
CHOP: Adaptive Filter-Based DRAM Caching for
CMP Server Platforms

Xiaowei Jiang†, Niti Madan?, Li Zhao‡, Mike Upton‡, Ravishankar Iyer‡, Srihari Makineni‡, Donald Newell‡

Yan Solihin†, Rajeev Balasubramonian?

†Dept. of Electrical and Computer Engineering
North Carolina State University
{xjiang, solihin}@ncsu.edu

‡Intel Labs
Intel Corporation

{li.zhao, ravishankar.iyer}@intel.com

?School of Computing
University of Utah

Abstract—As manycore architectures enable a large number of
cores on the die, a key challenge that emerges is the availability
of memory bandwidth with conventional DRAM solutions. To
address this challenge, integration of large DRAM caches that
provide as much as 5× higher bandwidth and as low as 1/3rd
of the latency (as compared to conventional DRAM) is very
promising. However, organizing and implementing a large DRAM
cache is challenging because of two primary tradeoffs: (a) DRAM
caches at cache line granularity require too large an on-chip tag
area that makes it undesirable and (b) DRAM caches with larger
page granularity require too much bandwidth because the miss
rate does not reduce enough to overcome the bandwidth increase.
In this paper, we propose CHOP (Caching HOt Pages) in DRAM
caches to address these challenges. We study several filter-based
DRAM caching techniques: (a) a filter cache (CHOP-FC) that
profiles pages and determines the hot subset of pages to allocate
into the DRAM cache, (b) a memory-based filter cache (CHOP-
MFC) that spills and fills filter state to improve the accuracy and
reduce the size of the filter cache and (c) an adaptive DRAM
caching technique (CHOP-AFC) to determine when the filter
cache should be enabled and disabled for DRAM caching. We
conduct detailed simulations with server workloads to show that
our filter-based DRAM caching techniques achieve the following:
(a) on average over 30% performance improvement over previous
solutions, (b) several magnitudes lower area overhead in tag space
required for cache-line based DRAM caches, (c) significantly
lower memory bandwidth consumption as compared to page-
granular DRAM caches.

Index Terms—DRAM cache; CHOP; adaptive filter; hot page;
filter cache

I. INTRODUCTION

Today’ multi-core processors [9], [10], [12], [15] are already
integrating four to eight large cores on the die for client as
well as server platforms. Manycore architectures enable many
more small cores for throughput computing. Niagara [14] and
the Intel Terascale effort [11] are examples of this trend.
Server workloads can take advantage of the abundant compute
parallelism enabled by such processors. The key challenge in
manycore server architectures is the memory bandwidth wall:
the amount of memory bandwidth required to keep multiple
threads and cores running smoothly is a significant challenge.
The brute force solution of adding more memory channels
is infeasible and inefficient because of the pin limitations of

processors. In this paper, we address this memory bandwidth
challenge for manycore processors by investigating bandwidth
and area efficient DRAM caching techniques.

Large DRAM caches have been proposed in the past to
address the memory bandwidth challenge of manycore proces-
sors. For example, 3D stacked DRAM cache [16], [24], [40]
has been proposed to enable 3×-5× more memory bandwidth
and 1/3rd of the latency as compared to the conventional
DDR-based memory subsystem. Similarly, Zhao et al. [41]
evaluated the benefits and trade-offs of an embedded DRAM
cache that provides similar bandwidth and latency benefits for
improved server application performance. Such solutions can
be classified into two primary buckets: (a) DRAM caches with
small allocation granularity (i.e. 64 bytes) and (b) DRAM
caches with large allocation granularity (i.e. page sizes such
as 4KB or 8KB). Fine-grain DRAM cache allocation comes
at the high cost of tag space which is stored on-die for fast
lookup [41]. This overhead implies that the last-level cache
has to be reduced in order to accommodate the DRAM cache
tag, thereby incurring significant inefficiency. The alternative
coarse-grain DRAM cache allocation comes at the cost of
significant memory bandwidth consumption and tends to limit
performance benefit significantly for memory-intensive appli-
cations that do not have significant spatial locality across all of
its pages. In this paper, we address these two major limitations
by proposing filter-based coarse-grain DRAM cache allocation
techniques to only Cache HOt Pages (CHOP).

Our first filter-based coarse-grain DRAM caching technique
employs a filter cache (CHOP-FC) to profile the pages be-
ing accessed and select only hot pages to allocate into the
DRAM cache. By employing a coarse-grain DRAM cache,
we considerably reduce the on-die tag space needed for the
DRAM cache. By selecting only hot pages to be allocated into
the DRAM cache, we avoid the memory bandwidth problem
because memory bandwidth is not wasted on pages with low
spatial locality. Our second DRAM caching technique employs
an even smaller memory-based filter-cache (CHOP-MFC). By
storing the replaced filter states of the filter cache into memory
and putting them back into the filter cache when needed,
we can improve the accuracy of the hot page detection as

well as reduce the size of the on-die filter cache. The third
filter-based coarse-grain DRAM caching technique (CHOP-
AFC) adapts between a filter-based policy and a full DRAM
cache allocation policy. For workloads that do not significantly
saturate the memory bandwidth with a coarse-grain DRAM
cache, full allocation is employed. For workloads that saturate
the memory bandwidth with a coarse-grain DRAM cache,
filter-based allocation is employed.

We perform detailed simulations comparing the filter-based
DRAM caching techniques to traditional DRAM caching tech-
niques as well as platforms with no DRAM caches. For sev-
eral commercial server workloads (TPC-C [4], SPECjbb [3],
SAP [1], SpecjAppserver [2]), we show that the filter-based
DRAM caching provides over 30% performance improvement
on average, while significantly reducing the bandwidth and
area consumption as compared to previous DRAM caching
solutions.

The contributions of the paper are as follows:
• We introduce a new class of coarse-grain DRAM caching

techniques based on filter caches that determine what to
allocate into the DRAM cache.

• We present two filter caching techniques (with and with-
out memory-backup) to show that extremely small filter
caches are capable of identifying the hot pages for DRAM
cache allocation.

• We present an adaptive technique that determines when
to employ filters and when to perform full allocation.

The rest of this paper is organized as follows. Section II
presents an overview of DRAM caching and motivates the
need to improve DRAM caching performance in terms of
memory bandwidth and area consumption. Section III presents
the filter-based coarse-grain DRAM caching techniques. Sec-
tion IV presents the evaluation methodology and analyzes the
benefits of the proposed filter-based DRAM caching tech-
niques. Section V discusses related works and Section VI
summarizes the paper with the conclusions and a direction
towards future work in this area.

II. DRAM CACHING OVERVIEW

In this section, we provide an overview of DRAM caches
and highlight the challenges that need to be addressed to
improve the efficiency and adoption of DRAM cache.

A. Background on DRAM Caching

DRAM caches [16], [40] have been investigated in the
recent past to provide much higher bandwidth and much lower
latency as compared to conventional DRAM memory. Figure 1
shows a typical CMP architecture with a cache/memory hier-
archy. The cache hierarchy introduces an additional DRAM
cache which can be either implemented with 3D stacking or
as a multi-chippackage (MCP) or embedded on the same chip.
Employing DRAM caches enables significant cache capacity
as opposed to SRAM caches (∼8× [6]). DRAM cache
integration also shows the promise for more than 3× memory
bandwidth and at least 1/3rd the latency of conventional
DRAM memory subsystem [16], [40]. Researchers [6], [25]

recently evaluated a 3D stacked approach for DRAM caches
that provides significant bandwidth and latency benefits for
improved overall performance for server and RMS workloads
respectively. In the past, Yamauchi et al. [37] have studied
the use of on-chip DRAM as memory or as cache. Zhao et
al. [41] also evaluated the benefits of DRAM caching and
showed that tag space is a significant challenge to adopting
DRAM caches in CMP processors since it requires additional
die area. These studies motivate the need to consider DRAM
caches in future large-scale CMP platforms, but also highlight
the need to address issues described in the next section.

Proc DRAM$

MCP

Proc

DRAM$

3D StackL3

DRAM Cache

Main Memory

C
L1

L2

C
L1

L2

Fig. 1. Incorporating DRAM cache in large-scale CMP platforms.

B. DRAM Caching Benefits and Challenges

The basic approach to DRAM caching is to integrate the
tag arrays on-die for fast lookup, whereas the DRAM cache
data arrays can be either on-chip (embedded DRAM) or off-
chip (3D stacked or MCP). However, the tag space can be
a significant challenge since they are large (e.g. 6MB for a
128MB cache) and require displacement of either cores or
SRAM cache space on the die. To understand this problem
better, we did an experiment with the TPC-C benchmark [4]
running on an 8-threaded 4GHz processor with an 8MB
last-level cache, a 128MB DRAM cache (with 64GB/Sec
bandwidth and less than 30ns of latency) and a 12.8GB/Sec
DRAM memory subsystem with 100ns of latency.

Figure 2 shows the DRAM cache benefits (in terms of
misses per instruction and performance) along with the trade-
offs (in terms of tag space required and main memory band-
width utilization). The baseline is a platform configuration
without DRAM cache and the first DRAM cache configuration
assumes a cache line of 64 bytes. One approach to addressing
tag space overhead is to increase the line size, thereby reducing
the tag bits required. As shown in Figure 2(a), enabling
larger cache line sizes provides a good improvement in the
misses per instruction (MPI) due to the good spatial locality
properties of server benchmarks such as TPC-C. However, the
overall performance benefits are not significant beyond 64-byte
cache lines due to (a) diminishing returns in memory stall time
beyond the first jump from no DRAM cache to a DRAM cache
with 64-byte lines and (b) the memory subsystem pressure
in terms of significant increase in main memory bandwidth
utilization. For example, the utilization is close to 100% when
running with 2KB and 4KB cache lines. While this promotes
the use of small cache lines, the significant challenge of tag
space overhead remains unsolved. Figure 2(c) shows that a

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

No_DRAM 64 128 256 512 1K 2K 4K

N
or

m
al

iz
ed

 M
is

s
P

er
 In

st
ru

ct
io

n(
M

P
I)

 (a) Misses Per Instruction (MPI)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

No_DRAM 64 128 256 512 1K 2K 4K

S
pe

ed
up

 R
at

io

(b) Performance Improvement

0

1

2

3

4

5

6

64 128 256 512 1K 2K 4K

Ta
g

A
rr

ay
 S

to
ra

ge
 O

ve
rh

ea
d(

M
B

)

(c) Tag Array Storage Overhead (MB)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

No_DRAM 64 128 256 512 1K 2K 4K

M
em

or
y

B
an

dw
id

th
 U

til
iz

at
io

n

(d) Memory Bandwidth Utilization

Fig. 2. Illustrative Overview of DRAM Cache Benefits, Challenges and Trade-offs.

128MB DRAM cache with 64 byte cache lines has a tag space
overhead of 6MB. If we implement this, the die size has to
either increase by 6MB (not attractive) or the last-level cache
space has to be reduced to accommodate the tag space (i.e.
the baseline of 8MB last-level cache requires to be shrinked
to 2MB). We find that this offsets the performance benefits
significantly and therefore is not a viable approach.

The goal of our work in this paper is to find approaches
that enable inclusion of DRAM cache with minimal additional
in die area and complexity. In order to do so, we adopt the
DRAM cache with large line sizes as the basis for exploration
since this solves the tag space problem by more than an order
of magnitude (as shown in Figure 2(c), the 4KB line size
enables a tag space that is only a few KBs). The problem
then gets converted to addressing the memory bandwidth
issue (as shown in Figure 2(d)). The data in Figure 2(d)
shows how main memory bandwidth utilization increases
with increase in line size. The memory bandwidth increases
because the decrease in DRAM cache miss rate (or MPI)
is not directly proportional to the increase in line size. For
example, the reduction in MPI when going from line size
of 64 bytes to 4KB is approximately 70% (resulting in a
1/3rd of MPI), whereas the increase in line size is 64×. In
other words, if we had 100 misses with a DRAM cache of
64 bytes and it reduces to 30 misses with a DRAM cache
of 4KB, then the memory bandwidth utilization will increase
by ∼20× ((30*4KB)/(100*64B)). Such an increase in main
memory bandwidth requirements results in saturation of the
main memory subsystem and therefore immediately affects the
performance of this DRAM cache configuration significantly
(as shown by the 2K and 4K line size results in the last two
bars of Figure 2(d) and Figure 2(b)).

The rest of this paper attempts to address this memory
bandwidth increase by introducing filter-based DRAM caching
techniques to reduce DRAM cache allocation while still
retaining the majority of the performance benefits. In the

next section, we begin by introducing filter-based DRAM
caching and describe how they will satisfy these goals and
requirements.

III. FILTER-BASED DRAM CACHING

In this section, we introduce the filter-based DRAM caching
approach and then present several filter-based DRAM caching
implementation options along with the detailed hardware sup-
port required for them.

The proposed filter-based DRAM caching approach is il-
lustrated in Figure 3. Figure 3(a) shows the baseline DRAM
caching approach where the DRAM cache is viewed as
typical next level cache which allocates a cache line on every
cache miss. As described in the previous section, with large
cache lines (such as page-size), the main memory bandwidth
requirement increases significantly and becomes the primary
performance bottleneck. In order to deal with this, we intro-
duce a very small filter cache (Figure 3b) that profiles the
memory access pattern and identifies hot pages: pages that
are heavily accessed due to temporal or spatial locality. By
enabling a filter cache that identifies hot pages, we can then
introduce a filter-based DRAM cache that only allocates for
the hot pages. By eliminating allocation of cold pages in the
DRAM cache, we expect to reduce the wasted bandwidth on
allocating cache lines that never get touched later.

TABLE I
OFFLINE HOT PAGE PROFILING STATISTICS FOR SERVER WORKLOADS.

Workload Hot Page Percentage Hot Page Min #Access
SAP 24.8% 95

SPECjApps 38.4% 65
SPECjbb 30.6% 93

TPCC 7.2% 64
Avg 25.2% 79

Before we discuss the filter-based caching schemes, we
performed a detailed offline profiling of workloads to obtain

Last−Level Cache

DRAM Cache
(tags, data)

Main Memory

Last−Level Cache

Main Memory

Main Memory

Last−Level Cache

Filter

DRAM Cache
(tags, data)Filter

(a)

Allocate on every miss

Allocate hot pages in DRAM cache

(c)

Next level is DRAM cache

(b)

access pattern
Profile memory

Identify hot pages

others in main memory
Find hot pages in DRAM cache,

Fig. 3. Filter-based DRAM caching approach: (a) baseline DRAM cache
without filter cache, (b) filter cache to profile access patterns for identifying
hot pages, (c) filter-based DRAM cache allocation.

hot page (assuming a page is 4KB in size) information.
Table I shows the results for four server workloads (each with
8 threads running in a platform with 16GB memory). The
profiling is based on misses from an 8MB Last-level Cache
(LLC) to remove the impact of lower-level cache accesses
(detailed simulation information is presented in Section IV-A).
For this profiling, we define hot pages as the topmost accessed
pages that contribute to 80% of the total access number. The
hot page percentage is calculated as the number of hot pages
divided by the total number of pages for each workload. We
can see that about 25% of the pages can be considered as hot
pages. The last column also shows the minimum number of
accesses to these hot pages. On average, a hot page is accessed
at least 79 times.

A. Filter Cache (CHOP-FC)

Figure 4(a) shows our first filter-based DRAM caching
architecture, where a Filter Cache (CHOP-FC) is incorporated
on die along with the DRAM cache tag arrays (labeled as
DT). The DRAM cache data arrays are assumed to be off
die (either via 3D stacking or MCP). The filter cache stores
its information at the same page granularity as the DRAM
cache. In this baseline filter cache scheme, each entry in the
filter cache includes a tag, LRU bits, and a counter to indicate
how often the cache line (or page) is touched (Figure 4(b)).
Using the counter information, the topmost referenced lines
in the filter cache are recognized as hot pages that should
be allocated into the DRAM cache, while the rest lines are
filtered out as cold pages. When an LLC miss occurs, the
filter cache is accessed based on page granularity. The counter
value is initialized to zero for any newly allocated lines and

incremented for every hit to the line. Once the counter value
becomes greater than a certain threshold, this line is considered
as a hot page and needs to be put into the DRAM cache. For
simplicity pages in the filter cache are maintained exclusive
to the ones in the DRAM cache.

MemoryDRAM Cache

LRUCounterTag LRUCounterTag

> Threshold

Way0 WayN

Hot Page

(a) Architecture Overview

LLCDTFC

Interconnect

C

L2C

C

L2C

C

L2C

On
Die

(b) Filter Cache Structure

Legend: FC = Filter Cache DT = DRAM cache Tag array

Fig. 4. Filter cache (CHOP-FC) for DRAM caching.

Once a hot page is identified by the filter cache, it needs to
be allocated into the DRAM cache. To allocate a new line in
the DRAM cache, a request for the new hot page is sent to
the memory and a victim line needs to be selected if all cache
ways in the corresponding cache set are occupied. Experi-
mentally, we have measured that applying Least Frequently
Used (LFU) replacement policy for picking victims in the
DRAM cache achieves better performance than using regular
LRU replacement policy. To employ LFU policy, the DRAM
cache also maintains counters in the similar fashion as the
filter cache. The counter value is incremented whenever a hit
to the cache line occurs. Hence, the line that has the minimum
counter value is selected as the victim to be replaced. Once a
cache line is to be replaced from the DRAM cache, the victim
along with its current counter value is put back into the filter
cache with an initial value, while its data is written back to
memory if needed. The initial value determines how fast the
victim (which now becomes a cold page in the filter cache) can
become hot again. We set it to be one half of the filter cache
counter threshold so that the victim pages have a better chance
to become hot again than other newer pages. We employ LRU
as the default replacement policy for the filter cache. However,
we also evaluated other alternative replacement policies (such
as LFU), but our simulation results indicate that LRU works
most efficiently for the filter cache. To compensate for program
phase changes and process context switching effects that may
vary the accuracy of the filter cache, a periodical reset to all
counters in the filter cache and DRAM cache is simply applied.

For LLC misses that also miss in both the filter cache
and DRAM cache, or hit in the filter cache but have their
counter values less than the threshold, the requested pages are
considered to be cold pages. For those pages, a regular request
(64 bytes) is sent to the memory. If the LLC miss hits in the
DRAM cache, which indicates that a hot page hit occurs, its
counter is incremented and the request is sent to the DRAM
cache instead of the memory.

Because the filter cache is accessed after an LLC miss

occurs, it adds extra latency to the system. In order to
reduce/remove the extra latency, both the filter cache and
the DRAM cache tag accesses can be performed in parallel
with the LLC accesses. However, the counter update in the
filter cache is delayed until LLC hit/miss is resolved. In this
way, when the LLC miss occurs, the hot/cold page is already
identified, so that a request to either the memory or the DRAM
cache can be sent out immediately. However, if the LLC
request turns out to be a hit, the result from the filter cache is
simply discarded.

The filter cache and DT can be combined into one structure,
where one more bit is required to indicate whether it is a
filter cache line or DRAM cache line. We choose to separate
the filter cache and DT so that they can have different cache
organizations (associativity, number of entries, etc.) as well as
different replacement policies.

B. Memory-based Filter Cache (CHOP-MFC)

In the baseline filter cache scheme, whenever a new line is
brought into the filter cache, its counter value is set to zero.
Therefore if a victim line is kicked out of the filter cache
and later brought back again, all its history information is lost
and it will be treated as a new line. If the filter cache is not
big enough in size, many potential hot pages will be replaced
before they reach the threshold so that very few hot pages
can be identified. To deal with this, we propose a Memory-
based Filter Cache (CHOP-MFC), where the counter is stored
into memory (spill) when the line is replaced from the filter
cache and restored (fill) when the line is fetched back. With
a backup in the memory for counters, we can expect more
accurate hot page identification being provided by the filter
cache. In addition, it also allows us to safely reduce the number
of entries in the filter cache significantly.

Storing the counters into memory requires allocating extra
space in the memory. For a 16GB memory with 4KB page size
and counter threshold of 256 (8-bit counter), 4MB memory
space is required. We propose two options for this memory
backup. In the first option, this memory space can be allocated
in the main memory either by the Operating System (OS) or
be reserved by the firmware/BIOS for the filter cache without
being exposed to the OS. However, one performance issue still
remains in that upon filter misses, off-chip memory accesses
are required to look up the counters in the allocated memory
region. For smaller filters that potentially have higher miss
rates, the performance benefit of using filter cache may not be
able to amortize the cost of off-chip counter lookups. To deal
with these problems, the second option for memory backup
is to pin this counter memory space in the DRAM cache. If
the DRAM cache size is 128MB and only 4MB of memory
space is required for counter backup, then the loss in DRAM
cache space is minimal (∼3%). This essentially requires a 32-
way DRAM cache to lose one way in each set for data (this
cache way is reserved for counter backup).While we can still
implement a full tag array of 32 ways, one way in each set
will be reserved for this configuration. For other configurations
with different page sizes or DRAM cache sizes, the appropriate

number of ways will need to be reserved based on the counter
space reservation required.

To generate the DRAM cache address for retrieving the
counter for a main memory page, we simply use the page
address of a page to reference the counter memory space in
the DRAM cache. In other words, the counter for page 0
(of main memory) is located at the first byte of the counter
memory space, the counter for page 1 is located at the second
byte, etc. We prefer this storing the counter in DRAM cache
as opposed to storing the counter in main memory because
the DRAM cache has much higher bandwidth than the main
memory. But it should be noted that this DRAM cache backup
option will only work as long as it continues to scale in size
proportional to the main memory size.

Similar to CHOP-FC, whenever an LLC miss occurs, the
filter cache is checked and the corresponding counter of the
line is incremented. To further reduce the latency of counter
lookups, prefetch requests of counters can be sent upon a
lower-level cache miss. If a replacement in the filter cache
occurs, the corresponding counter in the reserved memory
space is updated (either in DRAM cache or in main memory).
This counter write-back can be performed in the background.
Once the counter in the filter cache reaches the threshold, a
hot page is identified and installed into the DRAM cache.

One difference between CHOP-FC and CHOP-MFC is that
in CHOP-MFC, victim lines from the DRAM cache are not
put back into the filter cache again. The reason is that we now
have the counter values backed up in memory, so prioritization
over newer lines for DRAM cache victims is no longer needed.
Since we keep the counter history for pages, once a page’s
accumulative access reaches the threshold, this page will
stay hot forever. One problem arises in that pages that were
identified as hot pages in a earlier period may become cold
later on. To incorporate the timeliness information for hot
pages, we clear the in-memory counter history information
periodically by resetting the counter value to zero. Instead
of walking through the entire counter backups and resetting
the counters, we apply an approach that is much simpler
in hardware cost. A time interval is set periodically, during
which all counters are set to zero at the time when they are
fetched into the filter cache. An alternative approach is to keep
track of previous hot page utilization once it is brought back
from the memory and downgrade it to cold page if its access
number is less than a certain threshold. However this needs
more hardware support in the DRAM tag array, so we do not
consider this approach. Our simulation results indicate that the
simple resetting approach works well.

C. Adaptive Filter Cache (CHOP-AFC)

As we already discussed, the CHOP-FC and CHOP-MFC
schemes identify hot pages so that the DRAM cache allocates
for hot pages only. In this way, the memory bandwidth utiliza-
tion can be significantly reduced. However various workloads
have distinct behaviors and even the same workload can
have different phases, which all have various impacts on the
memory subsystem. To incorporate the effect of such impacts,

Turn filter
cache on

DRAM cache WB
DRAM cache fill
LLC direct fill

LLC direct WB
Time interval

Current Mem Util

Mem Util Threshold

>

Fig. 5. Adaptive filter cache (CHOP-AFC).

we propose an Adaptive Filter Cache scheme (CHOP-AFC as
shown in Figure 5), where the filter cache is turned on and off
dynamically based on the up-to-date memory utilization status.
We add a monitor to keep track of memory traffic and a register
to contain an initial memory utilization threshold. Figure 5
shows that the monitor computes the memory utilization based
on DRAM cache fills, write-backs, LLC fills from main
memory and LLC write-backs to main memory. Alternatively,
the memory bandwidth utilization can also be captured by
using the performance monitoring registers in the memory
controller that keep track of per DRAM channel utilization.

When memory utilization is greater than the threshold, the
filter cache is turned on so that only hot pages will be fetched
and allocated into the DRAM cache. If the memory utilization
is less than this threshold, the filter cache is turned off, which
means all pages are considered as hot pages so that they
are brought into the DRAM cache on demand. This adaptive
scheme can be combined with the baseline filter cache as well
as the memory-based filter cache.

IV. FILTER-BASED DRAM CACHING EVALUATION

In this section, we first describe the simulation framework
and the workloads that we use to evaluate the filter-based
DRAM caching techniques, and then analyze the experiment
results. The major metrics that we focus on are Speedup Ratios
for performance, and Memory Bandwidth Utilization for cache
memory subsystem behavior.

A. Evaluation Methodology

Simulation Environment. We use a trace-driven platform
simulator called ManySim [42] to evaluate various filter cache
schemes for CMP platforms. ManySim simulates the platform
resources with high accuracy, while abstracting the core to
optimize for speed. It contains a detailed cache hierarchy
model, a detailed coherence protocol implementation (MESI),
an on-die interconnect model and a memory model that
simulates the maximum sustainable bandwidth specified in
the configuration. ManySim was extended to support all filter
cache schemes.

Architecture Configuration. The simulated CMP architec-
ture is the same as the one illustrated in Figure 4(a). It consists
of 8 cores operating at a frequency of 4GHz. Each core has
its private 512KB L2 cache, and all cores share an 8MB Last
level L3 cache. An on-die interconnect with bi-directional ring
topology is used to connect L2 caches and the L3 cache.
The off-die DRAM cache has a fixed size of 128MB, with
an on-die tag array. L2 and L3 caches are inclusive whereas
L3 and DRAM cache are non-inclusive. Filter cache has 32K

entries, which is equivalent to the coverage of 128M bytes
address space. Memory-based filter cache contains 64 entries
with 4-way associativity. The detailed experiment parameters
are listed in Table II.

TABLE II
MACHINE CONFIGURATIONS AND PARAMETERS.

Parameters Values
Core 8 cores, 4GHz, in-order

L2 cache 512KB, 8-way, 64-byte block, 18-cycle hit
latency, private

L3 cache 8MB, 16-way, 64-byte block, 30-cycle hit
latency, shared

Interconnect BW 512GB/Sec

DRAM
cache

128MB, 32-way, 64-byte block, 110-cycle
access time, maximum sustainable
bandwidth at 64GB/Sec

Filter Cache 128MB coverage

Memory 400-cycle access time, maximum sustainable
bandwidth at 12.8GB/Sec

Workloads and Traces. We chose four key commercial
server workloads: TPCC [4], SAP [1], SPECjbb2005 [3]
and SPECjappserver2004 [2]. TPC-C is an online-transaction
processing benchmark that simulates a complete computing
environment where a population of users execute transactions
against a database. The SAP SD 2-tier benchmark is a sales
and distribution benchmark to represent enterprise resource
planning (ERP) transactions. SPECjbb2005 is a Java-based
server benchmark that models a warehouse company with
warehouses that serve a number of districts (much like TPC-
C). SPECjappserver2004 is a J2EE 1.3 application server. It
is a multi-tier e-commerce benchmark that emulates an auto-
mobile manufacturing company and its associated dealerships.
We also simulate the consolidated workloads by combining the
four benchmarks together. For the consolidated workload, we
quadruple the number of cores and the maximum sustainable
memory bandwidth shown in Table II.

For all of these workloads, we collected long bus traces
on Intel Xeon MP platform with 8 hardware threads running
simultaneously and the last-level cache disabled. The traces
include both instruction and data accesses, synchronization
and inter-thread dependencies if there are any. They were
replayed in the 8-core and 32-core simulator with different
cache hierarchies and memory configurations as shown in
Table II.

B. Filter Cache Evaluation

We now present the evaluation results of our baseline
filter cache scheme (CHOP-FC). We first compare CHOP-FC
with a baseline 128MB DRAM cache. To demonstrate the
effectiveness of caching hot pages, we present the results of a
naive scheme that caches a random portion of the working
set. Ideally even this approach should be able to reduce
the memory utilization. We also provide sensitivity studies
of the filter cache with various counter thresholds, different
coverages and an alternative replacement policy.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Sap Sjas Sjbb Tpc Mix Avg Sap Sjas Sjbb Tpc Mix Avg

4k 8k

S
pe

ed
up

 R
at

io
DRAM
RAND
FC

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Sap Sjas Sjbb Tpc Mix Avg Sap Sjas Sjbb Tpc Mix Avg

4k 8kM
em

or
y

B
an

dw
id

th
 U

til
iz

at
io

n

DRAM
RAND
FC

(b)

Fig. 6. Speedup ratios (a) and memory bandwidth utilization (b) of various
schemes.

Effectiveness of Filter Cache. Figure 6(a) shows the
speedup ratios of a basic 128MB DRAM cache (DRAM),
a scheme that caches a random subset of the LLC misses
(RAND) into the DRAM cache and our CHOP-FC scheme
(FC) that captures the hot subset of pages. All results are
normalized to the base case where no DRAM cache is applied.
For the RAND scheme, a random number is generated for each
new LLC miss and compared to a probability threshold to
determine whether the block should be cached into the DRAM
cache or not. We adjust the probability threshold and present
the one that leads to the best performance in Figure 6.

The DRAM bar shows that directly adding a 128MB DRAM
cache does not achieve as much performance benefit as
expected, compared to the baseline no-DRAM cache case.
Instead, it incurs slowdown in many cases. With 4KB cache
line size, DRAM results in 21.9% slowdown on average with
the worst case of 58.2% for Sjbb; with 8KB cache line size, it
results in 50.1% slowdown on average with the worst case of
77.1% for Sjbb. To understand why this is the case, Figure 6(b)
presents the memory bandwidth utilization of each scheme.
Using large cache line sizes can easily saturate the maximum
sustainable memory bandwidth, with an average of 92.8% and
98.9% for 4KB and 8KB line sizes, respectively.

Since allocating for each LLC miss in the DRAM cache
saturates the memory bandwidth, one may suggest that why
not caching just a subset of it. However, the RAND bar proves
that this subset has to be carefully chosen. On average, RAND
shows 20.2% (48.1%) slowdown for 4KB (8KB) line size.
Figure 6(a) also demonstrates that our CHOP-FC scheme
outperforms DRAM and RAND in general. With 4KB and
8KB line sizes, CHOP-FC achieves on average 17.7% and
12.8% speedup using counter threshold 32. The reason is
that while hot pages are only 25.24% (Table I) of the LLC-
missed portion of working set, it contributes to 80% of the
entire LLC misses. Caching those hot pages significantly
reduces memory bandwidth utilization and hence reduces the
associated queuing delays. As compared to RAND, caching
hot pages also provides much smaller MPI. It is observed that
DRAM and RAND for SAP and SJAS with 4KB line size
perform slightly better than CHOP-FC. This is because the

memory bandwidth is not saturated even with 4KB line size
for those two workloads. However, for the rest massive cases,
DRAM and RAND incur slowdowns due to the saturated
memory bandwidth.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Sap Sjas Sjbb Tpc Mix Avg Sap Sjas Sjbb Tpc Mix Avg

4k 8k

S
pe

ed
up

 R
at

io

FC-32 FC-64 FC-128 FC-256

(a)

0%

10%

20%

30%

40%

50%

60%

Sap Sjas Sjbb Tpc Mix Avg Sap Sjas Sjbb Tpc Mix Avg

4k 8kM
em

or
y

B
an

dw
id

th
 U

til
iz

at
io

n FC-32 FC-64
FC-128 FC-256

(b)

Fig. 7. Speedup ratios (a) and memory bandwidth utilization (b) of CHOP-
FC with various thresholds.

Sensitivity to Counter Threshold. Figure 7(a) shows the
speedup ratios of the CHOP-FC scheme with various counter
thresholds (FC-32 for threshold 32, FC-64 for threshold 64
and so on) normalized to the no DRAM cache case, while
Figure 7(b) shows the memory bandwidth utilizations.

Figure 7(a) depicts that increasing the counter threshold
tends to reduce the performance benefits. With 4KB line
size, FC-32 achieves an average of 17.7% speedup. As we
keep increasing the threshold to 256, the speedup is reduced
down to 2.4%. CHOP-FC with line size of 8KB has similar
trend. Not to our surprise, as illustrated in Figure 7(b), the
memory bandwidth utilization reduces in most cases while
the counter threshold increases. The first reason behind this
is that increasing the counter threshold reduces the number
of hot pages and hence the amount of DRAM fetches are
also reduced. Secondly, with a higher counter threshold, the
likelihood for a block to be evicted from the filter cache before
it is identified as a hot page also increases. It essentially
reduces the the chances for a block to be put into the DRAM
cache and hence reduces the effectiveness of the filter cache.
Since counter threshold 64 achieves the best (or the second
best) performance in all workloads we evaluated, we use 64
as the default counter threshold for the rest of this paper.

Sensitivity to Filter Cache Sizes. Figure 8(a) presents the
speedup ratios of our CHOP-FC with various address space
coverages from 256KB (FC 256K) up to 128MB (FC 128M),
and Figure 8(b) presents the memory bandwidth utilizations.

Figure 8 shows that with a larger coverage, CHOP-FC
tends to provide better performance and to be more memory
bandwidth efficient. For example, for 4KB line size, FC 128M
outperforms all other cases with an average speedup of 17.2%.
When the coverage is less than 64MB, CHOP-FC loses its
functionality with the worst case slowdown of 0.1% for
FC 256K. This is because having a smaller filter cache (or

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Sap Sjas Sjbb Tpc Mix Avg Sap Sjas Sjbb Tpc Mix Avg

4k 8k

S
pe

ed
up

 R
at

io
FC_256K FC_1M FC_4M FC_16M FC_64M FC_128M

(a)

0%

10%

20%

30%

40%

50%

60%

Sap Sjas Sjbb Tpc Mix Avg Sap Sjas Sjbb Tpc Mix Avg

4k 8kM
em

or
y

B
an

dw
id

th
 U

til
iz

at
oi

n FC_256K FC_1M
FC_4M FC_16M
FC_64M FC_128M

(b)

Fig. 8. Speedup ratios (a) and memory bandwidth utilization (b) of CHOP-
FC with various filter cache sizes.

smaller coverage) tends to produce higher filter miss rate.
Table III shows the filter cache miss rates as a function of
cache sizes. With the worst case of 256KB coverage, filter
cache leads to an average of 38.64% and 43.62% miss rate
for 4KB and 8KB line sizes, respectively. Most blocks are
evicted from the filter cache before they have a chance to
become hot pages. Considering the fact that a block needs to
be hit for 64 times in the filter cache in order to be allocated
into the DRAM cache, such likelihood is quite low. Increasing
the filter cache coverage increases performance. However, the
performance improvement is achieved at the cost of increasing
tag array storage overhead for the filter cache. Since FC 128M
provides a reasonable speedup ratio and requires an acceptable
(i.e. negligible impact to the LLC) storage overhead (0.8MB
for 4KB line size), we choose to use 128MB coverage for the
rest of the paper.

TABLE III
FILTER CACHE MISS RATES FOR VARIOUS FILTER CACHE SIZES.

Lsize Workload 256K 1M 4M 16M 64M 128M

4K

Sap 30% 24% 18% 12% 7% 5%
Sjas 28% 23% 18% 11% 5% 3%
Sjbb 42% 36% 30% 26% 21% 11%
Tpc 38% 31% 26% 20% 16% 21%
Mix 54% 38% 29% 22% 15% 12%
Avg 39% 30% 24% 18% 13% 10%

8K

Sap 35% 27% 21% 14% 8% 5%
Sap 35% 27% 21% 14% 8% 5%
Sjas 32% 25% 21% 13% 6% 4%
Sjbb 44% 35% 30% 25% 20% 16%
Tpc 38% 31% 26% 20% 14% 18%
Mix 69% 42% 31% 24% 17% 14%
Avg 44% 32% 26% 19% 13% 11%

Impact of Replacement Policy. In addition to the default
LRU replacement policy, we also evaluated an alternative
policy, namely Least Frequently Used (LFU) policy for the
filter cache. Rather than replacing the least recently used
block, a block with the minimal counter value is chosen
to be the victim block. Although space limitation prevents
us showing the detailed results here, we find that LFU is
outperformed by LRU replacement policy in all cases. Using

LFU replacement policy results in higher miss rate than LRU
(on average 17.07% vs. 9.87% for 4KB line size). The reason
is that using LRU for filter cache combines both timeliness and
hotness information, while using LFU provides only hotness
information and loses the equivalently important timeliness
information.

C. Memory-based Filter Cache Evaluation

In this subsection, we present the experiment results for
our memory-based filter cache scheme (CHOP-MFC). We first
compare the performance and memory bandwidth utilization
of CHOP-MFC against a regular DRAM cache using various
counter thresholds, and then show its sensitivity to filter sizes.

Effectiveness of Memory-based Filter Cache. Figure 9
shows the speedup ratios (Figure 9(a)) and memory bandwidth
utilization (Figure 9(b)) of a basic DRAM cache (DRAM)
and CHOP-MFC with various counter thresholds (MFC-32 for
threshold 32 and so on).

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Sap Sjas Sjbb Tpc Mix Avg Sap Sjas Sjbb Tpc Mix Avg

4k 8k

S
pe

ed
up

 R
at

io

DRAM MFC-32 MFC-64 MFC-128 MFC-256

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Sap Sjas Sjbb Tpc Mix Avg Sap Sjas Sjbb Tpc Mix Avg

4k 8kM
em

or
y

B
an

dw
id

th
 U

til
iz

at
io

n DRAM
MFC-32
MFC-64
MFC-128
MFC-256

(b)

Fig. 9. Speedup ratios (a) and memory bandwidth utilization (b) of CHOP-
MFC with various thresholds.

Figure 9(a) shows that CHOP-MFC with various counter
thresholds outperforms DRAM in most cases. For 4KB line
size, MFC-64 achieves the highest speedup of 25.4%, followed
by MFC-32 of 22.5%, MFC-128 of 18.6% and MFC-256 of
12.0%, respectively. For 8KB line size, MFC-128 leads the
performance with an average speedup of 18.9%. The perfor-
mance improvements come from the significant reduction in
memory bandwidth utilization as shown in Figure 9(b). The
results demonstrate that having a small-size memory-based
filter cache is sufficient to keep the fresh hot page candidates.
Unlike the replacements in CHOP-FC that result in the loss of
hot page candidates, candidates have their counters backed up
in the memory. Replacements in memory-based filter cache
incur counter write-backs to memory rather than total loss
of counters. Therefore higher hot page identification accuracy
can be obtained by CHOP-MFC. We observe that CHOP-MFC
with 64 entries has an average miss rate of 4.29% compared
to 10.34% in CHOP-FC even with 32K entries for 4KB line
size. Due to the performance robustness (i.e. speedups in all
cases) provided by counter threshold 128, we choose to use it
as the default value for the rest of this paper.

Sensitivity to Memory-based Filter Cache Sizes. We
also vary the number of filter cache entries in CHOP-MFC
from 16 to 1024 and measure the performance. We find that
having only 16 entries for CHOP-MFC incurs much higher
filter miss rate than having 64 entries (e.g. 20.36% vs. 4.29%
for 4KB line size) for both 4KB and 8KB line sizes. As a
result, more memory accesses are incurred for counter lookups
that directly degrades the performance benefit and memory
bandwidth efficiency achieved by CHOP-MFC. We also find
that having more than 64 entries for the filter cache does not
improve performance much because low miss rate is already
obtained in the 64-entry filter cache, and filter cache with
different sizes provides the same address space coverage since
counters are backed up in memory. Therefore, we choose to
use 64-entry CHOP-MFC as the default setup for the rest of
this paper.

D. Adaptive Filter Cache Evaluation

We now apply the adaptive switching methodology for both
CHOP-FC and CHOP-MFC. As mentioned before, we choose
to use counter threshold 64 for CHOP-FC and 128 for CHOP-
MFC. Due to space limitation, we only present the result of
4KB line size case. However, we observe the similar trends in
8KB line size case as well.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 0.1 0.3 0.5 0.7 0.9 1
Mem B/W Utilization Threshold

S
pe

ed
up

 R
at

io

Sap Sjas Sjbb Tpc Mix

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.1 0.3 0.5 0.7 0.9 1
Mem B/W Utilization Threshold

M
em

or
y

B
an

dw
itd

h
U

til
iz

at
io

n

Sap Sjas Sjbb Tpc Mix

(b)

Fig. 10. Speedup ratios (a) and memory bandwidth utilization (b) of CHOP-
AFC with various memory bandwidth utilization thresholds.

Adaptive Filter Cache. Figure 10 exhibits the speedup
ratios (Figure 10(a)) and memory bandwidth utilization (Fig-
ure 10(b)) for Adaptive Filter Cache (CHOP-AFC) with mem-
ory utilization thresholds varying from 0 up to 1. We can see
that for memory bandwidth utilization thresholds less than 0.3,
the speedups achieved remain the same (except for TPCC);
for threshold values between 0.3 and 1, the speedups show an
increasing trend followed by an immediate decreasing. On the
other hand, Figure 10(b) shows that for threshold less than
0.3, it achieves approximately the same memory bandwidth
utilization (except for an increase in TPCC); for threshold

values greater than 0.3, memory bandwidth utilization tends
to increase along with the increase of the threshold.

To understand why this is the case, recall that for CHOP-
AFC, when the measured memory bandwidth utilization is
less than the threshold, all blocks are cached regardless of
its hotness; while only hot pages are cached when measured
memory bandwidth utilization is greater than the memory
bandwidth utilization threshold (Section III-C). Moreover, the
average memory bandwidth utilization achieved is 93% for
DRAM case and 32% for CHOP-FC (Figure 6(b)), which
essentially denotes the upper bound and lower bound of the
memory bandwidth utilization that can be arrived by the
CHOP-AFC scheme. When the threshold is less than 0.3, the
measured memory utilization with filter cache turned on is
always larger than the threshold so that the filter cache is
always turned on, resulting in an average of 32% memory
bandwidth utilization. Therefore with the threshold between
0 and 0.3, CHOP-AFC behaves the same as CHOP-FC. This
explains why CHOP-AFC shows the constant speedups and
memory bandwidth utilizations under those thresholds. When
the threshold is greater than 0.3, due to the abundance of
available memory bandwidth, the filter cache can be turned
off for some time and therefore more pages are brought into
the DRAM cache. As a result, the useful hits provided by
the DRAM cache tend to increase as well. This explains why
memory bandwidth utilization keeps increasing and perfor-
mance keeps increasing in the beginning for threshold between
0.3 and 1. However, after some point, due to the high memory
bandwidth utilization, queuing delay begins to dominate and
consequently performance decreases. The reason that TPCC
workload shows a different trend for thresholds between 0 and
0.3 is because of its smaller lower bound memory bandwidth
utilization of 15% (DRAM bar in Figure 10(b)).

Adaptive Memory-based Filter Cache. Figure 11 shows
the speedup ratios (Figure 11(a)) and memory bandwidth
utilization (Figure 11(b)) for Adaptive Memory-based Filter
Cache scheme (CHOP-AMFC). We can see that CHOP-AMFC
has a similar trend as CHOP-AFC due to the same reason as
explained above.

E. Comparison of Three Filter Cache Schemes

We now compare the effectiveness of all proposed filter
schemes together. We first compare the extra on-die tag storage
overhead incurred by CHOP-FC and CHOP-MFC, and then
show the performance results for various schemes.

Tag Array Storage Overhead Comparison. Figure 12
shows the extra on-die storage overhead of using CHOP-FC
(FC) and CHOP-MFC (MFC). The storage overhead incurred
by CHOP-FC is roughly two orders of magnitude higher
than CHOP-MFC. The reason is that CHOP-FC requires
significantly more entries to keep the hot page candidates
on die (e.g. 32K entries for 128MB coverage with 4KB line
size), while CHOP-MFC only requires a small-size (e.g. 64
entries) storage to keep the fresh candidates. The reason that
the storage overhead of CHOP-MFC remains constant while
line size varies is because CHOP-MFC always stores counters

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 0.1 0.3 0.5 0.7 0.9 1
Mem B/W Utilization Threshold

S
pe

ed
up

 R
at

io
Sap Sjas Sjbb Tpc Mix

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.1 0.3 0.5 0.7 0.9 1
Mem B/W Utilization Threshold

M
em

or
y

B
an

dw
id

th
 U

til
iz

at
io

n Sap Sjas Sjbb Tpc Mix

(b)

Fig. 11. Speedup ratios (a) and memory bandwidth utilization (b) of CHOP-
AMFC with various memory bandwidth utilization thresholds.

0

10

20

30

40

50

1K 2K 4K 8K 16K

S
to

ra
ge

 O
ve

rh
ea

d(
K

B
) FC

MFC

528 264 132 66

Fig. 12. Comparison of tag storage overhead for CHOP-FC and CHOP-MFC.

at a constant page-granularity rather than varying with the
changes in line sizes.

Performance Comparison. Figure 13 exhibits the speedup
ratios (Figure 13(a)) and memory bandwidth utilization (Fig-
ure 13(b)) obtained by the basic 128MB DRAM cache
(DRAM), CHOP-FC (FC) , CHOP-MFC (MFC), CHOP-AFC
(AFC) and CHOP-AMFC (AMFC). All results are normalized
to the base case where no DRAM cache is used. We center
our discussion around 4KB line size since results of 8KB line
size show the similar trend.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Sap Sjas Sjbb Tpc Mix Avg Sap Sjas Sjbb Tpc Mix Avg

4k 8k

S
pe

ed
up

 R
at

io

DRAM FC MFC AFC AMFC

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Sap Sjas Sjbb Tpc Mix Avg Sap Sjas Sjbb Tpc Mix Avg

4k 8kM
em

or
y

B
an

dw
id

th
 U

til
iz

at
io

n DRAM
FC
MFC
AFC
AMFC

(b)

Fig. 13. Speedup ratios (a) and memory bandwidth utilization (b) of various
filter cache schemes.

Figure 13(a) shows that while naively adding a DRAM
cache with large line size does not improve performance due
to the saturated memory bandwidth, using various filter cache
schemes to cache only hot pages improve performance in
general. For 4KB block size, CHOP-MFC achieves on average
18.6% speedup with only 1KB extra on-die storage overhead
while CHOP-FC achieves 17.2% speedup with 132KB ex-
tra on-die storage overhead. Comparing these two schemes,
CHOP-MFC uniquely offers larger address space coverage
with very small storage overhead, while CHOP-FC naturally
offers both hotness and timeliness information at a moderate
storage overhead and minimal hardware modifications.

Figure 13(a) also shows that the adaptive filter cache
schemes (CHOP-AFC and CHOP-AMFC) outperform CHOP-
FC and CHOP-MFC schemes in all cases, with an average
of 39.0% and 39.8% speedup, respectively (detailed analysis
can be found in Section IV-D). CHOP-AFC and CHOP-
AMFC intelligently detect the available memory bandwidth to
dynamically adjust DRAM caching coverage policy to improve
performance. Dynamically turning the filter cache on and off
can adapt to the memory bandwidth utilization on the fly: (1)
when memory bandwidth is abundant, coverage is enlarged
and more blocks are cached into the DRAM cache to produce
more useful cache hits, and (2) when memory bandwidth is
scarce, coverage is reduced and only hot pages are cached
to produce reasonable amount of useful cache hits as much
as possible. By setting a proper memory utilization threshold,
CHOP-AFC and CHOP-AMFC can use memory bandwidth
wisely.

F. Sensitivity to Higher Maximum Sustainable Memory Band-
width

Figure 14 shows the results of various schemes under
higher maximum sustainable memory bandwidth. What is
markedly different is that when memory bandwidth becomes
abundant, the effectiveness of CHOP-FC and CHOP-MFC
reduces. The reason is that when the maximum sustainable
memory bandwidth is high enough, even a regular DRAM
cache with large line sizes does not saturate the bandwidth
(72.9% and 50.9% bandwidth utilization for 25.6GB/Sec and
51.2GB/Sec cases, respectively). CHOP-FC and CHOP-MFC
reduce memory bandwidth utilization but provide a lower
coverage and thus incur more DRAM cache misses. This
demonstrates the fact that CHOP-FC and CHOP-MFC only
perform well under scarce memory bandwidth conditions.

However, CHOP-AFC and CHOP-AMFC again intelligently
adjust their coverage with respect to the available memory
bandwidth and show a robust performance of higher speedup
ratios (51.1% and 56.3% speedup ratios under 25.6GB/Sec
and 51.2GB/Sec cases, respectively)

V. RELATED WORK

DRAM caches have been investigated to improve perfor-
mance especially for CMP platforms. Madan et al. [25] and
Black et al. [6] recently evaluated a 3D stacked approach for
DRAM caches that provides significant bandwidth and latency

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Sap Sjas Sjbb Tpc Avg Sap Sjas Sjbb Tpc Avg

B/W=25.6GB/S B/W=51.2GB/S

S
pe

ed
up

 R
at

io
DRAM FC MFC AFC AMFC

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Sap Sjas Sjbb Tpc Avg Sap Sjas Sjbb Tpc Avg

B/W=25.6GB/S B/W=51.2GB/SM
em

or
y

B
an

dw
id

th
 U

til
iz

at
io

n DRAM
FC
MFC
AFC
AMFC

(b)

Fig. 14. Speedup ratios (a) and memory bandwidth utilization (b) of various
filter cache schemes at 25.6GB/Sec and 51.2GB/Sec maximum sustainable
memory bandwidth.

benefits for improved overall performance for server and RMS
workloads respectively. Zhao et al. [41] observed that the
overhead of tag area is a crucial impediment to adopting
DRAM caches since the tags need to be placed on-die. They
proposed the use of partial tags and sectoring as a potential
approach to reducing DRAM cache tag size. Zhang et al. [39]
studied a cached DRAM that integrates an SRAM cache in
the DRAM memory to exploit the locality in memory accesses
and thus reduces the miss penalty. Rogers et al. [34] pointed
out using DRAM cache can achieve super-proportional core
scaling for future generations of CMPs even under memory
bandwidth wall constraints. In contrast to these works, our
work uniquely tackles the tradeoff between memory bandwidth
efficiency and tag storage overhead of DRAM caches.

There are also many prior proposals on managing off-chip
memory bandwidth usages. Those proposals effectively use the
available memory bandwidth by scheduling memory requests
based on their characteristics [21], [33], or by partitioning
the off-chip memory bandwidth across different cores [16],
[27], [28], [29], [32]. However, while alleviating the average
queuing delay for memory requests, none of them alleviates
the memory bandwidth problem incurred by the DRAM cache
with large allocation granularity. In contrast, our scheme saves
memory bandwidth by identifying and caching only hot pages.

Many prior schemes have been proposed on efficiently
managing the cache using filters, predictors and so on. Some of
those schemes address power and thermal issues. For example,
filters are used to filter out infrequently accessed cache blocks
to reduce the power consumption of L1 caches [13], [19];
while other schemes strive to improve the cache performance.
Qureshi et al. [31] propose line distillation to filter out the un-
used words in a cache line to increase effective cache capacity.
Moshovos et al. [26] propose RegionScout to identify coarse-
grain sharing patterns in shared memory multiprocessors to
improve performance. Liu et al. [23] propose a new class of
dead-block predictors to predict dead cache blocks and use
them as prefetch positions to improve performance. Subra-
manian et al. [35] propose an adaptive scheme that switches
between various cache replacement policies to improve per-

formance. Those schemes help improve the performance of
L1/L2 caches in which the design tradeoff significantly differs
from DRAM caches. In contrast, our scheme deals with the
memory bandwidth and tag space storage overhead tradeoff
in DRAM caches. There are also proposals [18], [36] that
dynamically adjust the cache block size to help cache per-
formance. However, the proposed schemes have significant
amount of hardware complexity and still do not solve the
memory bandwidth and tag space overhead tradeoff. Cache
affinity control mechanisms [5], [8], [17] have been proposed
to control whether a certain block or a specific memory region
should be fetched into or bypass the cache hierarchy. While
these schemes rely on programmers to identify opportunities
for performance improvement, our scheme is a hardware-based
scheme that does not require any programmer’s intervention.
In addition, sectored caches [7], [20], [30] also save memory
bandwidth by fetching on chip only words that are likely to be
referenced. However, sectored caches cannot effectively utilize
the entire cache capacity since unfilled sectors still occupy
cache space. In contrast, our scheme intelligently fetches only
hot pages and hence effectively uses the entire cache capacity
while saving memory bandwidth.

Identifying hot subset of working sets to utilize them for
optimizing performance has also been proposed before [22].
However, our work differs significantly from all prior works.
Etsion et al. [13] use probabilistic filter to identify blocks
that contribute to the most L1 cache accesses and put such
blocks into a small direct-mapped lookup table to eliminate
the vast majority of costly fully associative lookups. While
they point out that 80% of the L1 accesses come from 20%
of the working set, the big question of whether the LLC
misses still obey this 20/80 principle remains unclear. In
contrast, in our work, we identify that 20/80 principle stays
valid for LLC misses in server workloads. We also apply this
rule to improve performance and save memory bandwidth for
DRAM caches. Zhang et al. [38] propose augmenting TLB
with counters to identify hot pages as page coloring candidates
to reduce the cost of applying page coloring. In contrast,
our scheme differs in three aspects. First, our filter cache
scheme looks for hot pages targeting towards LLC misses
while their scheme focuses on all memory accesses. Secondly,
hot pages in our work are cached to uniquely offer a storage
and memory bandwidth efficient DRAM cache organization,
while hot pages in their work are used for page coloring
purposes. Thirdly, counters in our memory-based filter cache
are used without interfering the Operating System (OS) or
changing the TLB structure, while counters in their scheme
require OS interaction as well as TLB structural changes.

VI. CONCLUSIONS

In this paper, we proposed Caching HOt Pages (CHOP)
for DRAM caching. We studied four schemes: the basic filter
cache, memory-based filter cache, adaptive filter cache and
adaptive memory-based filter cache. Our simulation results
demonstrated that using a regular 128MB DRAM cache with
large line size alone easily saturates the available memory

bandwidth. This phenomenon will become more significant as
more and more cores will be integrated on die and generate
more memory traffic. However, with our carefully designed
various filter cache schemes, up to over 30% speedup can
be obtained by having a 128MB DRAM cache with the
filter cache. Only negligible amount of storage overhead is
incurred for holding the filter cache on die (132KB for CHOP-
FC and 1KB for CHOP-MFC). Our adaptive filter schemes
show their performance robustness and guarantee performance
improvement regardless of whether memory bandwidth is
abundant or scarce.

As future work, we would like to apply the filtering tech-
niques to other forms of two-level memory hierarchies includ-
ing PCM or Flash-based memories. We expect that exploring
hot page allocation for these will enable significant efficiency
in the behavior of the large DRAM caches and therefore
improve performance significantly. We also plan to explore
architectural support for exposing hot page information back to
the OS and applications so that dynamic optimizations can be
achieved either in terms of scheduling or in terms of runtime
binary optimizations.

ACKNOWLEDGMENT

We are very grateful to the anonymous reviewers and Zhen
Fang for their comments and feedback on the paper.

REFERENCES

[1] SSAP Benchmarks. http://www.sap.com/solutions/benchmark/index.epx.
[2] SSPECjAppServer Java Application Server Benchmark.

http://www.spec.org/jAppServer/.
[3] SSPECjbb2005. http://www.spec.org/jbb2005/.
[4] TPC-C Design Document. www.tpc.org/tpcc/.
[5] PowerPC User Instruction Set Architecture. IBM Corporation, page 161,

2003.
[6] B. Black el al. Die Stacking (3D) Microarchitecture. In the Proc. of th

39th Int. Symposium on Microarchitecture(MICRO), 2006.
[7] C. Chen, S. Yang, B. Falsafi, and A. Moshovos. Accurate and

Complexity-Effective Spatial Pattern Prediction. In the Proceedings
of the 10th International Symposium on High Performance Computer
Architecture (HPCA), 2004.

[8] Intel Corporation. Intel Streaming SIMD Extensions 4 (SSE4) Instruc-
tion Set Innovation. http://www.intel.com, 2006.

[9] Intel Corporation. World’s first quad-core processors for desktop and
mainstream processors. http://www.intel.com/quad-core/, 2007.

[10] Intel Corporation. Intel Nehalem Processors.
http://www.intel.com/technology/architecture-silicon/next-gen/, 2008.

[11] Intel Corporation. Tera-Scale Computing.
http://www.intel.com/research/platform/terascale/index.htm, 2008.

[12] Intel Corporation. Intel Xeon 5500 Series.
http://www.intel.com/p/en US/products/server/processor/xeon5000,
2009.

[13] Y. Etsion and D. Feitelson. L1 Cache Filtering Through Random
Selection of Memory References. In the Proc. of the 16th Int. Conf.
on Parallel Architecture and Compilation Techniques(PACT), 2007.

[14] R. Golla. Niagara2 : A Highly Threaded Server-on-a-Chip.
http://www.opensparc.net/pubs/preszo/06/04-Sun-Golla.pdf, 2006.

[15] AMD Inc. AMD Operton Processor Family. http://www.amd.com, 2009.
[16] R. Iyer. Performance Implications of Chipset Caches in Web Servers.

In the Prof. of the 2003 IEEE Int. Symp. on Performance Analysis of
Systems and Software (ISPASS), 2003.

[17] X. Jiang, Y. Solihin, L. Zhao, and R. Iyer. Architecture Support
for Improving Bulk Memory Copying and Initialization Performance.
In the Proceedings of the 18th International Conference on Parallel
Architectures and Compilation Techniques(PACT), 2009.

[18] T. Johnson. Run-time adaptive cache management. PhD thesis,
University of Illinois, Urbana Champion , 1998.

[19] J. Kin, M. Gupta, and W. Mangione-Smith. The Filter Cache: An Energy
Efficient Memory Structure. In the Proc. of the 30th Int. Symp. on
Microarchitecture (MICRO), 1997.

[20] S. Kumar and C. Wilkerson. Exploiting spatial locality in data caches
using spatial footprints. In the Proceedings of the 25th International
Symposium on Computer Architecture (ISCA), 1998.

[21] C. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-Aware
DRAM Controller. In the Proc. of the 41st Int. Symp. on Microar-
chitecture(MICRO), 2008.

[22] C. Lin, C. Yang, and C. Lee. HotSpot Cache: Joint Temporal and Spatial
Locality Exploitation for ICache Energy Reduction. In the Proc. of Int.
Symp. on Low Power Electronics and Design(ISLPED04), 2004.

[23] H. Liu et al. Cache Bursts: A New Approach for Eliminating Dead
Blocks and Increasing Cache Efficiency. In the Proceedings of the
International Symposium on Microarchitecture(MICRO), 2008.

[24] G. Loh. 3D-Stacked Memory Architectures for Multi-Core Processors.
In the Proc. of the 35th Int. Symposium on Computer Architecture(ISCA),
2008.

[25] N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Balasubramonian,
R. Iyer, S. Makineni, and D. Newell. Optimizing Communication
and Capacity in a 3D Stacked Reconfigurable Cache Hierarchy. In
the Proceedings of the International Symposium on High Performance
Computer Architecture(HPCA), 2009.

[26] A. Moshovos. RegionScout: Exploiting Coarse Grain Sharing in Snoop-
Based Coherence. In the Proceedings of the International Symposium
on Computer Architecture (ISCA), 2005.

[27] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Schedul-
ing for Chip Multiprocessors. In the Proceedings of the International
Symposium on Microarchitecture(MICRO), 2007.

[28] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems.
In the Proceedings of the International Symposium on Computer Archi-
tecture (ISCA), 2008.

[29] K. Nesbit, N. Aggarwal, J. Laudon, and J. Smith. Fair Queuing
Memory System. In the Proceedings of the International Symposium
on Microarchitecture(MICRO), 2006.

[30] P. Pujara and A. Aggarwal. Increasing the cache efficiency by eliminat-
ing noise. In the Proceedings of the 12th International Symposium on
High Performance Computer Architecture (HPCA), 2006.

[31] M. Qureshi, A. Suleman, and Y. N. Patt. Line Distillation: Increasing
Cache Capacity by Filtering Unused Words in Cache Lines. In the
Proceedings of the International Symposium on High Performance
Computer Architecture(HPCA), 2007.

[32] N. Rafique et al. Effective Management of DRAM Bandwidth in
Multicore Processors. In the Proc. of the 16th Int. Conf. on Parallel
Architectures and Compilation Techniques(PACT), 2007.

[33] S. Rixner. Memory Access Scheduling. In the Proceedings of the
International Symposium on Computer Architecture (ISCA), 2000.

[34] B. Rogers, A. Krishna, G. Bell, K. Vu, X. Jiang, and Y. Solihin. Scaling
the Bandwidth Wall: Challenges in and Avenues for CMP Scaling.
In the Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), 2009.

[35] R. Subramanian, Y. Smaragdakis, and G. Loh. Adaptive Caches:
Effective Shaping of Cache Behavior to Workloads. In the Proceedings
of the International Symposium on Microarchitecture(MICRO), 2006.

[36] A. Veidenbaum et al. Adapting cache line size to application behavior.
In the Proc. of Int. Conference on Supercomputing(ICS), 1999.

[37] T. Yamauchi, L. Hammond, and K. Olukotun. A Single Chip Multi-
processor Integrated with High Density DRAM. Tech. Rep., Stanford
University, 1997.

[38] X. Zhang et al. Towards Practical Page Coloring-based Multi-core Cache
Management. In EuroSys09, 2009.

[39] Z. Zhang et al. Cached DRAM: A Simple and Effective Technique for
Memory Access Latency Reduction on ILP Processors. In IEEE Micro,
2001.

[40] Z. Zhang et al. Design and Optimization of Large Size and Low
Overhead Off-chip Caches. In IEEE Transactions on Computer, 2004.

[41] L. Zhao, R. Iyer, R. Illikkal, and D. Newell. Exploring DRAM Cache
Architectures for CMP Server Platforms. In the Proceedings of the 25th
International Conference on Computer Design (ICCD), 2007.

[42] L. Zhao, R. Iyer, J. Moses, R. Illikkal, S. Makineni, and D. Newell.
Exploring Large-Scale CMP Architectures Using ManySim. In IEEE
Micro, 2007.

