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Abstract

Large web-scale applications typically use a distributed

platform, like clusters of commodity servers, to achieve

scalable and low-cost processing. The Map-Reduce frame-

work and its open-source implementation, Hadoop, is com-

monly used to program these applications. Since these ap-

plications scale well with an increased number of servers,

the cluster size is an important parameter. Cluster size

however is constrained by power consumption. In this pa-

per we present a system that uses low-power CPUs to in-

crease the cluster size in a fixed power budget. Using low-

power CPUs leads to the situation where the majority of

a server’s power is now consumed by the I/O sub-system.

To overcome this, we develop a virtualized I/O sub-system

where multiple servers share I/O resources. An ASIC based

high-bandwidth interconnect fabric, and FPGA based I/O

cards implement this virtualized I/O. The resulting system is

the first production quality implementation of cluster-in-a-

box that uses low-power CPUs. The unique design demon-

strates a way to build systems using low-power CPUs, al-

lowing a much larger number of servers in a cluster in the

same power envelope. To overcome software inefficiency

and increase the utilization of virtualized disk bandwidth,

optimizations necessary for the operating system are also

discussed. We built hardware based on these ideas and ex-

periments on this system show a 3X average improvement in

performance-per-Watt-hour compared to a commodity clus-

ter with the same power budget.

1 Introduction

With a growing number of services being delivered over

the Internet, the amount of data being generated and ana-

lyzed has grown tremendously. The infrastructure required
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to process these large datasets has also grown accordingly.

To keep the costs of processing data low, new hardware and

software frameworks have been developed. The most no-

table among these is the MapReduce (MR) framework ad-

vanced by Google [13].

The goal of the MR framework is to leverage the cost ad-

vantages of commodity servers while providing reliable ex-

ecution of applications that process large amounts of data. It

also facilitates application development by abstracting away

low-level resource management details of large distributed

systems. MR has become popular with web companies that

need a “scale-out” architecture. Scale-out allows companies

to grow their infrastructure by simply adding more com-

modity servers to an existing cluster. The Apache Hadoop

project [7] is an open source implementation of Google’s

MR framework and is being used by companies such as

Facebook [11], Yahoo! [2], and Amazon’s Elastic MapRe-

duce service [1]. For this paper we will discuss the MR

framework with Hadoop as our implementation.

The MR framework splits up a job into small tasks that

are executed in parallel on a cluster built from commod-

ity servers. MR is supported by a distributed filesystem –

Google File system (GFS) [16], or the Hadoop Distributed

File System (HDFS) [3]. The distributed filesystem stores

data reliably across the cluster, where failures can be fre-

quent. It does so by slicing the data into small chunks (typi-

cally 64 MB) and replicating the slices across multiple clus-

ter nodes. The data slices are stored on the local disks of

each node. The framework schedules tasks that process a

given slice of data to nodes in the cluster that store that slice

locally. Thus the distributed filesystem and the MR engine

work together to move compute closer to data.

One of the advantages of using the MR framework is

that it allows scaling of applications by simply adding more

nodes to the cluster [21]. The cluster size however is con-

strained by the power delivery setup at datacenters housing

these clusters [15]. As a result, application performance



(a) Map-Reduce Computation Model (b) Hadoop Cluster Organization

Figure 1. MapReduce Computational Model and Hadoop Cluster Organization

per unit of power is an important metric. At the same

time, for large clusters, the cost of operating the cluster

is significant and a large fraction of the operating cost is

the energy cost. The cost of electricity to power a large

cluster over its lifetime already exceeds its capital costs in

some cases [28]. In this context, the total cost of owner-

ship (TCO) of the cluster becomes important. TCO equals

the sum of capital and operational expenses over the clus-

ter’s lifetime. As a result of these factors we focus on

performance/TCO, and performance/Watt metrics to com-

pare cluster designs. If the power delivery constraints are

encountered first, the perf./Watt metric measures the max-

imum performance achievable with a given power deliv-

ery setup. If power delivery is not a show-stopper, the

perf./TCO metric measures the cost incurred for a defined

performance target.

Using low-power, energy efficient CPUs is a promising

way to build clusters that scale to a large number of servers

in a limited power budget [9, 26]. Designing servers with

such CPUs however is not simple. When using these CPUs,

server power consumption is dominated by the I/O sub-

system. At the same time, due to overheads in the software

stack, the MR applications cannot fully utilize the provi-

sioned I/O resources like the disk bandwidth. Furthermore,

the power consumption of fixed system components like the

power supply, fans, etc., also becomes dominant.

Based on these observations we present a new system

architecture that better matches the characteristics of MR

workloads and allows scaling to larger cluster sizes in a

fixed power budget. This is achieved by using low-power

CPUs and virtualizing the I/O sub-system – specifically the

disk and the Ethernet. Our design also amortizes the power

overheads of fixed system components like fans and power

supplies. We show that virtualizing the storage sub-system

balances the compute-to-disk bandwidth ratio, leading to

improvements in performance/TCO and performance/Watt.

Our primary contributions in this work are:

• Balanced Resource Provisioning via Virtualized

I/O: Using low-power CPUs allows building larger

clusters within a fixed power budget. A low-power

CPU like the Intel Atom and its chipset consumes

∼11 Watts, while disks and Ethernet cards consume

between 5-25 Watts each. The combination of low-

power CPUs and software overheads however leads to

sub-optimal use of the I/O resources. This leads to

over-provisioned I/O resources that consume a large

fraction of the server power. Sharing the I/O resources

among multiple servers via virtualized I/O balances

both the provisioned resources and server-level power

distribution. We develop a hardware mechanism to

virtualize the I/O sub-system such that it matches its

power consumption with utilization.

• Tackling Fixed Power Consumption: Our architec-

ture demonstrates how a system with low-power CPUs

can amortize fixed power consumption by distributing

the power consumption of commodity fans and power

supplies over multiple servers. This is a major concern

for servers with low-power CPUs and we show how to

overcome this challenge.

2 Map-Reduce Background

The MapReduce (MR) framework [13] was designed

with the goals of allowing application scaling, and ability

to process large datasets. An MR job is automatically split

into smaller tasks which are then scheduled in parallel on

a cluster of servers. An MR job executes in three phases:
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(a) Executing on a Core i7 based cluster (b) Executing on an Atom based cluster

Figure 2. Disk bandwidth utilization by Core i7 and Atom based clusters while executing TeraSort benchmark.

The overlaid lines are 1 minute averages of individual data points.

Map, Shuffle, and Reduce. Figure 1(a) shows the data flow

between the different phases of a job. Each map task is as-

signed a partition of the input data [29]. The map task is

then run on a cluster node that is in close proximity to its

input data on the distributed file system (HDFS). The map

task writes its intermediate output to the local file system of

the cluster node. The shuffle phase then executes between

the map and reduce phases. It reads the map outputs and

sends them to the reducer nodes via HTTP. The reduce task

is then run on this data to generate the final output which is

written to the HDFS. As can be observed, the performance

of a MR job is not only tied to the CPU performance but

also to the I/O performance.

At the system level, Figure 1(b) shows the organiza-

tion of a typical Hadoop cluster. There are four daemons

that execute on cluster nodes - NameNode, DataNode, Job-

Tracker, and TaskTracker. The NameNode maintains the

HDFS filesystem. It only stores filesystem metadata and

acts as a gatekeeper for reads and writes to the HDFS. When

reading data from HDFS, the requester contacts the Na-

meNode which provides a list of DataNodes containing the

data. DataNodes then deliver the data over HTTP directly

to the requester. The JobTracker controls job submission

and scheduling. It splits a job into smaller tasks and sched-

ules the tasks on cluster nodes running the TaskTracker dae-

mons. The tasks are scheduled on a best-effort basis such

that each task retrieves its input data from the DataNode

daemon running on the same cluster node. This amounts

to moving compute closer to data – an important property

when working on large datasets.

3 Motivation

Our system design is motivated by two considerations:

(a) increasing the cluster size within a fixed power budget,

and (b) balanced resource provisioning to improve system

efficiency.

Increasing Cluster Size in Fixed Power Budget: One

of the defining features of web-scale applications is their

ability to scale with an increase in hardware resources [21].

A larger cluster size typically means smaller application ex-

ecution time. However, the cluster size is limited by the

power delivery systems [15, 17]. To stay within power lim-

its and build extremely large clusters, one option is to use

low-power CPUs. Nearly fifteen low-power CPUs like the

Intel Atom N570 [4] (consuming 8.5 W each) can be sub-

stituted for one high performance CPU like the Xeon E7-

8870 [5] (rated power of 130 W) in the same power budget.

Azizi et al. [10] also showed that lightweight architectures

are also more energy efficient since they operate at the most

efficient point on the energy-performance curve among var-

ious CPU architectures. Low-power CPUs therefore deliver

superior performance/Watt.

Balanced Resource Provisioning: Web-scale applica-

tions process large amounts of data and are typically I/O

intensive. Disk and network bandwidth are therefore criti-

cal design aspects for a Hadoop cluster. Overheads in the

Hadoop framework, JVM, and the OS however limit the us-

able disk bandwidth. Figure 2 shows the under utilization

of disk bandwidth in Core i7 and Atom based clusters. De-

tails of the workload and platform are provided in Section 5.

Bandwidth usage is plotted on the Y-axis and execution time

on the X-axis. Bandwidth was measured at 1 sec intervals

and the 60 sec moving average of these measurements is

overlaid in the figure. The average bandwidth usage for

both Core i7 and Atom cluster nodes peaks at 60 MB/sec,

and the sustained average varies between 20-50 MB/sec.

These values are significantly lower than the raw band-

width each CPU can drive from the disk. Core i7 based

systems can drive a sustained disk read bandwidth of

112 MB/sec, while Atom servers can drive upto 80 MB/sec

of read bandwidth. Note that these bandwidth limits are

also a function of the disk controller, the disk internals, and

not only the CPU. When using low-power CPUs, not only

is the disk bandwidth over-provisioned but the power con-

sumption is also disproportionately distributed within each

3



(a) Fabric Node Architecture
(b) CPU-Fabric Interface (c) I/O Cards

Figure 3. Implementing Virtualized I/O

server. Commodity disks consume between 7-25 Watts [8],

which is 0.8x-3x the CPU power (8.5 W). This leads to the

disk consuming a large fraction of server power, while the

disk bandwidth is being under-utilized. These arguments

also hold for Ethernet based network I/O [8].

4 System Design

Our production hardware based on virtualized I/O and

low-power CPUs can be thought of as a cluster-in-a-box

as it packages compute, storage, and network in a single

machine. In this section we first discuss the hardware based

implementation of virtualized I/O. The system architecture

is then described in Section 4.2 and Section 4.3 explains the

OS support needed to improve resource utilization.

4.1 Implementing Virtualized I/O

To balance resource utilization and amortize power con-

sumption of the I/O devices, we virtualize the I/O resources.

Disk virtualization allows sharing one disk among multiple

CPU cores and allows configuring the ratio of CPU threads-

per-disk based on application requirements. Ethernet virtu-

alization replaces the rack-top switch with a low-latency,

high bandwidth interconnect. This I/O virtualization is im-

plemented in hardware and is transparent to the software.

The architectural structure enabling our implementation

of I/O virtualization is an interconnect fabric that connects

all the servers, disks, and Ethernet ports. This interconnect

is a low-power, high-performance fabric implemented us-

ing a custom ASIC. The energy and cost overheads of the

interconnect are amortized by sharing it to implement both

virtualized disks and Ethernet. The ASICs implement a

distributed fabric architecture in a 3D-torus topology that

is able to adapt and re-route traffic around congested and

failed fabric nodes. There is less than 1µsec communica-

tion delay between any two cluster nodes connected via this

fabric. Each ASIC implements two fabric nodes with six

links to neighboring nodes, as shown in Figure 3(a). Each

link is a 2.5 Gb/sec serial link with all the system nodes and

I/O cards (described later) connected in a 8x8x8 3D torus.

Each fabric node connects to one CPU via a PCIe link.

The Ethernet and disk traffic from the CPU travels over

the PCIe link to reach the fabric node. Figure 3(b) shows

this datapath. The node packetizes this data and routes it to

the I/O cards shown in Figure 3(c). The I/O cards (E- and

S-card for Ethernet and storage) terminate the fabric pro-

tocol on one end and communicate with the I/O device on

the other. The power and cost overheads of these cards are

trivial as they are amortized over a large number of server

nodes. Virtualized disks are presented to the operating sys-

tem as a standard SATA disk by the ASIC. Behind the SATA

interface, the ASIC tunnels all SATA traffic through the fab-

ric to the S-card which interfaces with the disks. Requests

from many nodes can target a single disk on an S-card at

the same time. The S-card then queues the requests and

services them using round-robin scheduling.

Such an implementation makes the virtualization of I/O

devices transparent to the operating system and eliminates

any need for OS modification. With disk virtualization, the

OS running on each node is presented an independent disk,

which under the hood is an offset on some physical disk. As

an example, if 16 CPUs are configured to share a 1 TB disk,

then each CPU is presented a disk of 64 GB size. CPU-

0 accesses the disk from offset 0 through 64 GB, CPU-1

accesses the same disk from offset 64 GB to 128 GB, and

so on. The effect of disk virtualization is that the 1-to-1

mapping between disks and CPUs in traditional servers is

altered. With our system design, one can achieve variable

cores-per-disk ratio. In this work we study the impact of

sharing disks among CPUs on Hadoop applications.

4.2 System Architecture

One of the primary concerns while designing servers us-

ing low-power CPUs is the power overheads of components

like fans and power supplies [18, 9, 26]. Our system design

amortizes these overheads by sharing them among a large

number of cluster nodes. This is achieved by using a mod-

ular design for the server nodes and by sharing the power

delivery network among all nodes. We describe these next.

A server node in the system consists of a dual core, 64-

bit Atom N570 CPU and is configured with 4 GB of DDR2
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(a) C-Card Front View - Six Atom CPUs, their chipsets, and

four ASICs

(b) C-Card Back View - Six DRAM modules, one for each

node

Figure 4. Front and Back Images of a Compute-card

(a) Logical System Architecture (b) Physical System Organization

Figure 5. System Architecture

memory. To improve power efficiency, all motherboard

components except the CPU, its chipset, and the memory

are removed. Each node is an independent server and runs

its own OS image. There are six such nodes on a “com-

pute card” that forms the building block of the system. A

compute card for this system is shown in Figure 4. Fig-

ure 5 shows the complete logical and physical architecture

of the cluster-in-a-box. The compute nodes packaged on a

compute-card are plugged into the mid-plane shown in Fig-

ure 5(b) and are logically interconnected using the 3D-torus

topology [12] shown in Figure 5(a). This is the same in-

terconnect fabric described previously that enables I/O vir-

tualization. The system supports upto 64, 1 Gbps, or 16,

10 Gbps Ethernet ports for in-bound and out-bound Eth-

ernet traffic. These ports are implemented at the Ethernet

FPGA (the E-Card). The S-Card implements the function-

ality to configure 64 SATA or Flash based disks per system.

The complete system is packaged in a 10 Rack-Unit space

including the necessary fans and 3+1 redundant power sup-

plies. This amortizes the energy and cost overheads of these

fixed components. The complete system has 384 dual-core

CPUs, 1.5 TB of DRAM, and consumes less than 3.5 kW

power under full load.

4.3 System Software Configuration

This section discusses the impact of various OS and

Hadoop parameters on the system’s resource utilization.

4.3.1 Linux SATA Packet Size Configuration

Virtualized disk I/O is useful in balancing resource utiliza-

tion and power provisioning. However, by having to alter-

nate between requests from different servers results in in-

creased disk head activity. The increased head seeks de-

grade the aggregate disk bandwidth. For most disks this

impact is negligible, but for disks from certain manufac-

turers the bandwidth drops significantly with virtualization.

This occurs due to the poor scheduling of disk requests.

The performance of a disk depends highly on how well

the scheduling algorithm can minimize the number of disk

head seeks that may result from the high number of inde-

pendent request streams. Scheduling occurs at several lev-

els: 1) the operating system, 2) I/O aggregation point (S-

card), and 3) controller inside the HDD. The scheduling in-
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Disk Internal

Cache

(MB)

RPM Random

Seek Time

(ms)

Average

Latency

(ms)

Disk-0 32 7200 8.0 4.16

Disk-1 16 7200 11.0 4.17

Disk-2 16 7200 11.0 4.17

(a) Manufacturer Disk Specifications (b) Impact of Linux SATA block size on raw disk bandwidth

Figure 6. Disk Characteristics

side the HDD is vendor-specific and may or may not be ef-

fective. It would be desirable to manage the disk’s schedul-

ing algorithm independently of the hardware manufacturer.

In this section, we show that this can be achieved by config-

uring the Linux SATA driver’s block size.

The Hadoop filesystem (HDFS) reads and writes data at

the granularity of a block [29] and the typical HDFS block

size is 64 MB or larger. This is done to minimize the num-

ber of disk head seeks when accessing data. The Linux

OS on the other hand breaks any disk access command into

smaller chunks that are processed by the SATA driver. The

default SATA packet size for the Linux kernel is 128 KB for

data reads. Thus, a 64 MB HDFS block is broken into 512

SATA packets before being issued to the disk.

With disk virtualization enabled and multiple servers

sharing the same disk, we observed that the aggregate disk

bandwidth for some disks reduced significantly. Breaking

one large request into many small requests is not too detri-

mental when a disk is accessed by one CPU core. But it

is detrimental when there is sharing because the disk con-

troller’s internal algorithm switches between accesses from

different cores and doesn’t handle all the requests from one

core sequentially. We observed that the change in disk

bandwidth was heavily dependent on the specifics of the

disk. The request caching algorithm of the disk and the

internal cache size seem to have a profound effect on raw

bandwidth when virtualizing the disk.

The Table in Figure 6(a) lists disk specifications for

three disks from different manufacturers. Figure 6(b) shows

the impact of changing SATA packet size on aggregate

disk bandwidth for these disks. Note that disk-1 shows

markedly improved performance with larger packet size,

while the other two show a modest increase in aggregate

bandwidth (5%-20%). This shows that one way to prevent

the disk from alternating between small requests from dif-

ferent cores is to increase the SATA packet size.

4.3.2 OS File System Configuration

Since Hadoop applications read and write a lot of data to the

disk, the OS filesystem implementation becomes an impor-

tant configuration parameter. Newer versions of the Linux

OS typically include a journaling filesystem like the ext4 as

the default. Our experiments show that journaling filesys-

tems perform poorly for Hadoop applications. The reason

for this poor performance is the frequent updates to the

journal by these filesystems. These updates induce disk

head seeks which interfere with the data accesses by the

application. Using a non-journaling filesystem like the ext2

(or journal-less mode of ext4) improves application perfor-

mance by reducing the writes caused by the filesystem.

4.3.3 Ethernet Network Driver Configuration

While experimenting with a large Hadoop cluster, we found

that the network driver configuration is critical because

cluster nodes communicate using the TCP/IP protocol. We

found that enabling interrupt coalescing [30] and Jumbo

frames [14] improved application performance. Fewer in-

terrupts allow the CPU to do more work between interrupts,

and Jumbo frames reduce the TCP/IP overheads. Jumbo

frames are especially suited for Hadoop applications be-

cause large chunks of data are carried over the network dur-

ing the shuffle phase, and also when the DataNodes are de-

livering data to remote TaskTracker nodes.

4.3.4 Hadoop Datanode Topology

We found that Hadoop application execution can be fur-

ther optimized on our system by controlling the number,

and placement of DataNodes in the system. Execution time

can be reduced by configuring the DataNodes only on clus-

ter nodes closer to the storage-FPGA (S-FPGA). There are

three reasons for the reduction in execution time with this

optimization: (a) Running DataNodes on only a few nodes

frees up the total cluster memory used by the DataNode dae-

mons and makes it available for the application. (b) There

are fewer interfering requests made to the virtualized disk

by multiple DataNodes [27]. (c) Unlike traditional clus-

ters where network bandwidth is limited, ample fabric band-

width provides efficient data transport among cluster nodes.

5 Results

5.1 Methodology

To quantify the impact of the described system on

Hadoop MapReduce applications, we experimented using
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CPU Atom N570 # Sockets 384

Cores/Socket 2 Hyper-Threading Yes

# Disks 64 DRAM Capacity 1.5 TB

Linux Kernel 2.6.32 Hadoop Version 0.203.0

(a) System Configuration

CPU Core i7-920 # Sockets 17

Cores/Socket 4 Hyper-Threading Yes

# Disks 17 DRAM Capacity 153 GB

Linux Kernel 2.6.32 Hadoop Version 0.203.0

Ethernet 1 Gbps Ethernet Switch Procurve 2810-24G

(b) Core i7 Cluster Configuration (Baseline)

TeraGen TeraSort WordCount GridMix2

Input Dataset NA Input Dataset 1 TB Input Dataset 29 GB Input Dataset 700 GB

Output Data 1 TB Output Data 1 TB Output Data 5.8 GB Output Data 220 GB

(c) Benchmark Datasets

PUE 1.45 Lifetime 3 yrs Electric Utility Cost $ 0.07/kWh System List Price $ 160,000

(d) Total Cost of Ownership (TCO) Model Parameters

Figure 7. Experimental Configuration and TCO Model Parameters

(a) (b) (c)

Figure 8. Change in Perf./Watt, Perf./W-h, and Execution Time on the System Compared to Core i7
Cluster in a Fixed Power Budget

a system with virtualized I/O whose configuration parame-

ters are listed in Table 7(a). This system was compared to a

17-nodeCore i7 cluster with configuration parameters listed

in Table 7(b). The Core i7 cluster was chosen such that

the two systems represent the same power envelope. The

Core i7 cluster is rated at just under 4 kW for power con-

sumption, and our system is rated at nearly 3.5 kW. Power

measurement for both systems included all the system com-

ponents, specifically, it also included the Ethernet switch

power for the Core i7 cluster. Table 7(c) shows the four

benchmarks along with their input and output dataset sizes.

These are standard benchmarks used to quantify a Hadoop

clusters performance [20].

Table 7(d) shows the parameters for the total cost of

ownership (TCO) model. This model is adopted from

Hamilton’s [6] model where: TCO = capital cost +
PUE∗lifetime∗avg watt∗($/kWh)where, avg watt =
energy consumed by benchmark ÷ execution time.
PUE is the power usage efficiency of the datacenter. It

measures the amount of total power consumed while

delivering 1 unit of power to the servers. A PUE value of

1.5 implies that for every Watt consumed by the datacenter

servers and networking equipment, 0.5 Watts are consumed

by cooling, power distribution losses etc.

Throughout this section we will quantify disk virtualiza-

tion using the term threads-per-disk (TPD). The total num-

ber of threads that can be executed on each cluster node

is the total number of hyperthreads the socket supports. For

the Atom cluster there are 4 threads/socket, and for the Core

i7 cluster, there are 8 threads per socket (4 cores/socket,

2 threads/core). The number of Hadoop Map and Reduce

slots that can be executed concurrently on one node of the

cluster is also a configurable parameter. All experiments on

our system are configured to run 2 Map and 2 Reduce tasks

simultaneously, utilizing all the 4 threads on a socket. The

Core i7 cluster cannot be configured to share disks among

cluster nodes. To approximate the effect of disk sharing

among multiple threads, we vary the number of Map and

Reduce tasks executing concurrently on the Core i7 nodes.

For example, with 4Map and 4 Reduce tasks on one Core i7

node, the TPD ratio is 8. To achieve TPD of 4, the number

of Map and Reduce slots is configured to 2 each.
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Figure 9. Performance for the System while Varying # Disks and Cores.

5.2 Evaluation

Comparison with Core i7 Based Cluster: The de-

scribed system delivers higher efficiency per unit of power,

and energy, while reducing execution time in the same

power envelope. Due to increased power efficiency, the

maximum power drawn by the datacenter can be reduced

for the same performance levels and energy consumption

can be reduced. Alternatively, in a fixed power envelope,

performance of the datacenter can be improved by increas-

ing the cluster size and scaling out the applications. Fig-

ure 8(a) shows the change in Perf./W of the four bench-

marks when executed on the described system compared

to the Core i7 based cluster. The disk and CPU inten-

sive benchmarks TeraGen and GridMix show 75.5% and

46.9% improvement respectively, while TeraSort, which has

a CPU intensive Map phase, and disk intensive Reduce

phase shows a 147.8% improvement. WordCount, which

stresses neither the CPU, nor the disk due to its small dataset

size shows a degradation of 15.4%. Figure 8(b) shows the

change in performance per unit of energy (Watt-hour) when

comparing the two clusters. The trend is similar to Perf./W

and shows that our system is 2X-6X more energy efficient

than a commodity cluster.

Figure 8(c) compares the best execution time of the four

benchmarks on our system with the Core i7 cluster. Our

system outperforms the Core i7 cluster significantly, ex-

cept for the WordCount application. TeraGen, TeraSort and

GridMix show execution time improvement of 59.9%, 65%,

and 47.5% respectively. WordCount shows a degradation of

7.9% on our system compared to the Core i7 cluster. These

improvements in the same power budget come from mul-

tiple factors - increased parallelism due to the large num-

ber of servers, virtualized I/O, and lower system overheads

for a server, like fans and power supplies. The perfor-

mance degradation for WordCount occurs because there is

not much parallelism to be extracted due to the small dataset

of the application. This shows that our system is especially

well suited for applications that operate on large datasets.

Analyzing the Improvements of the Virtualized I/O

System: To understand the system’s performance charac-

teristics over its entire design space, we need to vary both

compute and disk resources to determine the point where

these resources are balanced and yield best performance.

These experiments thus quantify the performance effect of

adding more nodes to a cluster. In Figure 9, the perfor-

mance of a benchmark for a given number of CPU cores is

plotted on the Y-axis, while clustering the results based on

the number of disks used on the X-axis. Each bar represents

the number of cores used for the experiment. The trend to

note here is that the least execution time occurs when using
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Figure 10. CPU and Disk Utilization for the Best and Worst Execution Time on the System.

the most resources (768 cores and all the 64 disks). This

shows that Hadoop MapReduce jobs have improved execu-

tion time when executed on a larger cluster.

Resource Utilization: To better understand the reasons

for improved performance of our system with a larger clus-

ter size, we analyze the resource utilization of the cluster

among 64d/768c and 32d/64c configurations. We observe

that the overall resource utilization of the system increases

when scaling to large number of cluster nodes. Figure 10

plots the disk bandwidth and CPU utilization profile for the

two configurations for the TeraSort benchmark. This com-

parison shows that the Atom CPU can become a bottleneck

when few CPUs are used for a large job. These results pro-

vide evidence that though Atom CPUs are low-power and

energy efficient, it does not imply that they can be substi-

tuted for heavyweight cores for all applications and plat-

forms. Applications that are highly parallelizable can bene-

fit more when using large number of low-power cores.

Analyzing the Total Cost of Ownership: While scal-

ing to a larger number of cluster nodes with our system,

the provisioned system resources come in balance leading

to improved power and energy efficiency. In Figure 11 we

show the change in perf./TCO when the numbers of cores

and disks are varied for the system. For all the benchmarks,

perf./TCO is highest when using most resources, i.e., it’s

highest when all the 768 cores of the system are used along

with all the 64 disks. For these results, the perf./TCOmetric

is plotted on the Z-axis while the number of CPU cores and

disks is varied on the Y and X-axis respectively. The perfor-

mance of a system with respect to a benchmark is defined

as the inverse of the execution time of that benchmark.

Comparing Power and Energy Efficiency for the Ex-

treme Design Points: Using more resources for traditional

commodity clusters has usually come at a steep increase

in energy and power consumption. Starting with a 32

disk/64 core configuration, if we were to scale the system

to 384 disk/768 core, we would see a significant spike in

power consumption (>1750 W assuming idle disks con-

sume ∼7 W). Figure 12 quantifies the impact of using in-

creased resources in a balanced manner for our system. Fig-

ure 12(a) shows that as more resources are used when mov-

ing from 32d/64c configuration to 64d/768c configuration,

the improvement in Perf./W varies from 75% to 175%. Sim-

ilarly, Figure 12(b) shows that the improvement in Perf./W-

h for 64d/768c configuration varies from 5.3X to 14.4X

compared to 32d/64c configuration. These savings come

from the ability of the system to provide balanced resource

utilization by virtualizing I/O, and by amortizing fixed costs

like fan and power supplies.

Impact of SATA Packet Size on Execution Time As

discussed in Section 4.3.1 certain disks show significant

degradation in aggregate disk bandwidth when multiple

9
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Figure 11. Performance/TCO vs. Number of Disks and Number of Cores.

cores are sharing a single physical disk. We discussed that

one simple solution to increase aggregate disk bandwidth is

to increase the Linux SATA driver packet size. This amor-

tizes the cost of disk head seeks. For disks which show poor

aggregate bandwidth when shared, Figure 13 shows the per-

formance impact of increasing the Linux SATA packet size

from 128 KB to 1024 KB. Figure 13(a) shows the results of

these experiments forWordCount and TeraSort benchmarks

with TPD ratio of 12. Figure 13(b) shows the improvement

in execution time for varying TPD configurations.

6 Related Work

Optimization of compute infrastructure costs is an ac-

tively studied area. Multiple proposals advocate the use

of low-power, energy efficient cores for datacenter work-

loads. Reddi et al. [26] quantified the cost of efficiency

when running a search application on heavyweight vs. low-

power cores. They show that low-power cores like the Intel

Atom show improvements in power efficiency when com-

pared to a server class CPU like the Intel Xeon. This effi-

ciency however comes at the expense of quality-of-service

guarantees due to the increase in latency and variability

for search queries. They suggest over provisioning and

under-utilization of Atom cores and provide evidence that

even with over-provisioning, Atom based platforms incur

only 0.4x the platform-level cost and power efficiency of

the Xeon. Our scheme follows a similar chain of thought

where a large number of Atom CPUs are used in the clus-

ter. They also propose building multi-socket systems us-

ing Atom CPUs to amortize the platform level costs. This

also is in line with our proposal since our scheme amortizes

platform costs, but does so more efficiently by building in-

dependent compute nodes instead of building a multi-socket

SMP system. Multi-socket SMP systems have higher cap-

ital costs compared to our proposal. It is an open research

problem to investigate if multi-socket SMP systems deliver

higher performance for scale-out architectures, or if single

socket systems are better.
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Figure 12. Power and Energy Efficiency Improvements when Adding More Resources.

Andersen et al. [9] proposed the FAWN system for data-

center key-value stores. They suggest a scheme that builds

on low-power cores and Flash storage to construct an effi-

cient high-performance key-value storage system. The pro-

posal includes hardware-software co-design and their soft-

ware innovations are primarily aimed at improving Flash

storage’s lifetime. The basic premise of their system is

to match compute and I/O abilities for a specialized task

of key-value datastore. Our system however is suited to

general computational requirements of modern datacenters,

while FAWN is targeted at a specialized application. The

main ideas in our work are orthogonal to those in the FAWN

architecture.

Hamilton [18] points out that servers are out-of-balance

in terms of allocated resources, and raw server performance

is a wrong metric to evaluate systems for web-scale work-

loads. Based on these observations, his CEMS proposal uti-

lizes low-power CPUs that are optimized for work done per

Dollar. CEMS however is still designed around traditional

server architectures which do not amortize the cost of com-

ponents like fans, and power supplies. Apart from amor-

tizing these costs, with virtualized I/O our system provides

further improvements due to better resource balance.

Besides this large body of work that advocates using

low-power CPUs for web-scale workloads, there is work

that conversely argues for using heavyweight cores for web-

scale workloads. Hölzle [19] argues that heavyweight cores

with high single thread performance are desirable for Inter-

net workloads compared to low-power cores with lower sin-

gle thread performance. He argues that once single thread

performance of low-power cores lags by a factor of two or

more behind heavyweight cores, it becomes harder to im-

prove cost effectiveness of low-power cores. This occurs

due to multiple factors like higher system overheads (like

cabling, enclosures) and power inefficiency of components

like disks and network. Our design aims at precisely this

problem and solves it using virtualized I/O and sharing fixed

components.

Meisner et al.[25] performed a study to determine if low-

power server designs imply energy efficiency for datacen-

ters. Based on highly tuned server designs from the past six

years, they conclude that high-power designs are not energy

inefficient when used to build large datacenters. We agree

with these arguments, but our novel design, which amor-

tizes system component costs and energy by sharing re-

sources, is able to provide more headroom in achieving cost

effectiveness. Lang et al.[22] show that a system built using

low-power CPUs shows disproportionate scale-up charac-

teristics, making such systems an expensive and lower per-

formance solution. Our system addresses this exact prob-

lem by amortizing server costs and providing resource bal-

ance.

7 Conclusions

The challenges in building energy efficient clusters of

servers with low-power CPUs are two fold: (1) balanc-

ing I/O resource utilization with power consumption, and

(2) amortizing the power consumption of fixed server com-

ponents like fans and power supplies. In this work we

show that the I/O resource utilization and power consump-

tion can be balanced by using a virtualized I/O approach.

The fixed component power overheads on the other hand

can be amortized by sharing them among many servers

with low-power CPUs. We demonstrate a system built on

these ideas and study its characteristics for web-class ap-

plications. The system shows significant improvements in

Perf./W and Perf./W-h for Hadoop applications and scales

to a large number of cluster nodes. Compared to a com-

modity cluster using heavyweight CPUs in the same power

budget, our system delivers 3X average improvement in

Perf./W-h, and 64% average improvement in Perf./W. For

a fixed power budget, the execution time also improves by

57% compared to a traditional cluster for benchmarks that

showed improved performance.
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(a) Percentage improvement in execution time with 1024 KB

SATA read packet compared to 128 KB SATA packet, with

12 TPD

(b) Percentage improvement in execution time with 1024 KB

SATA read packet compared to 128 KB SATA packet, with

variable TPD

Figure 13. Impact of Changing SATA packet Size on Performance
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