
1

Lecture 16: Basic Pipelining

• Today’s topics:

 5-stage pipeline
 Hazards

2

Latches and Clocks in a Single-Cycle Design

PC
Instr
Mem

Reg
File

ALU
Data

Memory
Addr

• The entire instruction executes in a single cycle
• Green blocks are latches
• At the rising edge, a new PC is recorded
• At the rising edge, the result of the previous cycle is recorded
• At the falling edge, the address of LW/SW is recorded so

we can access the data memory in the 2nd half of the cycle

3

Multi-Stage Circuit

• Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
multiple stages, each separated by a latch

PC Instr
Mem ALU Data

Memory
L2 Reg

File L3 L4

Reg
File

L5

4

The Assembly Line

A

Start and finish a job before moving to the next

Time

Jobs

Break the job into smaller stages
B C
A B C

A B C
A B C

Unpipelined

Pipelined

5

Performance Improvements?

• Does it take longer to finish each individual job?

• Does it take shorter to finish a series of jobs?

• What assumptions were made while answering these
questions?

• Is a 10-stage pipeline better than a 5-stage pipeline?

6

A 5-Stage Pipeline

Source: H&P textbook

7

A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4

8

A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)

9

A 5-Stage Pipeline

ALU computation, effective address computation for load/store

10

A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

11

A 5-Stage Pipeline

Write result of ALU computation or load into register file

12

Pipeline Summary

RR ALU DM RW

ADD R1, R2,  R3 Rd R1,R2 R1+R2 -- Wr R3

BEQ R1, R2, 100 Rd R1, R2 -- -- --
Compare, Set PC

LD 8[R3]  R6 Rd R3 R3+8 Get data Wr R6

ST 8[R3]  R6 Rd R3,R6 R3+8 Wr data --

13

Performance Improvements?

• Does it take longer to finish each individual job?

• Does it take shorter to finish a series of jobs?

• What assumptions were made while answering these
questions?

– No dependences between instructions
– Easy to partition circuits into uniform pipeline stages
– No latch overhead

• Is a 10-stage pipeline better than a 5-stage pipeline?

14

Quantitative Effects

• As a result of pipelining:
 Time in ns per instruction goes up
 Each instruction takes more cycles to execute
 But… average CPI remains roughly the same
 Clock speed goes up
 Total execution time goes down, resulting in lower

average time per instruction
 Under ideal conditions, speedup

= ratio of elapsed times between successive instruction
completions

= number of pipeline stages = increase in clock speed

15

Conflicts/Problems

• I-cache and D-cache are accessed in the same cycle – it
helps to implement them separately

• Registers are read and written in the same cycle – easy to
deal with if register read/write time equals cycle time/2

• Branch target changes only at the end of the second stage
-- what do you do in the meantime?

16

Hazards

• Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

• Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch – special case
of a data hazard – separate category because they are
treated in different ways

