Lecture 15: Basic CPU Design

e Today’s topics:

= FSM examples
= Single-cycle CPU
= Multi-cycle CPU

State Diagram

State Transition Table:

CurrState InputEW InputNS NextState=Output
N 0 0 N
N 0 1 N
N 1 0 E
N 1 1 E
E 0 0 E
E 0 1 N
E 1 0 E
E 1 1 N

EWecar

NSgreen EWgreen

NSlite

EWilite

NScar

Source: H&P textbook

Tackling FSM Problems

e Three questions worth asking:
= What are the possible output states? Draw a
bubble for each.
= What are inputs? What values can those inputs take?
" For each state, what do | do for each possible
input value? Draw an arc out of every bubble for
every input value.

Example — Residential Thermostat

e Two temp sensors: internal and external

e |f internal temp is within 1 degree of desired, don’t
change setting

e |f internal temp is > 1 degree higher than desired, turn
AC on; if internal temp is < 1 degree lower than
desired, turn heater on

e |f external temp and desired temp are within 5
degrees, disregard the internal temp, and turn both AC
and heater off

Finite State Machine Table

Current State Input E Input I Output State
HEAT D C OFF
HEAT D G OF'F
HEAT D H OF'F
HEAT U C HEAT
HEAT U G HEAT
HEAT U H COOL
COOL D C OFF
COOL D G OF'F
COOL D H OF'F
COOL U s HEAT
COOL U G COOL
COOL U H COOL
OFF D e OFF
OF'F D G OFF
OFF D H OFF
OFF U P HEAT
OFF U G OFF
OFF U H COOL

Finite State Diagram

U-C,
U-G

U-H,
U-G

Int temp settings:
C —cold
G — goldilocks

Ext temp settings: H — hot

D — desired zone U
D-C, D-G, D-H, U-G

U — undesired zone

Latch vs. Flip-Flop

e Recall that we want a circuit to have stable inputs for
an entire cycle —so | want my new inputs to arrive at
the start of a cycle and be fixed for an entire cycle

e A flip-flop provides the above semantics (a door that
swings open and shut at the start of a cycle)

e But a flip-flop needs two back-to-back D-latches, i.e.,
more transistors, delay, power

e You can reduce these overheads with just a single
D-latch (a door that is open for half a cycle) as long as
you can tolerate stable inputs for just half a cycle

Basic MIPS Architecture

* Now that we understand clocks and storage of states,
we’ll design a simple CPU that executes:

= basic math (add, sub, and, or, slt)
" memory access (lw and sw)
= branch and jump instructions (beq and j)

Implementation Overview

e \We need memory
= to store instructions
= to store data
= for now, let’s make them separate units

* We need registers, ALU, and a whole lot of control logic

e CPU operations common to all instructions:
= use the program counter (PC) to pull instruction out
of instruction memory
" read register values

View from 30,000 Feet

Add

Add

Note: we haven'’t bothered
showing multiplexors

Address Instruction

Instruction
memory

—

el

[&

Data
Register #
Registers

Register #

Register #

>ALU Address
Data

memory

e What is the role of the Add units?

e Explain the inputs to the data memory unit

e Explain the inputs to the ALU
e Explain the inputs to the register unit

Data

Y

Source: H&P textbook

10

View from 30,000 Feet

Add

Add

Note: we haven'’t bothered
showing multiplexors

Address Instruction

Instruction
memory

—

el

[&

Data
Register #
Registers

Register #

Register #

>ALU Address
Data

memory

e What is the role of the Add units?

e Explain the inputs to the data memory unit

e Explain the inputs to the ALU
e Explain the inputs to the register unit

Data

Y

Source: H&P textbook

11

Clocking Methodology

|
4 —»
%dd : Add
L I
Data
——
Register #
= PC ¢ Address Instruction '—E Registers >ALU Address
. Register # Data
Instruction - S —
memory ¢+ Register # W' o |
= Data

Source: H&P textbook
e Which of the above units need a clock?

e What is being saved (latched) on the rising edge of the clock?

Keep in mind that the latched value remains there for an entire cycle >

Implementing R-type Instructions

e Instructions of the form add St1, St2, St3

e Explain the role of each signal

Register y
numbers

Data

a. Registers

> Data

< | Read

register 1 Read
5 Read data 1
: register 2
5 | Write Registers
: register Read

Write data 2
—_—

Data

RegWrite

ALU ;LU
result

b. ALU
Source: H&P textbook

13

Implementing Loads/Stores

e Instructions of the form Iw St1, 8(St2) and sw St1, 8(S5t2)

Register
numbers

Data

a. Registers

<

Read
register 1

Read
register 2

Write
register

Write
Data

Read
data 1

Registers

Read
data 2

> Data

RegWrite

Where does this input come from?

a. Data memory unit Source: H&P textbook

MemWrite
———— Address Read
data
Data
Write memory
—_—
data
MemRead

Implementing Loads/Stores

e Instructions of the form Iw St1, 8(St2) and sw St1, 8(S5t2)

Register
numbers

Data

a. Registers

<

Read
register 1

Read
register 2

Write
register

Write
Data

Read
data 1

Registers

Read
data 2

> Data

RegWrite

Where does this input come from?

a. Data memory unit Source: H&P textbook

MemWrite
———— Address Read
data
Data
Write memory
—_—
data
MemRead

Implementing J-type Instructions

e Instructions of the form beq St1, St2, offset

PC +4 from instruction datapath —-
Branch
>‘°‘dd SUM = 1 rget
@
Read J ALU operation
Instruction register 1 Read
Read data 1
register 2 To branch
Write Registers control logic
register Read |
Write cola 2
data
RegWrite
16 : 32
R Sign-
~ | extend

Source: H&P textbook 16

View from 10,000 Feet

>Adt:| l .

4 —
Read S gt
Read - ; ALUSrc ALU operation
g bins address e dREEd - MemWrite
Read ata 1
register 2 Zero Menmiaheg
Instruction 3 >
Write Registers 4 1z ALU alu Address Re€ad
Instruction | register data 2 M result data
memory _ u
| Write X -
data
| Write Data
RegWrite | data memory
16 Sign 32 MemRead
o ’
extend

17
Source: H&P textbook

View from 5,000 Feet

>Add

Read
address

Instruction
[31-0]

Instruction
memory

|

Instruction [31

\

Instruction [25-21]
L 4

|
26|
at Control

RegDst
v Branch

>Addresult

ALU

| MemRead

= xg= @

| MemtoReq

ALUOp

| MemWrite

)

| ALUSrc

.\\,_J / RegWrile

Read

Instruction [20-16]

Instruction [15-11
L 4 -

register 1 Read

Read data 1
register 2

Write
register

Write
data Registers

Read
data 2

Instruction [15-0]

ALU ALU

Zero

result

32

i Sign- | *

extend,

Instruction [5-0]

ALU '|_
control|

, /

Address

Write

data Mmemory,

Read
data

Oxpg=—

Data

18

Source: H&P textbook

Latches and Clocks in a Single-Cycle Design

PC Instr Reg ALU Addr Data

Mem File Memory

Y Y Y

e The entire instruction executes in a single cycle
e Green blocks are latches
e At the rising edge, a new PCis recordedT
e At the rising edge, the result of the previous cycle is recorded T
e At the falling edge, the address of LW/SW is recorded so T
we can access the data memory in the 2"? half of the cycle

