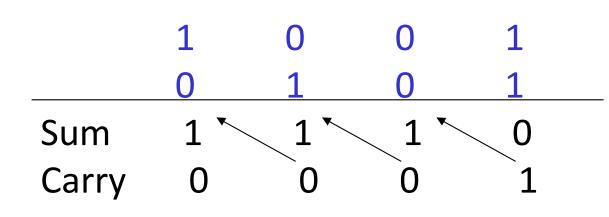
Lecture 13: ALUs, Adders

- HW 5 due 2/25
- Today's topics:
 - ALU
 - Carry-lookahead adder

Adder Algorithm



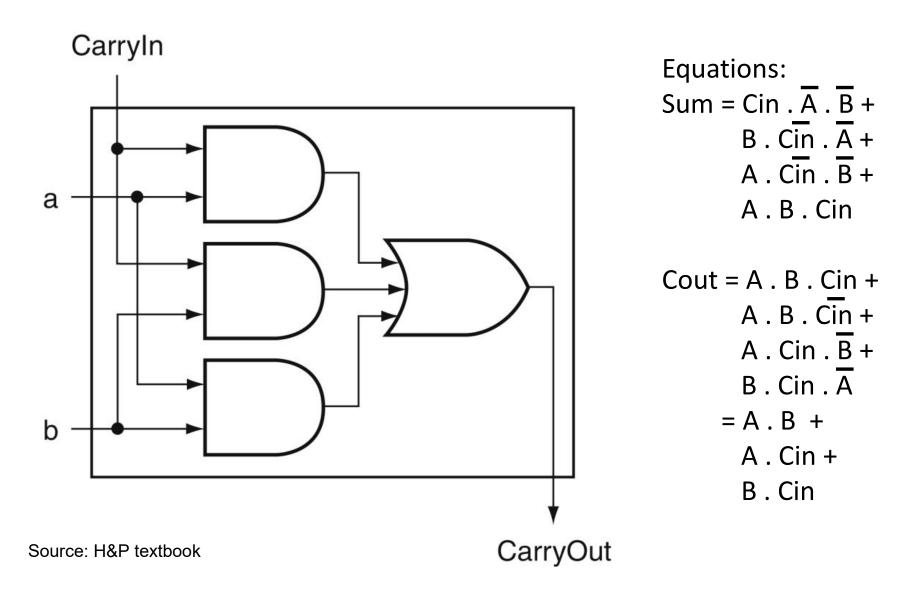
Truth Table for the above operations:

Equations: Sum = Cin $\overline{A} \cdot \overline{B}$ + B $\overline{Cin} \cdot \overline{A}$ + A $\overline{Cin} \cdot \overline{B}$ + A $\overline{Cin} \cdot \overline{B}$ +

 Α	B	Cin	Sum Cout	
0	0	0	0 0	Co
0	0	1	1 0	
0	1	0	1 0	
0	1	1	0 1	
1	0	0	1 0	
1	0	1	0 1	
1	1	0	0 1	
1	1	1	1 1	

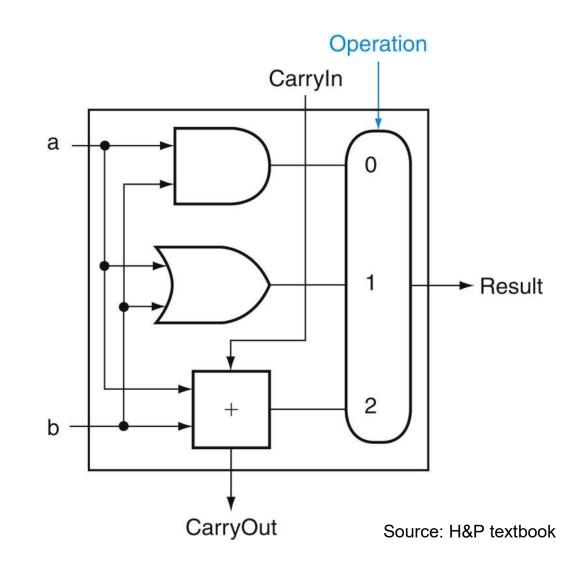
Cout = A . B . Cin + A . B . Cin + A . Cin . \overline{B} + B . Cin . \overline{A} = A . B + A . Cin + B . Cin 2

Carry Out Logic



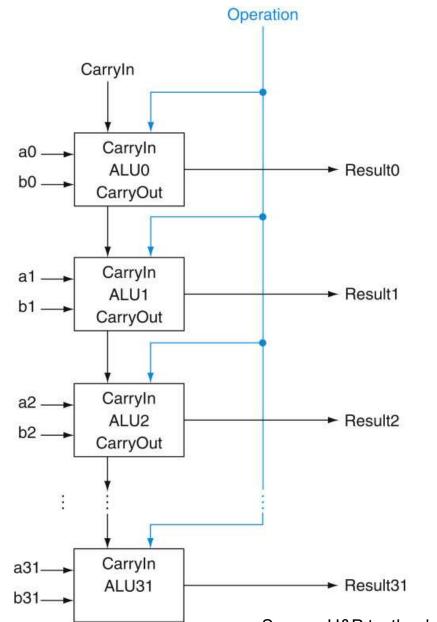
1-Bit ALU with Add, Or, And

• Multiplexor selects between Add, Or, And operations



32-bit Ripple Carry Adder

CarryIn CarryIn a0 — ALU0 1-bit ALUs are connected b0 -CarryOut "in series" with the carry-out of 1 box CarryIn a1 going into the carry-in ALU1 b1 of the next box CarryOut

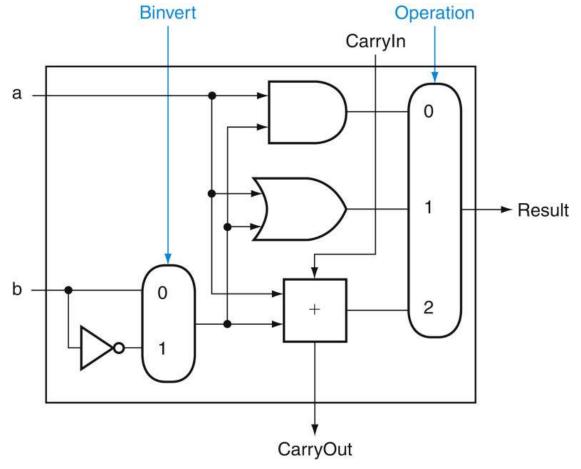


5

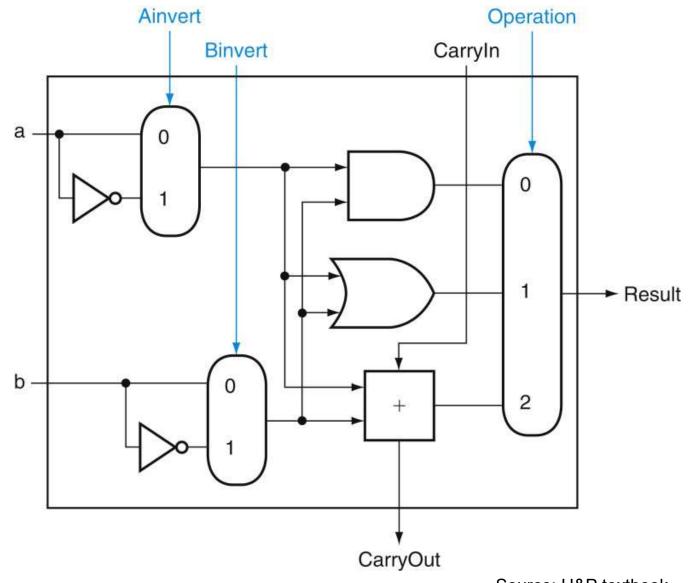
Incorporating Subtraction

Must invert bits of B and add a 1

- Include an inverter
- CarryIn for the first bit is 1
- The CarryIn signal (for the first bit) can be the same as the Binvert signal



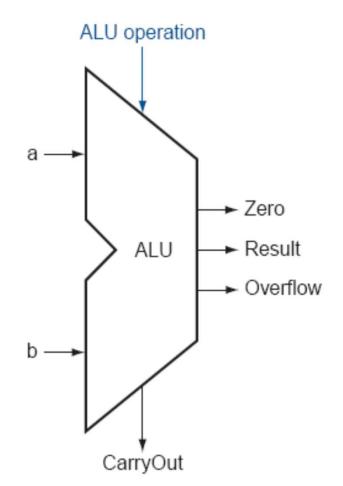
Incorporating NOR and NAND



Control Lines

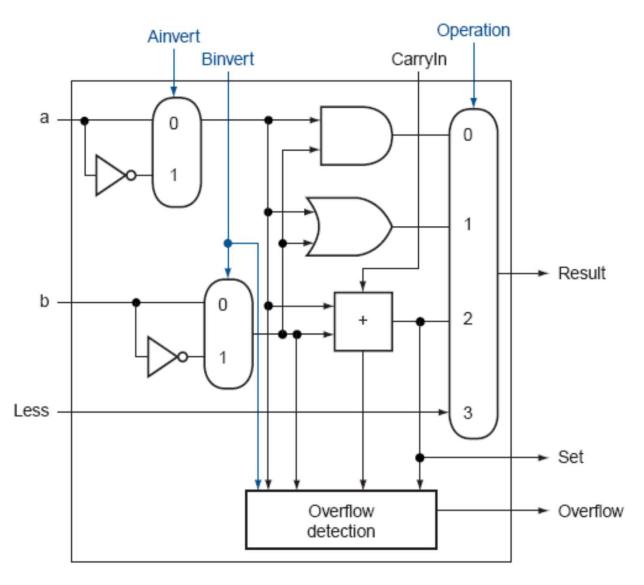
What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Ор
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
NAND	1	1	01
NOR	1	1	00



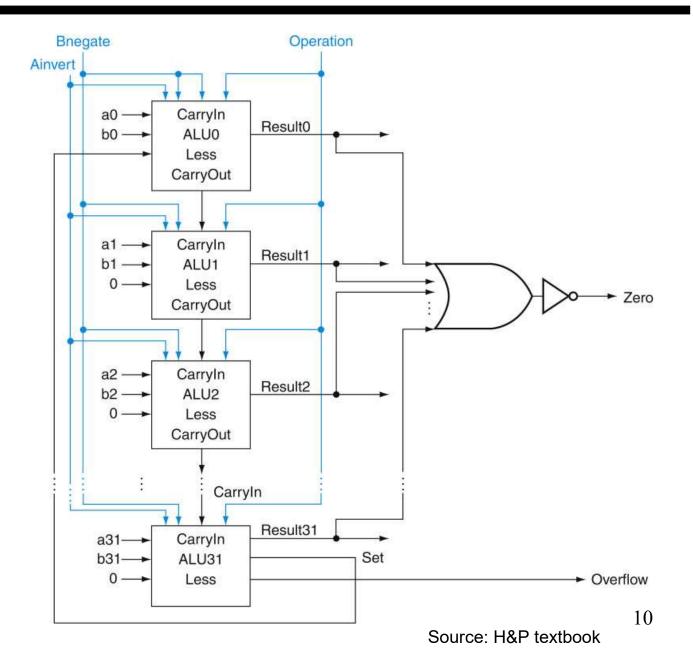
Incorporating slt

- Perform a b and check the sign
- New signal (Less) that is zero for ALU boxes 1-31
- The 31st box has a unit to detect overflow and sign – the sign bit serves as the Less signal for the 0th box



Incorporating beq

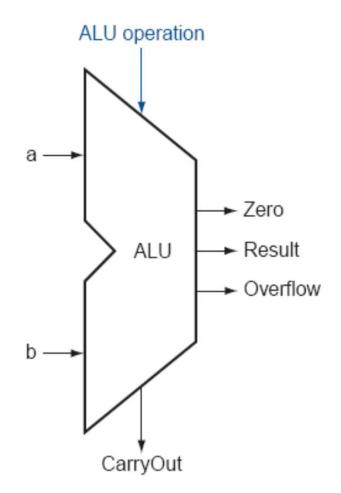
 Perform a – b and confirm that the result is all zero's



Control Lines

What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Ор
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
NOR	1	1	00
NAND	1	1	01
SLT	0	1	11
BEQ	0	1	10



- The carry propagates thru every 1-bit box: each 1-bit box sequentially implements AND and OR total delay is the time to go through 64 gates!
- We've already seen that any logic equation can be expressed as the sum of products – so it should be possible to compute the result by going through only 2 gates!
- Caveat: need many parallel gates and each gate may have a very large number of inputs – it is difficult to efficiently build such large gates, so we'll find a compromise:
 - moderate number of gates
 - moderate number of inputs to each gate
 - moderate number of sequential gates traversed

CarryIn1 = b0.CarryIn0 + a0.CarryIn0 + a0.b0CarryIn2 = b1.CarryIn1 + a1.CarryIn1 + a1.b1= b1.b0.c0 + b1.a0.c0 + b1.a0.b0 +a1.b0.c0 + a1.a0.c0 + a1.a0.b0 + a1.b1

CarryIn32 = a really large sum of really large products

 Potentially fast implementation as the result is computed by going thru just 2 levels of logic – unfortunately, each gate is enormous and slow

```
Equation re-phrased:
Ci+1 = ai.bi + ai.Ci + bi.Ci
= (ai.bi) + (ai + bi).Ci
```

Stated verbally, the current pair of bits will *generate* a carry if they are both 1 and the current pair of bits will *propagate* a carry if either is 1

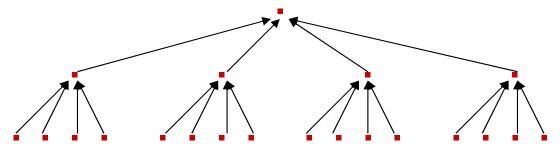
```
Generate signal = ai.bi
Propagate signal = ai + bi
```

```
Therefore, Ci+1 = Gi + Pi . Ci
```

Either,

- a carry was just generated, or
- a carry was generated in the last step and was propagated, or
- a carry was generated two steps back and was propagated by both the next two stages, or
- a carry was generated N steps back and was propagated by every single one of the N next stages

- The equations on the previous slide are still difficult to implement as logic functions – for the 32nd bit, we must AND every single propagate bit to determine what becomes of c0 (among other things)
- Hence, the bits are broken into groups (of 4) and each group computes its group-generate and group-propagate
- For example, to add 32 numbers, you can partition the task as a tree



P and G for 4-bit Blocks

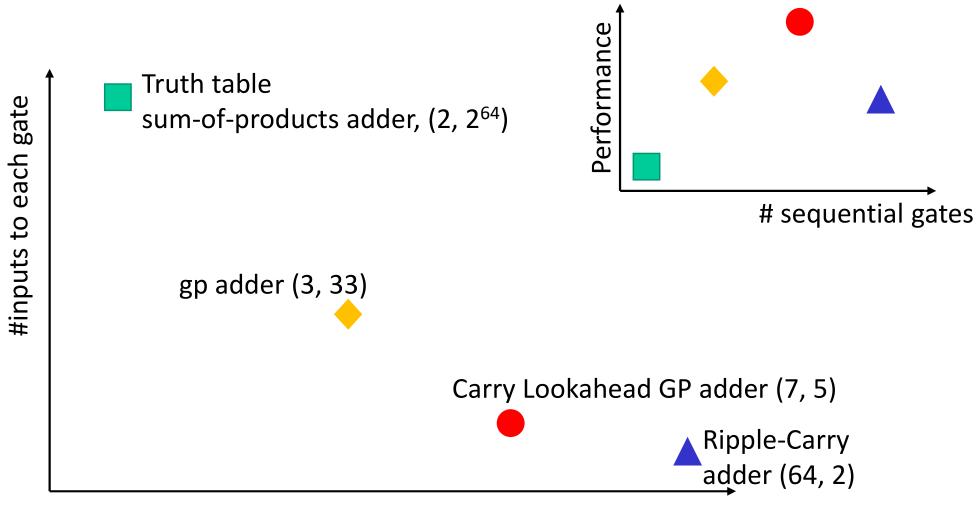
- Compute P0 and G0 (super-propagate and super-generate) for the first group of 4 bits (and similarly for other groups of 4 bits)
 P0 = p0.p1.p2.p3
 G0 = g3 + g2.p3 + g1.p2.p3 + g0.p1.p2.p3
- Carry out of the first group of 4 bits is C1 = G0 + P0.c0
 C2 = G1 + P1.G0 + P1.P0.c0
 C3 = G2 + (P2.G1) + (P2.P1.G0) + (P2.P1.P0.c0)
 C4 = G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.G0) + (P3.P2.P1.P0.c0)
- By having a tree of sub-computations, each AND, OR gate has few inputs and logic signals have to travel through a modest set of gates (equal to the height of the tree)

Example

Add	А	0001	1010	0011	0011
	В	1110	0101	1110	1011
-	g	0000	0000	0010	0011
	р	1111	1111	1111	1011
	D	1	1	1	0
	Г	I	I	I	0
	G	0	0	1	0

C4 = 1

Trade-Off Curve



sequential gates

Carry Look-Ahead Adder

- 16-bit Ripple-carry takes 32 steps
- This design takes how many steps?
 5 sequential steps

