endurance degradation [136]. Hence, the best approach is to minimize voltage

variation across the selected cell by minimizing loss due to sneak current.
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5.5 Proposal

In the previous section, we have shown that the nonlinearity of a Memristor cell makes

it a good fit for a crossbar architecture. Crossbars are highly superior in terms of density,

which is why they are attractive for cost-sensitive memory products. However, crossbars

introduce a variety of problems stemming from sneak currents. These sneak currents impact

energy and latency (by varying the voltage across cells and by requiring a multistep read

operation). In this chapter, we examine architectural approaches to alleviate these concerns

and improve read latency and energy.

Our baseline is a Memristor memory system that, like DRAM, is composed of channels,

DIMMs, ranks, and banks. We assume that a bank is composed of several crossbar arrays.

On a 64-byte cache line request, single-bit reads are performed in parallel on 512 different

arrays. These 512 different arrays are scattered across the Memristor chips that form the

rank. Writes follow a similar process.

5.5.1 Reusing Background Currents

Figure 5.5 shows the high-level block diagram of two-level sensing with a sample and

hold circuit for crossbar memory [137]. During the first phase of a read operation, the

selected wordline is biased with half-select voltage and the selected bitline connects to the

sample and hold circuit with switch S1 closed and S2 open. The transistor, connected as a

diode, charges the holding capacitor based on the potential at its gate and source, which in

turn is a function of the leakage current flowing through the bitline. During the second step,

S1 is opened to isolate the holding capacitor from the selected column and S2 is closed to

initiate sensing. Since the transistor gate potential is maintained by the capacitor, the same

current equivalent to the sneak current flows through the drain. When the selected wordline

voltage is increased to full read voltage, the selected bitline current goes up. However, the

effective current fed to the sense-amp will be the difference between the total bitline current

in the second phase and the drain current induced by the capacitor.

In a crossbar array, biasing unselected rows and columns to half select voltage can help

avoid read or write disturbance and reduce sneak current. To half-bias all unselected rows

and columns, we need a voltage source multiplexer for every row and column, which can

increase the area of the crossbar. Hence, it is better to limit the half-biased rows and

columns as much as possible to improve density.

Most prior work on Memristors treat the array as a simple load store unit that performs
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Figure 5.5: Two-level sensing with sample and hold circuit to cancel the effect of sneak
current in reads.

both sampling and sensing for every read operation 1. We make a key observation that even

in the presence of variation in cells, the background current read for a column will closely

resemble the background current read for other cells in the same column.

Figure 5.6 shows a heat map of background currents for different cells in a crossbar.

The figure is based on the assumption that 1s and 0s are randomly distributed with equal

probability. The selector, Memristor, and cell variation parameters used to model this

are discussed in Section 5.6. Overall, the background current variation across the array is

< 6µA and within a column, the variation is less than 3µA. When sensing current along

the bitline, the half selected row cells mainly contribute to the reduction in voltage across

the selected cell, whereas the half selected column cells contribute to the total sneak current

in the selected column. Hence, even if we do not assume random distribution of 1s and 0s,

the variation within a column is always smaller as cells that are contributing to the sneak

1Note that sample and hold circuit is also used for writes to ensure current compliance. For this work,
we focus on improving read latency and energy.
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Figure 5.6: Background current for cells at various location in a crossbar array. The
background current varies from 136 to 142 µA.

current are mostly the same. The main factor that affects the variation of sneak current

within a column is the current coming from the floating wordlines and bitlines. As we

half-bias more unselected rows and columns, the variation of background current within a

column goes down further.

Based on this observation, we propose to reuse the background current to read multiple

cells from a single column. As in the baseline, a cache line request will first involve a read

of the background current for that column (in 512 different arrays). This is followed by

a read of the fully-selected cell corresponding to the cache line being read. Once this is

done, the sample and hold circuit continues to retain its stored charge. Based on SPICE

simulations, we found that the capacitor can retain its charge for up to 10µ seconds or 32
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reads, whichever comes first.

Hence, if subsequent requests are made to other cells in the same column, the background

current read can be elided. The capacitor in the sample and hold circuit continues to assist

the next many reads from that same column, just as a DRAM row buffer continues to

assist subsequent reads from the same row. This helps reduce latency, essentially halving

Memristor read latency every time the background current read is reused. For example,

if a single read sense takes 50 ns, then the baseline has constant cache line read latencies

of 100 ns, while in our proposed model, the read latency can be either 100 ns or 50 ns,

depending on whether a background current read is required or not.

This reuse of the background current re-introduces the concept of an open page access,

which was deemed unnecessary for Memristors. Physically, this is very different from DRAM

open page access – instead of storing a row’s worth of data in a “cache” with fast access,

the Memristor is simply storing background current in a single capacitor. While many of

the semantics for open page access are similar to those for DRAM, there are also significant

differences:

1. There is an expiration time for the capacitor in the sample and hold circuit because

its charge gradually leaks away.

2. The number of reads and writes that can be serviced by the capacitor is limited.

3. A write to any cell in that column renders the background current measurement

invalid. Based on the process variation in the cell that got written, its impact on the

bitline sneak current can vary. In other words, open page access only works for reads.

4. The number of “open” columns in the Memristor memory system can be much larger

than the number of open rows in a DRAM system.

5. The organization of data in arrays must be transposed so that consecutive cache lines

are made to share the same column and not the same row (as in DRAM). This helps

exploit spatial locality for open page accesses.

The open page access described so far offers latency and energy savings. However, if

workloads exhibit low levels of spatial locality, then both benefits are small. Instead, to

save energy in a guaranteed manner, we can configure open page access to benefit each

individual cache line read. When reading a cache line, we can fetch (say) 2 bits of that

cache line from the same column of the same array. Since an activated column can read

only 1 bit at a time, the 2 bits from a given column will have to be read sequentially.

However, this process is performed across 256 different arrays in parallel. The result is a

higher latency of 150 ns for the cache line read, but a reduction in energy dissipation from
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sneak currents. If a subsequent cache line access is to the same column, it has an access

latency of 100 ns. However, increasing the memory latency in this manner results in longer

execution times and more energy dissipated in the rest of the system. We therefore do not

consider such models further in this chapter.

If an application does exhibit spatial locality, we will see multiple back-to-back accesses

to the same array and column. Even though our open-page mode avoids multiple back-

ground current reads, throughput is limited because the second array read cannot begin

until the first array read has completed. This delay is much higher than the delay seen in

DRAM for open-page accesses. In DRAM, the second access does not perform an array

read; it simply moves data from the row buffer to the output pins; this operation completes

in about 5 ns. In Memristors, two back-to-back accesses to the same array are separated

by about 50 ns. Therefore, it is not evident that consecutive cache lines should be placed

in the same column. If an application exhibits spatial locality, it might benefit by placing

consecutive cache lines in different arrays so that both cache lines can be fetched in parallel.

In short, the address mapping policy can possibly have a significant impact on Memristor

throughput. We investigate this further in Section 5.7.

5.5.2 Staggered Data Mapping for High Reliability

For the subsequent discussion, we assume that 512-bit cache lines are protected with

64-bit Single Error Correct Double Error Detect (SECDED) codes. Two or more errors in

a cache line are uncorrectable and in some cases undetectable. Most of our discussions so

far have assumed that a 576-bit cache line is interleaved across 576 different arrays. Similar

interleavings are also performed in DRAM memories, where the bits of a cache line occupy

the exact same row and column in several different mats. We note here that such a mapping

can lead to high uncorrectable error rates and alternative mappings are required.

In a Memristor crossbar, cells closer to the driver circuits are less vulnerable to noise

from IR-drop than cells that are diametrically opposite. For example, the fully-selected cell

(the corner cell) in Figure 5.2 is the least favorable one in that array. If we mapped data

just as is done in any other memory, then all the bits of a cache line would be placed in

corner cells of 576 different arrays. And likewise, all the bits of another cache line would be

placed in the most favorable cell of 576 different arrays. Such nonuniformity is not favorable

for reliability because it concentrates errors to a few cache lines, rendering those cache lines

vulnerable to uncorrectable multibit errors. Ideally, the probability of errors in every cache

line should be uniform.

To achieve this, we introduce a data mapping policy that staggers the placement of every
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bit of a cache line in every array. An example is shown in Figure 5.7 for a hypothetical

2×2 array. In essence, a cache line is made up of cells that have varying locations within

crossbar arrays. With such a mapping, the probability of a single-bit error, or a two-bit

error, etc. would be nearly uniform in every cache line. To implement a staggered mapping,

every Memristor chip should offset the input address by some value. This value will vary

for different chips within a rank. This can be accomplished through a simple programable

register within each memory chip, which can be configured by the memory controller during

the initial setup.

To better understand the impact of staggering, we present the following example for

a crossbar array of size 128×128. Similar to DRAM, there will likely be many sources of

failures in Memristors such as stuck at faults, row failures, and column failures. However,

in all emerging technologies targeted for very small feature sizes, a major source of failure is

due to variation in cell parameters. A major source of failure in Memristors is variation in

the selector threshold voltage for a cell. In a typical design that considers process variation,

an array is designed to work even if cell parameters vary by 4 standard deviation (σ),

assuming a normal distribution. As the variation increases, the effective voltage available

across a Memristor for read or write will decrease. In a crossbar array, the voltage across a
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Figure 5.7: Baseline and proposed data mapping policies.
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cell is also affected by the location of a cell from the driver and the distribution of 1s and 0s

along the row. Consider a design that can handle 4σ variation in selector threshold voltage,

assuming a maximum of 60%-40% distribution of 1s and 0s along the row. Assuming that a

cell will fail if the farthest cell from the driver has more than 4σ variation and if the selected

row ends up of having more than 60% of cells in low resistance state (“1”), then the failure

probability is given by equation 5.1 and equation 5.2.

P4σ = 1/15787 (5.1)

P>60%of1s =

(
127
76

)
2127

= 0.006 (5.2)

From equations 5.1 and 5.2, the failure probability is 3.8e − 7. A single bit failure

can be addressed by a SECDED code. With simple interleaving, every cell has the above

failure probability. Thus, the probability of a 2 bit failure in a 64b transfer is given by the

equation 5.3.

P2berr =

(
64

2

)
× (3.8e−7)2 = 2.9e−10 (5.3)

With staggered mapping, the number of vulnerable bits mapped to least favolrable

location in a 64b access is reduced to 12b (i.e., bits mapped to the last 20% of columns that

are away from the driver). With this, the 2-bit error probability for staggered bits improves

by 30x as shown in equation 5.4. By analyzing the voltage drop along the crossbar row, in

the proposed case with staggering, bits that are relatively closer to the driver have enough

voltage for upto 80% of low resistance states in a row. This reduces the error probability

of other staggered cells by 8 orders of magnitude.

P2berr staggered =

(
12

2

)
× (3.8e−7)2 = 9.4 × 10−12 (5.4)

It is also possible to improve voltage drop and avoid failure by increasing the operating

voltage without staggering. However, this will both increase the energy per access and

the possibility for cell disturbance. In the above example, even if the array size and other

specifications vary, it is possible to exploit staggering to limit write voltage just enough to

provide less than 10−15 error rate typically required for a product.
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5.6 Methodology

In Memristor memory, both access latency and energy are dominated by the cell and

crossbar array, whereas in charge-based technologies such as DRAM, the overhead of access-

ing a mat2 itself is small compared to the routing and IO overhead. To evaluate the impact

of the proposed techniques on Memristor performance and power, it is critical to have an

accurate model of a crossbar array. For this work, we built a tool that takes array size, cell

parameters, and process technology as input to generate a complete HSPICE netlist, which

is then used to calculate output wordline current, sneak current, voltage drop across the

row, and transient delay.

Figure 5.8 shows the components modeled to simulate a crossbar array. We use HfOx-

based cell parameters from Lee et al. [136] and selector parameters from Pickett et al. [134].

The Memristor element is modeled as a voltage controlled current source and the selector as

a current controlled voltage source. For transistor parameters in peripheral circuits, we use

AMI 250nm technology. For all our analysis, we consider only a single layer crossbar array

and access only 1 bit per array. A detailed list of selector, Memristor, and wire parameters

is tabulated in Table 5.1. The sneak current in Figure 5.4 and heatmap in Figure 5.6 are

based on HSPICE simulations using these parameters.

For performance analysis, we run our simulations for a total of 250M instructions. We

use Simics [110] functional simulator and augment its trans-staller module with a detailed

Memristor timing model based on USIMM [56], including memory controller overhead and

its queuing delay. The CPU we simulated consists of 8 out-of-order cores with 32MB of

2Mat is the basic building block of a DRAM bank.

Figure 5.8: Crossbar components modeled.
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Table 5.1: Parameters in the crossbar array model

Metric Description Value or Range

A Crossbar size: A wordlines ×A bitlines 128 × 128
n Number of bits to read/write 1
Ion Cell current of a LRS Memristor 15uA
Ioff Cell current of a HRS Memristor 4uA
Rwire Wire resistance between adjacent cells 8Ω
Vth Selector threshold voltage 1.5V
σvth Selector voltage variation 15%
Ileak Selector half-select leakage 1µA
σleak Selector half-select leakage variation .1µA
Kr Selector ileak variation 15 − 30%
VW Full selected voltage during write 3.6V
VR Read voltage 2.0V

shared Last Level Cache (LLC), similar to [138]. The Memristor memory system has 2 DDR

channels with each channel having 2 ranks. We use workloads from SPEC2006 benchmark

suite. Simulator parameters are summarized in Table 5.2.

We experimentally determine the best address mapping policy for our Memristor base-

line. We map successive cache lines to different channels, ranks, banks and sub-banks. The

sub-bank is XORed with the column in order to further reduce sub-bank conflicts [104].

Each time a cache line needs to be read, the background current is first read, followed by

the actual read. This baseline optimizes parallelism when servicing Memristor reads.

The sample and hold circuit that provides the background current is shared between all

the crossbars in a subarray. In our design we assume 8 banks per rank, 32 sub-banks, and

64 subarrays per sub-bank. Hence, we have a total of 16K sense and hold circuits per rank.

A subarray here is defined as a set of crossbars that share a two-level sensing circuit. A

sub-bank consists of a set of subarrays from which a cacheline is retrieved.

5.7 Results

Figure 5.9 shows the performance increase when a baseline Memristor system is com-

pared with a DRAM system, and with the proposed system that reuses the background

current.

The first bar (DRAM) shows the performance increase when a DRAM-based memory

system is used. The address mapping policy used here maps an entire OS page to a single
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Table 5.2: Simulator and Memristor timing parameters.

Processor

Core Parameters: UltraSPARC III ISA, 8-core, 3.2 GHz,
64-entry ROB, 4-wide OOO.

Cache Hierarchy

L1 I-cache 32KB/2-way, private, 1-cycle

L1 D-cache 32KB/2-way, private, 1-cycle

L2 Cache 8MB 64B,8-way, shared, 10-cycle
Coherence Protocol Snooping MESI

Memory

Memristor Frequency 1600 Mbps

Channels, Ranks 2 channels, 2 ranks/channel,
Banks, Sub Banks 8 banks/rank 32 sub banks/bank

Sub Arrays, Crossbars 64/bank , 64 Crossbars/ sub array

Read Queue Length 64 per channel

BGCurrentSense = 50ns ns
Memristor 1 − bit/CrossbarRead = 50 ns

Timing 2 − bit/CrossbarRead = 100 ns
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Figure 5.9: Performance impact of Background Current reuse
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row, thus maximizing row buffer hits. The DRAM system is intended to show the potential

room for improvement in an idealized memory system with latencies as low as that of

DRAM. Of course, a DRAM only system will offer much lower memory capacity and will

be a poor fit for big data workloads because of large page fault rates. This study does not

consider the effect of memory capacity on page fault rates, so the first bar in Figure 5.9 is

an optimistic upper bound.

The second bar (32ReUse) shows the performance increase when the proposed Memristor

system is used. As discussed in the proposal section, we change the default address mapping

policy such that successive cachelines get mapped to rows in the same column of a Memristor

crossbar, i.e., an entire OS page maps to a single column in a sub-bank. This policy enables

us to exploit the spatial locality of workloads to reuse background current measurements.

We reuse the background current for 32 successive reads to the same column of the same

sub-bank, as long as they occur within 10 µs.

Zeusmp sees the largest performance improvement because of a combination of high

column hit rates and long gaps between successive accesses to the same page. Compared

to the baseline Memristor system, reusing the background current increases performance

by 8.3%, on average, across all benchmarks. The DRAM system is 34.8% better than the

baseline system; however, it is only 24.4% better than the proposed Memristor system.

Memristor latency is a combination of the time it takes to sense the background current,

and the time it takes to sense the data stored in the cell. Figure 5.10 shows the memory

latencies for the baseline system (NoReUse), the proposed system (32ReUse), and a DRAM
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system. Memory latency is a combination of the memory core latency and the queuing

delay in the memory controller. By reusing the background current, we are able to reduce

total Memristor memory latency by 20%. The line titled CHR shows the column hit rates

as seen when background current is reused. The large number of sub-banks present in the

Memristor system reduces column conflicts, and hence is able to provide an average column

hit rate of 67%. Applications that see high column hit rates, like Gems and bwaves, show

the largest drops in memory latency, while astar and gobmk show the lowest.

A key difference between a hit to a DRAM row-buffer and to a Memristor crossbar

column is the large latency difference, stemming from the absence of overfetch [38] in a

Memristor memory. Because DRAM senses more than a single cacheline, the CAS-to-CAS

latency for DRAM is 5 ns. Memristors sense only a single cache line per read, and hence need

to sense the resistance of the cell anew, even when the background current is reused. For

this reason, the CAS-to-CAS latency is much higher than DRAM (50ns in our evaluation).

Workloads that have high locality as well as high Memory Level Parallelism (MLP) end up

having multiple accesses to the same page at the same time. The high CAS-to-CAS latency

of Memristor memory can adversely impact the performance of such workloads even in the

presence of high column hit rates. To address this, we investigate the trade-off between

locality and MLP by evaluating different address mapping policies.

Figure 5.11 shows the performance of 5 different address mapping policies. 32ReUse

maps the entire page to a single column in a sub-bank. 4interleave maps every fourth

cacheline to the same sub-bank. XOR maps successive cache lines to different channels,
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ranks, banks, and sub-banks. The sub-bank is XORed with the column in order to further

reduce sub-bank conflicts [104]. 32interleave maps every 32nd cacheline in a page to the

same sub-bank. 4ReUse maps 4 successive cachelines to the same bank, subsequent chunks

of 4 cachelines are mapped to different channels, ranks, and banks, in that order. 32ReUse,

which maximizes locality, represents 1 end of the spectrum, while XOR, which maximizes

parallelism, represents the other end of the spectrum. 4/32interleave and 4ReUse represent

points in between. For all the workloads except libquantum, soplex, and astar, 32ReUse

has the highest performance. This is contrary to our observation in the Memristor baseline,

where the XOR scheme that maximizes parallelism does best. Therefore, our ability to reuse

background currents has yielded a different optimal address mapping policy. On average,

32ReUse outperforms 4interleave by 3%, XOR by 8%, 32interleave by 7%, and 4ReUse by

6%.

Using the Memristor parameters detailed in Table 5.1 and detailed HSPICE simulation,

we determine that for a 128x128 array, reading the background current consumes 335 µW ,

while a full read takes 546 µW . This difference is due to the different row voltages required

for background and full reads. Figure 5.12 shows the power consumption for the workloads

we evaluated, normalized to the Memristor baseline. On average, reusing the background

current reduces Memristor read power by 25.8%. Other address mapping schemes that

trade off locality for parallelism attain lower power savings. 4ReUse reduces average read

power by 16.3%, 4Interleave reduces it by 15.5%, 32Interleave decreases it by 8.4%.
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5.7.1 Impact of Memristor Write Latency

Figure 5.13 shows the sensititivty of system performance to Memristor write latency.

The values in Figure 5.13 have been normalized to the performance of an idealized system

where no writes are performed. The first bar titled NoWrite shows the performance of

the idealized system. Bars titled 100ns, 200ns, 400ns show the performance of the system

when there are write latencies of 100ns, 200ns, and 400ns. The overall performance of 400ns

is 6% lower than the idealized system. However, most of this is because of the impact of

writes on memory bandwidth. This is evident from the fact that the performance changes

by less just 2%, when the write latency is quadrupled from 100ns to 400ns. The difference

in performance between the first and second bars is because no writes are performed in the

idealized system, whereas the second bar represents a system that performs writes.

In Chapter 4, we showed that long write latencies of NVMs have a significant impact on

performance. However, the results shown in Figure 5.13 are contrary to that. The reason

for this contradiction is the large number of sub-banks that are present in the Memristor

design we evaluated. Where as the performance loss from writes was less than 5% with

32 sub-banks, the performance loss increases to 21% when there is just 1 sub-bank. The

large number of sub-banks amortize the actual write latency by performing many writes

in parallel. While writes consume bandwidth on the data bus, the parallelism in the 32
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sub-bank architecture alleviates the impact of high write latency.

5.8 Related Work

A large body of work exists on leveraging emerging nonvolatile memory to augment or

replace DRAM main memory. Most of them focus on phase change memory, addressing its

limitations such as long write latency, limited endurance, and high write energy [93, 92, 90,

91].

To hide the long write latencies of PCM, Qureshi et al. [90] proposed write pausing

and write cancellation. Jiang et al. [92] proposed write truncation to improve the write

performance in MLC PCM. Cho et al. [93] flipped the cache line if it reduces the number of

bits that needs to be written. This improves the endurance of PCM as well as write energy.

Most of these approaches are orthogonal to the proposed techniques and are applicable to

resistive memories such as Memristors.

There are a number of device and circuit papers on ReRAM that discuss cell specification

and circuit design to build Memristor memories [139, 120, 140]. The most recent work on

ReRAM architecture is by Cong et al. [122], in which the authors discuss challenges in

building crossbar memories focusing on multibit reads and writes within an array. They

propose inverting a set of bits written to a crossbar to reduce the number of low resistance

states within a crossbar and improve write performance. As discussed earlier, we target 1

bit operation per crossbar array due to its low voltage requirement and smaller driver size.

5.9 Conclusion

Memristor is a promising emerging technology and a crossbar architecture is the best way

to build dense Memristor memory. In this work, we discussed key problems in designing

a crossbar and proposed solutions to reduce read overhead. We enhance the two-level

sensing scheme typically employed for a crossbar, such that we reuse the background

current read in the first step for subsequent reads. This reduces the effective read latency

by 20% and Memristor power by 25.8%. While the proposed scheme is beneficial for a

majority of workloads, some benchmarks prefer more parallelism within the memory to

improve performance. We investigated several address mapping schemes that exploit reusing

background current for a different number of cachelines per page with varying levels of

parallelism. We find that placing consecutive cache lines in the same column of the same

array yields the highest performance and energy efficiency.



CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter summarizes the contributions made by this dissertation and suggests

possible optimizations to emerging memory technologies.

6.1 Contributions

Emerging workloads have greatly increased the memory capacity needs of servers. While

traditional DIMM-based DDRx DRAM was the technology of choice in the past, emerging

technologies promise to simultaneously increase both capacity and memory bandwidth. As

with any new technology, certain key bottlenecks need to be alleviated before the technology

can be commercially attractive. In this dissertation, we identify such bottlenecks for three

such technologies, namely 3D-stacking, buffer-based multirank systems, and Memristor-

based nonvolatile memory.

We now summarize and highlight the major contributions of this dissertation.

In Chapter 3, we argued that the number of pins and TSVs is a major contributor to

the cost of a 3D-stacked DRAM device. This chapter tried to reduce the number of pins

and TSVs dedicated to the power delivery network. Reducing the number of pins and TSVs

increases the effective resistance of the PDN, hence restricting the number of commands that

the DRAM-stack can service simultaneously. We first built a detailed Spice model of the

PDN, and modeled the static IR-drop in the PDN of the stack. We observed that proximity

to power and ground pins has a great impact on the IR Drop experienced by the bank. We

created spatio-temporal constraints that in addition to specifying which commands can

execute at the same time, also specify which banks can execute these commands. By doing

so, the performance of a given bank was limited by the capabilities of its PDN, rather

than the worst-case IR-drop in the stack. We identified pathological cases where this led to

poor performance because certain memory requests were being starved for long periods of

time. To address this, we proposed a scheduling scheme that prioritized old requests that

were being unfairly delayed. We further exploited the high performance afforded by certain
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banks by proposing a dynamic page migration scheme that places the most critical pages

in banks that have high performance. These schemes together brought the performance of

the 3D-stack within 20% of the ideal 3D-stack, while greatly reducing the number of pins

and TSVs used.

In Chapter 4, we observed that Staggered Refresh has a much bigger impact on per-

formance than it should. Address mapping schemes used by the DRAM controller, and

page placement schemes used by the OS favor spreading data over the memory system.

Traditionally, spreading data has helped performance by increasing parallelism. However,

as refresh latencies increased, we saw that spreading data actually had an adverse effect on

performance. We noted that though Simultaneous Refresh has lower performance overheads,

it is not favored by server manufacturers because of its high peak power. Our experiments

showed that modifying both the address mapping schemes and the page allocation policy

to limit the spreads of data between different ranks increased performance significantly.

Long write latencies is a problem that is common to most nonvolatile memory tech-

nologies. We saw that write queue drains in nonvolatile memories like PCM have similar

characteristics to DRAM refresh. In both these processes, a Rank is occupied with servicing

writes or performing refresh, while read requests wait in the read queue. We observed that

the data placement solutions that we proposed for DRAM refresh were also applicable to

reduce the performance impact of write queue drains in nonvolatile memories.

When a rank is unavailable either because of DRAM refresh or because it is servicing

writes, the baseline policies penalized all threads in the system. By limiting the spread of

the data from a thread to fewer ranks, the schemes proposed in Chapter 4 were able to

reduce run time of DRAM-based systems by 12% compared to the baseline. When this was

applied to a PCM-based memory system, the run time decreased by 13.3%.

In Chapter 5, we designed a memory system using Memristor technology. We first

described the working of the Memristor cell. The crossbar structure used in Memristor

memories give rise to sneak currents. These sneak currents interfered with the read current.

We then described the two step read process used in crosspoint-based Memristor memories.

The first step in the read process entails sensing just the sneak currents. The second step

senses a combination of the sneak currents and the actual current through the selected cell.

We observed that the sneak current values do not change much between different cells in the

same column of the array. Using this, we proposed reusing the sneak current measurement

between successive accesses to the same column. We further showed that using address

mapping schemes that are able to reuse the sneak current measurements result in better
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performance than address mapping schemes that rely on the parallelism present in the

Memristor memory architecture. We also proposed a data mapping scheme which prevents

some cachelines from having unfairly high error rates. By reusing the background current,

we were able to increase the performance of the system by 8.3%, and decrease memory

power by 25.8%. By remapping the data, we were able to reduce the probability of a 2 bit

error by 30×.

Systems have traditionally been designed to accommodate worst-case conditions. As the

performance and power benefits from process scaling slow down, the time has come to expose

the characteristics of the silicon to the architecture of the system. In this dissertation, we

have shown that an architecture that is cognizant of the underlying constraints is able to

achieve higher performance by not being constrained by worst-case conditions. Scheduling

and data placement techniques that are aware of application behavior as well as the inner

workings of memory chips can leverage this information to produce higher performance,

higher reliability, and lower cost.

6.2 Relationship Between the Proposed Techniques

The three techniques proposed in this dissertation are orthogonal and optimize differ-

ent aspects of the memory system. The IR Drop aware constraints and data placement

techniques proposed in Chapter 3 were evaluated on 3D-stacked DRAM technology. These

proposals are not specific to DRAM, and can also be used in the case of 3D-stacks built

with other technologies like PCM, Memristor memory, etc.

The banks in 3D-stacked memory can be organized in a high bandwidth configuration,

or they can be organized in a multirank configuration. The latter configuration would be

relatively cheaper than the former, but would suffer higher performance loss due to writes.

The techniques proposed in Chapter 4 can be applied to such a 3D-stack, in addition to the

techniques from Chapter 3.

Similar to 3D-stacks made out of DRAM, NVMs like Memristors can be stacked to

achieve very high densities. Chapter 5 proposed a technique to reuse the sneak currents to

reduce the read latency. Additionally, the IR Drop aware scheduling and data placement

technique from Chapter 3 and the Rank Assignment technique from Chapter 4 can also be

used to optimize different parts on 3D-stacked Memristor memory. In this way, the different

techniques proposed in this dissertation can be co-opted to design a low-cost, reliable, and

high performance memory system.
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6.3 Future Work

The previous section showed that architectures that are aware of the idiosyncrasies of

the underlying silicon are better equipped to handle the challenges posed by future high

capacity memory systems. In this section, we look at some emerging problems that can be

addressed using better informed architectures.

In the past, manufacturing DRAM to adhere to set standards was extremely beneficial.

It meant that systems could be built with parts manufactured by different CPU and DRAM

vendors. The DDRx standards abstracted the details of the DRAM chip. While this led

to reduced system complexity, it also meant that innovations in the DRAM controller had

limited information that they could exploit. Integrating DRAM with logic using 3D-stacking

opens new possibilities.

6.3.1 Mitigating the Rising Cost of Process Variation in 3D DRAM

As DRAM geometries become smaller, increased process variation will lead to higher

error rates. Unlike soft errors, which are a result of transient phenomena like particle

strikes, errors that stem from manufacturing faults are hard errors. Currently, DRAM

manufacturers deal with these errors using spare rows and columns. By profiling individual

banks, the logic layer in the stack can store accurate information about the number of errors

in different rows. Depending on the number of errors present, the logic layer then can use a

combination of spare rows and strong error correcting codes to overcome these errors. On

the one hand, using stronger ECC incurs storage overhead, but it also saves faulty rows from

being discarded. Using profiled information stored in the logic layer by the manufacturer,

it would be possible to explore these trade-offs at various granularities.

6.3.2 PDN Aware tRFC for 3D DRAM

In Chapter 3, we exposed the characteristics of the PDN to the architecture. We used

this to create Spatio-Temporal constraints. The quality of power delivery controlled the

performance of each bank. This study created constraints for activate, read, and write

commands. A similar study can extend these constraints to the refresh command. During

refresh, several sub-arrays are activated in parallel. The refresh latency is determined by the

number of sub-arrays that activate in parallel, and the amount of time it takes for the PDN

and the charge pumps to recover. Depending on the quality of power delivery, different

banks may be able to activate different number of sub-arrays in parallel. Similarly, the

recovery time might also be different banks, thus leading to different refresh latencies for
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each bank. These refreshes can also be parallelized with other DRAM commands leading

to even higher performance.

6.3.3 Addressing Long Write Latencies in Memristor-based Memory

In Chapter 5, we observed that even though the write latency of Memristor-based

memory is much higher than DRAM, because of the presence of a large number of sub-banks,

there is minimal performance impact. If future designs have fewer sub-banks, then write

latencies would play a major role in determining the performance of Memristor-based

memory systems. The write latency of a Memristor cell is dependent on the location of

the cell inside the array. Cells that are away from the write drivers have longer latencies

because of the IR-drop along the wordline. By avoiding cells that are away from the

drivers, it is possible to reduce the effective write latency. The data mapping proposed in

Section 5.5.2 maps data such that different bits in the cache line are mapped to different

parts in the array. By compressing the cache line, it is possible to avoid the cells that

are farthest from the drivers. While writing the compressed cache line, the cache line can

be shifted such that the compressed data are mapped to the cells that are closest to the

drivers. Further, by writing a high resistance state in place of the bits that have been freed

up because of compression, it is possible to reduce the sneak currents inside the array, thus

reducing power.
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