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ABSTRACT

In spite of several recent advancements, data movement in modern

CNN accelerators remains a significant bottleneck. Architectures

like Eyeriss implement large scratchpads within individual pro-

cessing elements, while architectures like TPU v1 implement large

systolic arrays and large monolithic caches. Several data move-

ments in these prior works are therefore across long wires, and ac-

count formuch of the energy consumption. In this work, we design

a newwire-aware CNN accelerator,WAX, that employs a deep and

distributed memory hierarchy, thus enabling data movement over

short wires in the common case. An array of computational units,

each with a small set of registers, is placed adjacent to a subarray

of a large cache to form a single tile. Shift operations among these

registers allow for high reuse with little wire traversal overhead.

This approach optimizes the common case, where register fetches

and access to a few-kilobyte buffer can be performed at very low

cost. Operations beyond the tile require traversal over the cache’s

H-tree interconnect, but represent the uncommon case. For high

reuse of operands, we introduce a family of new data mappings

and dataflows. The best dataflow, WAXFlow-3, achieves a 2× im-

provement in performance and a 2.6-4.4× reduction in energy, rel-

ative to Eyeriss. As more WAX tiles are added, performance scales

well until 128 tiles.
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1 INTRODUCTION

Several neural network accelerators have emerged in recent years,

e.g., [9, 11, 12, 28, 38, 39]. Many of these accelerators expend sig-

nificant energy fetching operands from various levels of the mem-

ory hierarchy. For example, the Eyeriss architecture and its row-

stationary dataflow require non-trivial storage for scratchpads and

registers per processing element (PE) tomaximize reuse [11]. There-

fore, the many intra-PE and inter-PE accesses in Eyeriss require

data movement across large register files. Many accelerators also

access large monolithic buffers/caches as the next level of their

hierarchy, e.g., Eyeriss has a 108 KB global buffer, while Google

TPU v1 has a 24 MB input buffer [24]. Both architectures also im-

plement a large grid of systolic PEs, further increasing the wire

lengths between cached data and the many PEs. In this paper, we

re-visit the design of PEs and memory hierarchy for CNN accelera-

tors, with a focus on reducing these long and frequently traversed

wire lengths.

It is well known that data movement is orders of magnitude

more expensive than the cost of compute. At 28 nm, a 64-bit floating-

point multiply-add consumes 20 pJ; transmitting the correspond-

ing operand bits across the chip length consumes 15×more; access-

ing a 1 MB cache consumes 50×more; and fetching those bits from

off-chip LPDDR consumes 500×more [26, 27, 32]. Since this initial

comparison from 2011, DNN accelerators have switched to using 8-

bit fixed-point [24] or 16-bit flexpoint [29] arithmetic, which helps

lower compute energy by an order of magnitude [24]. Recently,

technologies like HBM have helped reduce memory energy per bit

by an order of magnitude [36]. Meanwhile, on-chip wiring and on-

chip caches have not benefited much from technology steps [6, 21].

In response to the relative shift in bottlenecks, this work targets

low on-chip wire traversal.

We create a new wire aware accelerator WAX, that implements

a deep and distributedmemory hierarchy to favor shortwires. Such

an approach has also been leveraged in the first designs from the

startup, Graphcore [18].We implement an array of PEs beside each

cache subarray. Each PE is assigned less than a handful of registers.

The registers have shift capabilities to implement an efficient ver-

sion of systolic dataflow. Each PE therefore uses minimal wiring

https://doi.org/10.1145/3352460.3358316
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to access its few registers, its adjacent register, and a small (few-

KB) cache subarray. Data movement within this basic WAX tile

has thus been kept to a minimum. Large layers of CNNs map to

several tiles and aggregate the results produced by each tile. To

increase the computational power of the WAX tile, we introduce

a novel family of dataflows that perform a large slice of compu-

tation with high reuse and with data movement largely confined

within a tile. We explore how the dataflows can be adapted to re-

duce problematic partial sum updates in the subarray. While this

reduces reuse for other data structures and requires more adders,

we show that the trade-off is worthwhile.

Our analysis shows that the additional WAX components con-

tribute 46% of the tile area. Our best design reduces energy by 2.6-

4.4×, relative to Eyeriss. WAX also consumes less area and hence

less clock distribution power by eliminating the many large regis-

ter files in Eyeriss. We show that our best dataflow (WAXFlow-3)

enables higher overlap of computation with operand loading into

subarrays – this leads to higher compute utilization and through-

put than Eyeriss. As we scale the design to several tiles, the compu-

tational throughput increases until 128 tiles. AWAX tile can there-

fore form the basis for both, an energy-efficient edge device and a

throughput/latency-oriented server.

2 BACKGROUND

We first describe two designs, one commercial and one academic,

that highlight the extent of data movement in state-of-the-art ar-

chitectures.

Eyeriss

Eyeriss [11] uses a monolithic grid of processing elements (PEs).

Each PE has scratchpads and register files that together store about

half a kilo-byte of operands. The filter scratchpad has 224 entries

and is implemented in SRAM, while the partial sums and activa-

tions are stored in 24- and 12-entry register files respectively. Each

PE performs operations for an entire row before passing partial re-

sults to neighboring PEs (a “row-stationary” dataflow). To increase

reuse, the PE combines a set of input features with a number of

different kernels to produce partial sums for many output features.

The grid of PEs is fed with data from a monolithic 108 KB global

buffer, and from off-chip DRAM.

In Eyeriss, the grid of PEs occupies nearly 80% of the chip area.

One of the reasons for the large area of the PEs is that 61% of PE

area is used for the half-kilobyte scratchpad and register files per

PE. As a result, the systolic dataflow among PEs requires traversal

over wires that span relatively long distances. Themid-size register

files per PE are also problematic as they lead to long wires with

high load.

While the grid of PEs and the row-stationary dataflow of Eyeriss

are tailored for convolutions, such accelerators are also expected

to execute fully-connected classifier layers of CNNs. Such layers

exhibit limited reuse, but still pay the price of long wires that span

many PEs and large scratchpads/registers.

Google TPU

The Google TPU v1 is a commercial example of a large-scale

inference processor, capable of 92 TOPs peak throughput while

operating at 40 W. The TPU core is composed of a 256×256 grid

of 8-bit MAC units. Operands move between the MACs using a

systolic dataflow. This allows, for example, an input operand to

be multiplied by the many weights in one convolutional kernel,

and by the weights in multiple kernels. Each MAC is fed by a few

registers. While the MACs are working on one computation, the

registers are pre-loaded with operands required by the next com-

putation (a form of double-buffering). Weights are fetched from

off-chip memory (DDR for TPU v1 and HBM for TPU v2) into a

FIFO. Input/output feature maps are stored in a large 24MB buffer.

What is notable in the TPU design is that there is a monolithic

grid of MACs that occupies 24% of the chip’s area [24]. Further,

all input and output feature maps are fetched from a 24 MB cache,

which too occupies 29%of the chip’s area. As a result, most operands

must traverse the length or width of the large grid ofMACs, as well

as navigate a large H-Tree within the cache.

Wire Traversal

Our proposed approach is motivated by the premise that short-

wire traversal is far more efficient than long-wire traversal. We

quantify that premise here.

While a large scratchpad or register file in an Eyeriss PE pro-

motes a high degree of reuse, it also increases the cost of every

scratchpad/register access, it increases the distance to an adjacent

PE, and it increases the distance to the global buffer. Figure 1c

shows the breakdown of energy in the baseline Eyeriss while ex-

ecuting the CONV1 layer of AlexNet [30]. Nearly 43% of the total

energy of Eyeriss is consumed by scratchpads and register files.

Our hypothesis is that less storage per PE helps shorten distances

and reduce data movement energy, especially if efficient dataflows

can be constructed for this new hierarchy. We also implement a

deeper hierarchy where a few kilo-bytes of the global buffer are

adjacent to the PEs, while the rest of the global buffer is one or

more hops away.

To understand the relative energy for these various structures

and wire lengths, we summarize some of the key data points here.

First consider the energy difference between a 54 KB global buffer

(corresponding to an 8-bit version of the Eyeriss architecture) and

a 6 KB subarray employed in the proposed WAX architecture: ac-

cording to CACTI 6.5 [34] at 28 nm, the smaller subarray consumes

1.4× less energy.

Similarly, consider the energy gap between a 224-byte SRAM

scratchpad (similar to the filter scratchpad in Eyeriss) and register

files with fewer than 4 entries: the register access consumes or-

ders of magnitude less energy (see Figure 1). Scratchpad energy is

estimated by CACTI and register energy methodology is detailed

below.

We use the followingmethodology to implement and synthesize

varying wiring load configurations using a 28 nm Fully Depleted

Silicon On Insulator (FDSOI) technology node. Verilog code has

been written to model the behavior of varying size registers and

then synthesized using Synopsys Design Compiler, a Low Leakage

(LL) library, and clock frequency of 200 MHz. We used Innovus

to perform the backend flow; the register netlists were then back-

annotatedwith the SPEF parasitics file obtained from Innovus. This

is done to get accurate post layout metrics by taking the parasitics

into account through SPICE simulations. Our register file energy

estimates are similar to those reported by Balfour et al. [7].
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Figure 1: Read (a) and Write (b) energy for register files and a 224-entry SRAM scratchpad. (c) Eyeriss energy breakdown.

Figures 1a and 1b show the read and write energy consumed

by an 8-bit register file with varied register sizes. The energy con-

sumed by the register file increases more than linearly with the

number of registers. For the single register, most of the energy is

consumed by the logic gates themselves, as the wires are relatively

small. For larger register files, the overall energy increases due to

two factors: (i) the increasing number of rows leads to more com-

plex read and write decoders, (ii) more flip-flops share the same

signals (such as the write or address signals), leading to higher load

and larger parasitics.

These data points therefore serve as a rough guideline for the

design of a wire-aware accelerator. To the greatest extent possi-

ble, we want to (i) replace 54 KB buffer accesses with 6 KB buffer

accesses (1.4× energy reduction), (ii) replace 224-byte scratchpad

access with single register access (46× energy reduction), and (iii)

replace 12- and 24-entry register file access with single register ac-

cess (28× and 51× energy reduction).

Another key consideration is the power for the clock tree. As

seen in Figure 1c, the clock tree accounts for 33% of total power in

Eyeriss. In architectures like Eyeriss and the Google TPU v1, where

the SRAM buffer and the systolic array are separate, the clock tree

must primarily span the systolic array. If we employ a tiled archi-

tecture with interspersed SRAM and compute all across the chip,

it is possible that the larger clock tree may offset the advantage

of lower/localized data movement. A wire-aware accelerator must

therefore also consider the impact on area and the clock distribu-

tion network. By modeling the layout and the clock tree, we show

that the proposed accelerator consumes less clock power than the

baseline Eyeriss (Section 4). This is primarily achieved by eliminat-

ing the large register files per PE.

3 PROPOSED ARCHITECTURE

In this work, we only focus on inference and 8-bit operands, similar

to the Google TPU v1. The basic ideas apply to other operand sizes

as well as to the forward/backward passes in training.

3.1 A Wire-Aware Accelerator (WAX)

Our goal is to reduce data movement in the common case by de-

signing a new memory hierarchy that is deeper and distributed,

and that achieves high data reuse while requiring low storage per

PE. Figure 2 shows an overview of the proposed WAX architec-

ture. Conventional large caches are typically partitioned into sev-

eral subarrays (a few KB in size), connected with an H-Tree net-

work. We propose placing a neural array next to each subarray,

forming a single WAX tile.

The neural array has three wide registers, W , A, and P , that

maintain weights, input activations, and partial sums respectively.

These registers are as wide as a subarray row. One of the regis-

ters, A, has shifting capabilities. These three registers provide in-

put operands to an array of MACs, with the computation results

going to P or directly back to the subarray.

1

WAX

TILE

SUBARRAY

8KB

256 x 256 cells

To H-TREE

MUXING & De-MUXING

P Register (partial sums)

W Register (weights)

A SHIFT Register (activations)

32 8-bit MACsRest of

H-TREE

SUBARRAY

NEURAL ARRAY

Figure 2: WAX architecture overview.

This design has two key features. First, reuse and systolic dataflow

are achieved by using a shift register. This ensures that operands

are moving over very short wires. These distances are further kept

short because each “processing element” or PE in our design has

only one MAC and three 8-bit registers, which is much more com-

pact than a PE in Eyeriss or TPU.

Second, the next level of the hierarchy is an adjacent subarray

of size say 8 KB. This is a much cheaper access than TPU or Eyeriss

where large H-Trees are traversed for reads/writes to the 24 MB or

108 KB buffer respectively.

Both of these features drive home our central principle: imple-

ment a deep hierarchy so that the common case is not impeded

by data movement across large data structures. Few registers per

MAC enable low-energy dataflow between MACs. But since each

MAC has fewer operands, it must fetch operands from the next
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Figure 3: Data mapping and computation order in WAXFlow-1. 1© An Activation and a Kernel row are read from the subarray

into the register file. 2© Partial sums are written back to the subarray.

level of the hierarchy more often (than say Eyeriss or TPU). This

is why it is vital that the next level of the hierarchy be a compact

8 KB subarray. When dealing with large network layers, the com-

putation must be spread across multiple subarrays, followed by

an aggregation step that uses the smaller branches of the H-Tree.

Thus, in the common case, each computation and data movement

is localized and unimpeded by chip resources working on other

computations.

The accelerator resembles a large cache, but with MAC units

scattered across all subarrays. A single WAX tile may be composed

of an 8 KB subarray, with 32 8-bit MACs, and 3 8-bit registers per

MAC. We assume that the SRAM subarray has a single read/write

port. Subarray read, MAC, and subarraywrite take a cycle each and

are pipelined. In addition to the overhead of the MACs andW /A/P

registers, muxing/de-muxing is required at theH-Tree/subarray in-

terface. The area overhead of this tile is quantified in Section 5.

3.2 Efficient Dataflow for WAX (WAXFlow 1)

A WAX tile essentially represents a small unit of neural network

computation, where an array of 32MACs can be fed with data from

an 8 KB subarray. We’ll first discuss how data can be mapped to

a WAX tile and how computation can be structured to maximize

reuse and efficiency within a tile. We will then discuss how a large

neural network layer may be partitioned across multiple tiles.

We describe our proposed dataflow, WAXFlow 1, by walking

through a simple example of a convolutional layer. The steps are

also explained in the accompanying Figure 3. The example convo-

lutional layer has 32 input feature maps, each of size 32 × 32; we

assume 32 kernels, each of size 3 × 3 × 32. An 8 KB subarray can

have 256 rows, each with 32 8-bit operands.

We first fill the subarray with 1 row of input feature maps, as

shown by the blue box in row R0 in Figure 3. We then place the

first element of 32 kernels (shown by the red boxes) in row R2 of

the subarray. Similarly, other elements of the kernel are placed in

other rows of the subarray. Finally, some rows of the subarray are

used for partial sums.

Now consider the following computation order. In the first step,

the first row of input feature maps (R0) is read into the activa-

tion register A and the first row of kernel weights (R2) is read into

weight registerW . The pair-wise multiplications of the A andW

registers produce partial sums for the first green-shaded diagonal

of the output feature maps. This is written into row R128 of the

subarray. We refer to this 1-cycle operation as a Diagonal Pass.

The activation register then performs a right-shift (withwraparound).

Another pair-wise multiplication ofA andW is performed to yield

the next right-shifted diagonal of partial sums. This process is re-

peated for a total of 32 times (for this example), yielding partial

sums for the entire top slice of the output feature maps, and saved

in rows R128-159. Note that a row of weights and a row of input

activations read from the subarray are reused 32 times; this is en-

abledwith a relatively inexpensive right-shift within theA register.

These 32 cycles represent one WAXFlow slice.

To perform the next slice, a new row of kernel weights (R3) is

read into theW register. The A register is unchanged, i.e., it ex-

hibits more reuse. The computations performed in this next slice

continue to add to the same green partial sums computed in the

first slice. The computation thus proceeds one slice at a time, grad-

ually bringing in rows of activations and rows of weights into A

andW registers to produce the remaining partial sums for the top

slice of the output feature maps.

This initial description shows that a basic slice inWAXFlow and

its subsequent slices exhibit very high reuse of both activations

and weights. Each slice is performed with a single read and write

out of a small adjacent subarray and multiple shift operations –

both engage very short wires. Subsequent slices are performed by

reading 1 or 2 additional rows out of the subarray. The only draw-

back here is that partial sums are being read and written from/to

the subarray and not a register. Even though the subarray is small,

this is a non-trivial overhead that we alleviate later with alterna-

tive dataflows (Section 3.3). The subarray access energy per byte

is comparable to Eyeriss’s partial sum scratchpad energy to access

one byte of data. Thus,WAX andWAXFlow-1 have been tailored to
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Figure 4: Data mapping and computation order in WAXFlow-2.

reduce overheads for the common case (the activation and kernel

reads), while achieving moderate overheads for the less common

case (the partial sum updates).

The rest of this sub-section walks through the rest of this exam-

ple, defining each step of the computation and the required cycles

for our example. To recap, a diagonal pass takes a single cycle and

a slice pass takes 32 cycles. By the end of a slice pass, all neurons in

the top layer of the output feature maps have performed 1 of their

288 multiplications – note that each kernel has size 3×3×32. Next,

row R3 is read into theW register and a slice pass is performed, fol-

lowed by a slice pass on row R4. At this point, after 96 cycles, the

X-dimension of the kernels have been processed and reuse of row

R0 has been maximized. We refer to this as an X-Accumulate Pass.

Row R0 can now be discarded.

The next row of input feature maps is loaded from a remote tile

to row R1 of the subarray to perform the next operation. The load-

ing of input feature maps at the start of every X-Accumulate Pass

cannot be overlapped with computation because the subarray is

busy performing partial sum writes to the subarray in every cycle.

We overcome this drawback with better dataflows in the next sub-

section. Row R1 is moved into the A register, i.e., the first row of

the second input feature map. We also bring R5 into theW regis-

ter, representing kernel element K001 of all 32 kernels. This is the

start of a second X-Accumulate Pass. Such X-Accumulate Passes

are repeated 32 times, dealing with the entire top slice of the input

feature maps. These 32 X-Accumulate Passes are called a single

Z-Accumulate Pass.

A Z-Accumulate Pass has consumed 96 × 32 = 3K cycles and

performed 96 of the 288 MACs required for each top slice output

neuron. Similarly, 192 other MACs have to be performed for each

top slice output neuron; this is done by engaging two more tiles in

parallel. In other words, three Z-Accumulate passes are performed

in parallel on three tiles; those partial sums are then accumulated

in a Y-Accumulate Pass to yield the final output neurons for the top

slice. The H-tree is used tomove partial sums from one tile to its ad-

jacent tile; given the 64-bit link into a tile, this accumulation takes

128 cycles. For larger kernels, many parallel Z-Accumulate passes

are required and the Y-Accumulate pass would involve a tree of

reductions. In this example involving three tiles, only two sequen-

tial Y-Accumulate passes are required. To get ready for the next set

of computations in this layer, the output neurons are copied to an

Output Tile. We have thus processed an entire top slice of output

neurons in 3,488 cycles, involving 3 parallel Z-Accumulate Passes,

2 sequential Y-Accumulate passes, input loading, and 1 output copy.

To compute the next slice of output neurons, only the rows of input

feature maps have to be replaced with a new set of input feature

maps. These new input feature maps are fetched from the Output

Tile that was produced by the previous layer. The weights remain

in place and exhibit reuse within the subarray. In our example, pro-

cessing all 30 slices of the output feature map takes about 101K

cycles.

3.3 Increasing Reuse for Partial Sums

WAXFlow-1

TheWAXFlow-1 algorithmdescribed in the previous sub-section

reuses a row of kernel weights for 32 consecutive cycles. The same

weights are reused again every 3.4K cycles. A row of input activa-

tions is reused for 96 consecutive cycles before it is discarded. We

thus see high reuse for activations and weights. Meanwhile, each

partial sum is re-visited once every 32 cycles (96 updates in 3K cy-

cles).

This means that partial sums are accessed from the subarray ev-

ery cycle, causing a significant energy overhead. Table 1 shows the

number of accesses to the subarray and registers forWAXFlow-1 in

one slice (32 cycles). While activations and filter weights together

contribute less than 2 subarray accesses, partial sums cause 64 sub-

array accesses in one slice.

WAXFlow-2

Overall energy is usually reducedwhen accesses to these data struc-

tures are balanced. For example, if an alternative dataflow can reduce

psum accesses by 4× at the cost of increasing activation and filter ac-

cesses by 4×, that can result in overall fewer subarray accesses. That

is precisely the goal of a new dataflow, WAXFlow-2.
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Figure 5: Data mapping and computation order in WAXFlow-3.

First, we modify the data mapping – see Figure 4. Each row of

the subarray is split into P partitions. Each partition has input fea-

ture maps corresponding to different channels. The wraparound

shift operation in the activation register A is performed locally for

each partition. As a result, a WAXFlow-2 slice only consumes 32/P

cycles. With a design space exploration, we find that energy is min-

imized with P = 4.

We now walk through the example in Figure 4. The first row of

activations, R0, contains the first 8 ifmap elements from four chan-

nels. The first filter row, R2, is also partitioned into four channels,

as shown in the figure. After the pair-wise multiplications of R0

and R2 in the first cycle, the results of the 0th, 8th, 16th, and 24th

multiplier are added together, since they all contribute to the very

first element of the output feature map. Similarly, the 1st, 9th, 17th,

and 25th multiplier results are added, yielding the next element of

the ofmap. Thus, this cycle produces partial sums for the eight di-

agonal elements (shown in blue in Figure 4) of the top slice. These

8 elements are saved in the P register (but not written back to the

subarray).

In the next cycle, the A register first performs a shift. Note that

the shift is performedwithin each channel, so the wraparound hap-

pens for every eight elements, as shown in Figure 4. As in the first

cycle, the results of the multiplications are added to produce eight

new partial sums that are stored in different entries in the P regis-

ter.

After 4 cycles, the P registers contain 32 partial sums that can

now bewritten into a row of the subarray. Note that subarraywrite

is performed only in cycles after psum aggregation has completed.

With a new data mapping and by introducing eight 4-input adders,

we have reduced the psum read/write activity by 4×. After 8 cycles,

the channels in the A registers have undergone a full shift and we

are ready to load new rows into the A and P registers. Thus, the

subarray reads for activations and filters have increased by 4×. As

summarized in Table 1, this is a worthwhile trade-off. The num-

ber of MAC operations per subarray access has increased from 15

in WAXFlow-1 to 45 in WAXFlow-2 (Table 1). On the other hand,

due to new accesses to the P register, the MAC operations per reg-

ister has decreased. Since subarray accesses consume much more

energy than register accesses (Table 4), this results in an overall

significant energy reduction.

In WAXFlow-1, the subarray is busy dealing with partial sums

in every cycle. Therefore, some of the data movement – fetching

the next row of ifmaps, performing the Y-Accumulate Pass, output

copy – cannot be overlappedwithMAC computations.However, in

WAXFlow-2, the partial sums result in subarray accesses only once

every 4 cycles. Because of these subarray idle cycles, some of the

other data movement can be overlapped with slice computation.

Thus, WAXFlow-2 is better in terms of both latency and energy.

WAXFlow-3

We saw that WAXFlow-2 introduced a few adders so that some

intra-cycle aggregation can be performed, thus reducing the num-

ber of psum updates in the subarray. We now try to further that

opportunity so that psum accesses in the subarray can be further

reduced.

Figure 5 shows the new data mapping and computation struc-

ture for WAXFlow-3. As with WAXFlow-2, the subarrays are split

into 4 partitions. The ifmap is also organized the same way in row

R0. WAXFlow-2 filled a partition in a kernel row with elements

from 8 different kernels (Figure 4); there was therefore no opportu-

nity to aggregate within a partition. But for WAXFlow-3, a row of

weights from a single kernel is placed together in one kernel row

partition. In our example, a kernel row only has three elements;

therefore, there is room to place three elements from two kernels,

with the last bytes of the partition left empty.

With the above data mapping, the multiplications performed in

a cycle first undergo an intra-partition aggregation, followed by

an inter-partition aggregation. Thus, a single cycle only produces 2

partial sums. It takes 16 cycles to fully populate the P register, after

which it is written into the subarray. With this approach, the par-

tial sums contribute only 2 subarray reads and 2 subarray writes

every 32 cycles (Table 1). The number of activation and filter ac-

cesses are unchanged; the key trade-off is that we have introduced

another layer of adders to enable more partial-sum increments be-

fore a subarray write (see the adder details in Figure 7). As seen

in Table 1, there is another significant jump in MAC operations

per subarray access, and a minor increase in MAC operations per

register access.

One other trade-off in WAXFlow-3 is that because two of the

elements in every kernel partition are empty, the MACs are only

75% utilized. This is because the kernel dimensions are 3×3×32. If

the row size is a multiple of 3, the kernel partition need not have
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Hierarchy WAXFlow 1 WAXFlow 2 WAXFlow 3

Activation 0.33R + 0.33W 1.33R + 1.33W 1.33R + 1.33W

Subarray Filter weights 1R 4R 4R

Partial sums 32R + 32W 8R + 8W 2R + 2W

MAC/subarray access 15.6 45.17 96

Subarray Energy (pJ) 136.75 47.21 22.22

Activation 32R + 32.33W 32R + 33.33W 32R + 33.33W

Register File Filter weights 32R + 1W 32R + 4W 32R + 4W

Partial sums – 8R + 8W 2R + 2W

MAC/Register file access 10.52 8.72 9.76

Register file Energy (pJ) 4.6 5.54 4.97

Total Energy(pJ) 141.35 52.75 27.19

Table 1: Number of accesses for subarray and register file for different WAX dataflows when executed for 32 cycles.

empty slots. Since a kernel dimension of 3 is common in DNNs, we

modify ourWAX tile configuration so it is in tune with WAXFlow-

3 and the common case in DNNs. We adjust the width of a tile from

32 to 24, i.e., a subarray row is 24 bytes, the subarray capacity is

6 KB, the tile has 24 MACs, etc. The design details for this model

are also shown in Figure 7. Feature map size has no effect on the

MACutilization. Depending on the featuremap size, we either split

a feature map row into multiple rows of the subarray, or activa-

tions from multiple rows of the feature map are placed in one row

of subarray. There is an effect on performance for certain kernel

dimensions even after the adjusted tile size. Only WaxFlow-3 im-

poses constraints that may occasionally lead to upto 33% compute

under-utilization in CONV layers where the kernel X-dimension

is of the form 3N+2. Other convolutional layers and all FC layers

exhibit 100% utilization, except in the very last accumulate pass

where there may not be enough computation left.

Note again that themany idle cycles for the subarray inWAXFlow-

3 allow further overlap of data movement and computation. The

energy numbers in Table 1 emphasize the benefits in upgrading the

dataflow fromWAXFlow-1 toWAXFlow-3. In all the three dataflows,

filter weights once loaded remain stationary in the subarray until

all of them are fully exploited. In case of activations, the subarray

is only used to buffer the next row of activations fetched from the

remote subarray. Hence in Table 1, the number of remote subar-

ray accesses for activations is 0.33R for WAXFlow-1, and 1.33R for

WAXFlow-2 and WAXFlow-3.

In the baseline Eyeriss architecture, partial sums are written

to the scratchpad after every multiplication operation, i.e., every

MAC operation requires one read and one write for the partial

sum. Meanwhile, in WAXFlow-2 and WAXFlow-3, a set of adders

is used to accumulate multiple multiplications before updating the

partial sum. At 100% utilization, WAXFlow-2 reduces the number

of partial sum register accesses by 4× andWAXFlow-3 reduces the

number by 12×, relative to WAXFlow-1. Scratchpad access energy,

as discussed in Section 2, is the dominant energy contributor in Ey-

eriss, with half the scratchpad energy attributed to partial sum ac-

cesses. Thus, by using smaller register files and introducing adders

in each tile, we target the number of partial sum updates and the

cost of each update.

Fully Connected Dataflow For executing fully connected (FC)

layers onWAXFlow-3, a slightly different datamapping is followed.

We disable the shift operation performed by A register so that it

emulates a static register file (similar to W/P registers). This is be-

cause the nature of FC layers allows for activation reuse but not

kernel reuse making the shift operation pointless. Each kernel row

in the subarray is comprised of weights corresponding to a partic-

ular output neuron, whereas the activation row has inputs corre-

sponding to those weights. In the first cycle, the activation row is

fetched and stored in the A register. In the next cycle, the first ker-

nel row is fetched and stored in the W register. Pair-wise multipli-

cations are performed on A and W registers generating 24 psums.

As all the kernels in a row (24 in WAXFlow-3) correspond to the

same output neuron, the resulting 24 psums can be accumulated

into one value and stored in the P register. While the MAC opera-

tion is being performed, the next kernel row is prefetched into the

W register. An activation row fetched into the A register is reused

across all available kernel rows (say N) in the subarray. Once the

activation row is utilized across the available kernel rows, we will

have psums computed for N output neurons. Multiple subarrays

work in parallel to generate the remaining psums for the same N

output neurons. This iteration repeats until all the output neurons

are computed.

4 METHODOLOGY

For most of this evaluation, we compare the WAX architecture to

Eyeriss. For fairness, we attempt iso-resource comparisons as far as

possible, where the resource may be area, MACs, or cache capacity.

In order to get accurate area and energy values, we modeled

WAX (with 4 banks) and Eyeriss in Verilog, synthesized it using

Synopsys Design Compiler and used Innovus for the Place & Route,

using a commercial 28 nm FDSOI technology node (typical-typical

process corner, 1V, 25C, 10 metal layers). Thus, the results take

into account layout effects such as wire length, clock tree synthe-

sis, and parasitics. During floorplanning, we constrained the WAX

tile width to be the same as the SRAM subarray in order to have

both blocks aligned, as shown in the Figure 6. We ensured that the

192 input pins of the WAX tile are placed on top of the block, to

be aligned with the SRAM outputs. As the WAX tile is fully digi-

tal, there is not a strong need to perfectly pitch match each column.

Sincewe have not initiated a fabrication effort for the chip, wewere

not able to gain access to memory compilers from the foundry for

the targeted 28nm FDSOI technology node or to the lib/lef/layout
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files for the SRAM array. To model the energy and area of SRAM

subarrays and the H-tree interconnects, we use CACTI 6.5 [34] at

32 nm, and scale it to 28 nm process. In order to properly account

for the layout effects (CTS and wire length mainly), we use the

area extracted from CACTI to define blackboxes with routing and

placement blockages to account for the SRAM’s area and place-

ment during the backend flow for WAX and Eyeriss. We thus con-

sider the whole area for both architectures and not just the logic

part. Since we are not modifying the subarray itself, we anticipate

that the relative metrics fromCACTI for baseline and proposed are

sufficiently accurate. Similar to the Eyeriss analysis, we assume a

low leakage LP process. The layout of Eyeriss and WAX are shown

in Figure 6. WAX occupies a significantly lower area than Eyeriss;

this is primarily because Eyeriss has large register files per PE (see

area summarized in Table 2). A side-effect is that the clock distri-

bution power for WAX is lower than that for Eyeriss even though

compute is not localized to a region of the chip. The clock tree syn-

thesis performed with Innovus added 25-30% to total chip power;

the clock tree in WAX and Eyeriss account for 8 mW and 27 mW.

Although Eyeriss’ area is 1.6× higher than WAX area, the clock

network has to travel to larger register files in Eyeriss resulting in

a larger clock network.

Global 

Buffer 
PE Array 

(168 PEs)

(a) Eyeriss (b) WAX
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Bank WAX

 Tile
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Figure 6: Layouts of (a) Eyeriss and (b) WAX

To evaluate the performance and energy of Eyeriss and WAX,

and their respective dataflows, we developed a simulator that cap-

tures the latencies, resource contention, and access counts for the

various components in the architectures. To get total energy, the

access counts were multiplied by the energy per component de-

rived from the circuit models. We assumed a low-power DRAM

interface with 4 pJ/bit, similar to baseline HBM [36].

While the original Eyeriss work assumed 16-bit operands, we

consider an 8-bit version of Eyeriss in our analysis. All the Eye-

riss resources (registers, bus widths, buffer) are accordingly scaled

down and summarized in Table 2. Note that the global buffer is

now 54 KB and the register storage per PE is 260 bytes.

The overall Eyeriss chip is modeled to have on-chip storage

(global buffer + scratchpads) of 96.7 KB, 168MACs, and a 72-bit bus

connecting the PE array and the global buffer. For an iso-resource

comparison, we model WAX with 96 KB of SRAM storage, 168

MACs, and bus width of 72 is shared across the banks. The 96 KB

SRAM in WAX is organized into 4 banks, and each bank has four

6 KB subarrays. A WAX tile is made up of one 6 KB subarray, an

array of 24 MACs, and three 1-byte registers (A, W , and P ). We

PE

Number of PEs 168

Arithmetic precision 8-bit fixed point

GLB

SRAM Memory Size 54KB

72 (Feature map: 32

Bus Width Filter weight: 32

Partial sum: 8)

Scratchpads/PE

Feature Map 12 x 8-b (386 µm2)

Filter Weight 224 x 8-b (524 µm2)

Partial Sum 24 x 8-b (759 µm2)

Total spad size (168 PEs) 42.65 KB

Total area 0.53mm2

Table 2: Eyeriss reconfigured parameters.

WAX Architecture

Number of Banks 4 (16 subarrays)

Subarrays with MAC units 7

Subarrays used as Output Tile

(inactive MAC units) 9

WAXMAC Configuration

Activation register 1 x 8-bit

Filter weight register 1 x 8-bit

Partial sum register 1 x 8-bit

Total area 0.318mm2

Table 3: WAX parameters.

assume 16-b fixed-point adders with output truncated to 8b. Af-

ter place and route, we estimated that the MAC/registers/control

added to each tile account for 46% of the tile area. While a signifi-

cant overhead, the overall WAX chip area is 1.6× lower than that

of Eyeriss. Seven such WAX tiles are implemented (totaling 168

MACs), and the remaining nine 6 KB subarrays are used as Out-

put Tiles to store the output neurons of a CNN layer. The Output

Tile is also used to store the partial sums, and prefetch the weights,

before loading them to the individual subarrays. For iso-resource

analysis, we assume both the architectures run at 200 MHz. The

above WAX parameters are summarized in Table 3.

Each cycle, we assume that 72 bits of data can be loaded from

off-chip to one of the banks inWAX. The 72-bit H-tree splits so that

only an 18-bit bus feeds each subarray in a bank. We introduce ad-

ditional mux-ing at this split point so that data received from an

adjacent subarray can be steered either to the central controller or

to the other adjacent subarray (to implement subarray-to-subarray

transfers). At a time, 4 24B rows can be loaded into 4 subarrays in

11 cycles. Moving a row of data from one subarray to the adjacent

subarray also takes 11 cycles. The proposed architecture consid-

ers no interconnect between individual banks. Hence, to fetch data

from the output tile, it takes 1 cycle to read the data to the central

controller and 1 more cycle to write it back to the subarray.

As worklaods, we execute three popular state-of-the-art CNNs:

VGG-16 [41], ResNet-34 [20], and MobileNet [22]. VGG-16 is a 16

layer deep neural network with 13 convolution layers and 3 fully
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connected layers. ResNet-34 is a 34 layer deep neural networkwith

33 convolution layers and 1 fully connected network. MobileNet is

a depthwise separable convolution architecuture with depthwise

and pointwise layers. Counting depthwise and pointwise as sepa-

rate layers, MobileNet has 28 layers.

Figure 7: The peripheral logic components of WAX. Color

of the box denotes the channel and color of the border de-

notes the kernel. As explained in Section 3, partial-sums cor-

responding to the same kernel but different channels are ac-

cumulated together to get two partial-sums (brown and yel-

low).

5 RESULTS

The data in Table 1 has already highlighted the clear benefits of

WAXFlow-3 over WAXFlow-1 and -2. Therefore, all results in this

section will only focus on WAXFlow-3.

Performance analysis

We first analyze the performance of WAX, relative to Eyeriss.

Figure 8b shows the time for each convolutional layer in WAX,

while Figure 8a shows time normalized against Eyeriss. To show

behavior across convolution layers, this figure includes a break-

down for all layers of VGG16.

Since we are comparing iso-resource configurations, both Ey-

eriss and WAX are capable of roughly the same peak through-

put. Therefore, all performance differences are caused by under-

utilization because of how computations map to PEs or because of

time to load various structures. We observe that the latter cause

is dominant. In Eyeriss, data movement and computations in PEs

cannot be overlapped; it therefore spends a non-trivial amount of

time fetching kernels and feature maps to the scratchpads before

theMACs can execute; it alsomust move partial sums between PEs

and GLB after every processing pass.

On the other hand, with theWAXFlow-3 dataflow introduced in

Section 3.3,WAX spends a few consecutive cycles where theMACs

read/write only the registers and do not read/write the subarray.

This provides an opportunity to load the next rows of activations or

weights in the subarray while the MACs are executing. The ability

ofWAXFlow to leave the subarray idle every few cycles is therefore

key to a better overlap of computation and data loading. Across

all the layers in VGG16, we see that WAX requires half the time

required by Eyeriss. The breakdown in Figure 8c shows that the

data movement for partial-sum accumulation in WAX cannot be

completely hidden and increases for later layers. While WAXFlow

is 2× faster than Eyeriss on VGG16 and ResNet, it is 3× faster on

MobileNet (not shown in the figure). This is primarily because of

use of 1 × 1 filters that exhibit lower reuse and make GLB fetches

more of a bottleneck. This is also an example where WAXFlow-3

provides no advantage over WAXFlow-2 because of the filter di-

mensions. For ResNet-34 and MobileNet, WAX gives a throughput

of 58 and 42.6 TOPS and Eyeriss gives a throughput of 24.3 and

11.2 TOPS.

Figure 9: Execution time comparison for Eyeriss and WAX

for each fully connected layer in VGG16 at batch sizes of 1

and 200.

Figure 9 shows the time for each fully connected layer in VGG16

for WAX and Eyeriss for different batch sizes. In both cases, WAX

is about 2.8× faster. While both WAX and Eyeriss have the same

total bus bandwidth, Eyeriss statically allocates its PE bus band-

width across ifmaps, weights, and psums. Since fully-connected

layers are entirely limited by the bandwidth available for weight

transfers, Eyeriss takes longer to move weights into PEs.

Energy analysis

We next compare the energy consumed by WAX and Eyeriss.

We conservatively assume worst-case wiring distance for all three

registers. Table 4 summarizes the energy consumed by each indi-

vidual operation in both architectures.

Eyeriss

Hierarchy Energy (pJ)

Global Buffer Access (9 Bytes) 3.575

Feature Map Register File (1 Byte) 0.055

Filter Weight SRAM Scratchpad (1 Byte) 0.09

Partial Sum Register File (1 Byte) 0.099

8-bit Multiply and Add 0.046

WAX

Hierarchy Energy (pJ)

Remote Sub-Array Access (24 Bytes) 21.805

Local Sub-Array Access (24 Bytes) 2.0825

Register File Access (1 Byte) 0.00195

(Feature Map/ Filter Weight/ Partial Sum)

8-bit Multiply and Add 0.046

Table 4: Access energy breakdown in Eyeriss and WAX.

Figure 10 shows a breakdown of where energy is dissipated

in WAX and Eyeriss. We see that the scratchpad and register file

energy in Eyeriss is dominant (consistent with the energy break-

downs in the original Eyeriss work). On the other hand, local sub-

array access (SA) is the dominant contributor for WAX. Without
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Figure 8: WAX execution time for various convolutional layers in VGG16. (a) Execution time in WAX normalized to Eyeriss,

(b) Execution time in WAX (c) Breakdown of execution time in WAX.

Figure 10: Energy comparison ofWAX and Eyeriss for each component on CONV layers of (a) ResNet (b) VGG16 (c) MobileNet.

GLB = global buffer; RSA = remote subarray access; SA = local subarray access; RF = register file.

the limited partial-sum updates enabled by WAXFlow-3, this com-

ponent would have been far greater. Overall, there is a significant

benefit from trading more subarray energy for much lower en-

ergy in registers and scratchpads. By offering a larger SRAM capac-

ity (in lieu of scratchpads per PE), WAX also reduces the off-chip

DRAM accesses. WAX is 2.6× more energy efficient than Eyeriss

for ResNet and VGG16, and 4.4× better for MobileNet. Because of

its lower reuse, MobileNet has more remote subarray accesses in

WAX, but also fewer DRAM accesses in WAX, relative to Eyeriss.

The depthwise layers of MobileNet yield lower improvements be-

cause of their filter dimension and stride, but they contribute less to

overall power than the pointwise layers. On ResNet and MobileNet,

WAX yeilds a throughput per watt of 18.8 and 12.2 TOPS/W while

Eyeriss gives 7.2 and 2.8 TOPS/W.

Figure 11: Energy comparison for Eyeriss andWAX for each

fully connected layer in VGG-16 at batch sizes of 1 and 200.

Figure 12 shows how each component energy can be broken

down across activations, filters, and partial sums, for a represen-

tative workload ResNet. The energy breakdown across all three

operands in Eyeriss is not balanced, with the partial sum energy

being the highest, followed by filter scratchpad energy. Thanks

to the better dataflows introduced in Section 3, roughly an equal

amount of energy is dissipated in all three operands in WAX. This

highlights that the various forms of reuse, that were unbalanced

in WAXFlow-1, have been balanced in WAXFlow-3. Weights and

partial sums are read repeatedly out of the local subarray, so their

energy is dominated by local subarray access. Meanwhile, activa-

tions have to be fetched from a remote tile and are not repeatedly

read out of the subarray, so the remote fetch dominates activation

energy. Partial sum access is much cheaper in WAX than Eyeriss

for two reasons. One is the the small register file used for partial

sum accumulation and second is the layer of adders that accumu-

late results in a cycle before updating the register. WAX reduces

both DRAM energy and on-chip energy. While DRAM energy is

a significant contributor for a small Eyeriss-like chips, it will be a

smaller contributor in larger TPU-like chips with higher on-chip

reuse.

Figure 13 shows the layer-wise breakdown for each component

while executing ResNet on WAX. For deeper layers, the number

of activations reduces and the number of kernels increases; this

causes an increase in remote subarray access because kernel weights

fetched from the remote subarray see limited reuse and activation

rows have to be fetched for each row of kernel weights.
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Figure 14: Effect of scaling the size ofWAX on convolutional layers in ResNet. (a) Energywith increase in the number of banks

in WAX, (b) Throughput, (c) Energy delay product.

Figure 12: Energy breakdown of activations, weights, and

partial sums for WAX and Eyeriss at each level of the hier-

archy for convolutional layers of ResNet.

Figure 13: Energy breakdown of each component in WAX

for convolutional layers of ResNet.

Figure 11 shows the energy comparison for fully-connected net-

works at a bach size of 1 and 200. At small batch size, WAXFlow

consumes almost the same energy. Although the remote subarray

accesses are more expensive than the GLB access in Eyeriss, there

ismore activation reuse inWAX.At large batch sizes, this overhead

is masked by the other energy benefits ofWAX and it is nearly 2.7×

more energy-efficient.

Figure 14 shows the impact of adding more banks (and hence

more MACs) on WAX throughput and Energy consumption. Fig-

ure 14b represents the throughput as images per second for each

combination of banks and wires. We assume H-Tree bus widths

of 72, 120, and 192 for our design space exploration. For all cases,

we reserve 8 tiles for remote subarray access. We observe that a

bus width of 120 gives us the best of both energy and throughput.

Throughput scales well until 32 banks (128 tiles) and then starts

to reduce because of network bottlenecks from replicating ifmaps

across multiple subarrays and because of the sequential nature and

large size of the H-Tree. To improve scalability, it will be neces-

sary to support an interconnect, say a grid, with higher parallelism

and efficient nearest-neighbor communication. Throughput/area

peaks at 16 tiles (206 GOPS/mm2) and is higher than that of the

Google TPU v1 [24].

6 RELATED WORK

For much of this study, we have used Eyeriss as the baseline and in-

troduced the following key differences. Eyeriss implements a “prim-

itive” per PE that exploits activation and kernel reuse within a row;

WAX has significantly more MACs and much fewer registers per

tile to reduce wiring overheads and further increase reuse. We also

introduce a new data mapping and a shift register per tile that re-

sults in a different computation order and reuse pattern.

Similar to WAX, the Neural Cache architecture [3, 16] also tries

to move neural computations closer to data in cache subarrays. It

does this by introducing in-cache operators that read two rows,

performbit-wise operations andwrite the result back into the cache.

Because of bit-wise operators, it takes many cycles to perform each

MAC. Our approach is focused on low energy per operation by

reducing wiring overheads and maximizing reuse, while Neural

Cache involves many SRAM subarray accesses for each computa-

tion.

Some accelerators can leverage analog dot-product operations

within resistive crossbars to achieve very low data movement [12,

35, 38]. While promising, such analog elements are likely further

down the technology roadmap.

The early DaDianNao [9] and ShiDianNao [15] architectures

also focused on near-data processing. DaDianNao used a tiled ar-

chitecture and placed neural functional units and eDRAM banks

within a tile. However, the eDRAM banks were hundreds of kilo-

bytes in size and extensive wiring was required between the eDRAM

banks and theMAC units. ShiDianNao later added support for data

shuffling and reuse. WAXmoves computation into small subarrays

and achieves reuse with simple shift registers. Recent commercial

efforts by Graphcore [18] and Cerebras [8] have also adopted tiled

architectures with compute and SRAM per tile that exploit locality

for low data movement.
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Like TPU and Eyeriss, the Tesla FSD [42], an IBM core [17], and

ScaleDeep [43] are architectures that also implement monolithic

systolic arrays fed by large buffers, although with smaller storage

units per PE than Eyeriss. Scaledeep is designed for training and

therefore maintains large buffers to store activations during the

forward pass. It also implements finer-grained tiles than TPU and

Eyeriss.

In the context of GPUs, NUMA and modular chip designs [1, 2,

5, 33] employ distributed GPUs, each with their own local mem-

ory, and communicate with each other over short interconnects.

They target GPU scaling froma performance standpoint in the post

Moore’s law era. Unlike multi-module GPUs, WAX uses deeper hi-

erarchies and distributes computational units across memory at a

finer granularity to reduce wire energy.

Several recent works [4, 13, 14, 19, 23, 25, 31, 37, 39, 40] have ob-

served that DNNs exhibit high levels of sparsity, and weights and

activations can often be quantized to fewer bits. Eyeriss v2 [10]

proposes an architecuture that is designed to exploit sparsity in

weights and activations to improve throughput and energy effi-

ciency. Eyeriss v2 also uses a flexible NoC to accommodate for

varied bandwidth requirements. Both of these are orthogonal ap-

proaches that are likely compatible with WAX. As with other spar-

sity techniques, each tile will require index generation logic to

correctly steer partial sums. We leave integration of these tech-

niques in WAX as future work. At a minimum, specific datapaths

in WAX can be gated off to save energy by estimating bit widths.

To increase throughput when dealing with lower bit widths, con-

figurableMACs, datapaths, shift registers will have to be designed.

7 CONCLUSIONS

In this work, we design a CNN accelerator that pushes the bound-

aries of near-data execution and short-wire data movement. WAX

does this with a deep hierarchy with relatively low resource counts

in early layers of the hierarchy. A few-entry register file, a shift

operation among an array of registers, and a small adjacent subar-

ray efficiently provide the operands for MAC operations. Various

dataflows are considered and we define WAXFlow-3 that balances

reuse of various data structures and reduces the expensive accesses

(local and remote subarrays). Because of WAX’s ability to perform

compute while simultaneously loading the subarray, it has high

compute utilization and improves performance by 2×, relative to

Eyeriss. In terms of energy, WAX yields 2.6-4.4× improvement, rel-

ative to Eyeriss. By removing the large collection of bulky register

files per PE in Eyeriss, the overall chip area is reduced, thus also

reducing clock distribution power. The architecture is scalable; as

tiles are increased, compute and storage increase in proportion and

WAX is able to increase throughput until 128 tiles. The WAX tile

can therefore serve as an efficient primitive for a range of edge and

server accelerators.
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