Lecture 13: ALUs, Adders

e HW 5 due 2/25
e Today’s topics:

= ALU
= Carry-lookahead adder



Adder Algorithm

1 0 0 1
0] 1 0) 1
Sum 1 \1 \1 \O
Carry O 0 0 1
Truth Table for the above operations:
A B Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Equations:

Sum=Cin.A.B+
B.Cin.A+
A.Cin.B+
A.B.Cin

Cout=A.B.Cin+
A.B.Cin+
A.Cin.B+
B.Cin.A
=A.B +
A.Cin+
B.Cin



Carry Out Logic

Carryln

>

Source: H&P textbook

Y
CarryOut

Equations:

Sum=Cin.A.B+
B.Cin.A+
A.Cin.B+
A.B.Cin

Cout=A.B.Cin+
A.B.Cin+
A.Cin.B+
B.Cin.A
=A.B +
A.Cin+
B.Cin



1-Bit ALU with Add, Or, And

e Multiplexor selects between Add, Or, And operations

Operation

Carryln

\

~

0

g

ig

|

'\

> Result

\
CarryOut

Source: H&P textbook



32-bit Ripple Carry Adder

1-bit ALUs are connected
“in series” with the
carry-out of 1 box

going into the carry-in

of the next box

Operation

Y

Result0

Y

Result1

Carryln
a0 —s| Carryln
ALUO
w8 CarryOut
Y l
al —as Carryin
b ALU1
CarryOut
Y \i
a2 _ .| Caryin
ALU2
bE CarryOut

A

¢

|

a3l —»

b31—

Carryln
ALU31

Result2

Source:

Result31

H&P textbook



Incorporating Subtraction

Binvert Operation
Carryln
Y
a o> \ \
Must invert bits of Band add a 1 | | G
¢ Include an inverter
e Carryln for the first bitis 1 & 1
e The Carryln signal (for the = Resul
first bit) can be the same v_\ [
as the Binvert signal b — 0 -1 ,
1
CarryOut

Source: H&P textbook

6



Incorporating NOR and NAND

Ainvert Operation
Binvert Carryin
Y
ade D
' ]
‘ * *ﬁ (;'\
1 >
\_/ B
.—
1 > Result
Y
b (5 ) =
< )
B \_/
N

Y
CarryOut
Source: H&P textbook



Control Lines

What are the values
of the control lines
and what operations
do they correspond to?

Ai Bn Op
AND O O 00
OR 0 O 01
Add 0 0 10
Sub 0 1 10
NAND 1 1 01
NOR 1 1 00

ALU operation

a —>\
—» /ero
> ALU |— Result

L » Qverflow

b—

CarryOut

Source: H&P textbook



Incorporating slt

e Perform a — b and check
the sign

e New signal (Less) that
is zero for ALU boxes
1-31

e The 315t box has a unit
to detect overflow and
sign — the sign bit
serves as the Less
signal for the Ot box

Ainvert

Binvert

Operation
Carryin

J

|

b >
+ o 2
*9—
Less - 3
LA J Y I
QOverflow >
detection

Source: H&P textbook

Result

Set

Overflow



Incorporating beq

e Perform a—b and
confirm that the
result is all zero’s

Bnegate Operation
Ainvert L _
Ty l L
a0 —| Carryln o
esu
b0 — ALUO
Loss =
CarryQut
L 2 ]
L L
al —{ Carryln
b1 ALUA Result1 T - .
00— Less .
CarryOut : Zero
—_—
|
¥ 9 Yy v
a2 —» Carryln
b2 ALUZ Result2
00— Less
CarryOut
: - Carryln :
!
t ¢ l Result31 l
a31——| Carryln | s
b31—{  ALU31 Set
00— Less = Overflow
10

Source: H&P textbook



Control Lines

What are the values
of the control lines

and what operations l
do they correspond to?
a—

ALU operation

Ai Bn Op
— Zero

AND O O 00
OR 0 0 01 > ALU |— Result
Add O 0 10 — Overflow
Sub 0 1 10 .
NOR 1 1 00
NAND 1 1 01
SLT 0 1 11
BEQ 0 1 10 il i

Source: H&P textbook



Speed of Ripple Carry

e The carry propagates thru every 1-bit box: each 1-bit box sequentially
implements AND and OR — total delay is the time to go through 64 gates!

e We've already seen that any logic equation can be expressed as the
sum of products — so it should be possible to compute the result by
going through only 2 gates!

e Caveat: need many parallel gates and each gate may have a very
large number of inputs — it is difficult to efficiently build such large
gates, so we’ll find a compromise:

= moderate number of gates
= moderate number of inputs to each gate
= moderate number of sequential gates traversed

12



Cout=A.B+A.Cin+B.Cin

Computing CarryOut

Carrylnl = b0.Carryln0O + a0.CarryIn0O + a0.b0
Carryln2 = b1.Carrylnl + al.Carrylnl + al.b1l
= b1.b0.cO+ b1.a0.cO0 + b1.a0.b0 +
al.b0.cO+ al.a0.cO+al.a0.b0+al.bl

Carryln32 = a really large sum of really large products
e Potentially fast implementation as the result is computed

by going thru just 2 levels of logic — unfortunately, each
gate is enormous and slow

13



Generate and Propagate

Equation re-phrased:
Ci+1 = ai.bi + ai.Ci + bi.Ci
= (ai.bi) + (ai + bi).Ci

Stated verbally, the current pair of bits will generate a carry
if they are both 1 and the current pair of bits will propagate
a carry if eitheris 1

Generate signal = ai.bi
Propagate signal = ai + bi

Therefore, Ci+1 = Gi + Pi . Ci

14



Generate and Propagate

c1 =90 + p0.cO
c2=9g1+p1.ct
=g1 +p1.g0 + p1.p0.cO
c3 =92 +p2.g1 + p2.p1.g0 + p2.p1.p0.c0
c4d =g3 + p3.92 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0O

a carry was just generated, or

a carry was generated in the Iz

a carry was generated two step
the next two stages, or

a carry was generated N steps back and was propagated by every
single one of the N next stages

and was propagated by both

15



Divide and Conquer

e The equations on the previous slide are still difficult to implement
as logic functions — for the 32" bit, we must AND every single
propagate bit to determine what becomes of cO (among other
things)

e Hence, the bits are broken into groups (of 4) and each group
computes its group-generate and group-propagate

e For example, to add 32 numbers, you can partition the task as

AN AN AN AN

16



P and G for 4-bit Blocks

e Compute PO and GO (super-propagate and super-generate) for the
first group of 4 bits (and similarly for other groups of 4 bits)
PO = p0.pl.p2.p3
GO=g3+g2.p3 +gl.p2.p3 +g0.pl.p2.p3

e Carry out of the first group of 4 bits is
C1=GO0 + PO.cO
C2=G1+P1.GO+P1.PO.cO
C3=G2+ (P2.G1) + (P2.P1.GO) + (P2.P1.P0.c0)
C4 =G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.G0O) + (P3.P2.P1.P0.c0)

e By having a tree of sub-computations, each AND, OR gate has few
inputs and logic signals have to travel through a modest set of

gates (equal to the height of the tree)

17



Example

Add A 0001 1010 0011 0011
B 1110 0101 1110 1011

g 0000 0000 0010 0011
p 111 1111 1111 1011

18



Trade-Off Curve

[
»

Truth table
sum-of-products adder, (2, 2%%)

A

Performance

[

# sequential gates

gp adder (3, 33)

#inputs to each gate

Carry Lookahead GP adder (7, 5)

® ARippIe-Ca rry

ad=der (64, 2)

# sequential gates

19



Carry Look-Ahead Adder

e 16-bit Ripple-carry
takes 32 steps

e This design takes
how many steps?
5 sequential steps

Car|ryln
v
a0 —= Carryin
b0 —= g Resuli0-3
al —=
b1 —
a2 — ALUO
b2 — PO —— pi
a3 —-» I T
b3 —» GO0 g/
C1 afied Carry-lookahead unit
a4 —= Carryin
b4 —= = Result4—7
a5 —
b5 —=
ab—s={ ALU1
b6 —= p{ —— pi+1
a7 — = gi+1
b7 —» G1 g
cz2 ;
R U
a8 —* Carryin |
b8 — - Resultg-11
a9 —=
b9 —»
al0—= ALUZ2
b10 —= P2 —— pi+2
all —= i+2
ori— [ °
C3 ;
l— ci+3
al2 —= Cafryln
b12 —»= Result12-15
ald—=
B13—
ald —=| ALU3
b14 — P3 ——{ pi+3
a15—= ——= gi+3
15— @3 B ¢
l— ci+4
CarmyQu Source: H&P textbook

20



