
1

Lecture 26: Multiprocessors

• Today’s topics:
 Snooping-based coherence
 Synchronization
 Consistency

2

VM Overview

3

Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to physical
page number

Physical address

13

4

Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
 memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
 huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
 translating virtual to physical page number

• The page table is itself in memory

5

TLB

• Since the number of pages is very high, the page table
 capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
 to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
 may not even be found in the cache – two expensive
 memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
 and reduce the capacity of the page table, but also
 increases memory waste

6

TLB and Cache Access

7

TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first
 look up the TLB, then the cache  longer access time
 Multiple virtual addresses can map to the same
 physical address – must ensure that these
 different virtual addresses will map to the same
 location in cache – else, there will be two different
 copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same
 physical address, a virtual tag comparison can flag a
 miss even if the correct physical memory word is present

8

Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache

9

Bad Events

• Consider the longest latency possible for a load instruction:
 TLB miss: must look up page table to find translation for v.page P
 Calculate the virtual memory address for the page table entry
 that has the translation for page P – let’s say, this is v.page Q
 TLB miss for v.page Q: will require navigation of a hierarchical
 page table (let’s ignore this case for now and assume we have
 succeeded in finding the physical memory location (R) for page Q)
 Access memory location R (find this either in L1, L2, or memory)
 We now have the translation for v.page P – put this into the TLB
 We now have a TLB hit and know the physical page number – this
 allows us to do tag comparison and check the L1 cache for a hit
 If there’s a miss in L1, check L2 – if that misses, check in memory
 At any point, if the page table entry claims that the page is on disk,
 flag a page fault – the OS then copies the page from disk to memory
 and the hardware resumes what it was doing before the page fault
 … phew!

10

Multiprocessor Taxonomy

• SISD: single instruction and single data stream: uniprocessor

• MISD: no commercial multiprocessor: imagine data going
 through a pipeline of execution engines

• SIMD: vector architectures: lower flexibility

• MIMD: most multiprocessors today: easy to construct with
 off-the-shelf computers, most flexibility

11

Memory Organization - I

• Centralized shared-memory multiprocessor or
 Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
 memory – since all processors see the same memory
 organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
 entire memory address space

• Can centralized memory emerge as a bandwidth
 bottleneck? – not if you have large caches and employ
 fewer than a dozen processors

12

Snooping-Based Protocols

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves
• The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

13

Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
 X is placed in cache-1 in shared state
• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
 this request, cache-1does nothing because this is just a read request,
 memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
 state (shared only provides read perms),
 request sent on bus, cache-2 snoops and
 then invalidates its copy of X, cache-1
 moves its state to modified
• P2 reads X: cache-2 has data in invalid
 state, request sent on bus, cache-1 snoops
 and realizes it has the only valid copy, so it
 downgrades itself to shared state and
 responds with data, X is placed in cache-2
 in shared state, memory is also updated

14

Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in
Cache 1

State in
Cache 2

State in
Cache 3

State in
Cache 4

Inv Inv Inv Inv

P1: Rd X Rd Miss Rd X Memory S Inv Inv Inv

P2: Rd X Rd Miss Rd X Memory S S Inv Inv

P2: Wr X Perms
Miss

Upgrade X No response.
Other caches

invalidate.

Inv M Inv Inv

P3: Wr X Wr Miss Wr X P2 responds Inv Inv M Inv

P3: Rd X Rd Hit - - Inv Inv M Inv

P4: Rd X Rd Miss Rd X P3 responds.
Mem wrtbk

Inv Inv S S

15

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
 of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
 status of that block – all cache controllers monitor the
 shared bus so they can update the sharing status of the
 block, if necessary

 Write-invalidate: a processor gains exclusive access of
 a block before writing by invalidating all other copies
 Write-update: when a processor writes, it updates other
 shared copies of that block

16

Constructing Locks

• Applications have phases (consisting of many instructions)
 that must be executed atomically, without other parallel
 processes modifying the data

• A lock surrounding the data/code ensures that only one
 program can be in a critical section at a time

• The hardware must provide some basic primitives that
 allow us to construct locks with different properties

Bank balance
$1000

Rd $1000
Add $100
Wr $1100

Rd $1000
Add $200
Wr $1200

Parallel (unlocked) banking transactions

17

Synchronization

• The simplest hardware primitive that greatly facilitates
 synchronization implementations (locks, barriers, etc.)
 is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
 memory location into register and write 1 into memory
 (if memory has 0, lock is free)

• lock: t&s register, location
 bnz register, lock
 CS
 st location, #0

When multiple parallel threads
execute this code, only one
will be able to enter CS

18

Coherence Vs. Consistency

• Coherence guarantees (i) write propagation
 (a write will eventually be seen by other processors), and
 (ii) write serialization (all processors see writes to the
 same location in the same order)

• The consistency model defines the ordering of writes and
 reads to different memory locations – the hardware
 guarantees a certain consistency model and the
 programmer attempts to write correct programs with
 those assumptions

19

Consistency Example

• Consider a multiprocessor with bus-based snooping cache
 coherence

Initially A = B = 0
 P1 P2
A  1 B  1
 … …
if (B == 0) if (A == 0)
 Crit.Section Crit.Section

20

Consistency Example

• Consider a multiprocessor with bus-based snooping cache
 coherence

Initially A = B = 0
 P1 P2
A  1 B  1
 … …
if (B == 0) if (A == 0)
 Crit.Section Crit.Section

The programmer expected the
above code to implement a

lock – because of ooo, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities

21

Sequential Consistency

• A multiprocessor is sequentially consistent if the result
 of the execution is achieveable by maintaining program
 order within a processor and interleaving accesses by
 different processors in an arbitrary fashion

• The multiprocessor in the previous example is not
 sequentially consistent

• Can implement sequential consistency by requiring the
 following: program order, write serialization, everyone has
 seen an update before a value is read – very intuitive for
 the programmer, but extremely slow

22

Relaxed Consistency

• Sequential consistency is very slow

• The programming complications/surprises are caused when the
 program has race conditions (two threads dealing with same
 data and at least one of the threads is modifying the data)

• If programmers are disciplined and enforce mutual exclusion
 when dealing with shared data, we can allow some re-orderings
 and higher performance

• This is effective at balancing performance & programming effort

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

