OS Execution on Multi-Cores: Is Out-Sourcing Worthwhile?

David Nellans, Rajeev Balasubramonian, Erik Brunvand

School of Computing, University of Utah
Salt Lake City, Utah 84112

{dnellans, rajeev, elb}@cs.utah.edu

Abstract

Large-scale multi-core chips open up the possibility of implement-
ing heterogeneous cores on a single chip, where some cores can be
customized to execute common code patterns. The operating sys-
tem is an example of a common code pattern that is constantly ex-
ecuting on every processor. It is therefore a prime candidate for
core customization. Recent work has begun to explore this possi-
bility, where some fraction of system calls and other OS function-
ality is oft-loaded to a separate special-purpose core. Studies have
shown that this can improve overall system performance and power
consumption. However, our explorations in this arena reveal that
the primary benefits of off-loading can be captured with alternative
mechanisms that eliminate the negative effects of off-loading. This
position paper articulates this alternative mechanism with initial re-
sults that demonstrate promise.

1. Motivation

In the era of plentiful transistor budgets, it is expected that pro-
cessors will accommodate tens to hundreds of processing cores.
With processing cores no longer being a luxury, we can consider
dedicating some on-chip cores for common applications. The cus-
tomization of these cores can allow such applications to execute
faster and more power-efficiently. One such common application is
of course the operating system: it executes on every processor and
is frequently invoked either by applications or simply to perform
system-level book-keeping. The operating system is an especially
important target because several studies (Nellans et al. 2005; Li
and John 2006; Agarwal et al. 1988; Chen and Bershad 1993) have
shown that the past decade of microarchitectural innovations have
done little to boost the performance of OS execution. This is at-
tributed to many factors: OS calls are short, have hard-to-predict
branches, have little instruction-level parallelism (ILP), and suf-
fer from cache interference effects. It can also be argued that cur-
rent high-performance cores are over-provisioned for OS execu-
tion (for example, floating-point units, large reorder buffer, large
issue width) and are hence highly inefficient in terms of power
consumption. Studies (Redstone et al. 2000; Nellans et al. 2005;
Chakraborty et al. 2006) have shown that operating system code
constitutes a dominant portion of many important workloads such
as webservers, databases, and middleware systems. Hence, opti-
mization of OS execution (perhaps with a customized core) has the
potential to dramatically impact overall system performance and
power.

Some research groups (Mogul et al. 2008; Chakraborty et al.
2006; Nellans et al. 2005) believe in the potential of core cus-
tomization within multi-cores to improve OS efficiency. Our own
work attempted to test this hypothesis. Our findings broadly agree
with this premise, but we identify the key factors that make off-
loading desirable. We propose an alternative approach that incorpo-
rates these factors within each core to eliminate the negative effects
of off-loading.

2. One Problem - Two Existing Approaches

Until recently, chip multiprocessors were not common and ap-
proaches to operating system support were limited to intra-core
solutions. Li and John (Li and John 2006) focused on reducing
the total power consumption of a processor by reconfiguring and
augmenting microarchitectural structures during operating system
execution to improve energy efficiency. They identify aliasing in
branch predictors as a major source of conflicts between user and
OS codes and propose hardware extensions that decrease the alias-
ing. They find that allowing L1 caches to enter lower power modes
and limiting power hungry microarchitectural features such as the
re-order buffer and instruction fetch/issue width during OS execu-
tion can yield favorable energy-delay products. Their results show
that an aggressively designed machine which can dynamically re-
configure into a modest 2-issue machine during OS execution can
achieve performance within 10% of a 6-issue machine, while con-
suming less than 50% of the power.

A second alternative approach takes advantage of the avail-
ability of many cores with relatively low inter-core latencies.
Chakraborty et al. (Chakraborty et al. 2006) focus on migrating
system call execution from multiple cores onto statically allocated
OS cores via “Computation Spreading”. Targeting an 8-core sym-
metric CMP design, they show a 25% increase in ILP for some OS
intensive workloads.

Similar in concept, but focusing on energy efficiency, Mogul et
al. (Mogul et al. 2008) couple an energy-efficient core (based on
an EV4 design) with an aggressive core (based on an EV6 design).
They migrate long running system calls to the power-efficient core
(the OS core) and power down the aggressive core during this off-
load. This achieves substantially improved energy efficiency over a
uni-processor design but at a detriment to total throughput.

3. Non-Interference without Off-Load

The oft-loading approach proposed by Chakraborty et al. attributes
increased performance to data-reuse in caches because similar sys-
tem calls are co-scheduled on a single core. In our attempts to
design an effective off-load mechanism, we too discovered that
reduced OS-user interference in caches can provide a significant
performance boost. However, we observed that the overall perfor-
mance improvements can be relatively low because of the following
reasons:

e The off-load mechanisms of Chakraborty et al. and Mogul et
al. rely on software support process migration that incurs over-
heads of many thousand cycles on every off-load. This makes
off-loading worthwhile only for system calls that execute more
than 10,000 instructions. Unfortunately, even in OS-intensive
workloads such as Apache and SPECjbb, only about 2% of all
system calls would qualify for off-load currently. Low-latency
off-load mechanisms, an area of active research (Brown and



Tullsen 2008; Strong et al. 2009), will be required to fully take
advantage of the OS core’s cache for most system calls;

OS execution often shares a significant amount of data with user
threads because of its handling of privileged I/O mechanisms.
If the OS syscall is off-loaded to its own core, such shared data
will not only have to be replicated in two caches, but access to
this data will incur expensive cache coherence misses. In such
cases, making the OS and user threads access different (and
relatively distant) cache structures is an impediment to high
performance.

Off-loading will eventually yield marginal returns (or potential
slowdowns) as the number of cores serviced by a single OS
core increases. In other words, a single OS core will not scale
well at future technologies. For OS-intensive applications, our
experiments showed poor scalability even when an OS core
serviced requests from two application threads.

Based on the above observations, we believe that the cache seg-
regation effects of off-loading must be provided without moving
OS syscall execution to a different core. We therefore propose a
cache structure on every core that can handle OS working sets.
Just as we have become accustomed to L1-instruction and L1-data
caches in modern processors, it is perhaps now time to consider a
specialized OS cache for future processors. For the rest of this dis-
cussion, we will assume that our proposed processor incorporates a
user-cache and an OS-cache.

The organization of this OS-cache offers several design choices.
In our preliminary work, a small subset of these choices have been
explored. We consider such a cache at the L1 and L2 levels. We
allow data to be simultaneously cached in both the user and OS
caches (i.e., the user and OS caches are not mutually exclusive).
As a result, cache coherence is required between the user and OS
caches and a miss in one of these caches must trigger a look-up in
the other before the request is sent to the next level. When dealing
with a load or store instruction, we must determine which cache
to look up first. For our initial design, every load/store instruction
issued by the user thread first looks up the user cache. Every time
we enter privileged mode, we look up a simple hardware predictor
that estimates the run-length of the currently invoked OS syscall.
Loads and stores are first steered towards the OS cache only if
the syscall is estimated to be moderately long (short syscalls and
very long syscalls are most likely to access user data and cause
cache coherence misses). Clearly, a richer design space needs to be
explored before settling on an optimal OS-cache organization: the
implementation of mutually exclusive OS and user caches, policies
for which cache is looked up first, policies to avoid looking up both
caches before sending the request to the next level, the trade-offs in
looking up the caches in series or in parallel, etc.

Our results show that the implementation of separate user and
OS caches at the L1 level offers little benefit. When implement-
ing an additional separate 1 MB OS-cache at the L2 level, a per-
formance improvement of 27-34% is observed for Apache and
SPEC;jbb. This benefit can grow to as much as 60-75% if we as-
sume zero cache coherence overheads, indicating that there is sig-
nificant room for improvement via intelligent caching policies. In-
struction references for user and operating system code are mutu-
ally exclusive, providing good cache separation at the L2 level. We
also observed that OS syscall run-length is a reasonable indicator of
upcoming OS-generated coherence traffic and can be used to help
reduce coherence traffic between the user and OS caches. While OS
cache separation increases performance, it comes at the cost of ad-
ditional shared L2 which typically increases performance of all ap-
plications. We observe that for OS intensive workloads, a separate
OS/User organization can outperform traditional shared L2 utiliz-
ing the same total capacity; policies that enable cache partitioning

only when performance improvement is expected and default back
to a shared L2 of full capacity are quite compelling.

Such an organization alleviates the primary problems with the
off-load approach: the high cost of execution migration, the high
cost of inter-core cache coherence, and the lack of scalability. A
few benefits of off-loading are being compromised here. Firstly,
it has been argued that the OS core can be customized to execute
OS codes more efficiently. To date, no one has proposed microar-
chitectural features that can boost the ILP of an OS core, so it is
not clear if this argument will hold up. While the OS core can be
customized to consume less power, it is possible that some of these
techniques can also be applied in the context of our proposed archi-
tecture. Similar to the proposals by Li and John (Li and John 2006),
a core in our proposed model can employ dynamic frequency scal-
ing or dynamic issue-width scaling when it is predicted to enter
a relatively long syscall. Secondly, off-loading syscalls to a single
OS core helps consolidate the OS working set to a single cache,
enabling high re-use of data and high hit rates for a modest transis-
tor budget. More analysis is required to determine if an additional
OS-cache per core is indeed the best use of transistor budgets. It is
worth noting that a 1 MB cache can consume as little as 0.75 W of
power, while even a modest EV4-like core can consume 7 W (Rusu
et al. 2007; Mogul et al. 2008). Therefore, the addition of an OS-
cache is perhaps more appealing than the addition of an OS-core.

More analysis is required to justify our approach, but our initial
analysis reveals a compelling design point. While it may be ap-
pealing to take advantage of a heterogeneous many-core processor
to provide customized OS execution, we believe that greater overall
efficiency can be achieved by simply adding an OS cache structure
or dynamic cache partitioning to each core.

References

Anant Agarwal, John Hennessy, and Mark Horowitz. Cache Performance
of Operating System and Multiprogramming Workloads. ACM Trans.
Comput. Syst., 6(4):393-431, 1988. ISSN 0734-2071.

Jeffery A. Brown and Dean M. Tullsen. The Shared-Thread Multiprocessor.
In Proceediings of ICS, pages 73-82, 2008.

Koushik Chakraborty, Philip M. Wells, and Gurindar S. Sohi. Computation
Spreading: Employing Hardware Migration to Specialize CMP Cores
On-the-Fly. In Proceedings of ASPLOS-XII, pages 283-292, New York,
NY, USA, 2006. ACM. ISBN 1-59593-451-0.

J. Bradley Chen and Brian N. Bershad. The Impact of Operating System
Structure on Memory System Performance. In Symposium on Operating
Systems Principles, pages 120-133, 1993.

Tao Li and Lizy Kurian John. Operating System Power Minimization
through Run-time Processor Resource Adaptation. IEEE Microproces-
sors and Microsystems, 30:189-198, June 2006.

Jettrey C. Mogul, Jayaram Mudigonda, Nathan Binkert, Parthasarathy Ran-
ganathan, and Vanish Talwar. Using Asymmetric Single-ISA CMPs to
Save Energy on Operating Systems. Micro, IEEE, 28(3):26-41, May-
June 2008. ISSN 0272-1732.

David Nellans, Rajeev Balasubramonian, and Erik Brunvand. A Case for
Increased Operating System Support in Chip Multi-processors. In /BM
Annual Thomas J. Watson P=ac? Conference, Yorktown Heights, NY,
September 2005.

Joshua Redstone, Susan J. Eggers, and Henry M. Levy. An Analysis of Op-
erating System Behavior on a Simultaneous Multithreaded Architecture.
In Proceedings of ASPLOS-IX, pages 245-256, 2000.

S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, B. Cherkauer, J. Stinson,
J. Benoit, R. Varada, J. Leung, R. Lim, and S. Vora. A 65-nm Dual-Core
Multithreaded Xeon Processor With 16-MB L3 Cache. IEEE Journal of
Solid State Circuits, 42(1):17-25, January 2007.

Richard Strong, Jayaram Mudigonda, Jeffrey C. Mogul, Nathan Binkert,
and Dean Tullsen. Fast Switching of Threads Between Cores. Operating
System Review - To Appear, April 2009.



