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Lecture 26: Multiprocessors

• Today’s topics: 
 Snooping-based coherence
 Synchronization
 Consistency
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VM Overview
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Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to physical
page number

Physical address

13
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Memory Hierarchy Properties

• A virtual memory page can be placed anywhere in physical
   memory (fully-associative)

• Replacement is usually LRU (since the miss penalty is
   huge, we can invest some effort to minimize misses)

• A page table (indexed by virtual page number) is used for
   translating virtual to physical page number

• The page table is itself in memory
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TLB

• Since the number of pages is very high, the page table
   capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
   to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
   may not even be found in the cache – two expensive
   memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
   and reduce the capacity of the page table, but also
   increases memory waste
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TLB and Cache Access
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TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first
     look up the TLB, then the cache  longer access time
 Multiple virtual addresses can map to the same
     physical address – must ensure that these
     different virtual addresses will map to the same
     location in cache – else, there will be two different
     copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same
    physical address, a virtual tag comparison can flag a
    miss even if the correct physical memory word is present
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Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual 
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache
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Bad Events

• Consider the longest latency possible for a load instruction:
 TLB miss: must look up page table to find translation for v.page P 
 Calculate the virtual memory address for the page table entry
   that has the translation for page P – let’s say, this is v.page Q
 TLB miss for v.page Q: will require navigation of a hierarchical
   page table (let’s ignore this case for now and assume we have
   succeeded in finding the physical memory location (R) for page Q)
 Access memory location R (find this either in L1, L2, or memory)
 We now have the translation for v.page P – put this into the TLB
 We now have a TLB hit and know the physical page number – this
   allows us to do tag comparison and check the L1 cache for a hit
 If there’s a miss in L1, check L2 – if that misses, check in memory
 At any point, if the page table entry claims that the page is on disk,
   flag a page fault – the OS then copies the page from disk to memory
   and the hardware resumes what it was doing before the page fault
   … phew!
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Multiprocessor Taxonomy

• SISD: single instruction and single data stream: uniprocessor

• MISD: no commercial multiprocessor: imagine data going
   through a pipeline of execution engines

• SIMD: vector architectures: lower flexibility

• MIMD: most multiprocessors today: easy to construct with
   off-the-shelf computers, most flexibility
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Memory Organization - I

• Centralized shared-memory multiprocessor   or
   Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
   memory – since all processors see the same memory
   organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
   entire memory address space

• Can centralized memory emerge as a bandwidth
   bottleneck? – not if you have large caches and employ
   fewer than a dozen processors
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Snooping-Based Protocols

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves
• The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System
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Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
   X is placed in cache-1 in shared state
• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
   this request, cache-1does nothing because this is just a read request,
   memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
   state (shared only provides read perms),
   request sent on bus, cache-2 snoops and
   then invalidates its copy of X, cache-1
   moves its state to modified
• P2 reads X: cache-2 has data in invalid
   state, request sent on bus, cache-1 snoops
   and realizes it has the only valid copy, so it
   downgrades itself to shared state and
   responds with data, X is placed in cache-2
   in shared state, memory is also updated
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Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in 
Cache 1

State in 
Cache 2

State in 
Cache 3

State in 
Cache 4

Inv Inv Inv Inv

P1: Rd X Rd Miss Rd X Memory S Inv Inv Inv

P2: Rd X Rd Miss Rd X Memory S S Inv Inv

P2: Wr X Perms 
Miss

Upgrade X No response.
Other caches 

invalidate.

Inv M Inv Inv

P3: Wr X Wr Miss Wr X P2 responds Inv Inv M Inv

P3: Rd X Rd Hit - - Inv Inv M Inv

P4: Rd X Rd Miss Rd X P3 responds. 
Mem wrtbk

Inv Inv S S
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Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
   of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
   status of that block – all cache controllers monitor the
   shared bus so they can update the sharing status of the
   block, if necessary

 Write-invalidate: a processor gains exclusive access of
     a block before writing by invalidating all other copies
 Write-update: when a processor writes, it updates other
     shared copies of that block
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Constructing Locks

• Applications have phases (consisting of many instructions)
   that must be executed atomically, without other parallel
   processes modifying the data

• A lock surrounding the data/code ensures that only one
   program can be in a critical section at a time

• The hardware must provide some basic primitives that
   allow us to construct locks with different properties

Bank balance
$1000

Rd $1000
Add $100
Wr $1100

Rd $1000
Add $200
Wr $1200

Parallel (unlocked) banking transactions
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Synchronization

• The simplest hardware primitive that greatly facilitates
   synchronization implementations (locks, barriers, etc.)
   is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
   memory location into register and write 1 into memory
   (if memory has 0, lock is free)

• lock:    t&s    register, location
               bnz   register, lock
                 CS
               st      location, #0

When multiple parallel threads
execute this code, only one
will be able to enter CS
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Coherence Vs. Consistency

• Coherence guarantees (i) write propagation
   (a write will eventually be seen by other processors), and
   (ii) write serialization (all processors see writes to the
   same location in the same order)

• The consistency model defines the ordering of writes and
   reads to different memory locations – the hardware
   guarantees a certain consistency model and the
   programmer attempts to write correct programs with
   those assumptions
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Consistency Example

• Consider a multiprocessor with bus-based snooping cache
   coherence

Initially A = B = 0
  P1                        P2
A  1                 B  1
 …                        …
if (B == 0)           if (A == 0)
  Crit.Section         Crit.Section
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Consistency Example

• Consider a multiprocessor with bus-based snooping cache
   coherence

Initially A = B = 0
  P1                        P2
A  1                 B  1
 …                        …
if (B == 0)           if (A == 0)
  Crit.Section         Crit.Section

The programmer expected the
above code to implement a

lock – because of ooo, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities
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Sequential Consistency

• A multiprocessor is sequentially consistent if the result
   of the execution is achieveable by maintaining program
   order within a processor and interleaving accesses by
   different processors in an arbitrary fashion

• The multiprocessor in the previous example is not
   sequentially consistent

• Can implement sequential consistency by requiring the
   following: program order, write serialization, everyone has
   seen an update before a value is read – very intuitive for
   the programmer, but extremely slow 
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Relaxed Consistency

• Sequential consistency is very slow 

• The programming complications/surprises are caused when the
   program has race conditions (two threads dealing with same
   data and at least one of the threads is modifying the data)

• If programmers are disciplined and enforce mutual exclusion
   when dealing with shared data, we can allow some re-orderings
   and higher performance

• This is effective at balancing performance & programming effort
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