
Distributed Shared Memory

a[0] = 5 a[1] = 7 a[2] = 3

5 7 3

see field.c

1-2

Distributed Shared Memory

Key problems:

• Sharing as transparently as possible

• Sharing as efficiently as possible

3

Sharing Changes

Most obvious idea: for each memory write or read,
consult a central server

• Simple

• Very slow

• Difficult to make transparent

4

Sharing Changes

Better idea: check with central server at uses of
synchonization abstractions

Based on the idea that changing shared data
reliably requires synchronization

• Faster

• Still fairly simple

• Easier to make transparent

5

Sharing at Synchronization

sema_wait(s);
a[2] = 7
a[1] = a[2] + 3
a[2] = a[1] + 2
sema_post(s);

sema_wait(s);

a[1]++
...

sema_wait(s);

a[2] += 1
a[1] = a[2] - 5
sema_post(s);

...

6

Sharing at Synchronization

sema_wait(s1);
a[2] = 7
sema_post(s1);

sema_wait(s2);
a[3] = 8
sema_post(s2);

a[4] = 9
sema_wait(s1);
sema_wait(s2);

a[4] += a[2] - a[3]
...

⇒ sites must track and communicate changes,
instead of whole memory

7-8

DSM State and Changes

Server tracks:

• Sempahore state

• Current memory state

• A per-site map of changes that need to be sent

Client tracks:

• State most recently received from server

Can be compared to current local state to
generate a change map

9

DSM State Communication

Client grabs a lock:

• Get state changes from the server right after

Client releases a lock:

• Send changes since last communiction right
before

10

Mini-DSM

see network_dsm_client.c,
network_dsm_server.c

11

Improving DSM

Sending/receiving global state updates is slow and
usually unnecessary

Checking all memory to detect changes is slow and
usually unnecessary

Alternatives:

• Use pages and page protection to transparently
detect changes and accesses

see network_page_dsm_client.c

• Put all state in objects, and let the object
accessors and mutators commuincate with the
server as needed

12-13

