
Memory Management

Goals:
• Provide a convenient programming model
• Efficiently allocate a scarce resource
• Protect programs from each other
• Protect the OS from programs

Mechanisms:
• Physical and virtual addressing
• Paging and segmentation
• Page table management

Policies:
• Page replacement algorithms

1

Memory and Architecture

• TLB: Translation Look aside Buffer
• MMU: Memory Management Unit

2

Physical Addresses

A physical address is one that can be directly
used by the memory subsystem

With 512 MB of physical memory, the OS sees
physical memory as an array of 512 million bytes:

• mem[0] is the first byte

• mem[256*1024*1024] is the middle byte

• mem[512*1024*1024] is the first illegal address

3

Virtual Addresses

Processes see only virtual addresses

OS provides each process with a virtual address
space that is 4 GB (on a 32-bit machine):

• vmem[10][0] is the first byte of memory for
process 10

• vmem[10][4*1024*1024*1024 - 1] is the
last byte of memory for process 10

4

Mapping Virtual to Physical Addresses

OS must provide a mapping from virtual addresses
to physical addresses:

• The same virtual address in two different
processes does not map to the same physical
address

• Some virtual addresses do not map to any
physical address

The arrays mem and vmem don’t really exist, but
they’re a good way to model the problem

5

Where do Addresses Come From?

• Compile time: The compiler generates the exact
physical location in memory starting from some
fixed starting position. The OS does nothing.

• Load time: Compiler generates an address, but
at load time the OS determines the process’
starting position. Once the process loads, it does
not move in memory.

• Execution time: Compiler generates an address,
and OS can move it around in memory as needed

6

Uniprogramming (e.g. DOS)

• OS gets a fixed part of memory
• Process is always loaded starting at address 0
• Process executes in a contiguous section of

memory
• Compiler can generate physical addresses
• Maximum address = Memory Size - OS Size
• OS is protected from process by checking

addresses used by process
7

Multiprogramming

• Transparency:
Multiple processes can coexist in memory
No process should be aware that memory is
shared
Processes should not care what physical
portion of memory they get

• Safety:
Processes must not be able to corrupt each
other
Processes must not be able to corrupt the OS

• Efficiency:
Performance should not degrade badly due to
sharing

8

Relocation

• Put the OS in the highest memory

• Compiler/linker assumes that the process starts at
0

• When the OS loads the process, it allocates a
contiguous segment of memory where process fits
(if available) 9

Relocation

• The first physical address of the process is the
base address and the largest physical address
the process can access is the limit address

• The base address is also known as the
relocation address, and may be kept in a special
register

10

Static Relocation

Static resolution means

• At load time, the OS adjusts the addresses in a
process to reflect its position in memory

• Once a process is assigned a place in memory
and starts executing it, the OS cannot move it.

11

Dynamic Relocation

Dynamic resolution means

• Hardware adds relocation register (base) to virtual
address to get a physical address

• Hardware compares address with limit register;
address must be less than base

• If test fails, the processor takes an address trap
and ignores the physical address 12

Dynamic Relocation

Advantages:
• OS can easily move a process during execution
• OS can allow a process to grow over time
• Simple, fast hardware: two special registers, an add, and a

compare

Disadvantages:
• Slows down hardware due to the add on every memory

reference
In the 60's, this was a show stopper!

• Can’t share memory (such as program text) between
processes

• Process is still limited to physical memory size
• Multiprogramming limited, since all memory of all active

processes must fit in memory
• Complicates memory management

13

Dynamic Relocation

Check our goals:

• Transparency: processes are largely unaware of
sharing

• Safety: each memory reference is checked

• Efficiency: address translation and checks are
done in hardware, so they are fast, but if a
process grows, moving it is very slow

14

Memory Allocation

Holes: pieces of free memory (shaded above)

Given a memory request from a starting process,
OS must decide which hole to use

15

Memory Allocation

External fragmentation = holes between
processes

In simulations with some allocators, 1/3 of memory
may be lost to fragmentation 16

Memory Allocation Policies

• First-Fit: allocate the first one in the list in which
the process fits (but the search can start in
different places)

• Best-Fit: Allocate the smallest hole that is big
enough to hold the process (meanwhile, coalesce
adjacent holes?)

• Worst-Fit: Allocate the largest hole to the process

Simulations show

• First-fit and best-fit usually yield better storage
utilization than worst-fit

• First-fit is generally faster than best-fit

17

Compaction

18

Swapping

• Move an inactive process to disk, releasing its
memory

• When process becomes active, reload it in
memory

Static relocation: process must be put in the
same position

Dynamic relocation: OS finds a new position in
memory

If swapping is part of the system, compaction is easy to add

How could/should swapping interact with CPU scheduling?

19

Where do Addresses Come From?

Compile time:
• Advantages: Simple, lookup is fast
• Disadvantages: OS cannot move process, so only

one process may execute at a time

Load time:
• Advantages: Sharing between processes, virtual

memory, multiprogramming
• Disadvantages: Slightly slower, must run a

process to completion without moving

Execution time:
• Advantages: most flexible, sharing, virtual

memory, can move processes
• Disadvantages: slowest option

20

Contiguous Memory

So far, we’ve just considered a mapping from
contiguous virtual addresses to contiguous physical
addresses:

Problems: External fragmentation, copying for
compaction or resizing, difficulty sharing memory
between processes, slow program loading,
programs limited to physical memory size

21

Virtual Memory

Virtual memory means breaking the virtual
address space into chunks of (potentially)
discontiguous physical addresses

Virtual
Addresses

99
0 OS 0

 99

99
0 A 100

 199

99
0 B 300

 399

199
100 A 400

 499

99
0 C 500

 599

1099
1000 A 800

 899

Physical
Addresses

Note: virtual address is a general concept, while virtual memory is a
specific technique for mapping virtual addresses

22

Pages

A page is a contiguous block of virtual addresses

A frame is a contiguous block of physical
addresses

A page is mapped to a frame

• Page/frame size is fixed by OS (typically 4KB or
8KB)

• Page always start on a multiple of the page size

• Pages greatly simplify the hole-fitting problem

• Even if logical memory of the process is
contiguous, pages need not be allocated to
contiguous frames 23

Pages

24

Mapping Pages to Frames

A page table tracks the page → frame mapping

25

Mapping Pages to Frames

26

Mapping Pages to Frames

Paging is a form of dynamic relocation, where each
virtual address is bound by the paging hardware to
a physical address

• Think of the page table as a set of relocation
registers, one for each frame

Mapping is invisible to the process; the OS
maintains the mapping, and the hardware does the
translation

Protection is provided with the same mechanisms
as used in dynamic relocation

27

Making Page Translation Fast

Where do we put the page table?

• In registers: fast, but limited page-table size

• In memory: larger page-table possible, but slow

The usual solution: a cache

Translation Look aside Buffer (TLB) caches page
to frame translation

• 4KB entries is a typical size

28-29

TLB

v: “valid” bit, indicates whether the entry is
up-to-date

30

Starting a Process with Virtual Memory

• Process needing k pages arrives

• Assuming that k page frames are free, OS
allocates all k pages to the free frames

• OS puts the first page in a frame, and puts the
frame number in the first entry in the page table; it
then puts the second page in the frame and its
frame number in the second entry of the page
table; etc.

• OS marks all TLB entries as invalid (i.e., it
flushes the TLB)

• OS starts process

• As process executes, OS loads TLB entries as
each page is accessed, replacing an existing
entry if the TLB is full

31

Switching Processes

Process Control Block (PCB) must be extended to
contain

• the page table

• a copy of the TLB, maybe

Steps:

• Copy the page table base register value to the
PCB

• Copy the TLB to the PCB (optionally)

• Flush the TLB

• Restore the page table base register

• Restore the TLB, if it was saved
32

Page Table Entries

Page table entries (PTEs) contain more
information than just address translations:

• Page frame number

• Valid bit

• Reference bit

• Modify bit

• Protecton — read, write, execute

Real PTEs (e.g. x86) contain a lot more

33

Multilevel Paging

Page tables can be large...

Example: x86
• 4KB page size = 212

• 32-bit PTE
• ⇒ 4 * 2 20 = 4 MB

Per process!

Solution: 2-level page tables
• Break page number into two parts
• Don’t allocate tables for unmapped first parts

Some Sparc and Alpha chips use three-level page
tables

34

Sharing

Paging introduces the possibility of sharing since the memory
used by a process no longer needs to be contiguous

• Shared code must be reentrant: the processes that are using
it cannot change it (e.g., no data in reentrant code)

• Sharing of pages is similar to the way threads share text and
memory with each other

• A shared page may exist in different parts of the virtual
address space of each process, but the virtual addresses
map to the same physical address

• The user program (e.g., emacs) marks text segment of a
program as reentrant with a system call

• The OS keeps track of available reentrant code in memory
and reuses them if a new process requests the same
program

35

Paging Summary

Paging is a big improvement over segmentation:
• Eliminates external fragmentation and need for

compaction
• Permits sharing of code pages among processes,

reducing overall memory requirements
• Enables processes to run when they are only

partially loaded in main memory

However, paging has costs:
• Translating from a virtual address to a physical

address is more time-consuming
• Paging requires hardware support in the form of a

TLB to be efficient enough to actually use
• Paging requires more complex OS to maintain the

page table
36

