
Overcoming the Challenges of Crossbar Resistive Memory Architectures
Cong Xu†, Dimin Niu†, Naveen Muralimanohar¶, Rajeev Balasubramonian]¶,

Tao Zhang†, Shimeng Yu‡, Yuan Xie§†
†Pennsylvania State University {czx102,dun118,tzz106}@cse.psu.edu

¶HP Labs naveen.muralimanohar@hp.com]University of Utah rajeev@cs.utah.edu
‡Arizona State University shimeng.yu@asu.edu

§University of California Santa Barbara yuanxie@ece.ucsb.edu

Abstract
The scalability of DRAM faces challenges from increasing

power consumption and the difficulty of building high aspect
ratio capacitors. Consequently, emerging memory technolo-
gies including Phase Change Memory (PCM), Spin-Transfer
Torque RAM (STT-RAM), and Resistive RAM (ReRAM) are
being actively pursued as replacements for DRAM memory.
Among these candidates, ReRAM has superior characteristics
such as high density, low write energy, and high endurance,
making it a very attractive cost-efficient alternative to DRAM.

In this paper, we present a comprehensive study of ReRAM-
based memory systems. ReRAM’s high density comes from its
unique crossbar architecture where some peripheral circuits
are laid below multiple layers of ReRAM cells. A crossbar ar-
chitecture introduces special constraints on operating voltages,
write latency, and array size. The access latency of a crossbar
is a function of the data patterns involved in a write opera-
tion. These combined with ReRAM’s exponential relationship
between its write voltage and switching latency provide op-
portunities for architectural optimizations. This paper makes
several key contributions. First, we study the crossbar archi-
tecture and describe trade-offs involving voltage drop, write
latency, and data pattern. We then analyze microarchitectural
enhancements such as double-sided ground biasing and multi-
phase reset operations to improve write performance. At the
architecture level, a simple compression based data encoding
scheme is proposed to further bring down the latency. As the
compressibility of a block varies based on its content, write
latency is not uniform across blocks. To mitigate the impact
of slow writes on performance, we propose and evaluate a
novel scheduling policy that makes writing decisions based
on latency and activity of a bank. The experimental results
show that our architecture improves the performance of a sys-
tem using ReRAM-based main memory by about 44% over a
conservative baseline and 14% over an aggressive baseline
on average, and has less than 10% performance degradation
compared to an ideal DRAM-only system.

1. Introduction
DRAM has been used in main memory for more than four
decades. However, recent technological trends seriously chal-
lenge the continued dominance of DRAM, and open up new
possibilities for future main memory systems. Consider the
following trends that shape the landscape of future memories:

This work is supported in part by NSF 1213052, 1461698, 1500848 and
by the Department of Energy under Award Number DE - SC0005026.

• Scalability: DRAM capacitors have inherent limitations for
continued cell scaling. In order to ensure enough noise mar-
gin, the capacitance of a DRAM cell must be maintained
at a relatively constant value regardless of technology scal-
ing. Since the cell capacitance is directly related to the
surface area of the capacitor, as we shrink the cell size, we
have to compensate the decrease in width by increasing the
height of the capacitor. As a result, the aspect ratio of both
trench capacitor and stack capacitor increase rapidly with
technology scaling. Due to limitations in the manufacturing
process, the scaling path of DRAM beyond 16 nm is not
clear according to the ITRS [15].

• Memory Density: The amount of data we process is rapidly
increasing at a rate higher than that of Moore’s law. To meet
this growing demand, in addition to conventional scaling,
industry is exploring other options such as multi-level cell
(MLC), 3D stacking, and multi-layer structure to improve
memory density. Therefore, emerging technologies with
these benefits, such as PCM and ReRAM, are becoming
increasingly attractive for future systems.

• Main Memory as Primary Data Store: Due to the growing
performance gap between main memory and storage, many
emerging workloads have begun to use main memory as the
primary data store. Memcached, SAP HANA, and VoltDB
are some examples of these workloads. Researchers have
been exploring novel architectures around this idea such as
a flat hierarchy with combined memory and storage [38],
and byte addressable persistent memory for high perfor-
mance [7]. With these, there is a demand for not just large
capacity, but also for memories with high availability and
large retention time.

• Refresh Overhead: As the DRAM memory capacity keeps
increasing, static overhead due to refresh operations be-
comes non-trivial [45, 23, 56]. Refresh operations both in-
crease power consumption, and hurt memory performance.
In addition, the refresh cycle time tRFC increases with the
capacity of the DRAM device. For example, the tRFC of
a 4Gb DDR3 DRAM device is about 260ns and that of a
16 Gb DRAM device is predicted to exceed 1µs [23]. For
future large memory systems, technologies with low or zero
static power overhead are preferred over DRAM.

In the past few years, many researchers have explored PCM
technology for main memory – both as a stand-alone memory
or in conjunction with DRAM [19, 37, 57]. While PCM has
many favorable characteristics, there are a few critical draw-
backs that preclude PCM from emerging as a clear winner.

Writing a PCM cell is slow (∼ 300ns) and consumes high
energy (∼ 30pJ) [19], resulting in low write bandwidth. A
20nm 8Gb PCM prototype only provides tens of MB/s write
bandwidth [6]. Multi-level-cell (MLC) PCM further increases
the write latency and energy by another order of magnitude.
In addition, MLC PCM suffers from long-term and short-term
resistance drift [3]. In fact, a recent study has pointed out that
it may not be practical to use a 2b/cell MLC PCM as main
memory [42].

ReRAM is another promising non-volatile memory tech-
nology that shares several positive characteristics of PCM.
Unlike PCM, it does not have the resistance drift problem,
and it has relatively lower write energy and higher density.
While some recent prototypes of ReRAM are optimized for
density trading off latency (e.g., a 32 Gb part from San-
Disk [24] targeted as flash replacement), the technology can
also be leveraged to build low latency memories. A recent
prototype from Micron [9] and HP’s Memristor crossbar
project [13] are the best examples of industry efforts to lever-
age latency-optimized ReRAM for main memory. ReRAM
has demonstrated superior endurance (> 1010 [20, 22]), sig-
nificantly alleviating the wear-out problem in PCM. In ad-
dition, it can benefit from the solutions proposed for the
PCM [5, 16, 16, 37, 57, 36, 40, 14, 16, 35, 39, 41, 53, 1].

In this paper, we analyze design challenges for an ReRAM-
based memory architecture, and propose circuit-level and
architecture-level optimizations to enable the adoption of this
emerging technology for future memory systems design. We
make several key contributions. First, we study the crossbar
architecture and describe trade-offs involving voltage drop,
write latency, and data pattern for both a conservative baseline
design and an aggressive design with double-sided ground
biasing. Second, we split the long-latency RESET operations
to sub-phases (hRESET) to further reduce write latency. Third,
we propose a simple compression based encoding scheme
with negligible storage overhead to speed up most of the
write operations by limiting the worst-case voltage drop across
the selected cells. Finally, we present and evaluate a mem-
ory scheduling policy that considers the varying latency of
ReRAM writes along with pending activity of a bank when
flushing writes to the memory. In addition to improving per-
formance, the proposed design can lower energy, and has no
first-order effect on endurance.

While prior work has architected PCM designs that can be
used effectively as main memory, similar strategies do not
apply to ReRAM cells. The key difference is that ReRAMs
are best implemented with a dense crossbar architecture, while
most architecture-level optimizations for PCM typically as-
sume that a PCM cell uses either a MOSFET or a bipolar
junction transistor (BJT) as an access transistor 2. Therefore, a
different set of innovations is required and this paper describes
these crossbar-specific innovations. To our knowledge, this is
the first architecture paper that shows the significance of sneak

2While PCM can also use a crossbar, PCM being a unipolar device with
different SET and ReSET latencies, its cell diode places very different con-
straints and has lower sneak current compared to ReRAM.

(a) (b)

(c) (d)

Top Metal Layer

Metal Oxide

Bottom Metal Layer

Figure 1: (a) ReRAM cell with conductive filament (b) RESET
operation (c) SET operation (d) HRS of an ReRAM

current in a crossbar architecture and its impact on latency,
especially for bipolar ReRAM. In addition, the compression
based encoding, its effect on write latency, and the proposed
scheduling techniques are novel additions to the non-volatile
main memory literature.

2. Resistive Memory Technology

Resistive memories, in general, refer to any technology that
uses varying cell resistance to store information. However, the
moniker ReRAM typically refers to the subset that use metal
oxides as the storage medium, called referred to as metal-oxide
ReRAM.

The schematic view of a metal-oxide ReRAM cell is shown
in Figure 1a. It has a very simple structure: a metal-oxide
layer is sandwiched between two layers of metal electrodes,
named top electrode and bottom electrode. Similar to PCM, a
low resistance state (LRS or ON-state) and a high resistance
state (HRS or OFF-state) are used to represent the logical
“1” and “0” respectively. In order to switch an ReRAM cell,
an external voltage with specific polarity, magnitude, and
duration is applied to the sandwiched layer. The switching of
LRS-to-HRS is called a RESET operation and the switching
of HRS-to-LRS is called a SET operation.

The filamentary model has been widely accepted in explain-
ing the switching process of ReRAM [51], which attributes
state changes to the formation and the rupture of nanoscale
conductive filaments (CFs) within a cell. The SET and RESET
operations are shown in Figure 1b and Figure 1c. During a
RESET, the oxygen ions are forced back to the oxide layer by
the electric field and they recombine with the oxygen vacan-
cies. In this case, the CFs are “cut off” and the cell transitions
to the high resistance state, which is shown in Figure 1d. A
SET operation (Figure 1c), which switches the cell back to
the low resistance state, realizes the regeneration of the CFs
by drifting the oxygen ions to the anode layer and leaving the
oxygen vacancies in the metal oxide layer (Figure 1a).

Tens of binary metal oxide materials have demonstrated re-
sistive switching behavior under an electric field [51] and dif-
ferent ReRAM materials have wildly different characteristics.
For this work, we will focus on HfOx-based ReRAM technol-
ogy owing primarily to its excellent scalability (< 10nm) [10],

2

Bitlines

Sourcelines

Bitlines

W
ordlin

es

BitlinesWordline

Bitline

Souceline

(a)

Bitlines

W
ordlin

es

Bitlines

ReRAM ReRAM

W
o

rd
li
n

e
s

(b) (c)

W
o

rd
li
n

e
s

W
o

rd
li
n

e
s

Selector

Figure 2: Overview of ReRAM array structures: (a) MOSFET-
accessed structure; (b) access-device-free crossbar
structure; (c) diode-accessed crossbar structure

superior switching speed/energy [10, 20], and high endurance
(> 1010) [20].

3. ReRAM Array Architecture
Based on the characteristics of ReRAM cells and en-
ergy/delay/cost constraints of the main memory, an ReRAM
array can either be designed as a grid with 1T1R cells or as a
dense crossbar architecture.

3.1. 1T1R Grid Architecture

Figure 2a shows a conventional design where each cell has
a dedicated MOSFET transistor (“1T1R” structure). Similar
to DRAM, when a row gets activated, the access transistors
in the selected row provide exclusive access to the cells in
that row without disturbing other cells in the array. Thus, it
has a similar concept of row buffer, and the fetch width of
an array depends on the size of the array. However, unlike
DRAM, resistive memories typically operate at a significantly
higher current, requiring a large sized access transistor for
each cell. The size of these transistors ultimately increases
the area and hence the cost. However, due to perfect isolation
provided by these access transistors, the “1T1R” design is
more energy efficient and has superior access time compared
to other alternatives.

3.2. Crossbar Architecture

Figures 2b & 2c show a crossbar architecture, in which all cells
are interconnected to each other without transistors. ReRAM
cells are directly sandwiched between top and bottom elec-
trodes. By eliminating access transistors, cells in a crossbar
achieve the smallest theoretical size of 4F23. Furthermore,
as ReRAM cells employ different fabrication steps from tran-
sistors, the silicon area under the array can be used for other
peripheral circuits such as decoders and drivers, maximizing
the area efficiency of an array. In a highly cost conscious
memory market, the crossbar architecture is better suited for
ReRAM-based main memory. However, crossbar architec-
tures introduce other challenges and this paper is an attempt
to overcome some of those challenges.

3A cell size of 4F2 is literally area under the cross-section of a minimum
sized wordline and biltine.

V/2

V/2

b0 b1 b2 b3 b4 b5 b6 b7

Old data stored: “1 1 0 0 1 1 0 1” (n=8)

New data to write: “0 0 1 0 1 1 1 0” (m1i = 3, m0i = 2)

1st step (RESET phase): write “0 0 x x x x x 0” (b0,b1,b5)

2nd step (SET phase): write “x x 1 x x x 1 x” (b2,b6)

b1

0

V/2

V/2 V/2 V/2 V/2 V/2 V/2 V/2 VV/2 V/2 V/2

b0 b2 b3 b4 b6b5 b7

V

V/2

V/2

b1

V/2

V/2 V/2 V/2 V/2 V/2 V/2 V/2V/2 0 V/2

b0 b2 b3 b4 b6b5 b7

V

V/2V/2 0V/2V/2

(a) RESET phase

(b) SET phase

V/2V V/2

full-selected cell half-selected cell unselected cell

& Ihsel
Ifsel_RESET Ifsel_SET

Figure 3: Two phase multi-bit write operation in a crossbar ar-
ray: (a) RESET phase and (b) SET phase

In a crossbar design, it is possible to access a single cell in
an array by applying the proper potential across the wordline
and bitline to which the cell is connected. Hence, there is no
over-fetch problem as in DRAM [49]. However, as selected
cells are no longer isolated from unselected cells, activating a
wordline and a bitline will result in current flow across all the
cells in the selected row and column.

Ideally, when we activate a wordline and bitline(s), we want
the entire current to flow through the full-selected cell(s) that
lies at their intersection(s). For example, in order to SET
specific cell(s) in the crossbar array, the selected wordline and
bitline(s) are set to V (or VW) and 0 respectively, as shown
in Figure 3b. Therefore, the write voltage V is fully applied
across the full-selected cell(s). However, other cells in the
selected row and column(s) also see partial voltage across
them. These half-selected cells in the selected row and column
leak current through them due to the partial write voltage
across them, which is commonly referred to as sneak current.
In order to reduce the sneak current, all of the other wordlines
and bitlines that are not selected are half biased at V/2. This
limits the voltage drop on the half-selected cells to V/2 and
voltage drop on the unselected cells to 0. Note that a dashed
line in Figure 3 represents more than one unselected wordlines
or bitlines. ReRAM cells exhibit a non-linear relationship
between their applied voltage and their current, i.e., current
decreases significantly with a small drop in voltage. This helps
keep the sneak current through half-selected cells in check.
Thus, a critical parameter in a crossbar architecture is the ratio
of the amount of current flowing through a fully-selected cell
(I f sel_RESET) to a half-selected cell (Ihsel), referred to as non-
linearity (κ). The higher the κ , the lower the sneak current,
and the higher the feasibility of a large crossbar array.

To be cost competitive with DRAM, a memory with fairly
large mat size is necessary to reduce peripheral circuit over-
head, and for this, κ of simple ReRAM alone is not suffi-
cient [29]. Many recent ReRAM prototypes employ a ded-

3

icated selector or bi-polar diode in each cell to improve κ ,
as shown in Figure 2c [18, 21, 24]. Since a selector can be
built on top of the switching material, there is no extra area
overhead required for the selector. A selector can be built
with many different materials with different endurance, oper-
ating voltage, and current densities. In this work, we model a
selector similar to the one showcased by Burr et al. [4].

3.3. Constraints in Crossbar Architectures

Although a crossbar architecture is best suited for building
dense memories, most ReRAM memories, even with a ded-
icated selector in each cell, have only finite non-linearity.
Hence, irrespective of how good the cells are, the sneak cur-
rent flowing through the cells poses a number of challenges,
opening up new research possibilities for architects.

In a crossbar, the amount of sneak current ultimately de-
termines the energy efficiency, access time, and area of an
array. For example, ideally we want to build a big array to
improve the density. However, as we size up an array, the
number of half-selected cells increases. Thus we need to pro-
vide sufficient voltage at the driver to account for these sneak
currents to avoid write failure [29]. However, high voltage
at the driver should not be significant enough to disturb cells
closer to the driver, which can lead to write disturbance [29].
Furthermore, since sneak current can vary based on the data
stored in the array, it is critical to architect the sensing circuit
and the array dimensions so that we have enough noise margin
to differentiate sneak current from the total read current.

A critical characteristic of an ReRAM cell is that its switch-
ing time is inversely exponentially related to the voltage ap-
plied on the cell [10, 54]. The write latency of the furthest
selected cell is calculated based on the relationship between
its voltage drop Vd and switching time τ : τ× ekVd =C, where
k and C are fitting constants extracted from experimental re-
sults [20]. For example, a HfOx-based ReRAM has demon-
strated that a 0.4V reduction in RESET voltage may increase
RESET latency by 10X [10].

Even though the switching time of some ReRAM cells can
be small if they are located near the write driver and have
almost full write voltage, many ReRAM cells in the mat will
see a different voltage drop across the cell due to the IR drop
introduced by the sneak current and the wire resistance. The
current passing through the metal wires causes significant volt-
age loss on the metal wires and thus decreases the voltage
drop on the furthest cell in an ReRAM crossbar. Therefore,
the worst-case switching time of an ReRAM crossbar depends
on the array size, write current, metal resistance, and num-
ber of bits being written in parallel in a row (wordline). A
straightforward solution is to increase the output voltage of
the write driver so that the worst-case voltage drop can be
improved. However, this has several drawbacks: (1) higher
voltage results in higher write power; (2) larger output voltage
requirement increases charge pump stages and complexity,
and thus corresponding area and energy overhead; (3) a larger
V/2 increases the probability of write disturbance; (4) higher
voltage introduces reliability issues, such as time-dependent

Table 1: Parameters in the Crossbar Array Model
Metric Description Value or Range

A Mat size: A wordlines ×A bitlines 128∼ 1024
n Number of bits to read/write 1∼ 64

Ion Cell current of a LRS ReRAM during RESET 20uA
Rwire Wire resistance between adjacent cells 2.82Ω

Kr Nonlinearity of the selector 3000
VW Full selected voltage during write 3.2V
VR Read voltage 1.6V

gate oxide breakdown of the write driver and worse drain-
induced barrier lowering effect. To deal with such issues,
specialized transistor design is required, increasing both cost
and area overhead; (5) the excessive voltage may over-RESET
the nearest selected cells and cause stuck-at-0 faults, resulting
in endurance degradation [20]. In this work, any optimization
technique we introduce aims at increasing the worst-case (min-
imum) voltage drop on the selected cell without affecting the
maximum voltage drop on any cell. Therefore, they should
not further bring reliability issues and endurance degradation.

4. Modeling ReRAM
As we pointed out earlier, in emerging memory technologies
such as ReRAM and PCM, the latency and energy of memory
are primarily determined by cell characteristics and the mat
architecture 4, whereas in DRAM the overhead of routing
data to a mat is the dominating factor. To investigate how
sneak current impacts the overall latency, energy, and area, we
present a novel modeling tool to investigate crossbar and bank
architectures. The tool is used to analyze the design space and
isolate some feasible design points that will be optimized in
the rest of the paper.

4.1. Array-Level Model

Many design considerations such as the mat size, operating
voltage, driving/sensing circuit, biasing voltage, and operating
current, that are fairly straightforward in existing memory
technologies, require complex analysis for crossbar arrays.

To estimate the wordline current, voltage drop, switching
time, and write power of a crossbar array, we develop a de-
tailed crossbar array model. Wire resistance is considered in
the model, and a full HSPICE netlist is generated for a diode-
accessed crossbar array once the mat size (A) and number of
bits to read/write in a mat (n) are given. The HSPICE model
uses a combination of a selector and a resistive element to
form a non-linear cell. We extract the device parameters from
HfOx-based cells [20] and selector parameters from IBM’s
MIEC device [4]. Most important parameters in the model
are summarized in Table 1. All of our analysis assumes SLC
ReRAM with one layer and 4F2 cell size (smaller ReRAM
cell size is feasible with multiple layers or multi-level cells).

To calculate the worst-case voltage drop on the selected
cell(s), it is important to model how the writes are actually
done. Typically a multi-bit write operation in a crossbar array
is done in two phases: a RESET phase and a SET phase [52].
Figure 3 illustrates an 8-bit write in a crossbar array. After

4We refer to the grid of memory cells, the smallest building block of
memory, as mat. In ReRAM, a mat is also referred to as a crossbar.

4

 ...L
o

c
a

l
W

o
rd

lin
e

 D
e

c
o

d
e
rs

Local Bitline Multiplexers

WD

LWL

LBL

LDL

Vclamp

Vref

Bitline

R
es
et

Se
t WD SA

(a)

(b)

SA

 ...

...

 ...

CSL

GWL

Global Bitline Multiplexers

I/O Buffers

G
lo

b
a

l
W

o
rd

lin
e

 D
e

c
o

d
e
rs

...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

Subarray i

 Subarray i+1

...

GDL

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

 ...

(c)

Figure 4: Modeling of ReRAM architecture in modified CACTI: (a) Schematic view of an ReRAM bank; (b) Mat organization; (c)
Design of sense amplifier and write driver (CSL: column select line; GWL: global wordline; GDL: global dataline; LBL:
local bitline; LWL: local wordline; LDL: local dataline; SA: sense amplifier; WD: write driver)

comparing the new 8-bit data with the old 8-bit data, bits
b0,b1,b7 need to be switched from “1” to “0” (we refer this
number as m1i) and b2,b6 need to be switched from “0” to “1”
(we refer this number as m0i). In the RESET phase, the three
cells in the selected wordline will be fully selected. Note that
every dashed horizontal (vertical) line in the figure represents
more than one unselected wordline (bitline) for a large array
size. Since all the selected cells in the RESET phase are in
low resistance state and contribute to the total current on the
selected wordline, the voltage drop on the furthest selected
cell is significantly smaller than the output voltage from the
write driver. As a result, the switching time of the furthest
cell is much longer than the minimum RESET latency. This
eventually becomes a performance bottleneck when many bits
are mapped to a large crossbar array.

4.2. Bank-Level Model

After evaluating the current, latency, and power of a cross-
bar array using HSPICE, we integrated the array model into
CACTI. We heavily modified CACTI to model the bank ar-
chitecture of ReRAM illustrated in Figure 4. We changed the
interface of CACTI so that it takes the HSPICE result for the
crossbar and outputs the area/latency/power breakdowns of the
subarray, bank, local/global wordline decoders, local/global
bitline decoders, sense amplifiers/latches, and output drivers.
Figure 4c shows the sense-amplifier and write driver being
employed for ReRAM. We also modified the area model such
that part of last level wordline/bitline drivers are laid under-
neath the crossbar arrays [18], which improves the overall area
efficiency of the ReRAM chip.

The parasitic latency is based on HSPICE transient anal-
ysis and peripheral delay is estimated in CACTI. Some

demonstrated ReRAM prototypes have microsecond-level la-
tency [24] because they target the flash market. Their interface,
limited sense amplifiers, large array size, and low circuit foot-
print are targeted for extremely low cost-per-bit, penalizing
latency. We model an LPDDR-/DDR- compatible interface,
and the circuit design decisions are to improve latency at the
expense of density.

4.3. Design Constraints Analysis

In this Section, we study the impact of optimizing cost and
power for a 22nm 8Gb ReRAM chip. The goal of this analysis
is to identify a few reasonable baseline design points for the
rest of the paper.

We assume a x8 ReRAM chip architecture with a DDR3-
compatible interface and 64-bit internal prefetch width. These
64 bits are distributed to 64/n mats in one of the banks. Each
activated mat reads (or writes) an n-bit group. Here n is
also the minimum number of local sense amplifiers and write
drivers in a mat.5 Increasing n means fetching the 64 bits from
fewer mats and each activated mat accessing more bits. We
evaluate the area and bank write power of the ReRAM chip
with various values of n and mat sizes. We assume that the
number of wordlines is equal to the number of bitlines in a
mat (denoted as A in Figure 5). Later in this paper, “A512n8”
refers to the design point that has a mat with 512 wordlines
and bitlines, and each mat deals with an 8-bit group.

Chip area is the key indicator of chip cost and a primary
optimization parameter for the memory industry. Figure 5a
shows that the chip area is reduced as the mat size increases.

5Actually each mat owns half the number of its local sense amplifiers and
write drivers because they are shared among two adjacent mats, as illustrated
in Figure 4a

5

W
rit

e
P

ow
er

 (m
W

)

C
hi

p
A

re
a

(m
m

2)

(a) (b)

Figure 5: (a) Chip area and (b) Bank Write power of a 22nm
8Gb ReRAM chip with various mat sizes and number
of bits to read/write per mat

Due to the large footprint of local sense amplifiers and write
drivers, the chip area increases significantly as n increases.
The increasing trend is more remarkable with a smaller mat
size. In our work, the area constraint of an ReRAM chip is
defined to be the area of a DRAM chip with the same capacity,
and a 22nm 8Gb DRAM chip area is estimated to be 45mm2

assuming an array efficiency of 55% [15].
Write power contributes to a significant portion of the

total power consumption in ReRAM. It is a critical design
concern for any memory when power budget is limited, and
in this work we apply the same power budget of DRAM to
our ReRAM design. The write power of DRAM is calculated
from a DRAM power calculator by using the datasheet from
Micron [27]. Figure 5b illustrates that the write power of
ReRAM goes down quickly as n increases. The reason is that
the number of activated mats during write access is halved if n
doubles, which leads to much less energy consumption due to
sneak currents. In addition, a larger mat size increases the mat
power with the increasing of the sneak current. To summarize,
a larger n is preferred from a power perspective.

After applying the same chip area and power constraints of
DRAM to ReRAM, a few ReRAM organizations meet the de-
sign criteria. The mat sizes of these organizations ranges from
256×256 to 1024×1024 while the values of n lie between 4,
8 and 16.

5. Architecting High Performance ReRAM

One of the biggest challenges in a crossbar architecture is
to overcome the sneak current induced voltage loss. This
problem is particularly challenging for ReRAM as the switch-
ing time of ReRAM varies exponentially with voltage drop
across the cell. For a given mat size, the worst-case volt-
age drop across the full-selected cell(s) depends on two key
parameters: 1) the biasing of unselected bitlines and word-
lines; 2) the number of low resistance states in the selected
row and column, i.e., the data pattern in the row and column.
To understand how much biasing can help, we first discuss a
microarchitectural enhancement called double-sided ground
biasing (DSGB). DSGB incurs an area penalty and might not
be suitable in a cost conscious design. We simply use this as
a second baseline to show the effectiveness of managing data
patterns in a mat.

V/2

V/2

b1

0
V/2

V/2 V/2 V/2 V/2 V V/2 V/2 VV V V/2

b0 b2 b3 b4 b6b5 b7

V

(a)
VV V

V/2

V/2

b1

0
V/2

V/2 V/2 V/2 V/2 V V/2 V/2 VV V V/2

b0 b2 b3 b4 b6b5 b7

V VV V

0

floating

floating

floating

floating

floating

(b)

Figure 6: (a) The conventional biasing scheme during RESET
phase, (b) the proposed double-sided ground bias-
ing during RESET phase

5.1. Double-Sided Ground Biasing

The conceptual view of DSGB is demonstrated in Figure 6.
Using “A512n8” as an example, the worst-case voltage drop
occurs at cell b7 which corresponds to the longest IR drop
path (marked as the red bold line) from the write driver to
the ground. In the conventional biasing scheme, as seen in
Figure 6a, the ground is located at one side of the selected
wordline during the RESET phase. The key idea of DSGB
is to apply another ground on the other side of the selected
wordline. By doing so, the length of the worst-case IR loss
path has been reduced, as illustrated in Figure 6b. With DSGB,
the worst-case voltage drop occurs at cell b3, with significantly
larger voltage than that observed on cell b7 in Figure 6a. The
results show that the worst-case voltage drop in “A512n8” has
been improved from 2.146V to 2.328V. As a result, the RESET
latency has been reduced from 682ns to 240ns.

Although this looks fairly straightforward, the design over-
head could be significant because it requires either (a) an
additional set of row decoders/drivers on the other side of
each array with reduced area efficiency, or (b) shortening the
two ends of the array using another metal layer with extra
cost overhead. To minimize the area or routing overhead, we
borrow the decoder signal from the adjacent array, as shown
in Figure 4a & 4b. In this design, the opposite side of the
unselected wordlines are still left floating, as illustrated in
Figure 6b, and thus the overhead is limited topass transistor
per row.

The problem of DSGB is the reduced data parallelism: only
half of the mats can be activated within an selected subarray
due to resource contention (local row decoders). Consequently,
only half of the write drivers and sense amplifiers are utilized
during each access. To tackle the issue, we present a simple
yet effective solution with small modifications of the ReRAM
bank architecture. As in the conventional design, the write
drivers and sense amplifiers are already shared between ad-
jacent subarrays. It is possible to utilize these resources in
alternating fashion. In the proposed design, as illustrated in
Figure 4a, each time a pair of adjacent subarrays are selected
in a bank. Subarray i activates odd-numbered mats while sub-
barray i+1 activates even-numbered mats. Therefore, the data
parallelism has been maintained.

In summary, DSGB can improve access speed by increasing
the voltage across the selected cell, but the downside is that it

6

0

150

300

450

600

750

2

2.2

2.4

2.6

2.8

3

1 2 3 4 5 6 7 8

W
o

rs
t-c

a
s
e

 R
S

E
T

 la
te

n
c
y
 (n

s
)

W
o

rs
t-

c
a

s
e

 v
o

lt
a

g
e

 d
ro

p
 (

V
)

m1i

0

150

300

450

600

750

2

2.2

2.4

2.6

2.8

3

1 2 3 4 5 6 7 8

W
o
rs

t-c
a
s
e
 R

E
S

E
T

 la
te

n
c
y
 (n

s
)

W
o

rs
t-

c
a

s
e

 v
o

lt
a

g
e

 d
ro

p
 (

V
)

m1i

(a) (b)

Figure 7: Impact of m1i on the RESET latency of A512n8 for (a)
baseline1 without DSGB, (b) baseline2 with DSGB

V/2

b1

0

V/2 V/2 V/2 V/2 V V/2 V/2V V V/2

b0 b2 b3 b4 b6b5 b7

V/2

V/2

V/2

(a) RESET sub-phase 1: hRESET b0,b2,b4,b6

V/2V V/2V/2

V/2

V/2

b1

V/2

V/2 V/2 V/2 V/2 V/2 V/2 V/2 VV/2 V/2 V/2

b2 b4 b6 b7

V

b3 b5

V/2

b0

V V

(b) RESET sub-phase 2: hRESET b1,b3,b5,b7

0

00

Figure 8: The illustration of split RESET phase under a worst
case

RESET SETbaseline1

(w/o DSGB)

basline2+

split RESET hRESET SET

baseline1+

split RESET
hRESET SET

RESET SET
baseline2

(w DSGB)

hRESET

hRESET

tWR=692ns

tWR=200ns

tWR=250ns

tWR=138ns

Figure 9: Reduction of write latency by DSGB and split RESET

incurs area overhead. As we mentioned earlier, we describe
DSGB not only to show the effectiveness of this technique, but
also to understand the extent to which the data pattern impacts
the write latency. As we show in the next sub-section, in spite
of improving biasing with enhancements such as DSGB, there
is still significant voltage loss due to the sneak current.

5.2. Impact of Data Pattern on Write Latency

It is shown in Section 4.1 that the write latency for writing
an n-bit group in a mat is a function of the number of "1" to
"0" transitions (m1i). The RESET phase can become a perfor-
mance bottleneck for large m1i, whereas the SET phase can
always be completed in less than 10ns even if m0i = n. To
quantify the impact of m1i, we evaluate the worst-case RESET
latency of writing an 8-bit group in a 512×512 mat in a conser-
vative baseline without DSGB (baseline1) and an aggressive
baseline with DSGB (baseline2). From Figure 7, we can see
that the worst-case RESET latency increases substantially as
m1i goes up for both cases. In the following subsections, we
discuss techniques that either try to avoid worst-case data
patterns or mitigate their impact on write latency.
5.2.1. Split RESET phase Due to super-linear relationship
between m1i and RESET latency in a crossbar, it is more
efficient to write one bit at a time sequentially to a mat rather
than to perform a multi-bit write operation to reduce tWR.
However, this increases the bank decoding latency and the

data before encoding

00110111

0100100 1010011 00010000110111

11011011 01010011 11110111

…

…

flip bit: 1 (flipped), 0 (not flipped)

n bits

n-1 bits

data after encoding

Figure 10: A (n-1,n) encoding demonstration

a 512-bit cacheline

from LLC

B16Δ12 B8Δ6 B4Δ3 B2Δ1

384b 384b 384b 256b 512b

priority multiplexer

faster write

compression

units

1 encoded data

compression

succeeded?

Yes

1 compressed dataCU

(n-1, n) encoding

No

original data0

slower write

Figure 11: An overview of the compression/encoding flow

global bitline latency to send bits sequentially from memory
IO pads to the write drivers of the subarray, which we refer to
as tCL. Alternatively, we can have logic to perform sequential
writes near the subarray but this increases silicon area per
subarray and hence cost. We found that when write width per
crossbar is eight, writing four bits strikes a balance between the
write recovery time tWR and the tCL overhead. For example,
with n = 8, the idea of splitting RESET phase is to have
two half-RESET (hRESET) sub-phases. The first hRESET
accounts for the “1” to“0”s in one half of the 8-bit group
(b0,b2,b4,b8), while the second hRESET sub-phase accounts
for the “1” to“0”s in the remaining half of the 8-bit group
(b1,b3,b5,b7), as shown in Figure 8.

Figure 9 shows how the split RESET phase can reduce
the write latency effectively. Again, taking “A512n8” as an
example, the tWR decreases from 692ns to 200ns for the
baseline1 without DSGB, and from 250ns to 138ns for the
baseline2 with DSGB.
5.2.2. Compression-Enabled Dual-Write-Speed Mode In
spite of the optimizations discussed so far, the write latency
of ReRAM is still many times that of DRAM. We can reduce
the number of hRESET phases if the data word has few “0”s.
This can be easily achieved with selective data inversion (see
example in Figure 10). Similar approaches were also proposed
for PCM devices to reduce write energy [5] and to tolerate
stuck-at faults [41]. We could do the same, but assuming a sin-
gle inversion bit for n bits of data yields a storage overhead of
1/n since we need an additional flag bit to indicate whether the
(n-1)-bit group is flipped or not, as shown in Figure 10 . Given
that n is typically ≤ 16, the storage overhead will be at least
6.25%, which reduces the effective cost-per-bit accordingly.
In order to avoid a fixed overhead of 6.25% for every cache
line in memory, we propose a compression based encoding
technique. A compressed line has spare room to accommodate
inversion flag bits. Therefore, if the line is compressible, we
perform inversion and reduce the number of hRESETs. Fig-
ure 11 is an overview of the compression/encoding flow in our

7

0xD1E56511

0x0013 0x020E

0xD1E56524 0xD1E5671F 0xD1E5761B

0xD1E56511 0x110A

4B4B 4B 4B

data before compression

4B 2B 2B 2B

data after compression

Figure 12: A delta compression example: B4∆2 compression

decoded data

to LLC

B16Δ12 B8Δ6 B4Δ3 B2Δ1

from main memory

multiplexer

compressed or original data

CU

?

decoding logic

decompression

units

to LLC

1 0

decompressed data original data

Figure 13: An overview of the decoding/decompression flow

Table 2: Power/Area overhead of hardware implementations
Metrics Compression Decompression Encoders Decoders

Area (µm2) 9480 3460 2518 786
Power (mW) 4.41 2.43 4.77 3.58

framework. It works as follows:
• Every cache line is assigned a bit to represent if it is com-

pressed or not. This lowers the storage overhead to under
0.2%. We assume B∆I as our compression algorithm [31].
B∆I is a low-latency algorithm that has sufficiently high
compressibility for our purpose.

• If a line cannot be compressed, then it does not use data
inversion to reduce the number of hRESET phases.

• If a line can be compressed, then at most n-1 bits of the
compressed cache line are placed in every n-bit group. At
least one bit is available per n-bit group to indicate if the
data has been inverted or not.

• The compression bit per cache line can be stored in vir-
tual memory and cached in the LLC, similar to other ap-
proaches [30, 43].

• On a write, the memory controller performs the compression
to determine how data must be organized and how many
hRESETs must be issued. The compression bit must be
updated in the LLC or memory (off the critical path).

• On a read, the memory controller must read the compres-
sion bit from the LLC or memory in addition to reading the
cache line from memory. The compression bit is required
before the read data can be interpreted and sent to the pro-
cessor. The access of the compression bit can be performed
in parallel and therefore hidden. But such compression
metadata accesses can increase memory traffic and hence
introduce small slowdowns.

Note that we are not using compression to improve capacity
or bandwidth. Compression is only being leveraged to create
space to store flip bits. A compressed block, after encoding,
will have the same size as the original block, as shown in
Figure 11.

As an example, Figure 12 demonstrates how B4∆2 (4-byte
base and 2-byte deltas) compression works. Here we assume
a 16-byte cache line to save space, and the first 4 bytes in the

cache line are treated as the base. The compressed data are
represented with a 4-byte base and three 2-byte deltas, and
thus have 10 bytes in total after compression. We choose B∆I
compression as our primary compression unit because it is a
simple yet efficient hardware compression technique that fea-
tures low decompression latency and high compression ratio.
We adapt the compression in a different and much simpler
way from prior work using this technique [31] as our goals
are different. Instead of reducing the average compression
ratio, ideally we would like to maximize the percentage of
compressible cache lines as long as every compressed cache
line has a better compression ratio than n−1

n ×100%. For any
given base size, we only need to choose one large delta size to
maximize the chance of compressing a cache line as long as
the following inequality is obeyed,

B+(
64
B
−1)∆≤ n−1

n
×64−1 (1)

For example, if n=8 and B=4, we can simply choose ∆ = 3
instead of exploring different delta values (1,2,3) that target
minimum compression ratio [31].

Figure 13 is an overview of the decoding/decompression
flow in our framework. The header bit of every cache line
from the read queue in the memory controller is checked: “0”
indicates it is the original data; “1” indicates it requires de-
coding and decompression. The decompression unit is chosen
based on the “CU” bits, and the corresponding effective data
width will be determined.

Hardware Overhead Hardware implementations of com-
pression/decompression units, and encoders/decoders are ver-
ified in behavioral Verilog by creating a testbench and sim-
ulating using Mentor Graphics Modelsim [26]. We further
investigate the overheads in terms of power, area, and critical
path by synthesizing our Verilog code using Design Com-
piler [48]. We choose a 45nm technology library and scale the
metrics to 22nm technology accordingly. The compression
units take less than 100ps to compress the cache line and this
latency is negligible compared to the overall memory access
latency. The latency of decompression, encoding, and decod-
ing are also very small. The area and power overheads of the
hardware implementations are summarized in Table 2. The
storage overhead of our design is less than 0.2% (one bit per
cache line).

5.3. Latency Aware Write Scheduling

Once some cache lines are encoded based on their compress-
ibility, write latency is no longer homogeneous across cache
lines. The tWR of ReRAM in “A512n8” can vary from 200ns
to 105ns for a conservative baseline1 and 138ns to 74ns for
an aggressive baseline2. While writes are often on the non-
critical path, long write latency can still hurt performance by
blocking a bank and delaying subsequent reads to that bank.
We propose latency aware write scheduling for ReRAM.

In a typical memory system employing bidirectional data
bus, writes get queued in a write buffer at the memory con-
troller. Once this queue gets filled beyond a specified higher

8

Algorithm 1: Write latency aware memory scheduling
if number of writes in WQ > WQHT then

//start WQ drain
nW = 0;
maxWi = M for all banks;
while number of writes in WQ > WQLT do

maxWi = maxWi − num of read requests in bank i;
if maxWi≤ 0 then

continue; //stop issuing write to bank i
else

issue one write ReqW to bank i;
nW = nW + 1;

if ReqW is fast write then
maxWi = maxWi − 1;

else
//a slow write takes more than 1 slot
maxWi = maxWi −W;

end
end

end
else

issue reads from RQ;
end

threshold (WQHT), the controller turns around the bus and
flushes the writes until the number of pending writes is less
than a specified lower threshold (WQLT). With our proposed
scheme, a compressed/encoded cache line has at most half
“0”s in any n-bit group and can be written at an improved
latency in an ReRAM-based main memory. We refer to a
write request with a compressible cache line as a fast write.
In contrast, the write request with an incompressible cache
line is referred to as a slow write. To avoid slow writes from
blocking subsequent reads, when flushing writes, we consider
two additional parameters: first, the latency of writes, and
second, the number of outstanding requests to the bank to
which that write is being scheduled. We schedule writes such
that the slow writes are written to banks with lowest number
of outstanding reads.

For example, any time when write queue drain starts, we
assume 32 writes will be issued. Once these writes have been
issued, the memory controller switches back to issuing reads.
In the baseline design, it is possible that bank i finishes its
writes at cycle 1000 and bank j finishes its writes at cycle 1320.
If bank i has 10 pending reads and bank j has 20 pending reads,
then this was not the best way to issue the writes as more reads
to bank j will get stalled. Hence, when selecting 32 writes
from the write queue, we pick writes such that more work is
steered to banks that have shorter read queues than others. A
detailed scheduling policy is described in Algorithm 1.

6. Results and Discussion

Simulation Setup We use GEM5 [2] as our simulation plat-
form with the integration of NVMain [32], which is a cycle-
accurate memory simulator for both DRAM and non-volatile
memories. Table 3 shows the detailed baseline configurations
of the processor and main memory in our experiments. A

4 cores; 3GHz; Out-of-order;
Processor issue width=8; 192-entry reorder buffer;

32-entry load-store queue
L1 I&D-cache Private; 16KB per core; 2-way;

L2 cache Shared; 4MB total; 16-way;
128-entry MSHR; 64-byte block size

eDRAM L3 32MB, 16-way
Cache 100 cycle access, tag store in SRAM

Memory 16GB; 2 ranks/DIMM;
Configuration 8 chips/rank; 8 banks/chip;

Table 3: System Configuration
Latency Symbol DRAM PCM ReRAM

Activate to read/write tRCD 15 48 18
Column address strobe tCL 15 15 15

Column write to data valid tCWD 13 13 13
Four activate windows tFAW 30 50 30

Write to read tWTR 7.5 7.5 7.5
Write recovery tWR 15 300 -

Table 4: Memory Timing Specifications (unit:ns)

N
o
rm

.
M

e
m

R
d
 L

a
te

n
c
y

0

0.2

0.4

0.6

0.8

1
baseline1 spRST1 DM1 DM-SS1 ideal1

Figure 14: Normalized Average memory read latency of differ-
ent optimizations applied to baseline1

N
o

rm
.

M
e

m
R

d
 L

a
te

n
c
y

0

0.2

0.4

0.6

0.8

1
baseline2 spRST2 DM2 DM-SS2 ideal2

Figure 15: Normalized Average memory read latency of differ-
ent optimizations applied to baseline2

DDR3-1066 SDRAM main memory is modeled based on the
parameters from Micron’s DDR3 technical specifications [28].
PCM is modeled similarly to Lee et al.’s work [19]. Table 4
lists the timing parameters (in nanoseconds) for DRAM, PCM,
and ReRAM. The selected SPEC2006 CPU benchmark with
reference input size [12] and STREAM with all functions [25]
are evaluated as a multi-programmed testbench. We run all
benchmarks for 500 million instructions for the cache warmup
and then the following 100 million instructions for the statis-
tics.

We evaluate our three optimization techniques on two base-
lines. The last digit “x” in the configurations indicates the
baseline upon which these optimizations are applied to: “1”
means they are applied to baseline1 without DSGB, and “2”
means they are applied to baseline2 with DSGB.
• baselinex: The baseline ReRAM architecture with long

write latency.
• spRSTx: Models the split RESET based on baselinex.
• DMx: Models dual-write-speed mode after applying com-

pression and encoding techniques on spRSTx.
• DM-SSx: Models smart scheduling on DMx to make the

9

0%

5%

10%

15%

20%

25%

P
e

rc
e

n
ta

g
e

 o
f

in
c
o

m
p

re
s
s
ib

le
 c

a
c
h

e
lin

e
s

Figure 16: Percentage of incompressible cache lines across
SPEC 2006 and STREAM benchmarks

0

0.5

1

1.5

2

2.5

3
baseline1 spRST1 DM1 DM-SS1 ideal1

N
o

rm
a

liz
e

d
 I
P

C
 s

p
e

e
d

u
p

Figure 17: Normalized IPC speedup for SPEC 2006 and
STREAM benchmarks applied to baseline1

N
o

rm
a

liz
e

d
 I
P

C
 s

p
e

e
d

u
p

0

0.5

1

1.5

2
baseline2 spRST2 DM2 DM-SS2 ideal2

Figure 18: Normalized IPC speedup for SPEC 2006 and
STREAM benchmarks applied to baseline2

memory controller aware of write latency.
• idealx: Models the oracle scenario assuming each write can

be serviced at an improved latency that matches the faster
write in DMx.

Memory Read Latency The effective memory read latency
is one of the key performance metrics for a memory system
and it is dominated by two components: (1) the queuing delay
of a request in the memory controller; and (2) the time taken
to serve the memory access to/from the bank. Our techniques
improve both components.

Figure 14 shows the average memory read latency of these
different configurations, with results normalized to the base-
linex. The spRST1 alone reduces the average memory read
latency by 27% relative to baseline1 since there is a more
than 70% reduction of tWR. Figure 15 shows that the spRST2
is able to reduce the average memory read latency by about
7%, as the reduction of tWR is modest. Even based on the
aggressive spRSTx design at a much improved write latency,
our DMx and DM-SSx can further improve the read latency
significantly, bringing it down close to that of the idealx. This
works especially well for some write intensive workloads (e.g.
astar, libquantum, stream, etc.). For example, the DM-SS1
reduces the average memory read latency by more than 50%
for libquantum relative to baseline1.

To further examine the effectiveness of DMx, the percentage
of incompressible cache lines across different benchmarks
is plotted in Figure 16. Most applications have less than
5% incompressible cache lines, as our compression units are
designed to optimize this metric. Some benchmarks, such as

N
o

rm
a

liz
e

d
 I
P

C
 s

p
e

e
d

u
p

0

0.5

1

1.5

2

256x256 512x512 1024x1024

baseline1 spRST1 DM1 DM-SS1 ideal1

n=8

Figure 19: Performance sensitivity to mat size

N
o

rm
a

liz
e

d
 I
P

C
 s

p
e

e
d

u
p

0

0.5

1

1.5

2

n=4 n=8 n=16

baseline1 spRST1 DM1 DM-SS1 ideal1

mat size: 512x512

Figure 20: Performance sensitivity to n

hmmer and lbm, have higher than 10% incompressible cache
lines, resulting in a significant gap from DMx to idealx, which
in turn provides an opportunity for the DM-SSx model.

System Performance Figures 17 & 18 show the perfor-
mance improvement of different memory configurations over
the baselines thanks to the effect of reduced memory read la-
tency. As expected, the spRST1 and spRST2 models improve
performance by 32% and 8% over baseline1 and baseline2
respectively. The DM1 model further improves the IPC over
spRST1 for some workloads with high write intensity (i.e.,
gobmk, astar, mcf, libquantum, stream, hmmer, lbm). The per-
formance gap between DM1 and ideal1 for a few benchmarks
(i.e., libquantum, hmmer, lbm, etc.) indicates that there is room
to overcome the issues from a memory scheduling perspective.
The DM-SS1 model is able to bring the performance within
1% of the ideal1 model.

Energy In the statistics of our exhaustive experiments, we
observed that spRST1 and spRST2 can eliminate more than
30% of the hRESET sub-phases, and the average memory
energy savings are estimated to be larger than 15%, given
that the write energy of ReRAM contributes to more than half
of the total memory energy consumption. The DM-SS1 and
DM-SS2 models provide extra energy savings by limiting the
number of cell flips. Therefore, the techniques we proposed
are beneficial in terms of energy consumption of an ReRAM-
based main memory.

Sensitivity to Mat Size Figure 19 shows the sensitivity of
performance improvement to different mat sizes from 256×
256 to 1024× 1024. The trends for different mat sizes are
similar. However, the improvement is higher for larger mat
sizes. This is because a larger mat size leads to a worse
baseline write latency and our optimization techniques can
work more effectively on these memory systems. Specifically,
the DM-SS1 model improves IPC by more than 50% over
baseline1 on average.

Sensitivity to n Figure 19 shows the sensitivity of perfor-
mance improvement to different values of n (the data fetch
width from a mat) from 4, 8 to 16. Again, the trends for differ-

10

N
o
rm

a
liz

e
d
 I
P

C
 s

p
e
e
d
u
p

0

0.2

0.4

0.6

0.8

1

DRAM PCM-baseline PCM-PreSET DM-SS1 DM-SS2

Figure 21: Performance comparison between different mem-
ory technologies

ent mat sizes are similar. It is observed that our optimizations
work extremely well for a large n since a large n yields a higher
baseline write latency. The average performance improvement
of the DM-SS1 model over baseline1 are 21%, 45%, and 73%
for n=4, 8 and 16.

Comparison with DRAM and PCM We compare our op-
timized designs DM-SS1 and DM-SS2 with a DDR3 DRAM
design to see how close the design comes in terms of perfor-
mance. We also model a baseline PCM design (PCM-baseline)
and a state-of-the-art PCM design (PCM-PreSET) [33] for
comparison. As seen in Figure 21, PCM-baseline impacts
performance significantly, with a performance degradation
of 32% compared to DRAM, which results from the high
SET overhead of PCM. Although optimizations such as PCM-
PreSET alleviate this problem, PCM-PreSET is still much
slower than DRAM with an average performance degradation
of 16%. Both of our optimized ReRAM designs out-perform
the PCM-baseline and the PCM-PreSET. The simulation re-
sults show that average performance degradation for DM-SS1
and DM-SS2 are about 6% and 9% compared to DRAM, re-
spectively. Thus, relative to DRAM, ReRAM is able to yield a
significant benefit in terms of capacity, cost, and non-volatility,
without a significant performance penalty.

7. Related Work
There have been many prior studies on architecting PCM as
a main memory. Most of them deal with the shortcomings
of phase change memory, such as long write latency, high
write energy, and limited endurance. Several techniques were
proposed to hide the long write latency of PCM. Qureshi
et al. [34] proposed write pausing and write cancellation to
minimize the chance of a read request getting blocked by a
write request. Write truncation was used [17] to improve write
performance in MLC PCM. PreSET was proposed [33] by
exploiting the asymmetries in SET and RESET operations of
PCM. PreSET issues the long-latency SET operations earlier
than a write request actually arrives at the memory controller.
However, in addition to its deleterious effect on endurance,
it may generate more write traffic and saturate the low write
bandwidth of PCM. Most of the previous approaches aim
at hiding the long write latency while our design reduces the
latency of most write requests. Moreover, our approaches have
been designed specifically for ReRAM’s crossbar architecture.

Writing a PCM cell requires large current, which limits the
number of bits that can be written in parallel in a die. Hay et
al. [11] improved write parallelism by tracking the number of
modified bits and allocating power tokens smartly. Recently,

Du et al. [8] proposed double XOR mapping (D-XOR) to dis-
tribute modified data bits among cell groups in a balanced way
so that the overall write latency of serial SET/RESET opera-
tions is reduced. Motivated by the asymmetries in energy of
RESET and SET operations, Yue et al. [55] proposed increas-
ing parallelism within a bank by decreasing the number of
ones in a write by flipping a word with more ones. Bit flipping
was also studied to reduce write energy in PCM [5] and toler-
ate stuck-at faults [41]. In our work, we use bit-flipping along
with compression to improve the RESET latency of writing a
word in a crossbar.

Another emerging non-volatile memory technology be-
ing actively investigated is STT-RAM. Researchers have
looked at techniques such as early write termination [58], hy-
brid SRAM/STT-RAM architecture [50] and read-preemptive
write-buffer designs [46] to mitigate the long write latency
of STT-RAM. Moreover, some prior work [44, 47] propose
trading-off retention time to improve write latency. However,
most of these studies target STT-RAM as cache replacement,
and hence their architectures and specifications are very differ-
ent from that of the main memory.

8. Conclusion

DRAM is facing many challenges beyond 16nm technology
node. As changes to the core memory technology are very
rare and considered a big leap in computing systems, it is
critical to study all upcoming technologies and scrutinize every
characteristic of them before embracing a technology. In this
work, we explored the emerging ReRAM technology and
its unique crossbar architecture. Although the crossbar is
critical to achieving the best possible density, it poses serious
challenges in terms of sneak current and voltage drop. To
study their impact, we built a detailed modeling tool based on
HSPICE and heavily modified CACTI. Based on our analysis
using the tool, we showed that the data pattern in a crossbar
architecture has a significant impact on the effective voltage
across a cell, which in turn affects the overall write latency
of ReRAM. To reduce sneak current, we proposed double-
sided ground biasing and multi-phase write operations. The
above two techniques together reduced the effective write
latency from 692ns to 138ns, but the latency is still many
times that of DRAM latency. To address this, we proposed
and evaluated a compression based encoding scheme to reduce
sneak current and improve voltage drop. The primary benefit
of this approach comes from the encoding, with compression
being used to include encoding bits without additional storage
overhead. Together, this further reduces the write latency to
74ns based on the compressibility of a cacheline. Finally,
we presented and evaluated a memory scheduling policy that
considers the varying latency of ReRAM writes of compressed
data along with activity of a bank when flushing writes to the
memory. Overall, our architecture improves the performance
of a system using ReRAM-based main memory by about
44% over a conservative baseline and 14% over an aggressive
baseline, and has less than 10% performance degradation,
compared to an ideal DRAM only system.

11

References
[1] R. Azevedo, J. D. Davis, K. Strauss, P. Gopalan, M. Manasse, and

S. Yekhanin, “Zombie Memory: Extending Memory Lifetime by Re-
viving Dead Blocks,” in Proceedings of the International Symposium
on Computer Architecture (ISCA), 2013, pp. 452–463.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The GEM5 Simu-
lator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug.
2011.

[3] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakr-
ishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Ra-
jendran, S. Raoux, and R. S. Shenoy, “Phase Change Memory Technol-
ogy,” Journal of Vacuum Science and Technology B: Microelectronics
and Nanometer Structures, vol. 28, no. 2, pp. 223–262, 2010.

[4] G. Burr, K. Virwani, R. Shenoy, A. Padilla, M. BrightSky, E. Joseph,
M. Lofaro, A. Kellock, R. King, K. Nguyen, A. Bowers, M. Jurich,
C. Rettner, B. Jackson, D. Bethune, R. Shelby, T. Topuria, N. Arellano,
P. Rice, B. Kurdi, and K. Gopalakrishnan, “Large-Scale (512kbit) Inte-
gration of Multilayer-Ready Access-Devices Based on Mixed-Ionic-
Electronic-Conduction (MIEC) at 100% Yield,” in Symposium on VLSI
Technology (VLSIT), June 2012, pp. 41 –42.

[5] S. Cho and H. Lee, “Flip-N-Write: a Simple Deterministic Technique
to Improve PRAM Write Performance, Energy and Endurance,” in
Proceedings of the IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2009, pp. 347–357.

[6] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim,
Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang, J. Lee,
Y. Kwon, S. Kim, J. Kim, Y.-J. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii,
J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee, J. Yoo, and G. Jeong,
“A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth,” in
IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), Feb. 2012, pp. 46 –48.

[7] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,
and D. Coetzee, “Better I/O Through Byte-Addressable, Persistent
Memory,” in Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, 2009, pp. 133–146.

[8] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem, “Bit
Mapping for Balanced PCM Cell Programming,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), 2013, pp.
428–439.

[9] R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui,
J. Javanifard, K. Tedrow, T. Tsushima, Y. Shibahara, and G. Hush,
“A 16Gb ReRAM with 200MB/s Write and 1GB/s Read in 27nm
Technology,” in IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC),, Feb 2014, pp. 338–339.

[10] B. Govoreanu, G. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini,
I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard,
T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Al-
timime, D. Wouters, J. Kittl, and M. Jurczak, “10x10nm2 Hf/HfOx
Cross-point Resistive RAM with Excellent Performance, Reliability
and Low-Energy Operation,” in Proceedings of the IEEE International
Electron Devices Meeting (IEDM), 2011, pp. 31.6.1–31.6.4.

[11] A. Hay, K. Strauss, T. Sherwood, G. H. Loh, and D. Burger, “Preventing
PCM Banks From Seizing Too Much Power,” in Proceedings of the
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2011, pp. 186–195.

[12] J. L. Henning, “Performance Counters and Development of SPEC
CPU2006,” SIGARCH Comput. Archit. News, vol. 35, no. 1, pp. 118–
121, Mar. 2007.

[13] HP and SanDisk, “The Memristor Project.”
Available: http://www.businessweek.com/articles/2014-06-11/
with-the-machine-hp-may-have-invented-a-new-kind-of-computer

[14] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Moscibroda,
“Dynamically Replicated Memory: Building Reliable Systems from
Nanoscale Resistive Memories,” in Proceedings of the Fifteenth Edition
of ASPLOS on Architectural Support for Programming Languages and
Operating Systems, 2010, pp. 3–14.

[15] ITRS, “International technology roadmap for semiconductors,” 2013.
Available: http://www.itrs.net/Links/2013ITRS/Summary2013.htm

[16] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset Coding to
Extend the Lifetime of Memory,” in IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2013, pp. 222–233.

[17] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. Childers, “Improving
Write Operations in MLC Phase Change Memory,” in IEEE Inter-
national Symposium on High Performance Computer Architecture
(HPCA), feb. 2012, pp. 1 –10.

[18] A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, K. Tanabe,
T. Nakamura, Y. Sumimoto, N. Yamada, N. Nakai, S. Sakamoto,
Y. Hayakawa, K. Tsuji, S. Yoneda, A. Himeno, K. Origasa, K. Shi-
makawa, T. Takagi, T. Mikawa, and K. Aono, “An 8Mb Multi-Layered
Cross-Point ReRAM Macro with 443MB/s Write Throughput,” in
IEEE InternationalSolid-State Circuits Conference Digest of Technical
Papers (ISSCC), Feb. 2012, pp. 432 –434.

[19] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting Phase
Change Memory as a Scalable DRAM Alternative,” in Proceedings
of the 36th annual international symposium on Computer architecture
(ISCA). New York, NY, USA: ACM, 2009, pp. 2–13.

[20] H. Lee, Y. S. Chen, P. Chen, P. Gu, Y. Hsu, S. Wang, W. Liu, C. Tsai,
S. Sheu, P.-C. Chiang, W. Lin, C. H. Lin, W.-S. Chen, F. Chen, C. Lien,
and M. Tsai, “Evidence and Solution of Over-RESET problem for
HfOX Based Resistive Memory with Sub-ns Switching Speed and
High Endurance,” in Proceedings of the IEEE International Electron
Devices Meeting (IEDM), 2010, pp. 19.7.1–19.7.4.

[21] H. D. Lee, S. G. Kim, K. Cho, H. Hwang, H. Choi, J. Lee, S. H. Lee,
H. J. Lee, J. Suh, S. Chung, Y. S. Kim, K. S. Kim, W. S. Nam, J. T.
Cheong, J. T. Kim, S. Chae, E. Hwang, S. N. Park, Y. S. Sohn, C. G.
Lee, H. S. Shin, K. Lee, K. Hong, H. G. Jeong, K. M. Rho, Y. K. Kim,
S. Chung, J. Nickel, J. J. Yang, H. S. Cho, F. Perner, R. Williams, J. H.
Lee, S. Park, and S. Hong, “Integration of 4F2 selector-less cross-point
array 2Mb ReRAM based on transition metal oxides for high density
memory applications,” in Symposium on VLSI Technology (VLSIT),
june 2012, pp. 151 –152.

[22] M. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. Kim,
C. Kim, D. H. Seo, S. Seo, U. Chung, I. Yoo, and K. Kim, “A Fast,
High-Endurance and Scalable Non-Volatile Memory Device Made
from Asymmetric Ta2O5-x/TaO2-x Bilayer Structures,” Nature Mate-
rials, vol. 10, pp. 625–630, Jul. 2011.

[23] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware
Intelligent DRAM Refresh,” in Proceedings of the International Sym-
posium on Computer Architecture (ISCA), 2012, pp. 1–12.

[24] T.-Y. Liu, T. Yan, Y. Chen, J. Lee, G. Balakrishnan, G. Yee, H. Zhang,
J. Ya, A. Ouyang, S. T. et al., “A 130.7mm2 2-Layer 32Gb ReRAM
Memory Device in 24nm Technology,” in Proceedings of the IEEE In-
ternational Solid-State Circuits Conference Digest of Technical Papers
(ISSCC),, Feb. 2013.

[25] J. D. McCalpin, “STREAM Benchmark.” Available: http://www.cs.
virginia.edu/stream

[26] Mentor Graphics, “Modelsim.” Available: http://www.mentor.com/
products/fpga/model

[27] Micron, “TN-41-01: Calculating Memory System Power for DDR3,”
http://www.micron.com/products/dram.

[28] Micron Corp., “Micron DDR3 SDRAM Data Sheet.” Available:
http://www.micron.com/products/dram/ddr3-sdram

[29] D. Niu, C. Xu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, “Design
Trade-offs for High Density Cross-point Resistive Memory,” in Pro-
ceedings of the ACM/IEEE International Symposium on Low Power
Electronics and Design (ISLPED), 2012, pp. 209–214.

[30] G. Pekhimenko, T. C. Mowry, and O. Mutlu, “Linearly Compressed
Pages: A Main Memory Compression Framework with Low Complex-
ity and Low Latency,” in Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, 2012, pp. 489–
490.

[31] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate Compression: Practical Data
Compression for On-chip Caches,” in Proceedings of the 21st Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques (PACT), 2012, pp. 377–388.

[32] M. Poremba and Y. Xie, “NVMain: An Architectural-Level Main
Memory Simulator for Emerging Non-volatile Memories,” in IEEE
Computer Society Annual Symposium on VLSI (ISVLSI),, 2012, pp.
392–397.

[33] M. Qureshi, M. Franceschini, A. Jagmohan, and L. Lastras, “PreSET:
Improving Performance of Phase Change Memories by Exploiting
Asymmetry in Write Times,” in Proceedings of the International Sym-
posium on omputer Architecture (ISCA), 2012, pp. 380–391.

[34] M. Qureshi, M. Franceschini, and L. Lastras-Montano, “Improving
read performance of Phase Change Memories via Write Cancella-
tion and Write Pausing,” in High Performance Computer Architecture
(HPCA), 2010, pp. 1–11.

[35] M. K. Qureshi, “Pay-As-You-Go: Low-Overhead Hard-Error Correc-
tion for Phase Change Memories,” in Proceedings of the IEEE/ACM
International Symposium on Microarchitecture(MICRO), 2011, pp.
318–328.

[36] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Las-
tras, and B. Abali, “Enhancing Lifetime and Security of PCM-based
Main Memory with Start-gap Wear Leveling,” in Proceedings of the
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2009, pp. 14–23.

12

http://www.businessweek.com/articles/2014-06-11/with-the-machine-hp-may-have-invented-a-new-kind-of-computer
http://www.businessweek.com/articles/2014-06-11/with-the-machine-hp-may-have-invented-a-new-kind-of-computer
http://www.itrs.net/Links/2013ITRS/Summary2013.htm
http://www.cs.virginia.edu/stream
http://www.cs.virginia.edu/stream
http://www.mentor.com/products/fpga/model
http://www.mentor.com/products/fpga/model
http://www.micron.com/products/dram/ddr3-sdram

[37] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Perfor-
mance Main Memory System using Phase-Change Memory Technol-
ogy,” in Proceedings of the 36th annual international symposium on
Computer architecture (ISCA), 2009, pp. 24–33.

[38] P. Ranganathan, “From Microprocessors to Nanostores: Rethinking
Data-Centric Systems,” Computer, vol. 44, no. 1, pp. 39 –48, Jan. 2011.

[39] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ECP, not
ECC, for Hard Failures in Resistive Memories,” in Proceedings of the
international symposium on Computer architecture (ISCA), 2010, pp.
141–152.

[40] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security Refresh: Prevent
Malicious Wear-Out and Increase Durability for Phase-Change Mem-
ory with Dynamically Randomized Address Mapping,” in Proceedings
of the 37th annual international symposium on Computer architecture
(ISCA), 2010, pp. 383–394.

[41] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee,
“SAFER: Stuck-At-Fault Error Recovery for Memories,” in Proceed-
ings of the IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2010, pp. 115–124.

[42] N. H. Seong, S. Yeo, and H.-H. S. Lee, “Tri-level-cell Phase Change
Memory: Toward an Efficient and Reliable Memory System,” in Pro-
ceedings of the International Symposium on Computer Architecture
(ISCA), 2013, pp. 440–451.

[43] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis, “Memzip:
Exploiting Unconventional Benefits from Memory Compression,” in
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), Feb 2014.

[44] C. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. Stan, “Re-
laxing Non-Volatility for Fast and Energy-Efficient STT-RAM Caches,”
in IEEE International Symposium on High Performance Computer
Architecture (HPCA), Feb 2011, pp. 50–61.

[45] J. Stuecheli, D. Kaseridis, H. C.Hunter, and L. K. John, “Elastic Re-
fresh: Techniques to Mitigate Refresh Penalties in High Density Mem-
ory,” in Proceedings of the Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), 2010, pp. 375–384.

[46] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A Novel Architecture of
the 3D Stacked MRAM L2 Cache for CMPs,” in IEEE International
Symposium on High Performance Computer Architecture (HPCA), Feb
2009, pp. 239–249.

[47] Z. Sun, X. Bi, H. H. Li, W.-F. Wong, Z.-L. Ong, X. Zhu, and W. Wu,
“Multi Retention Level STT-RAM Cache Designs with a Dynamic Re-
fresh Scheme,” in Proceedings of the Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2011, pp. 329–338.

[48] Synposys, “Design compiler.” Available: http://www.synopsys.com/
Tools/Implementation/RTLSynthesis/DesignCompiler

[49] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi, “Rethinking DRAM Design and Organi-
zation for Energy-Constrained Multi-Cores,” in Proceedings of the
International Symposium on Computer Architecture (ISCA), 2010, pp.
175–186.

[50] Z. Wang, D. A. Jimenez, C. Xu, G. Sun, and Y. Xie, “Adaptive Place-
ment and Migration Policy for an STT-RAM-Based Hybrid Cache,”
in IEEE International Symposium on High Performance Computer
Architecture (HPCA), Feb 2014.

[51] H.-S. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee,
F. Chen, and M.-J. Tsai, “Metal Oxide RRAM,” Proceedings of the
IEEE, vol. 100, no. 6, pp. 1951–1970, 2012.

[52] C. Xu, X. Dong, N. Jouppi, and Y. Xie, “Design Implications of
Memristor-Based RRAM Cross-Point Structures,” in Design, Automa-
tion Test in Europe Conference Exhibition (DATE),, 2011, pp. 1–6.

[53] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P. Jouppi,
and M. Erez, “FREE-p: Protecting Non-Volatile Memory Against
Both Hard and Soft Errors,” in IEEE International Symposium onHigh
Performance Computer Architecture (HPCA), 2011, pp. 466–477.

[54] S. Yu and H.-S. Wong, “A Phenomenological Model for the Reset
Mechanism of Metal Oxide RRAM,” IEEE Electron Device Letters,,
vol. 31, no. 12, pp. 1455–1457, 2010.

[55] J. Yue and Y. Zhu, “Accelerating Write by Exploiting PCM Asym-
metries,” in IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2013, pp. 282–293.

[56] T. Zhang, M. Poremba, C. Xu, G. Sun, and Y. Xie, “CREAM: A
Concurrent-Refresh-Aware DRAM Memory Architecture,” in IEEE
20th International Symposium on High Performance Computer Archi-
tecture (HPCA),, Feb 2014, pp. 368–379.

[57] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and Energy
Efficient Main Memory using Phase Change Memory Technology,” in
Proceedings of the 36th annual international symposium on Computer
architecture (ISCA), 2009, pp. 14–23.

[58] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy Reduction for
STT-RAM Using Early Write Termination,” in Proceedings of the
International Conference on Computer-Aided Design (ICCAD), 2009,
pp. 264–268.

13

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler

	Introduction
	Resistive Memory Technology
	ReRAM Array Architecture
	1T1R Grid Architecture
	Crossbar Architecture
	Constraints in Crossbar Architectures

	Modeling ReRAM
	Array-Level Model
	Bank-Level Model
	Design Constraints Analysis

	Architecting High Performance ReRAM
	Double-Sided Ground Biasing
	Impact of Data Pattern on Write Latency
	Split RESET phase
	Compression-Enabled Dual-Write-Speed Mode

	Latency Aware Write Scheduling

	Results and Discussion
	Related Work
	Conclusion

