
Lecture 27: Review Session

• Disk, reliability wrap-up
• Review Session

• Exam reminders / Thursday
• Class evals, TAs



Role of Disks

• Activities external to the CPU/memory are typically 
orders of magnitude slower

• Example: while CPU performance has improved by 50%
per year, disk latencies have improved by 10% every year

• Typical strategy on I/O: switch contexts and work on
something else

• Other metrics, such as bandwidth, reliability, availability,
and capacity, often receive more attention than performance



Magnetic Disks

• A magnetic disk consists of 1-12 platters (metal or glass
disk covered with magnetic recording material on both
sides), with diameters between 1-3.5 inches

• Each platter is comprised of concentric tracks (5-30K) and
each track is divided into sectors (100 – 500 per track,
each about 512 bytes) 

• A movable arm holds the read/write heads for each disk
surface and moves them all in tandem – a cylinder of data
is accessible at a time



Disk Latency

• To read/write data, the arm has to be placed on the
correct track – this seek time usually takes 5 to 12 ms
on average – can take less if there is spatial locality

• Rotational latency is the time taken to rotate the correct
sector under the head – average is typically more than
2 ms (15,000 RPM)

• Transfer time is the time taken to transfer a block of bits
out of the disk and is typically 3 – 65 MB/second

• A disk controller maintains a disk cache (spatial locality
can be exploited) and sets up the transfer on the bus
(controller overhead)



Defining Reliability and Availability

• A system toggles between
 Service accomplishment: service matches specifications
 Service interruption: service deviates from specs

• The toggle is caused by failures and restorations 

• Reliability measures continuous service accomplishment
and is usually expressed as mean time to failure (MTTF)

• Availability measures fraction of time that service matches
specifications, expressed as  MTTF / (MTTF + MTTR)



RAID

• Reliability and availability are important metrics for disks

• RAID: redundant array of inexpensive (independent) disks

• Redundancy can deal with one or more failures

• Each sector of a disk records check information (CRC) that allows
it to determine if the disk has an error or not (in other words,
redundancy already exists within a disk)

• When the disk read flags an error, we turn elsewhere for
correct data



RAID 0 and RAID 1

• RAID 0 has no additional redundancy (misnomer) – it
uses an array of disks and stripes (interleaves) data
across the arrays to improve parallelism and throughput

• RAID 1 mirrors or shadows every disk – every write
happens to two disks

• Reads to the mirror may happen only when the primary
disk fails – or, you may try to read both together and the
quicker response is accepted

• Expensive solution: high reliability at twice the cost



RAID 3

• Data is bit-interleaved across several disks and a separate
disk maintains parity information for a set of bits

• For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1,
…, bit 7 is in disk-7; disk-8 maintains parity for all 8 bits

• For any read, 8 disks must be accessed (as we usually
read more than a byte at a time) and for any write, 9 disks
must be accessed as parity has to be re-calculated

• High throughput for a single request, low cost for
redundancy (overhead: 12.5%), low task-level parallelism



RAID 4 and RAID 5

• Data is block interleaved – this allows us to get all our
data from a single disk on a read – in case of a disk error,
read all 9 disks

• Block interleaving reduces thruput for a single request (as
only a single disk drive is servicing the request), but
improves task-level parallelism as other disk drives are
free to service other requests

• On a write, we access the disk that stores the data and the
parity disk – parity information can be updated simply by
checking if the new data differs from the old data



RAID 5

• If we have a single disk for parity, multiple writes can not
happen in parallel (as all writes must update parity info)

• RAID 5 distributes the parity block to allow simultaneous writes



RAID Summary

• RAID 1-5 can tolerate a single fault – mirroring (RAID 1)
has a 100% overhead, while parity (RAID 3, 4, 5) has 
modest overhead

• Can tolerate multiple faults by having multiple check
functions – each additional check can cost an additional
disk (RAID 6)

• RAID 6 and RAID 2 (memory-style ECC) are not
commercially employed



Memory Protection

• Most common approach: SECDED – single error correction,
double error detection – an 8-bit code for every 64-bit word
-- can correct a single error in any 64-bit word – also used
in caches

• Extends a 64-bit memory channel to a 72-bit channel and
requires ECC DIMMs (e.g., a word is fetched from 9 chips 
instead of 8)

• Chipkill is a form of error protection where failures in an
entire memory chip can be corrected 



Computation Errors

• Errors in ALUs and cores are typically handled by
performing the computation n times and voting for the
correct answer

• n=3 is common and is referred to as triple modular
redundancy
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Modern Trends

• Historical contributions to performance:
 Better processes (faster devices) ~20%
 Better circuits/pipelines ~15%
 Better organization/architecture ~15%

Today, annual improvement is closer to 20%; this is primarily
because of slowly increasing transistor count and more cores.

Need multi-thread parallelism and accelerators to boost
performance every year.
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Performance Measures

• Performance = 1 / execution time
• Speedup = ratio of performance
• Performance improvement = speedup -1
• Execution time = clock cycle time x CPI x number of instrs

Program takes 100 seconds on ProcA  and 150 seconds on ProcB

Speedup of A over B = 150/100  = 1.5
Performance improvement of A over B = 1.5 – 1 = 0.5 = 50%

Speedup of B over A = 100/150 = 0.66   (speedup less than 1 means
performance went down)

Performance improvement of B over A = 0.66 – 1 = -0.33 = -33%
or Performance degradation of B, relative to A = 33%

If multiple programs are executed, the execution times are combined
into a single number using AM, weighted AM, or GM



17

Performance Equations

CPU execution time = CPU clock cycles  x  Clock cycle time

CPU clock cycles = number of instrs  x  avg clock cycles
per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?
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Power Consumption

• Dyn power   activity x capacitance x voltage2 x frequency

• Capacitance per transistor and voltage are decreasing,
but number of transistors and frequency are increasing at
a faster rate

• Leakage power is also rising and will soon match dynamic
power

• Power consumption is already around 100W in
some high-performance processors today
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Example Problem

• A 1 GHz processor takes 100 seconds to execute a CPU-bound
program, while consuming 70 W of dynamic power and 30 W of
leakage power.  Does the program consume less energy in
Turbo boost mode when the frequency is increased to 1.2 GHz?

Normal mode energy = 100 W x 100 s = 10,000 J
Turbo mode energy = (70 x 1.2 + 30) x 100/1.2 = 9,500 J

Note: 
Frequency only impacts dynamic power, not leakage power.
We assume that the program’s CPI is unchanged when

frequency is changed, i.e., exec time varies linearly
with cycle time for CPU-bound programs.
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Basic MIPS Instructions

• lw $t1, 16($t2)
• add   $t3, $t1, $t2
• addi $t3, $t3, 16
• sw $t3, 16($t2)
• beq $t1, $t2, 16
• blt is implemented as  slt and bne
• j         64
• jr $t1
• sll $t1, $t1, 2

Convert to assembly:
while   (save[i] == k)

i += 1;

i and k are in $s3 and $s5 and
base of array save[] is in $s6

Loop:  sll $t1, $s3, 2
add    $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j         Loop

Exit:
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Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 :  $zero        always stores the constant 0
 Regs 2-3   :  $v0, $v1   return values of a procedure
 Regs 4-7   :  $a0-$a3   input arguments to a procedure
 Regs 8-15 :  $t0-$t7     temporaries
 Regs 16-23: $s0-$s7    variables
 Regs 24-25: $t8-$t9     more temporaries
 Reg   28     : $gp          global pointer
 Reg   29     : $sp           stack pointer
 Reg   30     : $fp            frame pointer
 Reg   31     : $ra           return address 
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Memory Organization

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

Proc A’s  values

Proc B’s  values

Proc C’s  values
…

High address

Low address
Stack grows

this way

$fp

$sp
$gp
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Procedure Calls/Returns

procA (int i)
{

int j;
j = …;
i = call procB(j);
… = i;

}

procB (int j)
{

int k;
… = j;
k = …;
return k;

}

procA:
$s0 = … # value of j
$t0  = … # some tempval
$a0 = $s0  # the argument
…
jal  procB
…
… = $v0

procB:
$t0  = … # some tempval
… = $a0 # using the argument
$s0 = … # value of k
$v0 = $s0;
jr   $ra
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Saves and Restores

• Caller saves:
 $ra, $a0, $t0, $fp (if reqd)

• Callee saves:
 $s0

procA:
$s0 = … # value of j
$t0  = … # some tempval
$a0 = $s0  # the argument
…
jal  procB
…
… = $v0

procB:
$t0  = … # some tempval
… = $a0 # using the argument
$s0 = … # value of k
$v0 = $s0;
jr   $ra

• As every element is saved on stack,
the stack pointer is decremented
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Example 2

int   fact  (int n)
{

if (n < 1)  return (1);
else return (n * fact(n-1));

}

fact:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
addi $sp, $sp, 8
jr $ra

L1:
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temps are never saved.
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Recap – Numeric Representations

• Decimal        3510  =  3 x 101 + 5 x 100

• Binary          001000112  =  1 x 25 +  1 x 21 +  1 x 20

• Hexadecimal (compact representation)
0x 23    or   23hex     =   2 x 161 +  3 x 160

0-15 (decimal)    0-9, a-f  (hex)

Dec  Binary  Hex
0    0000     00
1    0001     01
2    0010     02
3    0011     03

Dec  Binary  Hex
4    0100     04
5    0101     05
6    0110     06
7    0111     07

Dec  Binary  Hex
8    1000     08
9    1001     09

10    1010     0a
11    1011     0b

Dec  Binary  Hex
12    1100     0c
13    1101     0d
14    1110     0e
15    1111     0f
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2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)   
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals  a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x        … hence, can compute the negative of a number by
-x = x’ + 1             inverting all bits and adding 1

This format can directly undergo addition without any conversions!
Each number represents the quantity

x31 -231 +  x30 230 + x29 229 + … + x1 21 + x0 20
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Multiplication Example

Multiplicand 1000ten
Multiplier x    1001ten

---------------
1000

0000
0000

1000
----------------

Product 1001000ten

In every step
• multiplicand is shifted
• next bit of multiplier is examined (also a shifting step)
• if this bit is 1, shifted multiplicand is added to the product
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Division

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

-1000
10
101
1010
-1000

10ten Remainder

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1

as the next bit of the quotient
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Division

1001ten Quotient
Divisor 1000ten |     1001010ten Dividend

0001001010         0001001010       0000001010    0000001010
100000000000  0001000000 00001000000000001000
Quo:   0                   000001               0000010            000001001

At every step,
• shift divisor right and compare it with current dividend
• if divisor is larger, shift 0 as the next bit of the quotient
• if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient
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Binary FP Numbers

• 20.45 decimal = ? Binary

• 20 decimal = 10100 binary

• 0.45 x 2 = 0.9     (not greater than 1, first bit after binary point is 0)
0.90 x 2 = 1.8      (greater than 1, second bit is 1, subtract 1 from 1.8)
0.80 x 2 = 1.6      (greater than 1, third bit is 1, subtract 1 from 1.6)
0.60 x 2 = 1.2      (greater than 1, fourth bit is 1, subtract 1 from 1.2)
0.20 x 2 = 0.4      (less than 1, fifth bit is 0)
0.40 x 2 = 0.8      (less than 1, sixth bit is 0)
0.80 x 2 = 1.6      (greater than 1, seventh bit is 1, subtract 1 from 1.6)

… and the pattern repeats

10100.011100110011001100…
Normalized form = 1.0100011100110011…  x 24
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Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)

Double: (1 + 11 + 52)

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000

Remember:

True exponent                    Exponent in register
+127

-127
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Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)
1   0111 1110  1000…000

Double: (1 + 11 + 52)
1   0111 1111 110    1000…000

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000

-5.0
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Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  36.90625ten in single-precision format

36 / 2 = 18 rem 0
18 / 2 = 9   rem 0
9 / 2 = 4   rem 1
4 / 2 = 2   rem 0
2 / 2 = 1   rem 0
1 / 2 = 0   rem 1

36 is 100100

0.90625 x 2 = 1.81250
0.8125 x 2 = 1.6250
0.625 x 2 = 1.250
0.25 x 2 = 0.50
0.5 x 2 = 1.00
0.0 x 2 = 0.0

0.90625 is 0.1110100…0
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Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

We’ve calculated that 36.90625ten = 100100.1110100…0 in binary
Normalized form = 1.001001110100…0 x 25

(had to shift 5 places to get only one bit left of the point)

The sign bit is 0 (positive number)
The fraction field is  001001110100…0  (the 23 bits after the point)
The exponent field is  5 + 127 (have to add the bias) = 132,

which in binary is  10000100

The IEEE 754 format is   0   10000100  001001110100…..0
sign  exponent     23 fraction bits
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0  00..0  00…0Value 0

Value 1 0  127  00…0

Value inf
Value NAN
Highest value ~2 x 2127

0  255  00…0
0  255  xx….x
0  254  11….1

Smallest Norm ~2 x 2-126

Largest Denorm ~1 x 2-126

Smallest Denorm ~2-149

0  0..01  00…0
0  0..00  11…1
0  0..00  00…1

Same rules as above, but the sign bit is 1
Same magnitudes as above, but negative numbers

Exponent field < 127, i.e., after
subtracting bias, they are negative
exponents, representing numbers < 1

2 special cases up top that use the
reserved exponent field of 255

Special case with exponent field 0, used to
represent denorms, that help us gradually approach 0
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FP Addition – Binary Example

• Consider the following binary example 

1.010  x 21 +     1.100 x 23

Convert to the larger exponent:
0.0101  x 23 +     1.1000 x 23

Add
1.1101  x 23

Normalize
1.1101  x 23

Check for overflow/underflow
Round
Re-normalize
IEEE 754 format:  0 10000010 11010000000000000000000
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Boolean Algebra

A        B        C                   E
0            0            0                         0
0            0            1                         0
0            1            0                         0
0            1            1                         1
1            0            0                         0
1            0            1                         1
1            1            0                         1
1            1            1                         0

(A . B . C) + (A . C . B) + (C . B . A)

• Can also use “product of sums”
• Any equation can be implemented
with an array of ANDs, followed by
an array of ORs

• A + B = A . B

• A . B  =  A + B
Any truth table can be expressed
as a sum of products
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Adder Implementations

• Ripple-Carry adder – each 1-bit adder feeds its carry-out to next stage –
simple design, but we must wait for the carry to propagate thru all bits

• Carry-Lookahead adder – each bit can be represented by an equation
that only involves input bits (ai, bi) and initial carry-in (c0)  -- this is a
complex equation, so it’s broken into sub-parts

For bits ai, bi,, and ci, a carry is generated if   ai.bi = 1   and a carry is
propagated if  ai + bi = 1

Ci+1 = gi + pi . Ci

Similarly, compute these values for a block of 4 bits, then for a block
of 16 bits, then for a block of 64 bits….Finally, the carry-out for the
64th bit is represented by an equation such as this:
C4 = G3+ G2.P3 + G1.P2.P3 + G0.P1.P2.P3 + C0.P0.P1.P2.P3

Each of the sub-terms is also a similar expression
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Trade-Off Curve
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gp adder (3, 33)
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32-bit ALU

Source: H&P textbook
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Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

Ai   Bn   Op
AND     0     0     00
OR       0     0     01
Add      0     0     10
Sub      0     1     10
NOR     1     1     00
NAND   1     1     01

SLT      0     1     11
BEQ    0     1     10 (xx)

Source: H&P textbook
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Tackling FSM Problems

• Three questions worth asking:
What are the possible output states?  Draw a 

bubble for each.
What are inputs?  What values can those inputs take?
 For each state, what do I do for each possible 

input value?  Draw an arc out of every bubble for 
every input value.
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Example – Residential Thermostat

• Two temp sensors: internal and external
• If internal temp is within 1 degree of desired, don’t 

change setting
• If internal temp is > 1 degree higher than desired, turn 

AC on; if internal temp is < 1 degree lower than 
desired, turn heater on

• If external temp and desired temp are within 5 
degrees, disregard the internal temp, and turn both AC
and heater off



Finite State Machine Table
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Finite State Diagram

U-H

HEAT COOL

OFF

U-C

D-C,
D-G,
D-H

D-C,
D-G,
D-H

D-C, D-G, D-H, U-G

U-C,
U-G

U-H,
U-G

U-C U-H

Ext temp settings:
D – desired zone
U – undesired zone

Int temp settings:
C – cold
G – goldilocks 
H – hot



Unpipelined processor
CPI:
Clock speed:
Throughput:

Pipelined processor
CPI:
Clock speed:
Throughput:

Circuit Assumptions
Length of full circuit:
Length of each stage:
No hazards

Pipeline Performance



Data Hazards

No Bypassing
(for the 5-stage pipeline)
Point of production: always RW middle
Point of consumption: always D/R middle

Bypassing

Point of production: 
add, sub, etc.: end of ALU
lw: end of DM

Point of consumption:
add, sub, lw: start of ALU
sw $1, 8($2): start of ALU for $2,

start of DM for $1

* PoP
I1  add:    IF   DR    AL    DM    RW
I2  add:           IF     DR    DR DR AL  DM  RW

* PoC

* PoP
I1  add:    IF   DR    AL    DM    RW
I2  add:           IF     DR     AL     DM  RW

* PoC



Control Hazards

Assumptions

100 instructions
20 branches
14 Not-Taken, 6 Taken
Branch resolved in 6th cycle (penalty of 5)

Approach 1: Panic and wait

Approach 2: Fetch-next-instr

Approach 3: Branch Delay Slot
Option A: always useful
Option B: useful when the branch 

goes along common fork
Option C: useful when the branch

goes along uncommon fork
Option D: no-op, always non-useful

Approach 4: Branch predictor
Accuracy of 90%

Option A
Branch

Slot
NTaken Taken

Option B          Option C



Out of Order Processor

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ



Cache Latency

Assumptions

1000 instructions, 1000 cycles, no stalls with L1 hits
# loads/stores:
% of loads/stores that show up at L2:
% of loads/stores that show up at L3:
% of loads/stores that show up at mem:
L2 acc = 10 cyc,   L3 acc = 25 cyc,   mem acc = 200 cyc



Cache Size

Assumptions

512KB cache, 8-way set-associative, 64-byte blocks, 32-bit addresses

Data array size = #sets x #ways x blocksize
Tag array size = #sets x #ways x tagsize
Offset bits = log(blocksize)
Index bits = log(#sets)
Tag bits + index bits + offset bits = addresswidth



Cache Hits/Misses

Assumptions

16 sets, 1 way, 32-byte blocks

Access pattern:      4       40     400      480      512       520       1032       1540     

Offset = address % 32  (address modulo 32, extract last 5)
Index = address/32 % 16     (shift right by 5, extract last 4)
Tag = address/512          (shift address right by 9)

32-bit address
23 bits tag           4 bits index     5 bits offset    H/M   Evicted address 

4:             0                             0                        4                 M           Inv
40:           0                             1                        8                 M           Inv
400:         0                            12                      16               M           Inv
480:         0                            15                       0                M           Inv
512:         1                             0                        0                M            0
520:         1                             0                        8                 H            -
1032:       2                             0                        8                M           512
1540:       3                             0                        4                M           1024
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Example 0b

Offset = address % 64  (address modulo 64, extract last 6)
Index = address/64 % 16     (shift right by 6, extract last 4)
Tag = address/1024          (shift address right by 10)

32-bit address
22 bits tag           4 bits index     6 bits offset

8:             0                             0                        8              M
96:           0                             1                       32             M
32:           0                             0                       32             H
480:         0                             7                       32             M
976:         0                             15                     16             M
1040:       1                             0                       16             M
1096:       1                             1                        8              M

Show how the following addresses map to the cache and yield hits or misses.
The cache is direct-mapped, has 16 sets, and a 64-byte block size.
Addresses:  8, 96, 32, 480, 976, 1040, 1096

.

.

.



Consider a 3-processor multiprocessor connected with a shared bus that has the following properties:
(i) centralized shared memory accessible with the bus, (ii) snooping-based MSI cache coherence protocol,

(iii) write-invalidate policy. Also assume that the caches have a writeback policy. Initially, the caches all
have invalid data. The processors issue the following three requests, one after the other. Similar to slide
17 of lecture 25, fill in the following table to indicate what happens for every request. Also indicate
if/when memory writeback is performed. (8 points)

P2: Read X
P1: Read X
P2: Write X
P3: Read X

State in 
Cache 4

State in 
Cache 3

State in 
Cache 2

State in 
Cache 1

Who respondsRequest
on the bus

Cache
Hit/Miss

Request

InvInvInvInv

P2: Rd X

P1: Rd X

P2: Wr X

P3: Rd X



Security

Questions to ask yourself:
How does Meltdown work?
How does Spectre work?
How can you force a footprint?  (the relevant code sequence)
How can you examine footprints?  (exploiting the side channel)
How can you defend against these attacks?



Virtual Memory

Questions to ask yourself:
What does the programmer/compiler deal with?
What does the OS deal with?
How is translation done efficiently?



Synchronization, Consistency

Questions to ask yourself:
Why do multiprocs need to deal with prog. models, coherence, synchronization, consistency?
What are race conditions?
What is an example synchronization primitive and how is it implemented?
What consistency model is assumed by a programmer?
Why is it slow?
How do I make life easier for the programmer and provide high performance?



GPUs, Disks

Questions to ask yourself:
What are the central philosophies in a GPU?
In what ways does the GPU design differ from a CPU?
What are the different ways that disks provide high reliability?
Can you explain how parity is used to recover lost data?



Disk Basics

• Disk access remains very slow – mechanical head that has to move to the correct 
“ring” of data – order of milli-seconds – high enough that a context-switch is best

• Focus on other metrics, especially reliability
• A sector on the disk is associated with a cyclic redundancy code (CRC) – a hash that 

tells us if the read data is correct or not – it is simply an error detector, not an error 
corrector

• To correct the error, RAID is commonly used
• Reliability measures continuous service accomplishment and is usually expressed as 

mean time to failure (MTTF)
• Availability is measured as MTTF/(MTTF+MTTRecovery)



RAID

• RAID 0: no redundancy
• RAID 1: mirroring
• RAID 2 and 6: memory-style ECC and rarely deployed
• RAID 3: bit-interleaved, lower cost, but no query-level parallelism
• RAID 4: block-interleaved, lower cost, query-level parallelism, but write bottleneck
• RAID 5: block-interleaved, lower cost, query-level parallelism, write parallelism
• Parity and XOR!


