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ABSTRACT
Prior work in hardware prefetching has focused mostly
on either predicting regular streams with uniform strides,
or predicting irregular access patterns at the cost of
large hardware structures. This paper introduces the
Variable Length Delta Prefetcher (VLDP), which builds
up delta histories between successive cache line misses
within physical pages, and then uses these histories to
predict the order of cache line misses in new pages. One
of VLDP’s distinguishing features is its use of multiple
prediction tables, each of which stores predictions based
on a different length of input history. For example, the
first prediction table takes as input only the single most
recent delta between cache misses within a page, and at-
tempts to predict the next cache miss in that page. The
second prediction table takes as input a sequence of the
two most recent deltas between cache misses within a
page, and also attempts to predict the next cache miss
in that page, and so on with additional tables. Longer
histories generally yield more accurate predictions, so
VLDP prefers to make predictions based on the longest
history table that has a matching entry.

Using a global history of patterns it has seen in the
past, VLDP is able to issue prefetches without having
to wait for additional per-page confirmation, and it is
even able to prefetch patterns that show no repetition
within a physical page. VLDP does not use the program
counter (PC) to make its predictions, but our evaluation
shows that it out-performs the highest-performing PC-
based prefetcher by 7.1%, and the highest performing
prefetcher that doesn’t employ the PC by 5.8%.

Categories and Subject Descriptors
B.3 [Memory Structures]: Miscellaneous
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1. INTRODUCTION
Memory latency continues to be a significant bottle-

neck in today’s processors. Prefetching is an effective
approach to hide this latency. It is a well-studied, com-
plex problem with several aspects that have first-order
effects on performance. For example, where the pre-
fetcher is located in the memory hierarchy will constrain
the information available to it. Prefetching from DRAM
into the lowest level of the cache, therefore, introduces
a number of unique challenges.

First, in most high volume CPU designs, the program
counter (PC) is unavailable at this level in the cache
hierarchy. This can make PC-based patterns more dif-
ficult to detect. Second, a prefetcher located at the last
level cache must deal with physical addresses directly
without the benefit of a TLB or other page table in-
formation. This means that address patterns must be
discovered using only sequences of physical addresses.
Since virtual to physical page mapping is often arbi-
trary, easily predictable sequences of virtual addresses
spread over different pages may not exhibit discernible
patterns after translation to the physical address space.
This presents a particularly challenging problem for pre-
fetchers that rely on discovering common deltas between
consecutively requested addresses and applying them
to future requests. In light of these constraints, many
modern prefetchers track addresses on a per physical
page basis, discovering patterns and prefetching within
multiple simultaneously tracked physical pages.

The first step to performing a successful prefetch is to
predict an address that is likely to be requested in the
near future. Increasing the number of prefetch requests
typically leads to higher coverage, i.e., it increases the
number of successfully prefetched lines. But this is of-
ten at the expense of reduced accuracy, i.e., it increases
the number of superfluous prefetches. Conversely, accu-
racy can often be improved by limiting the prefetcher to
very predictable, easy to analyze patterns. The tradeoff
between accuracy and coverage is a fundamental prop-
erty of prefetcher design. Increasing accuracy at the



expense of coverage limits performance potential, while
reducing accuracy for higher coverage wastes memory
bandwidth, which can also limit performance potential.
To improve coverage and accuracy simultaneously, pre-
fetchers must be able to recognize complex patterns in
the address stream.

Multi-Delta Sequences: One common approach to
discovering patterns in a sequence of physical addresses
is to isolate the addresses in different regions (often
physical pages) and identify sequences of addresses in
those regions with repeating deltas. For example, the
delta +2 would be identified in the address sequence
A, A+2, A+4 and used to prefetch A+6, A+8 and so
on, depending on the degree. The drawback of this ap-
proach is that it can only identify patterns consisting of
a single repeated delta.

Although the single repeated delta, +1 in particular,
is common in a wide range of workloads, many work-
loads contain repeating multi-delta sequences, as in the
SPEC CPU2006 workload LBM. An analysis of accesses
to a single page in LBM yields the following sequence
of addresses: (A, A-24, A+1, A-23, A+2, A-22, A+3).
Extracting the deltas from this sequence of addresses
shows that the delta sequence (-24, +25) occurs repeat-
edly. In fact, LBM contains many delta sequences, each
of which cycles through multiple deltas. Five common
delta sequences found in LBM are listed below:

1. (-24, +25), (-24, +25)...

2. (-24, -24, +49), (-24, -24, +49)...

3. (+3, +2), (+3, +2)...

4. (-2, +3, +4), (-2, +3, +4)...

5. (-1, +3, -1, +4), (-1, +3, -1, +4)...

Some multi-delta sequences can be expressed as mul-
tiple single delta sequences. For example, the sequence
of addresses (A, A-24, A+1, A-23, A+2, A-22, A+3)
can be expressed as two +1 deltas, one beginning with
A and the other beginning with A-24. To discover
this pattern, a prefetcher would need two key features.
First, it would need the ability to track multiple streams
within a physical page. Second, it would need the abil-
ity to compare the new access address with multiple
prior addresses in a window, comparing A and A+1,
for example, to identify the +1 stream starting with A.
Commonly implemented prefetchers, such as the stream
prefetcher, lack both of these capabilities and would
therefore be unable to prefetch these address sequences.
However, prior work has described more sophisticated
prefetchers such as AMPM [1] that do support both of
these capabilities.

The key disadvantage of algorithms like AMPM is
training time. In the address sequence (A, A-24, A+1,
A-23, A+2, A-22, A+3, A-21, A+4, A-20), both streams
must be independently established and confirmed. This
means that the earliest prefetch opportunities for AMPM
would be A+3 and A-21. We therefore introduce the
Variable Length Delta Prefetcher (VLDP), which is de-
signed to efficiently predict multi-delta sequences. VLDP
learns from multi-delta sequences by remembering pre-
viously occurring delta pairs.

In this instance, VLDP will remember that the delta
+25 follows delta -24, and that this pattern repeats.
Subsequent references to delta -24 will cause a prefetch
to the address corresponding to delta +25, and vice
versa. In the address sequence described above, the
VDLP can lock on to the address sequence and make a
prefetch request as early as A+2. Additionally, VLDP
has the ability to learn these patterns from one physical
page, and apply them in every new physical page it
encounters without having to re-learn them.

For example, pattern 3 from above, consisting of a
repeating multi-delta sequence of (+3, +2), actually oc-
curs across many physical pages in LBM. After estab-
lishing the (+3, +2) pattern on an initial physical page,
VLDP can generalize and predict that +2 follows a +3
delta on future pages as well. While VLDP does not
save much time by remembering the simple (+3, +2)
pattern between pages, VLDP is also able to learn pat-
terns with very long sequences of deltas, including pat-
terns that do not repeat within a given physical page.

In the SPEC CPU2006 workload milc, we see the pat-
tern (A, A+1, A+10, A+2, A+3, A+11, A+12, A+4,
A+5, A+6, A+13). This pattern never repeats within a
physical page, but it is seen across many pages. VLDP
can learn this from one page and apply it to others.

Non-uniform deltas within a page are caused when
an application touches various elements in a large data
structure. Somogyi et al. [6] describe a few example ap-
plications that exhibit this behavior. For example, they
point out the non-uniform, but often repeating, deltas
observed during binary search in a B-tree. Different
delta patterns are produced if the traversal through the
data structure has data-dependent control flow. For
workloads like milc, we observed similar code patterns
(large nested structures with many access functions).

The proposed VLDP design has the following fea-
tures not found in other prefetchers. First, VLDP en-
ables the prediction of complex multi-delta access pat-
terns. Second, VLDP works on a per-page basis, and it
can prefetch a different complex pattern for each page.
Third, VLDP uses multiple global prediction tables that
can learn common access patterns across many pages.
Fourth, these prediction tables are indexed by vary-
ing lengths of delta histories, using the longest history
match found in the prediction tables to make the most
accurate prediction. This combination of features al-
lows VLDP to outperform previously proposed regular
data prefetchers like AMPM by 6% and Sandbox by 9%
on average.

2. BACKGROUND
We evaluate VLDP by comparing it to 6 state-of-

the-art regular prefetchers, detailed below. The first
four prefetchers, like VLDP, do not utilize the program
counter (PC), while the last two do use the PC.

Feedback Directed Prefetching (FDP) [2] begins
with a stream prefetcher, and then adds feedback mech-
anisms to control how aggressive it is. The stream pre-
fetcher works by observing several memory accesses to
a page of memory that are close to each other, and then



determines a direction for prefetching. Each subsequent
access to that page along that stream will cause more
cache lines to be prefetched. FDP measures prefetcher
accuracy, lateness, and cache pollution caused by pre-
fetching, and then uses those metrics to control prefetch
degree (number of items prefetched), and prefetch dis-
tance (how far ahead of the demand stream to prefetch).

Unlike VLDP, FDP must detect a stream on each
individual page before prefetching. Outside of tuning
prefetcher aggressiveness, there is nothing that can be
learned from one page and applied to another page.
Once a stream is detected, all cache lines in the stream
are prefetched sequentially, with no gaps in the pattern,
possibly leading to excessive prefetch.

Access Map Pattern Matching (AMPM) [1] works
by maintaining arrays of 2-bit values, representing cache
lines, for large regions of memory. It tracks the status of
each cache line within the region (untouched, demand
accessed, prefetched), and then analyzes the patterns
in the arrays to generate prefetch addresses. The ac-
cess map for a region starts with all 2-bit values zeroed
out, and then marks each line that has been demand
accessed. On each cache access to address A, the deter-
mination for whether or not to prefetch address A+N
is made by checking the access map to see if A-N and
A-2N have both been accessed before. This is done for a
wide variety of values N, both positive and negative, for
each cache access. Preference is given to prefetch values
closer to A, and there are also feedback mechanisms to
control prefetcher aggressiveness.

Unlike VLDP, AMPM only looks for simple repeating
stride patterns. It requires 3 accesses along a stride
pattern before prefetching begins. It cannot prefetch
non-repeating patterns. Also, AMPM has to warm up
each region independently of all other regions, just as
FDP does. Finally, observations made about one region
cannot affect prefetching in another region.

Sandbox Prefetching (SBP) [3] works by testing
out several aggressive prefetchers in a sandboxed envi-
ronment outside the real memory hierarchy in order to
determine which prefetchers should be used in the real
memory hierarchy. SBP evaluates prefetchers by plac-
ing prefetch addresses in a Bloom filter, rather than
issuing real prefetches. Demand cache accesses check
the Bloom filter to see if the address could have been
prefetched by the prefetcher currently being evaluated.
Hits in the Bloom filter give confidence that the eval-
uated prefetcher would be accurate if it were deployed
in the real memory hierarchy. Several prefetchers are
evaluated in round-robin fashion, and the prefetchers
with the most Bloom filter hits are used to issue real
prefetches. SBP evaluates aggressive prefetchers that
immediately prefetch addresses with a fixed offset from
the current demand access, like a next-line prefetcher.
Once deployed in the real memory hierarchy, the chosen
prefetchers perform no additional warm-up or confirma-
tion before issuing prefetches.

Unlike VLDP, SBP cannot prefetch multi-delta pat-
terns. SBP works by learning patterns observed across
many pages, and then applies the most commonly ob-

served patterns universally. Since it only prefetches the
on-average most commonly observed patterns, SBP is
prone to over-generalize and prefetch even when it is
not appropriate, or it might miss out on patterns that
are observed less often, but still performance-critical.

The Global History Buffer (GHB) [4] provides
a framework that can be used to implement various
prefetching algorithms. Here, we evaluate the GHB
PC/DC algorithm, where the program counter is used
to localize streams of L2 cache misses. The GHB tech-
nique requires the use of two hardware structures, namely
the index table and the global history buffer itself. The
GHB is a circular buffer, and each cache miss adds a new
entry to the buffer. The index table contains pointers
into the GHB, and can be looked up using the PC. The
index table points to the most recent occurrence of the
PC in the global history. In the GHB, each buffer entry
is comprised of the delta from the last cache miss, and
a pointer to the next instance of the current PC. The
GHB therefore allows us to follow the links back into
history, and replay the deltas that were seen previously.

Our GHB implementation is an adaptation of the
original proposal. We keep track of PCs of load in-
structions in an index table, which is a direct mapped
structure. Each entry in the index table points to the
most recent delta seen in its page in the GHB structure.

Unlike VLDP, the GHB PC/DC algorithm can only
make predictions based on histories of length one. It
can, however, prefetch multi-delta sequences, and can
learn patterns in one page and apply them in another.

Spatial Memory Streaming (SMS) [5] correlates
the PC of the first load instruction to a region of mem-
ory with all of the expected cache misses in that region.
Whenever a new region of memory is accessed for the
first time, a new entry in the Active Generation Table
(AGT) is created, indexed by a combination of the PC
of the first load instruction and the offset of the initial
access to that region. Subsequent accesses in that region
build up a spatial pattern bitmap of all cache blocks
used, until a cache block in that region is evicted, where-
upon the entry is removed from the AGT and placed in
a Pattern History Table (PHT). Whenever a new region
is accessed for the first time, the PC+offset of the load
instruction are used to look up the PHT, and if there is
a match, all of the cache blocks indicated by the PHT
entry’s spatial pattern bitmap will be prefetched.

The original proposal for SMS assumed prefetching
was done at the L1 level, however in our evaluation, all
prefetchers live at the L2 level, so the stream of accesses
visible to them has been filtered by the L1 cache, and all
prefetching is done into the L2 cache. Our implementa-
tion of SMS tracks 2 KB regions. SMS is able to learn
access patterns from one region of memory and prefetch
them in another, but unlike VLDP, it cannot predict the
order in which cache lines should be prefetched.

3. PROPOSAL
The Variable Length Delta Prefetcher (VLDP) relies

on history to predict future memory requests (Figure 1).
A separate local history is maintained for each physical
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page in the workload’s current working set in a small
structure we refer to as the Delta History Buffer (DHB).
When a reference to one of these tracked pages results
in a prefetching opportunity, the page’s Delta History
is used to look up a prediction in the Delta Prediction
Table (DPT). The DPT is structured as a set of key-
value pairs that associate a delta history within a page
with the delta of the next expected access in that page.
This allows the DPT to make history-based predictions
about what to prefetch next.

A key innovation of VLDP is the use of multiple DPT
tables, where each successive table corresponds to a
longer history length. This maximizes prefetch coverage
and accuracy, by prefering to use long histories to make
highly accurate prefetches, and using shorter histories
to fill in the gaps when long histories are unavailable.

In this section, we describe the organization of VLDP
in more detail, beginning with the DHB in Section 3.1,
followed by the Prediction Tables in Section 3.2. The
Offset Prediction Table (OPT) is described in Section 3.2.1
and the Delta Prediction Table (DPT) is described in
Section 3.2.2. In each of these sections, we have made
assumptions about how VLDP interacts with the rest
of the memory hierarchy. First, we assume that each
core has its own, separate VLDP. Second, we evaluate
a 2 level cache hierarchy. Third, VLDP and all other
evaluated prefetchers sit at the L2 level, and we assume
all prefetches bring data into the L2 cache only. Fi-
nally, the VLDP mechanism does not take action on
all L2 cache accesses. Instead, VLDP takes action only
when there are accesses to the L2 cache that either re-
sult in a miss, or when a cache line is accessed that
was previously prefetched into the cache. We detect
these prefetch hits using a mechanism described in Sec-
tion 3.1. We refer to this subset of requests as Prefetch
Activation Events (PAE).

3.1 Delta History Buffer
The Delta History Buffer (DHB) tracks delta histo-

ries for recently accessed pages. These histories, in turn,
are used to lookup the DPT and predict future memory

requests. Figure 2 shows an entry in the DHB. Each en-
try in the DHB contains the following data for a tracked
physical page: (i) page number, (ii) page offset of the
last address accessed in this page, (iii) sequence of up
to 4 recently observed deltas, (iv) the DPT level used
for the latest delta prediction, (v) the number of times
this page has been used, and (vi) sequence of up to 4
recently prefetched offsets.

Only PAEs can cause the state stored in the DHB to
change. When a PAE occurs, there is a fully associative
search in the DHB to find an entry with a matching page
number. If no matching entry is found (DHB miss),
then a not-Most Recently Used (nMRU) DHB entry is
evicted and assigned to the new page number (nMRU
replacement policy). The page offset of the cache line
is recorded in the last address field. On subsequent hits
to this page in the DHB, a delta is computed between
the current access and the last address. This delta is
then added to the delta sequence (last 4 deltas), and
the offset of the most recent cache line (last add.) is
updated to reflect the current access. The delta history
maintained in the DHB is limited to the 4 most recent
deltas and is tracked with a 4-entry shift register.

On a DHB hit, after the DHB entry has been up-
dated with the most recent delta, the newly updated
delta history is used to index the DPT (Section 3.2).
The DHB entry for a page also stores the ID of the
DPT table which was most recently used to predict the
prefetch candidates for this page. This ID is used to
update the accuracy of the DPT and will be described
in more detail in Section 3.2.

While VLDP only issues prefetches and updates the
DHB on PAEs, the DHB must be read on all L2 hits
to determine if the current access was to a prefetched
line, and therefore qualifies as a PAE. The DHB tracks
the 4 most recently issued prefetches in each page. Since
VLDP attempts to predict not only which cache lines in
a page will be accessed, but also the order in which they
will be accessed, this method is enough to detect most
L2 hits to prefetched data, and therefore most PAEs.

3.2 Prediction Tables
3.2.1 Offset Prediction Table

If we rely solely on deltas to make predictions, we
must wait for at least a second access to a page be-
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fore we can begin prefetching. However, some pages
are accessed very few times, and missing out on a sin-
gle prefetching opportunity could have a large negative
impact on performance. Therefore, in order to begin
prefetching as soon as a page is accessed for the first
time, VLDP uses an Offset Prediction Table (OPT).

The OPT is a global table, shared by all pages, with
an entry for each cache line in a page. In our model, we
use 8KB pages and 64B cache lines. The OPT is direct-
mapped with 64 entries, using the page offset of the
initial cache line access to a new page as the index. Each
OPT entry stores a delta prediction, which predicts the
second access to the page, and a 1-bit accuracy field.

On the first access to a page, the OPT is looked up
using the page offset, and if the accuracy bit is set for
this entry, a prefetch is issued with the predicted delta.
On the second access to a page, a delta can be com-
puted and compared with the contents of the OPT. If
the OPT prediction matches the observed delta, the ac-
curacy bit is set to 1, or remains 1 if it was already 1. If
the OPT prediction does not match the observed delta,
the accuracy bit is set to 0. If the accuracy bit was
already 0, the old predicted delta is replaced with the
new observed delta, and the accuracy bit remains 0.

3.2.2 Delta Prediction Table
While the DHB maintains separate histories for each

active physical page, there is only a single, global DPT,
which is shared by all active pages. Predictions stored
in the DPT may survive across many allocations and
evictions of DHB entries, as the program touches many
pages. This makes it possible for delta sequences ob-
served in the distant past to be used for prefetching
in new pages that have never been touched before. A
key feature of the DPT is that it is not just a single
table, but rather a set of cascaded tables, where each
table handles a different length of delta history, as seen
in Figure 3. Each of the DPT tables contains multi-
ple entries, and each entry is comprised of a key-value
pair. The delta histories obtained from the DHB are
used as the keys, and the delta predictions stored in the
DPT are the values. Also, each DPT entry has a 2-bit
accuracy counter, and a 1-bit nMRU value.

Figure 4 shows how the use of cascaded tables enables
the DPT to differentiate between two different instances
of the delta (2) in a repeating sequence of deltas. In

Repeating Delta Pattern: 1, 2, 3, 5, 2, 4

Delta Pred.
1 2
2 3
3 5
5 2

Delta Pred.
1,2 3
2,3 5
3,5 2
5,2 4

Table i=1 Table i=2
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Accuracy

100% 
Accuracy

100% 
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Figure 4: Aliasing motivates the need for cas-
caded Delta Predictions Tables.

one instance, (2) is followed by (3), and in the other
instance, (2) is followed by (4). If we relied only on the
first DPT table to predict what will come after (2), it
would give the answer (3) and be correct only 50% of
the time. However, the second DPT table tracks longer
histories, and takes into account the delta preceding (2)
to make a prediction. Here we have 2 separate entries
for the delta sequences (1,2) and (5,2), eliminating the
aliasing that occurred in the first DPT table. Using the
second DPT table, (1,2) predicts (3), and (5,2) predicts
(4), both with 100% accuracy.

When searching for a delta to prefetch, VLDP prefers
to use predictions that come from DPT tables that track
longer histories, in order to avoid aliasing that can oc-
cur in shorter histories, and thereby increase accuracy.
Conceptually, using multiple cascaded DPT tables to
track histories of varying lengths is similar to the state-
of-the-art TAGE branch predictor [6].

3.3 Managing Cascaded Tables
Our DPT implementation uses a set of 3 DPT tables,

allowing for histories up to 3 deltas long. When a PAE
occurs, we look for delta history matches in all tables.
The number of tables that might contain matching en-
tries depends on the number of deltas accumulated in
the page history up to this point. Pages that have only
been accessed twice will have only one delta available
and will be restricted to using the first DPT table for
prediction. However, as the page is repeatedly accessed,
and more history is accumulated, DPT lookups may
produce matches in more than one of the DPT tables.
In these cases, VLDP prioritizes predictions made by
the table that uses the longest matching delta history,
which maximizes accuracy.

Figure 3 illustrates the cascaded tables, showing the
lowest priority single-delta table on the left, and the
highest priority 3-delta table on the right. Each entry
in the table consists of 4 basic elements: a delta his-
tory (delta), a delta prediction (pred), a 2-bit accuracy
counter, and a single nMRU bit used to select one of
the not Most Recently Used entries as a victim when
allocating a new entry. On each PAE, the delta history
in the DHB is used to lookup the DPT. When the histo-
ries match, a prediction will be made based on the delta
stored in the delta prediction field. As future PAEs ar-
rive, the DPT will be updated to reflect any changes in
the delta sequence that are observed. PAEs can cause
the DPT to be updated in three different ways. First,
any new delta patterns will be allocated in the DPT;
this will require the eviction of an earlier delta pat-
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tern. We use a nMRU policy to make this selection.
Second, each PAE can be compared with the previous
delta prediction. Based on the accuracy of the previ-
ous prediction the accuracy bits of that prediction entry
can be updated; incremented in the case of an accurate
prediction, decremented otherwise. Finally, if the pre-
diction accuracy is sufficiently low, the delta prediction
field may be updated to reflect the new delta.

Inaccurate predictions in a DPT table T will prompt
the promotion of the delta pattern to the next table
T+1. If the DPT table T+1 is full, then the nMRU en-
try is evicted, and replaced. When the DPT is updated,
if a matching delta pattern is not currently present in
any DPT tables, then an entry is created for the latest
delta in the shortest-history table.

3.4 Multi-Degree Prefetch
Once VLDP has predicted the next access in a se-

quence, it can make additional predictions and prefetch
even further ahead by appending the predicted delta to
the original history from the DHB to recursively look
up the DPT. This process can be repeated as long as
the predicted pattern is found in the DPT. Note that
consecutive lookups in the DPT are sequential and each
lookup adds latency to the subsequent prefetch. In our
modelling, we assume that each lookup requires 5 cy-
cles, and we limit ourselves to prefetch 4 deltas ahead of
the current PAE. This means the fourth degree prefetch
will be issued 20 cycles after the initial PAE. Despite the
fact that the DPT yields 4 separate predictions in this
case, the accuracy is updated only once for the table
that issued the original prediction.

Figure 5 shows how multi-degree prefetching can be
done by speculatively adding deltas to the history. Here,
we begin with a delta history (3,1) and predict the delta
2 based on the contents of the DPT. Appending the pre-
dicted delta of 2 gives us a new delta history of (3,1,2),
or simply (1,2) if only a two delta history is used. The
history (1,2) can be later used to lookup the DPT and
retrieve prediction associated with that history (3).

VLDP maintains a maximum prefetch distance of 4
predicted cache lines (although the delta between the
current access’s cache line address and the prefetched
lines may be much greater than 4). After it has prefetched
the next 4 predicted cache lines in a page, subsequent
PAEs in that page will only yield a single additional
prefetch. However, in the event of an inaccurate prefetch,
VLDP may again prefetch 4 new cache lines, as it fol-
lows a different recursive chain of predictions based on
the new observed history.

4. METHODOLOGY
4.1 Simulation Environment

All simulations are carried out using Wind River Sim-
ics full system simulator [7]. We interface Simics with
the detailed USIMM memory model [8].

4.2 Simulator Parameters
We model a multi-core system with 8 OoO cores and 2

DDR3 memory channels. We assume that each channel
can support two ranks. Simics and USIMM parameters
are summarized in Table 1. All of our experiments are
run with a shared 8MB last level L2 cache.

Processor

Core Parameters: UltraSPARC III ISA,
8-core, 3.2 GHz,.

128-entry ROB, 4-wide OoO.

Cache Hierarchy

L1 I-cache 32KB/2-way, private, 1-cycle
L1 D-cache 32KB/2-way, private, 1-cycle
L2 Cache 8MB , 10-cycle

Coherence Protocol 64B,8-way, shared
Snooping MESI

DRAM

DRAM Frequency 1600 Mbps
Channels, ranks, banks 2 channels, 2 ranks/channel,

8 banks/rank
Read Queue Length 64 per channel

tRC = 48.75 ns
DRAM tRCD = 13.75 ns
Timing tRAS = 35 ns

Parameters tFAW = 30 ns
tWTR = 7.5 ns
tRP = 13.75 ns

Table 1: Simulator parameters [9].

We use FR-FCFS and Open Page policies for DRAM
scheduling, where row buffer hits are prioritized over
row buffer misses. We use the state of the art PACMan
cache replacement policy [10] to decide where to insert
the prefetched cache line in the LRU stack.

4.3 Workloads
We use multi-programmed workloads constructed out

of SPEC CPU 2006 benchmarks and multi-threaded
workloads from NAS Parallel Benchmarks (NPB) and
CloudSuite [11]. Because prefetchers are practically
useful only for workloads with high memory traffic, we
pick high MPKI workloads from SPEC CPU 2006. We
also pick benchmarks like astar to show that our pre-
fetcher does not degrade performance of workloads which
don’t have repeating delta patterns. For SPEC CPU
2006, we run 8 instances of each benchmark. Cloud-
Suite, and NPB are run with 8 threads. The SPEC
workloads are fast-forwarded for 50 billion instructions
before starting simulations and the NPB/CloudSuite
programs are simulated at the start of their region of
interest. The measurements in the early part of our
cycle-accurate simulations are discarded to account for
various warm-up effects. All simulations were executed
until a fixed point in the program to form a simulation
length of approximately 500M instructions.



We also test two heterogeneous workload mixes. These
mixes are a combination of 4 benchmarks. We run two
instances of each benchmark, resulting in a total of 8
programs in each workload mix. The purpose of the
mixed workloads is to show that VLDP does not starve
workloads which are not amenable to prefetching.

Mix1 is a combination of three benchmarks that VLDP
is able to aggressively issue prefetches for (milc, lbm
and zeusmp), and one that is not amenable to pre-
fetching (xalancbmk). Mix2 is a combinations of bench-
marks which are not amenable to prefetching (omnetpp,
xalancbmk, soplex, mcf ), and hence VLDP is not very
effective here. Once again, the purpose of this Mix is
to show that VLDP does not degrade performance, in
case it is not able to accurately issue prefetches.

5. RESULTS
5.1 Prefetcher Configurations

We simulate VLDP with 1 offset prediction table and
3 delta prediction tables. Each DPT has 64 entries,
and the OPT also has 64 entries. The DHB keeps
track of the last 16 pages that were accessed by the
application. We assume that each VLDP lookup has
a 5 cycle latency. On every PAE, prefetches up to the
fourth degree may be issued. While issuing multi de-
gree prefetches, we only accept predictions of tables 2-3
for degrees greater than 1. While the first DPT will
enjoy high hit rates, it also has lower accuracy when
compared to tables that use a longer delta history. Sen-
sitivity analysis shown in Figure 14 shows how increas-
ing the number of DPTs actually decreases the num-
ber of DRAM accesses by increasing the accuracy of
prefetches issued. Table 2 details the per-core storage
requirements for VLDP and competing schemes. Note
that the per-core storage overhead of SBP is directly
tied to its evaluation period; increasing SBP’s storage
resulted in lower performance.

Pref Storage Parameters

SBP 296B 256B Bloom filter, 16 candidates
FDP 3.1KB 2.5KB tag array, 4Kb bloom filter

AMPM 4KB 52 Access Maps,
each tracking 16KB

GHB 4KB 256 entry GHB,
256 entry Index Table

SMS 22KB AGT 4KB, PHT 17.6KB, PR 256B
VLDP 998B OPT 128B, DHB 222B, DPT 648B

Table 2: Prefetcher Storage Overheads

5.2 Performance Evaluation
Figure 6 shows the weighted speedup of VLDP in

comparison to FDP, SBP, and AMPM. Weighted speedup
is the geometric mean of speedup for each thread, where
the speedup is calculated against the IPC of that thread
without a prefetcher. Hence, the baseline has a speedup
of 1, and a speedup of less than 1 shows a performance
degradation.

The performance gains seen by VLDP come as a re-
sult of two factors.

• Long repeating multi-delta sequences

• Long single-delta sequences

Workloads such as milc, lbm, LU, and soplex have
long multi-delta sequences that repeat across pages. VLDP
is ideally suited to handle such access patterns. Lbm
ends up accessing every cache line inside a page. How-
ever, initially, lbm starts with positive deltas, of (+2,
+3), and then upon reaching the end of the page returns
back to the beginning of the page, and then accesses
the cachelines that were not accessed in the initial page
traversal, eventually touching all the cachelines in the
page. Prefetchers like SBP identify this pattern as one
that touches all lines in the page, and end up prefetch-
ing all cache lines starting from the start of the page.
Many of these cache lines will not be used till the stream
reaches the end of the page and then reverses direction.
In comparison, VLDP is able to detect these complex
patterns and issue prefetches in a timely manner.

Omnetpp accesses a majority of pages in short se-
quences of 3-4 accesses. The same page is accessed
again only after a long time. However, the same short
delta pattern is repeated again. VLDP shows a 10%
speedup over no prefetch for omnetpp, whereas AMPM
shows a speedup of 4%. This kind of pattern leads to
low but similar accuracies in several candidate prefetch-
ers in the Sandbox prefetcher. Depending on the accu-
racy threshold to issue prefetches, this leads to either no
prefetches, or several inaccurate prefetches. Short non-
homogeneous patterns lead to several identified but un-
confirmed streams in FDP, thus leading to a low number
of prefetches issued.

Workloads such as libquantum, zeusmp, CG, and IS
have uniform delta sequences that mostly consist of
“+1” deltas. VLDP is able to predict these deltas while
using very few entries in the Delta Prediction Tables.
Libquantum is dominated by “+1” streams, where ev-
ery cache line in a page is accessed sequentially. All
prefetchers we evaluate perform well for this workload.
FDP needs a couple of accesses to a stream before it
can be confirmed whereas SBP do not have this prob-
lem. However, SBP and AMPM issue prefetches in
bursts, leading to congestion at the DRAM controller
for short periods of time. VLDP suffers from neither of
these problems and hence is able to outperform these
prefetchers. For these streaming workloads, VLDP ef-
fectively works like a streaming prefetcher that has a
Prefetch Distance of 4 and a Prefetch Degree of 1, thus
issuing prefetches only as fast as the access stream.

MG has a combination of both repeating “+1” deltas,
and multi-delta sequences that span the entire page.
To predict “+1” streams, VLDP uses just one entry in
the third table. The rest of the entries can be used to
predict the multi-delta sequences. It is for this reason
that VLDP does exceedingly well with MG .

Workloads such as mcf, xalancbmk, and astar do not
exhibit streaming behavior. VLDP does not yield much
performance improvement for these workloads.

The performance of VLDP is 5.8% better than AMPM,
17.2% better than FDP and 8.5% better than SBP.

When VLDP was evaluated with a higher degree of
8, it resulted in <1% performance improvement. In
our platform, workloads benefiting from higher degree
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Figure 6: Performance comparison of prefetchers that do not use the program counter.
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Figure 7: Comparing the performance of VLDP to SMS and GHB PC/DC.

prefetching (e.g., libquantum) are already operating the
memory bus near saturation.

5.3 Comparing VLDP to Prefetchers that use
the Program Counter

Figure 7 shows the weighted speedup of VLDP in
comparison to SMS and GHB, both of which use the
program counter. GHB memorizes the sequence of deltas
that are seen by the application. It then uses the PC
of the current load instruction and the current delta
to index into this list of deltas. GHB stores all the
deltas seen in a circular buffer, whereas VLDP stores
only unique delta patterns, which leads to much lower
storage overhead for VLDP. GHB uses only the current
delta to make a prediction while VLDP tries to correlate
all the latest deltas to make a prediction. The cascaded
tables in VLDP provide better immunity against alias-
ing (Figure 4), which leads to better accuracy. Overall,
VLDP has an accuracy of 61% while GHB has an ac-
curacy of 33%. Across all the benchmarks evaluated,
VLDP performs 7.1% better than GHB PC/DC.

SMS uses the footprint of previously seen access pat-
terns to make prefetch predictions. It uses the PC of the
load and the page offset of the load instruction to index
into the table that stores the Spatial Patterns. Unlike
VLDP and GHB, SMS does not remember the order in
which the cachelines within a spatial pattern were ac-
cessed. For workloads like MG and lbm whose access
patterns zigzag from the start to the end of the page,
this leads to poor timeliness. Overall, VLDP has 7.6%
higher performance than SMS. SMS can make as many
predictions as the number of cachelines in a region (32
for a region size of 2KB) based on a single correlation
between the PC and the trigger offset. VLDP can at

the most issue 4 prefetches based on a single delta (in
the worst case). Among the 6 prefetchers we evaluated,
SMS outperforms all others for libquantum. This is be-
cause load instructions are issued by only a few unique
PC values and moreover, libquantum has only one dom-
inant access pattern. The performance of libquantum
with SMS is 5% better than that with VLDP. SMS
avoids the bursty behavior that affects SBP and AMPM
by making use of the Prediction Register that enqueues
the prefetches issued, and then dispatches them over
time. However, this aggressive behavior can also lead
to inaccurate predictions for benchmarks that do not
show strong spatial correlation such as astar, omnetpp
and mcf .

The key advantage of VLDP is the fact that it uses
many events/correlations to make a few predictions –
this leads to better accuracy and coverage. SMS uses
a single correlation (PC and offset) to trigger a large
number of prefetches. If SMS sees multiple spatial pat-
terns corresponding to one PC/offset tuple, it has to
either merge the two patterns or pick one of the two.

5.4 Cache Misses and Prefetcher Coverage
Figure 8 shows the number of cache misses per thou-

sand instructions normalized to the MPKI of the no
prefetch baseline. Workloads like milc, lbm show large
drops in MPKI for VLDP; this is because of the pres-
ence of repeating multi-delta sequences. None of the
prefetchers we evaluated were able to reduce the MPKI
of astar. In fact, SBP increases the MPKI of astar by
8% and AMPM increases it by 1%. Increase in MPKI is
a result of cache pollution caused by overly aggressive
prefetching.

For workloads that have streams with uniform deltas,



0
0.2
0.4
0.6
0.8

1
1.2
1.4

N
o

rm
al

iz
ed

 M
P

K
I

Figure 8: MPKI normalized to No-Prefetch MPKI. Data points for each benchmark are in the order
of FDP, SMS, SBP, GHB PC DC, AMPM, VLDP.

0

10

20

30

40

La
te
P
FK
I

Figure 9: Late Prefetches per thousand instructions. Data points for each benchmark are in the
order of FDP, SMS, SBP, GHB PC DC, AMPM, VLDP.

most prefetchers are able to predict the cache accesses
accurately. NPB benchmarks, libquantum, zeusmp show
a large decrease in MPKI when compared to the base-
line. As seen in Figure 9, even though prefetchers like
SBP and AMPM are successful in predicting cache miss
patterns, they often issue very large number of attempted
prefetches, most of which are cache hits. Depending on
the workload, the number of prefetches per cache miss
can even exceed 100. When the number of attempted
prefetches per cycle per core is constrained, these pre-
fetchers end up issuing prefetches too late. By construc-
tion, the number of prefetches VLDP issues is less than
or equal to the maximum degree that it is allowed to
prefetch. In our design this is 4. SBP and AMPM can
have multiple candidate prefetchers issuing predictions
for multiple degrees. Even though these prefetches are
cache hits, they still need cache tag lookups, and hence
can be a bottleneck for these prefetchers.

Figure 10 shows the coverage of the different prefetch-
ers. Coverage is the ratio of number of unique cache
accesses that were prefetched to all unique cache ac-
cesses. VLDP had the highest coverage for most of the
workloads we simulated.

5.5 Prefetcher Accuracy and DRAM accesses
Figure 11 shows the increase in DRAM accesses for

each prefetching configuration. SBP dynamically de-
cides aggressiveness depending on the bandwidth avail-
able. Cloud workloads like classification and cloud9 are
low bandwidth workloads; SBP increases the number of
DRAM accesses of classification by 152%, and cloud9
by 68% while yielding less than 3% improvement over
the baseline.
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Figure 10: Coverage per benchmark suite.

For all workloads, FDP favors accuracy over aggres-
siveness. On average, FDP has the lowest increase in
DRAM accesses of 3.7%, GHB has 5.4%, AMPM has
13.4%, SBP has 22.6%, SMS has 60.5%, and VLDP has
17.2%.

Prefetchers like AMPM, SBP, and FDP use some
form of negative feedback to reduce prefetcher aggres-
siveness. Because SMS does not have negative feedback
built into it, for workloads that do not show strong spa-
tial correlation, SMS ends up issuing many inaccurate
prefetches.

Figure 12 shows the accuracy of the prefetchers. Ac-
curacy is the ratio of useful prefetches to total prefetches
issued. NPB workloads all show high accuracy for all
evaluated prefetchers. In CloudSuite applications, the
lower coverage FDP and GHB show the highest accu-
racy. SBP and SMS are consistently the least accu-
rate prefetchers, and GHB is the overall most accurate,
at the cost of prefetch coverage. VLDP strikes a bal-
ance between having the highest coverage of any eval-
uated prefetcher, while at the same time being among
the most accurate.
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Figure 11: Normalized DRAM accesses per
benchmark suite.
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5.6 Comparison to the Best-Offset Prefetcher
We evaluated the Best Offset prefetcher [12] from

the second Data Prefetching Championship. We swept
through the prefetcher parameters to determine the best
configuration for the BO prefetcher on our simulation
infrastructure. On average, the BO prefetcher’s per-
formance is 7% below VLDP and it issued 6% fewer
DRAM accesses for our workloads. The BO prefetcher
outperformed VLDP for 4/18 workloads that we evalu-
ated.

The biggest drawback of the BO prefetcher on our
simulation infrastructure is that it does not issue multi
degree prefetches, thus causing late prefetches. Work-
loads like libquantum and lbm, which have long streams,
benefit greatly from multi degree prefetches. Even though
the BO prefetcher correctly predicts most of these ac-
cesses, the prefetches were issued too late. Note that
multi-degree prefetching did not yield benefits in the
DPC2 simulator for the BO prefetcher, even in simple
workloads like libquantum.

In an attempt to get the most out of the BO pre-
fetcher on our simulation infrastructure, we also evalu-
ated a multi degree version of the BO prefetcher, where
we statically set the highest degree prefetch BO is al-
lowed to issue. The BO prefetcher with prefetch degree
2 was able to perform within 3.5% of VLDP while issu-
ing 0.2% more DRAM accesses than VLDP. When the
degree was increased further, the average accuracy and
performance dropped.

5.7 Page + PC Localization
VLDP uses page localization to identify streams. Other

prefetchers like the GHB and SMS have used the Pro-
gram Counter (PC) to localize streams. In this section,
we explore the effect of using the PC, as well as the page

number to localize streams. We call this configuration
VLDP-PC. In the new version (VLDP-PC), successive
accesses to the same page from the same PC are con-
sidered part of the same stream.

The accuracy of VLDP-PC is 6% higher than VLDP.
However, due to a 7.5% reduction in coverage, there is
a 1.7% reduction in performance. The increase in accu-
racy leads to a 7.5% decrease in the number of DRAM
accesses issued. VLDP-PC is able to achieve this per-
formance with 32 entries in the DHT, 16 entries in the
DPT, and 16 entries in the OPT, leading to a hardware
overhead of only 830B/core. Decomposing accesses in a
page across PCs reduces coverage, but lowers overhead
because fewer patterns must be tracked in the DPTs.

5.8 Sensitivity Analysis
We also simulated FDP, GHB, AMPM, SBP, and

VLDP for other cache sizes (512KB and 2MB); our sim-
ulations show that the speedup changes by at most 1%.
Detailed results have been omitted for space reasons.

5.8.1 Sensitivity to table size
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Figure 13: Sensitivity to Table Sizes

Figure 13 shows how the normalized performance of
VLDP changes across all workloads with VLDP tables
of different sizes. In this experiment, we vary the num-
ber of pages tracked per core by the DHB, and the num-
ber of entries in the DPT. We use the following naming
convention for the X axis iPage jT , where i is the num-
ber of pages tracked by DHB, and j is the number of
entries in the DPT. The right most bar shows the per-
formance when DHT tracks 8 pages and there are 64
entries in the DPT. The performance changes by less
than 1% when the size of the DHB is reduced all the
way to 8. There is almost a 2% increase in performance
when the number of entries in the DPT is increased
from 8 to 64. We choose a DHT size of 16 and a DPT
size of 64 as the optimal performance/area/complexity
trade-off. All the other VLDP results presented in this
paper are for the 16Page 64T configuration.

5.8.2 Sensitivity to number of prediction tables
Figure 14 shows the impact of changing the number

of cascaded Delta Prediction Tables (DPTs) in VLDP
in terms of both speedup and number of DRAM ac-
cesses. The initial data point, 1DPT NoOPT, shows
the speedup with single delta table (the offset table
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Figure 14: Sensitivity to Number of DPTs

is excluded). Note that computing a single delta re-
quires two addresses. As a result, the 1DPT NoOPT
config issues no prefetches on the first access to a page,
instead waiting until the second access. The second
data point depicts a single DPT supplemented with the
OPT (Offset Prediction Table). Moving to the right,
each additional data point adds an additional DPT.
3DPT+OPT, for example, includes 3 delta prediction
tables (DPT) as a well an offset table (OPT). The in-
tent of this plot is to illustrate how additional tables can
impact both speedup and the number DRAM accesses.
Compared to 1DPT+OPT, the addition of the second
table, 2DPT+OPT, yields significant benefits, improv-
ing performance by 10% but at the cost of increasing the
DRAM accesses by about 4%. This result matches our
intuition; increased prefetching coverage yields better
performance but at the cost of increased memory traf-
fic. The addition of third DPT, 3DPT+OPT, however
produces the opposite result. Despite a modest perfor-
mance improvement of about 1%, 3DPT+OPT reduces
DRAM requests by 3%. This is because of improved
matching made possible by the longer delta histories,
which improves accuracy without sacrificing coverage.
In fact, this result highlights the benefit of VLDP’s cas-
caded tables. The use of shorter history DPTs ensures
high coverage, ensuring that even short delta histories
will result in a match and produce a prefetch request.
At the same time, the longer history DPTs (the third
DPT, in this case) maximize accuracy when longer his-
tories become available.

5.8.3 Sensitivity to DHB Region size
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Figure 15: Sensitivity to DHB region size.

VLDP uses page localization to identify streams. Lo-
calization is a technique used by many prefetchers in
the past like GHB and SMS. Localization works with

the assumption that most data structures like arrays
and structs are limited to certain regions of memory,
and if parts of a data structure are accessed in a partic-
ular order once, they will likely be accessed in the same
order again. Small regions will have limited information
when making predictions, and limited coverage. Large
regions suffer from interference because accesses to un-
related data structures are merged into a single noisy
delta pattern.

Figure 15 shows the performance of VLDP as the size
of the region tracked by the DHT is varied from 0.5KB
to 128KB. In this experiment, when the region tracked
is larger than 8KB, the OS page size is also increased
to match the size of the region.

The highest performance is seen when the size of the
region and the OS page is 16KB, which is 2% higher
than region size of 8KB (used in the rest of the pa-
per). The performance starts to drop after 16KB be-
cause of higher interference. A similar observation was
also made by SMS. Thus, VLDP is perfectly compatible
with architectures that use large page sizes, but it must
use smaller DHB region sizes within these large pages
to make high-quality predictions.

6. RELATED WORK
Prefetching is a well-studied field, and many novel

prefetchers have been proposed [13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 10, 27]. Prior prefetch-
ing work can be characterized as focusing on either
regular or irregular patterns. Regular access patterns
feature repeating sequences within or across spatial re-
gions of memory [5]. Irregular access patterns have no
discernible spatial patterns, and can only be learned
through memorization of long sequences of accesses [28].
Somogyi et al., [29] propose STeMS, which does both.

This work focuses on the problem of regular data pre-
fetching. Section 2 contains descriptions of recent reg-
ular data prefetchers. In addition, Joseph et al. pro-
posed the use of Markov predictors to make prefetch de-
cisions [19]. In their design, each cache miss to address
A generates an entry in a predictor table, and subse-
quent cache miss addresses are added to A’s entry, so
they can be prefetched the next time A is seen.

Irregular data prefetching is explored by two recent
papers, Spatio-Temporal Memory Streaming [29], and
Linearizing Irregular Memory Accesses for Improved Cor-
related Prefetching [30] (introducing the Irregular Stream
Buffer, or ISB).

The STeMS mechanism works by replaying the inter-
leaving access pattern between different spatial maps.
Both the spatial maps and the temporal interleaving
pattern must be learned and stored. The ISB builds on
the concept of the GHB [4] by translating correlated ad-
dresses into a new address space where they are consec-
utive. Observed memory accesses with arbitrary phys-
ical addresses are linearized in this new address space,
and then translated back to physical addresses to issue
prefetches. These proposals both use large amounts of
storage to remember entire sequences of accesses (ISB
uses 32 KB on-chip storage, and 8 MB of off-chip stor-



age per core, and STeMS uses 1.64 MB per core), and
they both require the program counter (PC) to work.
Because they require high storage budgets and the PC,
they are not direct competitors for VLDP.

7. CONCLUSIONS
We have proposed Variable Length Delta Prefetching

to identify complex patterns that repeat in many phys-
ical pages, and then prefetch those patterns as soon as
they appear in new pages. VLDP uses multiple prefetch
delta prediction tables, which are indexed by varying
lengths of intra-page delta history. This mechanism is
able to capture short, simple patterns with only a few
accesses per page, as well as complex patterns involving
multiple positive and negative delta patterns.

Variable Length Delta Prefetching increases perfor-
mance by simultaneously increasing coverage and ac-
curacy, compared to the state of the art Access Map
Pattern Matching and Sandbox prefetchers. VLDP im-
proves upon the performance of AMPM by 5.8% on
average, and improves upon the performance of SBP
by 8.5% on average, across the evaluated workloads. It
does this by increasing prefetch coverage by 24% com-
pared to AMPM, and 53% compared to SBP, and by
improving accuracy by 24% compared to AMPM, and
53% compared to SBP. It achieves this performance us-
ing only 998 B of storage per core overhead.
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