
Part I: Unix Signals

1

Stopping a Program

What if you run this program?

int main () {
 while (1);
 printf("bye\n");
 return 0;
}

What happens if you hit Ctl-C?

Could you make Ctl-C print “bye” before exiting?

2-4

Signals

A shell handles Ctl-C by sending the SIGINT signal
to a process

The sigaction() function can be used to install a
signal handler

See bye.c and bye2.c

5

Some Other Signals

SIGHUP terminal is gone

SIGQUIT please quit

SIGKILL force quit (cannot handle)

SIGSEGV seg fault

SIGALRM timer expired

SIGPIPE write to pipe with closed read end

SIGCHLD child completed

6

Timers

Use setitimer() to start a timer

See timer.c and timer2.c...

7

Signal Handlers and Races

Beware! — a signal handler is practically a thread

Use sigprocmask() to (un)block signals

See timer3.c

8

Part II: Deadlock

• Conditions

• Prevention

• Detection

9

Deadlock is when two or more threads are waiting
for an event that can only be generated by these
same threads

printer->Wait();
disk->Wait();

// copy from disk
// to printer

printer->Signal();
disk->Signal();

disk->Wait();
printer->Wait();

// copy from disk
// to printer

printer->Signal();
disk->Signal();

Deadlock can occur anytime threads acquire
multiple resources (printers, disks, etc.), perform
work, and then release their resources

10

Deadlock

11

Deadlock

12

Deadlock Examples

• Linux: In-kernel memory allocator runs out of pages, causing an
“out of memory handler” to run, which calls a function that tries to
allocate a page.

• Windows 2000: The OS keeps a pool of “worker threads” waiting
to do work; one worker thread submits a job to another worker
thread, but there are no free worker-thread slots.

• Win32: A graphical application sends a piece of work to a worker
thread and then waits for the worker to complete; the worker, as
part of its job, queries the state of the user interface.

• Any OS: You are writing a threaded program and you attempt to
acquire a lock that you already hold. (This is easier than it sounds
when you are using library code.)

13

Necessary Conditions for Deadlock

Requires all of the following:

1. Mutual Exclusion — at least one thread must
hold a resource that cannot be shared (e.g., a
lock or a printer)

2. Hold and Wait — at least one thread holds a
resource and is waiting for other resource(s) to
become available; a different thread holds the
resource(s)

3. No Preemption — a thread can release a
resource only voluntarily; another thread or the
OS cannot force the thread to release the
resource

4. Circular Wait — a set of waiting threads are
waiting on each other

14

Resource-Allocation Graphs

15

Resource-Allocation Graphs

16

Resource-Allocation Graphs

deadlock

17

Resource-Allocation Graphs

probably not deadlock

18

Resource-Allocation Graphs

• No cycles in graph ⇒ no deadlock

• Cycles in graph and...

... one instance/resource ⇒ deadlock

... multiple instances ⇒ maybe deadlock

19

Handling Deadlock

• Deadlock prevention: design the system or
application so that deadlock is impossible

• Deadlock avoidance: exploit knowledge about
worst-case resource requirements; the OS
artificially delays some requests to aviod deadlock

• Deadlock detection: find instances of deadlock
and recover somehow

20

Deadlock Prevention

Ensure that at least one of the necessary conditions doesn’t
hold:

1. Mutual Exclusion — make resources sharable (but some
resources cannot be shared)

2. Hold and Wait — disallow a thread holding one resource to
request another, or make threads request all the resources
they need at once

3. No Preemption — if a thread requests an unavailable
resource, preempt (releases) all the resources that the
thread is currently holding; only when all resources are
available restart the thread (but not all resources can be
easily preempted, like printers)

4. Circular Wait — impose an ordering (numbering) on the
resources and request them in order

21

Deadlock Avoidance

Requires information about future resource
requests

Given that knowledge, for any configuration of
resource callocations:

• Safe — from the current state, processes can be
ordered to get resources they may want

• Unsafe — from the current state, couldn’t
necessarily satisfy all requests

22

Deadlock Avoidance

23

Deadlock Avoidance

Avoidance algorithms:

• Single instance per resource: extended resource-allocation
graph

safe unsafe

• Multiple instances per resource: Banker’s algorithm

24

Deadlock Detection

Problem 1: detection

• Detecting cycles takes O(n2) where n is T + R

Check every allocation? On every failed
allocation? On a regular schedule?

Problem 2: correction

• Terminate a thread?

• Revoke a resource and notify thread?

• Rollback system?

25

Deadlock Handling in Practice

Deadlock avoidance not that useful in practice:
expensive to compute, difficult to predict resource
usage

Real OSs like UNIX and Windows tend to use a
combination of deadlock prevention and deadlock
detection

• Deadlock detection might be automatic (Windows
2000 worker threads) or might involve a human

• Deadlock prevention can be made practical by
dividing resources into categories

26

Part III: Synchronization Summary

27

Low-level vs. High-level Synchronization

Low-level synchronization: • Disabling interrupts
• Test-and-set or

compare-and-swap
• Spinlock

High-level synchronization: • Locks (mutexes)
• Semaphores
• Reader/writer locks
• Monitors

Questions you should now be able to answer:
• What can the OS do with these low-level

primitives? The user?
• What are the advantages and disadvantages of

each?
• How would you decide when to use each of

these?

28

Locks

• Inially always free

• Acquire makes threads wait to get the lock

• Release allows other threads to acquire

• Acquiring thread normally has to release

29

Semaphores

• Initial value depends on the problem

• “Wait” decrements count; thread must actually
wait if the count is 0

• “Signal” increments count; a wait thread may
proceed

• Canceling wait and signal need not be from the
same thread

30

Reader/writer Locks

• Initially allows either reader or writer

• Acquire for read ⇒ other readers allowed, writer
must wait

• Acquired for write ⇒ all other threads must wait

• Release allows waiting threads to proceed

• Acquiring thread normally has to release

31

Monitors

• Typically provided by a language

• Acquires a lock before accessing
monitor-protected data

• Releases lock after accessing monitor-protected
data

• Often uses a re-entrant lock

32

Condition Variables

• Cooperate with a lock; sometimes built into a
monitor

• “Wait” releases a lock and waits for a signal

• “Signal” wakes up (roughly) one waiting thread (if
any)

• “Broadcast” wakes up all waiting threads

Condition variables and semaphores both have
“wait” and “signal,” but

• A semaphore can act as a lock

• A semaphore “remembers” a signal until it is used

33

Layered Synchronization

Usually, more sophisticated synchronization
abstractions are built on simpler ones:

• Reader/writer locks can be implemented with
semaphores

• Semaphores can be implemented with spinlocks

• Spinlocks can be implemented with test-and-set

• Test-and-set can be implemented

Easily by CPU for a uniprocessor

Less easily by CPU for a multiprocessor

Why have so many layers? Why not just implement
reader/writer locks using test-and-set?

34

Waiting

All synchronization involves waiting

• What are we waiting for?

• Who waits?

• How does the waiting happen?

Two ways to wait:

• Busy wait

• Block

Low-level sync tends to involve busy-waiting while
high-level sync is blocking — why?

What are the advantages and disadvantages of
each? 35

Busy Waiting vs. Blocking

An adaptive lock spins for a while, then blocks

36

Safety vs. Liveness

Safety properties ensure that the system will never
get into some bad state

• Deadlock

• Races

• Abnormal termination

Liveness properties ensure that the system
eventually accomplishes work

37

Part IV: Information on HW4

38

Implementing a Threads Package

To implement a user threads package, you need

• A new stack for each thread

• A way to capture the registers of the current
thread and swap in previously saved registers

getcontext() saves the current registers

setcontext() restores saved registers

makecontext() initializes registers given a
starting function

39-40

Homework 4

• Due next Friday (midnight)

• Work in groups of 2

Pick your own partner

Handin by one for both

• Basic user-thread implementation provided

• You implement

semaphores
sleeping
proportional-share scheduling

41

