
1

Lecture 13: ALUs, Adders

• HW 5 due 2/25

• Today’s topics: 

 ALU 
 Carry-lookahead adder



2

Adder Algorithm

1          0          0          1 
0          1          0          1

Sum        1          1          1          0
Carry       0          0         0           1

A        B        Cin Sum  Cout
0            0            0                          0           0
0            0            1                          1           0
0            1            0                          1           0
0            1            1                          0           1
1            0            0                          1           0
1            0            1                          0           1
1            1            0                          0           1
1            1            1                          1           1

Truth Table for the above operations:

Equations:
Sum = Cin . A . B +

B . Cin . A +
A . Cin . B +
A . B . Cin

Cout = A . B . Cin +
A . B . Cin +
A . Cin . B +
B . Cin . A 

= A . B  +
A . Cin +
B . Cin



3

Carry Out Logic

Equations:
Sum = Cin . A . B +

B . Cin . A +
A . Cin . B +
A . B . Cin

Cout = A . B . Cin +
A . B . Cin +
A . Cin . B +
B . Cin . A 

= A . B  +
A . Cin +
B . Cin

Source: H&P textbook



4

1-Bit ALU with Add, Or, And

• Multiplexor selects between Add, Or, And operations

Source: H&P textbook



5

32-bit Ripple Carry Adder

1-bit ALUs are connected
“in series” with the
carry-out of 1 box 
going into the carry-in
of the next box

Source: H&P textbook



6

Incorporating Subtraction

Must invert bits of B and add a 1
• Include an inverter
• CarryIn for the first bit is 1
• The CarryIn signal (for the

first bit) can be the same
as the Binvert signal

Source: H&P textbook



7

Incorporating NOR and NAND

Source: H&P textbook



8

Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

Ai   Bn   Op
AND     0     0     00
OR       0     0     01
Add      0     0     10
Sub      0     1     10
NAND  1     1     01
NOR     1     1     00

Source: H&P textbook



9

Incorporating slt

• Perform a – b and check
the sign

• New signal (Less) that
is zero for ALU boxes
1-31

• The 31st box has a unit
to detect overflow and
sign – the sign bit 
serves as the Less
signal for the 0th box

Source: H&P textbook



Incorporating  beq

• Perform a – b and
confirm that the 
result is all zero’s

10
Source: H&P textbook



11

Control Lines

What are the values
of the control lines

and what operations
do they correspond to?

Ai   Bn   Op
AND     0     0     00
OR       0     0     01
Add      0     0     10
Sub      0     1     10
NOR     1     1     00
NAND   1     1     01

SLT      0     1     11
BEQ    0     1     10

Source: H&P textbook



12

Speed of Ripple Carry

• The carry propagates thru every 1-bit box: each 1-bit box sequentially
implements AND and OR – total delay is the time to go through 64 gates!

• We’ve already seen that any logic equation can be expressed as the
sum of products – so it should be possible to compute the result by 
going through only 2 gates!  

• Caveat: need many parallel gates and each gate may have a very
large number of inputs – it is difficult to efficiently build such large 
gates, so we’ll find a compromise:

 moderate number of gates 
 moderate number of inputs to each gate
 moderate number of sequential gates traversed



13

Computing CarryOut

CarryIn1 = b0.CarryIn0 + a0.CarryIn0 + a0.b0
CarryIn2 = b1.CarryIn1 + a1.CarryIn1 + a1.b1

= b1.b0.c0 + b1.a0.c0 + b1.a0.b0 +
a1.b0.c0 + a1.a0.c0 + a1.a0.b0 + a1.b1

…
CarryIn32 = a really large sum of really large products

• Potentially fast implementation as the result is computed
by going thru just 2 levels of logic – unfortunately, each
gate is enormous and slow

Cout = A . B + A . Cin + B . Cin



14

Generate and Propagate

Equation re-phrased:
Ci+1 = ai.bi + ai.Ci + bi.Ci

= (ai.bi) + (ai + bi).Ci

Stated verbally, the current pair of bits will generate a carry
if they are both 1 and the current pair of bits will propagate
a carry if either is 1

Generate signal = ai.bi
Propagate signal = ai + bi

Therefore, Ci+1 = Gi + Pi . Ci



15

Generate and Propagate

c1 = g0 + p0.c0
c2 = g1 + p1.c1

= g1 + p1.g0 + p1.p0.c0
c3 = g2 + p2.g1 + p2.p1.g0 + p2.p1.p0.c0
c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0

Either, 
a carry was just generated, or
a carry was generated in the last step and was propagated, or
a carry was generated two steps back and was propagated by both

the next two stages, or
a carry was generated N steps back and was propagated by every

single one of the N next stages



16

Divide and Conquer

• The equations on the previous slide are still difficult to implement
as logic functions – for the 32nd bit, we must AND every single
propagate bit to determine what becomes of c0 (among other
things)

• Hence, the bits are broken into groups (of 4) and each group 
computes its group-generate and group-propagate

• For example, to add 32 numbers, you can partition the task as
a tree .

.         .         .         .
. . . .   . . . .   . . . .   . . . .



17

P and G for 4-bit Blocks

• Compute P0 and G0 (super-propagate and super-generate) for the
first group of 4 bits (and similarly for other groups of 4 bits)
P0 = p0.p1.p2.p3
G0 = g3 + g2.p3 + g1.p2.p3 + g0.p1.p2.p3

• Carry out of the first group of 4 bits is
C1 = G0 + P0.c0
C2 = G1 + P1.G0 + P1.P0.c0
C3 = G2 + (P2.G1) + (P2.P1.G0) + (P2.P1.P0.c0)
C4 = G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.G0) + (P3.P2.P1.P0.c0)

• By having a tree of sub-computations, each AND, OR gate has few
inputs and logic signals have to travel through a modest set of
gates (equal to the height of the tree)



18

Example

Add    A    0001  1010   0011   0011
B    1110   0101  1110    1011
g     0000   0000  0010   0011
p     1111    1111   1111   1011

P        1         1         1        0
G        0         0         1        0

C4 = 1



19

Trade-Off Curve
#i

np
ut

s 
to

 e
ac

h 
ga

te

# sequential gates

Truth table
sum-of-products adder, (2, 264)

gp adder (3, 33)

Carry Lookahead GP adder (7, 5)

Ripple-Carry
adder (64, 2)

# sequential gates

Pe
rf

or
m

an
ce



20

Carry Look-Ahead Adder

• 16-bit Ripple-carry
takes 32 steps

• This design takes
how many steps?
5 sequential steps

Source: H&P textbook


