INXS: Bridging the Throughput and Energy Gap
for Spiking Neural Networks

Surya Narayanan
School of Computing
University of Utah

Abstract—

In recent years, multiple neuromorphic architectures have
been designed to execute cognitive applications that deal with
image and speech analysis. These architectures have followed
one of two approaches. One class of architectures is based on
machine learning with artificial neural networks. A second class
is focused on emulating biology with spiking neuron models, in an
attempt to eventually approach the brain’s accuracy and energy
efficiency. A prominent example of the second class is IBM’s
TrueNorth processor that can execute large spiking networks
on a low-power tiled architecture, and achieve high accuracy
on a variety of tasks. However, as we show in this work, there
are many inefficiencies in the TrueNorth design. We propose
a new architecture, INXS, for spiking neural networks that
improves upon the computational efficiency and energy efficiency
of the TrueNorth design by 3,129x and 10x respectively. The
architecture uses memristor crossbars to compute the effects of
input spikes on several neurons in parallel. Digital units are then
used to update neuron state. We show that the parallelism offered
by crossbars is critical in achieving high throughput and energy
efficiency.

I. INTRODUCTION

The stagnation of Moore’s Law scaling has shifted industry
and academia’s focus away from general-purpose systems and
towards specialized systems. Neuromorphic architectures are
an important class of specialized systems because:

1) They are efficient at a variety of machine learning tasks
that are growing in prominence — image analysis in
self driving cars, information discovery from massive
datasets, etc.

2) They target the grand challenge of emulating brain me-
chanics in hopes of matching the brain’s cognitive power
and energy efficiency.

These two separate needs — machine learning efficiency
and brain emulation — have also led to a bifurcation in
neuromorphic architectures.

A number of architectures, DaDianNao [8], ISAAC [37],
EIE [38], Cnvlutin [3], and Eyeriss [7] to name a few, are
based on the artificial neurons (perceptrons) that have formed
the basis for decades of research in machine learning. We refer
to these architectures as artificial neural network accelerators,
or ANN accelerators.

The second class of architectures, TrueNorth [2], SpiN-
Naker [25], and Neurogrid [4] to name a few, are based on
biologically plausible models of spiking neurons. We refer to

Ali Shafiee
School of Computing
University of Utah

Rajeev Balasubramonian
School of Computing
University of Utah

these architectures as spiking neural network accelerators, or
SNN accelerators.

The goal of this paper is not to compare ANN vs. SNN
accelerators. To date, only one study, by Du et al. [13],
has performed a head-to-head comparison of ANN and SNN
accelerators. While that study is an excellent start to an impor-
tant debate, it draws limited conclusions for small-scale chips
executing small-scale networks. For example, they conclude
that SNNs achieve significantly lower accuracy than ANNs
on MNIST, but concurrent work [14,15] developed better
training algorithms for SNNs and achieved 99.42% accuracy
on MNIST. Du et al. investigate chips with no more than 110
artificial neurons and 300 spiking neurons. We mention these
examples to highlight that the comparison between ANNs and
SNNss is far from being resolved, and will likely play out over
the coming decade.

In the meantime, advances are required for both ANNs and
SNNs. At the moment, much of the architecture research has
focused on ANNs. As a result, ANNs are ahead of SNNs
on a variety of metrics (see Table I). This paper attempts to
bridge that gap by designing better SNN architectures that can
keep up with the high throughput and energy efficiency being
achieved on state-of-the-art ANNS.

The most high-profile and most efficient SNN architecture
to date is IBM’s TrueNorth. It is a 5.4 billion transistor chip
that can model 1 million neurons and 256 million synapses
while consuming less than 100 mW. TrueNorth achieves high
tile-level parallelism, and makes a number of design choices
that impose constraints on the application, while reducing
power and storage requirements. However, we see in Table I
that TrueNorth lags behind state-of-the-art ANN accelerators
on all metrics, notably throughput and energy. Therefore,
drawing inspiration from recent ANN architectures, we un-
dertake an overhaul of the TrueNorth design.

We describe an SNN accelerator that leverages memristor
crossbars to aggregate the effects of input spikes in the analog
domain. By effectively using in-situ computing, memristor
crossbars have been shown to achieve high parallelism and
storage density in the ISAAC [37] and PRIME [9] ANN
accelerators. We describe the many changes required to adapt a
crossbar-based architecture for an SNN. In particular, the man-
agement of neuron potentials represents the biggest challenge,
and the sparse spike rate represents the biggest opportunity.
The former requires additional storage overheads, and the

Network Type Accuracy

Throughput (TOPs/s) Energy per operation (pJ/op)

MNIST | CIFAR-10 | AlexNet Digital | Analog Digital | Analog
[ANN [99.77% [10] | 96.53% [17] | 89% [26] | 9 3.8 [% B7] [32 3.5 [15 7]]
[SNN [99.42% [14] | 89.32% [15] | 82.5% [21] | 0.058 [2] [007 29] (412 [035 29]]
TABLE I

COMPARISON OF ACCURACY, THROUGHPUT, AND ENERGY EFFICIENCY FOR STATE-OF-THE-ART ANNS AND SNNS. THE DIGITAL SNN NUMBERS
CORRESPOND TO TRUENORTH [2]. THE ENERGY NUMBER FOR THE ANALOG SNN ACCELERATOR IS FOR A SMALL-SCALE 32-NEURON
IMPLEMENTATION [29].

latter enables low overheads for analog-to-digital conversion
(ADC). We carry out a design space exploration to identify
the best provisioning of resources for this mixed-signal archi-
tecture.

II. BACKGROUND

Artificial neurons were developed more than 70 years
ago [30]. Artificial neurons receive synchronous real-valued
inputs, perform a dot-product of these inputs with weights,
apply an activation function (often ReLU), and pass real-
valued outputs to the next layer of artificial neurons. In
addition to many decades of progress, the past decade has seen
significant advances with artificial neurons, primarily because
of our ability to train deep networks with a combination of
new techniques.

A. Spiking Neurons

While neuroscientists have delved into the mechanics of
the biological neuron for decades [20], it has only recently
received attention from the architecture community. A number
of high-profile projects [2,4,25] have attempted to implement
biologically plausible neuron models in hardware. Many of
these hardware projects implement neuron models that are
highly simplified, but that can emulate many biologically
observed neuron behaviors, e.g., the Izhikevich neurons [34].

The most popular of these simple neuron models is the
Linear Leaky Integrate and Fire model (LLIF), shown in
Figure 1. An LLIF neuron is stateful — in addition to synaptic
weights, it retains the value of its (membrane) potential. This
potential reflects inputs that have been received in the recent
past. Inputs are received in the form of binary spikes. When
a spike is received on an input, the synaptic weight for that
input is added to the potential (see Figure 1). In every cycle, a
leak is also subtracted from the potential. When the neuron’s
potential eventually reaches a specified threshold, the neuron
produces an output spike of its own. After the spike, the neuron
potential is reset.

Spiking neurons have the potential to be hardware-efficient
because inputs and outputs are binary spikes, i.e., a communi-
cation link between neurons requires a single bit. Further, the
spiking neuron model does not require a multiplier — because
the input is binary, the synaptic weight is simply added to the
potential. Spikes can therefore lead to efficient communication
and computation.

Because a neuron is designed to respond after observing
spikes over time, the input is provided over an input interval,
say 500 cycles. Figure 2 shows how each pixel of an input

Time

In2 I I

Weight 2 increment | ,,QUtPUt spike

Weight 1 increment

~ieo—Threshold
Reset potential

Leak
Neuron Potential

Out Out I

Fig. 1. A basic 2-input LLIF spiking neuron. The figure shows how the
neuron potential is incremented when input spikes are received, how a leak
is subtracted when there are no input spikes, and how an output spike is
produced when the potential crosses the threshold.

Input Interval

>

IIIIIIIIRedpier

Spike trains for each pixel

White pixel

Input Image
White pixel

Fig. 2. Example of an input image being converted into a number of input
spike trains that are fed to a spiking neural network.

image is converted into a spike train that extends across an
input interval. These spike trains are fed as inputs to the first
layer of neurons. Prior work has primarily used rate codes that
convert an input pixel value into a certain number of spikes.
For example, a red pixel value may be converted into 50 evenly
spaced spikes in 500 cycles, while a blue pixel value may be
converted into 125 evenly spaced spikes in the input interval.
The same encoding is typically used throughout the network,
i.e., information is carried in terms of spike intensity. The
code also includes an element of stochasticity, e.g., a rate code
typically uses a Poisson distribution to inject spikes [1].
Spiking neurons are typically trained with a biologically
plausible process called STDP (Spike Timing Dependent Plas-
ticity [16]). This is an unsupervised training method where
each neuron adjusts its weights based on a local process. Re-
cent studies have been unable to achieve high accuracies with
STDP-based training [13,36]. Therefore, more recent works

have resorted to supervised backpropagation-based training for
spiking networks [14, 15].

B. SNN Accelerators

IBM’s TrueNorth processor [32] is the most prominent
example of a digital architecture for large SNNs. We will
use TrueNorth as the SNN baseline in this work because it
achieves best-in-class throughput and energy efficiency.

TrueNorth is composed of many tiles, where each tile
implements 256 neurons, each with 256 inputs. The tiles
communicate through an on-chip and potentially an off-chip
network. The tiles use a mix of asynchronous and synchronous
circuits to boost energy efficiency. In every 1ms “tick”, a tile
processes all received input spikes; any resulting output spikes
are sent through the network to neurons in the next layer so
they can be processed in a subsequent tick. TrueNorth imple-
ments an LLIF neuron model with a number of configurable
parameters, including some that allow stochastic behavior.
Within a tick, the tile sequentially walks through every neuron
in that tile and every input spike to perform several updates
to each neuron potential. For each neuron, it reads a 410-
bit SRAM row that contains all parameters for that neuron,
including a 256-bit vector indicating which tile inputs connect
to that neuron. This bit vector is reconciled with the list of
input spikes in that tick to identify spiking connections for
that neuron. The synaptic weight for each of these connections
is then sent to a synchronous neuron unit that performs the
necessary arithmetic operations. This unit adds the synaptic
weights to the neuron’s potential. Finally, the leak is subtracted
and the potential is compared against the threshold. In case of
an output spike, the neuron potential is reset. The final neuron
potential is then written back to the SRAM bank. The 12.8 KB
SRAM bank occupies nearly half the tile area and one-third
the tile power. A tile processes a single synapse at a time. The
tick is long enough (1ms) to process all possible input spikes
and neurons sequentially.

To further reduce storage requirements and energy,
TrueNorth imposes several constraints on the neural network.
It only uses 4 quantized 9-bit weights per neuron. It also forces
an input spike to share the same weight type with all neurons
in that tile. A neuron’s output can only be seen by the 256
neurons in one tile. A neuron can only receive at most 256
inputs.

SpiNNaker [25] is another prominent SNN architecture that
uses many low-power general-purpose ARM cores to perform
several parallel neuron updates. It is well known that custom
ASICs will out-perform general-purpose cores by at least two
orders of magnitude [18], so we will not explore SpiNNaker-
style architectures in this paper.

A few projects have attempted to implement neurons and
synapses with analog devices, typically using capacitors or
memristors to emulate neuronal behavior [2, 28,29, 42]. These
projects have focused more on device innovations to repro-
duce neuron behavior, and have not focused on architectural
innovations to boost throughput. For example, Liu et al. [29]
implement a single 32x64 memristive crossbar to execute

feedforward and Hopfield networks. The crossbar performs
the synaptic operations, and an analog integrate-and-fire circuit
models the neuron. But, maintaining the neuron potential in an
analog circuit can incur a very high area overhead, especially
in large-scale convolutional networks where the number of
neurons far exceeds the number of (shared) synapses. How-
ever, we do believe that analog circuits have a lot to offer [23]
and we will use the analog domain in a limited manner to
accelerate the neuron update.

C. ANN Accelerators

Our proposed architecture is inspired by the best practices in
state-of-the-art ANN accelerators. We first discuss the analog
approach, followed by the digital approach.

Voltage X,
Conductance W/
X

2

%
%
|
|

S+H [| S+H S+H [| S+H

| ADC |
I
| S+A |

"
A

W,
X3

X,W3+X,W,

XWX Wt X Wt X, W,

Fig. 3. (a) An example 4x4 memristor xbar connected to peripheral circuits.
(b) The conductance of the memristor corresponds to the synaptic weight and
the voltage corresponds to the spike input. The current at the end of the bitline
is the dot-product of input spikes and synaptic weights.

Two architectures introduced in the past year, ISAAC [37]
and PRIME [9], have leveraged memristor crossbars to per-
form dot product operations in the analog domain and ac-
celerate deep convolutional neural networks. We will focus
on ISAAC here because it out-performs PRIME in terms of
throughput, accuracy, and ability to handle signed values. We
note that a few other papers have also analyzed the circuits
required in crossbar-based accelerators [11,40,43].

A memristor crossbar uses Kirchoff’s Law to produce a sum
of products, as shown in Figure 3. Inputs are provided as a
vector of voltages; the memristor conductances in the crossbar
represent synaptic weights of neurons; the emerging bitline
currents are neuron outputs (before the activation function)
because they represent the dot products of input voltages and
synaptic weights. This is an example of in-situ computing
because the crossbars are not only used to store weights, but
also perform computations on them. ISAAC uses a number of
crossbars in a tiled architecture to process all layers of a deep
network in parallel. It distributes computations across time and
space to manage the high costs of analog-to-digital conversion
(ADC). Even with such techniques, the ADCs account for a
large fraction of chip power and area. To support sufficient
precision, ISAAC employs 8-bit ADCs to capture the largest
possible dot-product emerging from a crossbar bitline. The dot

products, after analog to digital conversion, are aggregated
with digital ALUs. eDRAM banks are used to store neuron
outputs until they are consumed by the next layer. By setting
up a pipeline from layer to layer, a relatively small set of
outputs has to be buffered, which can be accommodated in
a 64 KB eDRAM unit per tile. Since a dense crossbar is
used to store the weights and perform computation, ISAAC
is able to dramatically reduce data movement, and increase
computation/storage density.

We next describe recent digital ANN architectures. The
DianNao [6] and DaDianNao [8] accelerators were among
the first to target deep convolutional networks. DianNao de-
signs the digital circuits for a basic NFU (Neural Functional
Unit) that can process 16 inputs to 16 neurons in parallel.
DaDianNao is a tiled architecture where each tile has an
NFU and eDRAM banks that feed synaptic weights to that
NFU. DaDianNao uses many tiles on many chips to parallelize
the processing of a single network layer. Once that layer is
processed, all the tiles then move on to processing the next
layer in parallel. Thus, the keys to DaDianNao’s efficiency
are: (i) localized data movement (from local eDRAM bank to
nearby NFU), and (ii) time-multiplexed execution of several
neurons and several network layers on a small set of SIMD
execution units (the NFUs). Other recent papers have proposed
innovations to digital ANN accelerators that primarily exploit
sparsity [3,35,38]. Since digital ANN accelerators are nearly
an order of magnitude slower than ISAAC [37], we will not
consider them further in this paper.

III. THE INXS ARCHITECTURE
A. Overview

As described in the previous section, the best SNN accel-
erator to date, TrueNorth, suffers from a few weaknesses:

1) There is no intra-tile parallelism while performing neuron

updates.

2) Each input spike to a neuron is handled sequentially.

3) To reduce the storage and energy overheads, significant
approximations have to be made for the synaptic weight
values.

4) A neuron can only have at most 256 inputs and its output
can be seen by at most 256 other neurons connected to
one axon.

We design a mixed-signal architecture, INXS!, that ad-
dresses all of the above problems, and can efficiently handle
state-of-the-art deep networks. A large number of memristor
crossbars are used to process the many incoming spikes in
a tick, and compute the resulting potential increments in
parallel. The potential increments are immediately converted to
digital signals. The neuron potentials are retrieved from SRAM
buffers with wide reads, added to the increments, thresholded,
and written back to SRAM. The resulting spikes are routed
to the next layers so they can be processed in the next tick.
Many crossbars work in unison on different layers of the neural
network to set up an efficient pipeline.

'INXS, pronounced “in excess” is short for IN-situ Xbar Spiking

The key contributions of this design are:

1) It offers very high pipelined parallelism with many cross-
bars, not only working on many SNN layers in parallel
(as in TrueNorth), but also working on many neuron
update values and many input spikes in parallel (unlike
TrueNorth). In most cases, the pipeline operates as an
odd-even pipeline, working on analog crossbar operations
in odd ticks, and digital neuron updates in even ticks.

2) While some prior works [29] have implemented a cross-
bar in tandem with analog neurons, we observe here
that in a convolutional network, a set of shared weights
are used to compute several neurons. The use of analog
neurons would require a single crossbar bitline to be
multiplexed across many analog circuits, resulting in sig-
nificant overheads. Therefore, we immediately convert the
analog crossbar output into a digital signal and perform
the even phase in the digital domain.

3) We lay out several design details and carefully consider
the overheads of each module. We follow with a design
space exploration to identify how best to provision the
resources per tile.

4) The resulting architecture differs from the state-of-the-
art ANN accelerator, ISAAC, in the following ways: (i)
ISAAC requires a 22-stage pipeline while INXS only
requires a 2-stage pipeline to process a single neuron in
one layer, (ii)) INXS uses a low-resolution ADC because
of observed sparsity, thus achieving higher throughput per
area, and (iii) it allocates more area for central storage
and neuron update.

5) The resulting architecture differs from the state-of-the-
art SNN accelerator, TrueNorth, in the following ways:
(i) INXS does not constrain neuron input/outputs and
weights in any way, (ii) it offers orders of magnitude
higher parallelism and throughput, and (iii) it achieves
lower energy per operation by boosting throughput and
lowering the contribution of leakage.

B. Implementation Details

Overall Chip Organization

INXS is designed to be modular and hierarchical. Figure 4
shows that a chip is composed of several tiles connected with a
mesh network. The many layers of an SNN are scattered across
these tiles. Figure 4 also zooms into one of these tiles. A tile
has central SRAM buffers, Neuron Units, Synaptic Units, and
a router. The Synaptic Units, Neuron Units, and the router in
a tile are connected by a unidirectional ring network. The ring
network has North, South, East, West, and Hub stations — the
Hub is used to switch to the inter-tile mesh network. Figure 5
shows the details of a Synaptic and Neuron Unit in a tile. Each
Synaptic Unit is composed of multiple memristor crossbars
and ADCs. The Neuron Unit has the adders and thresholding
logic to implement the neuron model. Next, we’ll walk through
the operations required to execute a single convolutional layer.
The Odd Phase

In every odd tick, all the crossbars on the chip receive
inputs from their input buffers. A tick is assumed to be at least

\

North
I Synaptic Unit
Neuron unit
w = = (%}
§ [) CB-2 [0) §
_nc: E < S % m
< o |S|cB1 cB-4 (S =8
c s Slc
S = CB-3 ==
=3 oY | =
Neuron unit
South
Synaptic Unit

Fig. 4. INXS tiled architecture and details of one tile.

Xb+ || Xb+
ADC || ADC || | u
I
Xb+ || Xb+ || B
ADC || ADC
‘ Xb+ |[Xo+ Xb+ || Xb+
ADC || ADC || | | || Abc || Abc
Xb+ || xb+ || B B || xb+ || xb+
ADC || ADC ADC || ADC

OUTPUT BUS

xXW;

=0 ~ Viemfrom
from Synaptic Unit central buffer
output buffer l

Rin

Update V.,

To OB
West <0} To Neuron Unit

From

East

(a) North Synaptic Unit (b) Neuron Unit

Fig. 5. (a) Synaptic Unit. (b) Neuron Unit. (The exact number of xbars,
ADCs, adders, etc. vary in our optimal design points.)

100 ns [37] to allow sufficient time to perform a crossbar read
and capture all the bitline outputs in sample and hold circuits.
This phase exploits very high parallelism in the analog domain
to estimate the effect of every incoming spike on the potential
of several neurons.

We’ll assume that a crossbar has R rows and C' columns of
w-bit cells. We’ll assume that weights and neuron potentials
are stored with p-bit fixed-point precision. Depending on the
values of p and w, a single synaptic weight may be spread
across multiple cells in a row. If a neuron has more than R
inputs, its calculation will be spread across multiple crossbars,
and potentially multiple Synaptic units.

The Even Phase

The even phase is itself composed of several small “cycles”.
In the first cycle, the ADC processes the first bitline output.
The results of multiple bitlines (after ADC) have to be
aggregated with shift-and-add circuits in the Synaptic Unit
because they represent contributions from different bits of the
synaptic weights. If a neuron has more than R inputs and is
spread across multiple crossbars, those partial results have to
be aggregated as well. Once the partial result within a Synaptic
Unit has been aggregated, this potential increment is placed
on the output bus. The potential increment is routed to that
neuron’s home, possibly navigating 0 or more hops on the ring

network and 0 or more hops on the mesh network. Once the
partial sums are generated, the routing logic in each synaptic
unit routes them to their respective neuron home through the
ring bus if it resides in the same tile, or through the mesh
network if the neuron home is in another tile. The partial
sums are stored in the output buffer, which acts as input to
the Neuron Unit.

Once the increment reaches the neuron home, it is added to
the neuron’s potential and leak in the Neuron Unit. To enable
this addition, the neuron potential has to be read from the
central SRAM buffer in the previous cycle. Once the new
neuron potential is calculated, it is thresholded, and the final
neuron potential is written back to the SRAM buffer. The
generated spike is then sent over the ring and mesh networks
to a destination input buffer, where it will be accessed in the
next Odd Phase.

All of these operations are performed deterministically and
controlled by finite state machines in Synaptic and Neuron
Units. The control signals for the finite state machines would
be generated at compile time and loaded into the chip along
with the weights for each network layer. We assume that the
leak and threshold are the same for all neurons in a layer [5,
12]. We provision the network, SRAM buffer, and adders
with sufficient bandwidth so they can handle the worst-case
network layers in our evaluated workloads without introducing
any structural hazards and contention. If such a chip had to
evaluate an even larger network (say, more neurons or more
inputs per neuron), it can do so, but would require multiple
ticks to process the Even Phase.

Current Input
1 1 1 1 1 1
1B 1 1 : 1 1 1
previneut | 1 xbar |i] apc |if s+a [i] o8 |i] aoo |i| Vv
th
CB_ | [I 1 ! !
1 12 1 3 4 1 5 1 6 1 7

Fig. 6. INXS pipeline. IB - Input Buffer, CB - Central Buffer, OB - Output
Buffer

Figure 6 shows the many pipeline stages that must be
navigated for one neuron computation. At compile time, we
would estimate the number of cycles required for one neuron
increment, starting from the ADC, all the way until the
resulting spike is placed in the next layer’s input buffer. This
number S will vary across layers and workloads depending
on the required number of network hops. As each ADC
sequentially walks through the C bitlines in its corresponding
crossbar, new values begin navigating this S-stage pipeline.
Therefore, the Even Phase will complete after C' 4+ S cycles.
The length of a tick is therefore variable across workloads, and
is a function of the worst-case network layer in each workload.

Because consecutive network layers will typically map to
adjacent tile quadrants or tiles, most communication in the
network tends to be nearest-neighbor communication.

An Example Design Point

We carry out a design space exploration, where we vary a

number of INXS parameters:

o Number of memristor xbars in a Synaptic Unit
e Number of Synaptic Units in a tile

o Number of Neuron Units in a tile

o Central buffer size

For each of these design parameters, we sweep through our
example workloads and provision the bandwidths of each
module so they can handle the worst-case layers. We then
estimate the throughput, area, and power for each design point
for our workloads. In Section V, we show the design points
that optimize throughput/area and throughput/power.

To make our architecture more concrete, we walk through
the parameters selected for the optimal throughput/area design
point, while assuming 16-bit fixed-point computations. This
design uses 64 crossbars in a Synaptic Unit, and 8 Synaptic
Units in each tile. The crossbar has 256 rows and 128 columns,
and stores 2 bits per cell. The bus within a Synaptic Unit,
the ring network, and the mesh network all have a width of
128 bits. Each of the 8 SRAM central buffers in a tile has
a capacity of 128 KB, a row width of 128 bytes, and a read
latency of 0.57 ns. The Neuron Unit contains 8 3-input adders
and 8 comparators to perform the neuron activation.

Balancing the Pipeline

In one Odd/Even Phase, a convolutional kernel in a layer is
applied to one set of inputs to produce one output neuron. This
process has to be repeated over several Odd/Even Phases until
the kernel has been applied to an entire set of input feature
maps. Some layers have less work to do than others. Those
layers can either idle in some cycles or we can replicate the
weights and boost the throughputs of the work-intensive layers
so every crossbar is busy in every cycle. Such replication leads
to a balanced pipeline, similar to the one employed in ISAAC.

In our workload evaluations, we also observe that the spike
rate is relatively sparse and that the maximum observed output
from a bitline is significantly smaller than the worst-case
output. While a 256x128 memristor xbar would need a 10-
bit ADC to capture its worst-case output, we observe enough
sparsity in our applications that an 8-bit ADC is actually
sufficient. This significantly boosts the throughput/area and
throughput/power metrics, while having zero impact on accu-
racy. We envision that a developer would have to run simula-
tions to confirm that the ADC precision is rarely exceeded at
run-time; if it is, such overflows can be avoided by mapping
fewer inputs to every crossbar column.

Neuron Model

Note that we are implementing a simple LLIF neuron
model. We are not modeling the many modes and stochastic
features implemented by TrueNorth. The adder/thresholding
unit can be augmented to handle these additional modes and
we leave these as future work. It is worth noting that the
adder/thresholding unit occupies 0.6% of tile area, so even
if its size is increased by 10X, its overhead would be small.
For this study, we assume that all pooling layers use average
pooling, because average pooling is more amenable to crossbar
acceleration than max pooling.

Routing Table

The outputs produced by bitlines of a crossbar are routed
to the same neuron unit, and eventually to the same set of
destination crossbars in the next layer. Each crossbar therefore
has a single register that is used to route the result to its neuron
home. The neuron home has a routing table that has one entry
for each neuron. That entry keeps track of all the crossbars in
the next layer that must receive the spike resulting from that
neuron. We calculate the number of entries by analyzing the
state-of-the-art neural networks like MSRA and VGG-NET.
Based on our analysis, we fix the number of crossbars that
each neuron output can connect to as 512 (128K neurons,
512x better than TrueNorth). We size these structures so they
can handle the largest deep network to date; the resulting size
of the routing table is 25.5 KB.

IV. METHODOLOGY

We use the following metrics to evaluate the various design

points:

« Computational Efficiency(CE): Peak number of 16-bit
operations performed per second per mm?.

o Energy Efficiency (EE): Peak number of 16-bit opera-
tions performed per second per Watt.

« Storage Efficiency (SE): Mega bytes of storage per mm?.
This includes synaptic storage in crossbars and neuron
potential storage in SRAM central buffer.

o Energy consumed for entire state-of-the-art deep net-
works (VGG-NET and MSRA).

For our power and area analyses at 32nm technology, we
use CACTI [33] for SRAM buffers, ORION 2.0 [24] for
router and interconnect evaluation, the models of Shafiee et
al. [37] for CMOS-compatible TaOx memristor crossbars, and
recent adder/comparator models [31,41]. We use [27] for ADC
evaluation.

We use a manual process (emulating a future compiler)
to map the different network layers of our workloads to
crossbars/tiles while not exceeding any of the available re-
sources, and while replicating layers to maintain a balanced
pipeline. As described in Section III-B, we estimate the length
of a tick (107 ns) based on the worst-case C' + S value
for our workloads. The length of each cycle is 0.78 ns and
is determined by the latency to process one ADC sample.
The overall performance is determined with an analytical
model that considers the sizes of each network layer. For
our evaluvation we calculate the C' + S value for each layer.
The delay of one access to the central buffer dictates the
frequency in configurations with really large central buffer.
Note that cycle-accurate simulations are not required because
the workloads do not encounter any conditional structural
hazards.

Hunsberger et al. [22] show that convolutional neural net-
works can be mapped to SNNs while achieving very sim-
ilar accuracy. In a similar vein, we use two state-of-the-art
deep convolutional networks for image classification, VGG-
NET [39] and MSRA [19], to evaluate INXS. Since we need to
find a design point that performs well on both fully connected

SNNs and convolutional SNNs, we pick VGG-NET (it has
the most neurons/layer in Convl) and MSRA (it has the most
number of inputs/neuron in FC1).

ISAAC uses a 128x128 crossbar and an 8-bit ADC so
bits are never dropped. The use of a modest crossbar size
keeps noise in check and allows use of a low-resolution ADC.
Given the inherent sparsity of spikes in an SNN, we allow use
of a 256x 128 crossbar while still using an 8-bit ADC. We
also explore the use of a 6-bit ADC that assumes sufficient
sparsity in spikes. Note that applications with high spike rates
would be forced to use a subset of crossbar rows so the ADC
precision is rarely exceeded. As a sensitivity study, we also
explore use of a 6-bit ADC in tandem with 1-bit memristor
cells that is guaranteed to not drop bits — while this design
has a lower overhead for ADCs, it uses more crossbars to
represent synaptic weights. Our results show that this design
point does not match a design with an 8-bit ADC in tandem
with 2-bit memristor cells, so we will not discuss it further.

V. RESULTS
A. INXS design space exploration

For all our results, we evaluate metrics across a number
of design points. The X-axis in most figures describes these
design points as a X b x ¢ X d, where a x b describes the number
of crossbars in a Synaptic Unit, ¢ represents the number of
Synaptic Units per tile, and d represents the capacity of central
buffer in a tile (in KB). Note that in a convolutional layer, a
single crossbar can produce results for several neurons across
several ticks. The size of the central buffer puts a cap on
the number of neurons that can be produced locally by the
corresponding synaptic units.

We first evaluate peak computational efficiency, shown
in Figure 7, for the INXS design as we vary our design
parameters. Similarly, Figures 8 and 9 quantify the EE and
SE metrics respectively. The main observation from these
figures is that all these metrics improve when the central buffer
size is reduced. This is because peak metrics are primarily
impacted by the number of crossbars, which offer high storage
and computation. Note that SE is a sum of neuron and
synaptic density. Providing a large SRAM buffer increases
neuron density (and is helpful to convolutional layers), but
decreases synaptic density (not helpful to fully connected
layers). Clearly, the latter effect is more dominant in this
analysis of peak performance, so we see a drop in SE when
CB size is increased. Figure 10 further breaks the SE metric
into neuron and synaptic density.

While peak CE, EE, and SE are useful metrics and favor
crossbar computation over neuron potential storage, deep
networks with large convolutional layers benefit more from
neuron potential storage. Therefore, ultimately, we need to
evaluate INXS designs on state-of-the-art deep networks, e.g.,
VGG and MSRA. Figures 11 and 12 show the energy for
different design points for these two workloads. These real
workloads exhibit the best metrics when using larger cen-
tral buffer sizes. Based on this analysis, we pick an ideal
design point that does reasonably well for both workloads:

16000
14000
12000
10000

8000

6000
4000 I
2000 I I
o Is.

CE (GOPS/s/mm2)

- I
S O D o &) QD o O “ o N
Gl Wsrs \@@‘ h\e*ﬁv*ﬁ*@“ﬁ& o «P‘& "dﬁ ﬁp%@‘y 3’& 3’"& ~3’$ 13’"3’ 43’*& ‘b’&p$’&4b‘b’&+ &3 @y @&N
“‘*v o o IS b«w@wu&n\%&%%%%ngg%&%@%&
Fig. 7. Computational efficiency of INXS for various configurations.
6000
5000
4000
%3000
g
Py
S
8 2000
b
1000
0
> &> > O N O O D S > » \J ‘1« b\ Q> o O
-00-“&*»“&“94?4?0"’%"'”0+%<z>+%*+\ WV o2 o
o +«r+ R g e I SIS ©@+
""Luxx‘f" ELas ey & v“ ¥ b+‘* b‘+ P o o 5;* @* 0y $® &3

& S
S &F & o
o S Q,+

Fig. 8. Energy efﬁc1ency of INXS for various configurations.

3.5

M-synapses/mm2
° 5 r
Sl T
2
7
S —
7 —
L P
**7—
*6‘—
@—
-
]
1
—
——
——
——

¢ b L R SR, A T S S S S AR o
G g e I
b?‘!x* ST W W \x +\x w\x %_&‘\» %& BT X BT BT o P oF ég, ég, @g,

Flg 10. M- synapses/mm and K—Neurons/mm2 for various INXS configu-
rations.

8x8x8x128. For this ideal design point, Figures 13 and 14
show a breakdown of the area and energy required by the
different layers of the deep networks. Table II summarizes the
area and power of each component in an INXS tile.

Contrary to what we saw earlier for peak CE, EE, and
SE metrics, the configurations with large central buffer per-
form well on MSRA and VGG-NET. The reason for this is
the overhead of inter-tile and intra-tile interconnect energy.
Configurations with small central buffers engage in more
intra- and inter-tile communication which increases energy
significantly. This is especially true for convolutional layers.
Fully-connected classifier layers, on the other hand, benefit
more from crossbars than from large buffers. But in these
large workloads, the convolutional layers dominate (see per
layer breakdown in Figures 13 and 14).

25
20

15

| ‘I
5
0
© o
I
§ ¥
¥y F
F ¥
&

¢
§
N
¥

Energy (mJ)

g, > I
s —

Fig. 11. Energy (for 1 image) estimates of different INXS configurations for
VGG-NET.

90

Energy (mJ)
b N w oA o 9 N @
c 5 8 8 8 8 38 3 8

.25
P, %05

Txqy, g
Trqy, o
Trgy, g
Trgy, 4y
g I
sz, I
g, g
4)(4)(4)(128
Ixq,
o, —
. —
o —
"o —
8)@‘8*16]
8)@(&32
8)@(‘7*64
iz
el
"z

ir2ss

8
M1 .
25 I
Sxavg,, 0s
|

Praxg, o
9
)«1,(4)(S5
8,
8,
8,

Fig. 12. Energy (for 1 image) estimates of different INXS configurations for
MSRA.

300
250
200

150

Energy (uJ)

100

o mEE_

Convl Conv2 Conv3d Conv4 Convs Convé Conv7 Conv8 fcl

Fig. 13. Energy estimate of INXS (8x8x8x128) for different layers of VGG-
NET.

2500

2000

1500

: I I I I I I
> '5 3 .y
(lo‘\‘k :,0 «A o 4’\ \[»

< & g\} \& g

Energy (ul)

g

& s

S

Fig. 14. Energy estimate of INXS (8x8x8x128) for different layers of MSRA.

B. Comparison to TrueNorth

Next, we compare INXS metrics to those of TrueNorth.
Table III summarizes the key metrics. Because of the high

[Component [Description [Area (um?) [Power (mW)]
Memristor xbar 512 8K 307.2
ADC 512 136K 1024
Shift and Add 512 30.7K 25.6
Router 128b Flit, 5-ports 253K 107
Input Buffer 4KB 489K 102.4
Output Buffer 2.5KB 36.6K 7.2
Central Buffer 128KB 1,738K 304
Interconnects 128b output bus, 128b 61K 135.7
ring bus
Functional Units | 8 adders and com- 15K 4
parators
Routing table 12.75KB 21K 12.1
Tile 64 xbars/SU, 8 SU, 8 [2.8 mm? 2030 mW
NU

TABLE 11
INXS AREA AND POWER BREAKDOWN (FOR ONE 8X8X8X128 TILE
CONFIGURATION). SU: SYNAPTIC UNIT, NU: NEURON UNIT.

parallelism in INXS, it achieves three orders of magnitude
higher performance/area than TrueNorth. Because of the high
ADC overhead, INXS has only a 10x improvement over
TrueNorth in terms of EE. Using memristor xbars gives us
significant density for synaptic storage compared to the SRAM
storage used in TrueNorth. This also helps us eliminate the
need for quantization of synaptic weights. INXS has a much
larger advantage in terms of neuron density — it balances
resources appropriately by recognizing that convolutional lay-
ers need large central buffers and low synaptic storage. The
routing table employed in each neuron unit removes the
severe constraints imposed by TrueNorth on the number of
inputs/outputs to a neuron. As explained earlier, we achieve a
more flexible architecture with the maximum number of inputs
a neuron can receive being 512 higher than that TrueNorth.

[Metric [TrueNorth [INXS [Improvement |

EE (GOPS/s/W) 400 4.1K 10.4x

CE (GOPS/mm?) 0.703 2.2K 3129x
SE (MB)/mm? 0.138 2.06 15x

ND (Neurons/mm?) 2.73K 866K 363.5x
SD (Synapses/mm?) 0.65M 1.497M 2.2x
Neuron connectivity 256 128K 512x

TABLE III

INXS COMPARISON WITH TRUENORTH. ND-NEURON DENSITY,
SD-SYNAPTIC DENSITY

VI. CONCLUSIONS

In this work, we show that the use of a memristor cross-
bar can significantly accelerate the computations required by
SNNs. The resulting architecture not only removes the con-
straints posed by the state-of-the-art TrueNorth architecture,
it also surpasses TrueNorth on all metrics by one to three
orders of magnitude. The INXS architecture takes a significant
step in bridging the current large gap between ANN and SNN
accelerators.

[1

—

[4

=

[5]

[6]

[7]

[8

[t}

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
(171

[18]

[19]

[20]

[21]
[22]

[23]

REFERENCES

K. Ahmed, A. Shrestha, Q. Qiu, and Q. Wu, “Probabilistic Inference Us-
ing Stochastic Spiking Neural Networks on a Neurosynaptic Processor,”
in Proceedings of IJCNN, 2015.

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba,
M. Beakes, B. Brezzo, J. Kuang, R. Manohar, W. Risk, B. Jackson, and
D. Modha, “TrueNorth: Design and Tool Flow of a 65mW 1 Million
Neuron Programmable Neurosynaptic Chip,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34(10), 2015.

J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. Jerger, and
A. Moshovos, “Cnvlutin: Zero-Neuron-Free Deep Convolutional Neural
Network Computing,” in Proceedings of ISCA-43, 2016.

B. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. Chandrasekaran,
J. Bussat, R. Alvarez-Icaza, J. Arthur, P. Merolla, and K. Boahen,
“Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale
Neural Simulations,” Proceedings of the IEEE, vol. 102(5), 2014.

Y. Cao, Y. Chen, and D. Khosla, “Spiking Deep Convolutional Neural
Networks for Energy-Efficient Object Recognition,” International Jour-
nal of Computer Vision, vol. 113(1), 2015.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Di-
anNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous
Machine-Learning,” in Proceedings of ASPLOS, 2014.

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks,” in
Proceedings of ISCA-43, 2016.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun et al., “DaDianNao: A Machine-Learning Supercomputer,” in
Proceedings of MICRO-47, 2014.

P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang,
and Y. Xie, “PRIME: A Novel Processing-In-Memory Architecture
for Neural Network Computation in ReRAM-based Main Memory,” in
Proceedings of ISCA-43, 2016.

D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-Column Deep Neural
Networks for Image Classification,” in Proceedings of CVPR, 2012.
C.Yakopcic, M.Z.Alom, and T.M.Taha, “Memristor Crossbar Deep Net-
work Implementation Based on a Convolutional Neural Network,” in
Proceedings of IJCNN, 2016.

P. Diehl, D. Neil, J. Binas, M. Cook, S. Liu, and M. Pfeiffer, “Fast-
Classifying, High-Accuracy Spiking Deep Networks Through Weight
and Threshold Balancing,” in Proceedings of IJCNN, 2015.

Z. Du, D. Rubin, Y. Chen, L. He, T. Chen, L. Zhang, C. Wu,
and O. Temam, “Neuromorphic Accelerators: A Comparison Between
Neuroscience and Machine-Learning Approaches,” in Proceedings of
MICRO-48, 2015.

S. Esser, R. Appuswamy, P. Merolla, J. Arthur, and D. Modha,
“Backpropagation for Energy-Efficient Neuromorphic Computing,” in
Proceedings of NIPS, 2015.

S. Esser, P. Meroll, J.V.Arthur, A.S.Cassidy, R.Appuswamy, A. An-
dreopoulos, D. Berg, J. McKinstry, T.Melano, D. Barch, C. Nolfo,
P. Datta, A. Amir, B. Taba, M. Flickner, and D. Modha, “Convolu-
tional Networks for Fast, Energy-Efficient Neuromorphic Computing,”
in arXiv, 2016.

D. Feldman, “The Spike Timing Dependence of Plasticity,” Neuron, no.
75(4), 2012.

B. Graham, “Fractional Max-Pooling,” arXiv preprint arXiv:1412.6071,
2014.

R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding Sources
of Inefficiency in General-Purpose Chips,” in Proceedings of ISCA,
2010.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,”
arXiv preprint arXiv:1502.01852, 2015.

A. Hodgkin and A. Huxley, “A Quantitative Description of Membrane
Current and its Application to Conduction and Excitation in Nerve,”
Journal of Physiology, no. 117(4), 1952.

E. Hunsberger and C. Eliasmith, “Spiking Deep Networks with LIF
Neurons,” 2015, arXiv preprint 1510.08829.

——, “Training Spiking Deep Networks for Neuromorphic Hardware,”
in arXiv preprint arXiv:1611.05141, 2016.

A. Joubert, B. Belhadj, O. Temam, and R. Héliot, “Hardware Spiking
Neurons Design: Analog or Digital?” in Proceedings of IJCNN, 2012.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

A. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: A Fast and
Accurate NoC Power and Area Model for Early-Stage Design Space
Exploration,” in Proceedings of DATE, 2009.

M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and
S. B. Furber, “SpiNNaker: Mapping Neural Networks onto a Massively-
Parallel Chip Multiprocessor,” in Proceedings of IJCNN, 2008.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Proceedings of NIPS,
2012.

L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Brandli,
M. Kossel, T. Morf, T. M. Andersen, and Y. Leblebici, “A 3.1 mW
8b 1.2 GS/s Single-Channel Asynchronous SAR ADC with Alternate
Comparators for Enhanced Speed in 32 nm Digital SOI CMOS,” Journal
of Solid-State Circuits, 2013.

B. Liu, Y. Chen, B. Wysocki, and T. Huang, “Reconfigurable Neuro-
morphic Computing System with Memristor-Based Synapse Design,”
Neural Processing Letters, no. 41(2), 2015.

C. Liu, B. Yan, C. Yang, L. Song, Z. Li, and B. Liu, “A Spiking
Neuromorphic Design with Resistive Crossbar,” in Proceedings of DAC,
2015.

W. McCulloch and W. Pitts, “A Logical Calculus of the Ideas Immanent
in Nervous Activity,” Bulletin of Mathematical Biophysics, no. 5, 1943.
E. Menendez, D. Maduike, R. Garg, and S. Khatri, “CMOS Comparators
for high-Speed and Low-Power Applications,” in Proceedings of ICCD,
2006.

P. Merolla, J. Arthur, R. Alvarez-Icaza, A. Cassidy, J. Sawada,
F. Akopyan, B. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. Esser, R. Appuswamy, B. Taba, A. Amir, M. Flickner, W. Risk,
R. Manohar, and D. Modha, “A Million Spiking-Neuron Integrated
Circuit with a Scalable Communication Network and Interface,” Science,
vol 345, no. 6197, 2014.

N. Muralimanohar et al., “CACTI 6.0: A Tool to Understand Large
Caches,” University of Utah, Tech. Rep., 2007.

A. Nere, A. Hashmi, M. Lipasti, and G. Tononi, “Bridging the Semantic
Gap: Emulating Biological Neuronal Behaviors with Simple Digital
Neurons,” in Proceedings of HPCA-19, 2013.

B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. Lee, J. M.
Hernandez, Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
Low-Power, High-Accuracy Deep Neural Network Accelerators,” in
Proceedings of ISCA-43, 2016.

J. Seo, B. Brezzo, Y. Liu, B. Parker, S. Esser, R. Montoye, B. Rajendran,
J. Tierno, L. Chang, D. Modha, and D. Friedman, “A 45nm CMOS Neu-
romorphic Chip with a Scalable Architecture for Learning in Networks
of Spiking Neurons,” in Proceedings of CICC, 2011.

A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. Strachan,
M. Hu, R. Williams, and V. Srikumar, “ISAAC: A Convolutional Neural
Network Accelerator with In-Situ Analog Arithmetic in Crossbars,” in
Proceedings of ISCA, 2016.

S.Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and W. Dally,
“EIE: Efficient Inference Engine on Compressed Deep Neural Network,”
in Proceedings of ISCA, 2016.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556,
2014.

T. Taha, R. Hasan, C. Yakopcic, and M. McLean, “Exploring the Design
Space of Specialized Multicore Neural Processors,” in Proceedings of
IJCNN, 2013.

M. Talsania and E. John, “A Comparative Analysis of Parallel Prefix
Adders,” in Proceedings of the International Conference on Computer
Design (CDES), 2013.

T. Tang, L. Xia, B. Li, R. Luo, Y. Chen, Y. Wang, and H. Yang,
“Spiking Neural Network with RRAM: Can We Use It for Real-World
Application?” in Proceedings of DATE, 2015.

C. Yakopcic and T. M. Taha, “Energy Efficient Perceptron Pattern
Recognition using Segmented Memristor Crossbar Arrays,” in Proceed-
ings of IJCNN, 2013.

